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Coupled-wire constructions offer particularly simple and powerful models to capture the essence of strongly
correlated topological phases of matter. They often rely on effective theories valid in the low-energy and
strong-coupling limits, which impose severe constraints on the physical systems where they could be realized. We
investigate the microscopic relevance of a class of coupled-wire models and their possible experimental realiza-
tion in cold-atom experiments. We connect with earlier results and prove the emergence of fractional quantum
Hall states in the limit of strong interwire tunneling. Contrary to previous studies relying on renormalization
group arguments, our microscopic approach exposes the connection between coupled-wire constructions and
model wave functions in continuum Landau levels. Then, we use exact-diagonalization methods to investigate
the appearance of these fractional quantum Hall states in more realistic settings. We examine the parameter
regimes where these strongly correlated phases arise, and provide a way to detect their appearance in cold-atom
experiments through standard time-of-flight measurements. Motivated by this experimental probe, we finally
propose a realization of our model with cold atoms in spin-dependent optical lattices. Our estimates show that
the previous fractional quantum Hall phases lie within experimentally accessible parameter regimes, giving a
viable route toward their experimental study.
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I. INTRODUCTION

Our understanding of the fractional quantum Hall (FQH)
effect has heavily relied on the use of model wave functions
(WFs) [1]. Their strength resides in their simultaneous pre-
dictive power and microscopic relevance. For instance, the
Laughlin states [2,3] allow us to successfully predict the exis-
tence of quasiparticle excitations with fractional charge [4,5]
and fractional statistics [6]. They also fully screen the short-
range and largest pseudopotential components of the Coulomb
interaction projected on the lowest Landau level (LLL) [7,8].
Such a feature ensures that they faithfully capture the low-
energy physics of a fractional quantum Hall system at filling
factor ν = 1/m, while providing an excellent approximation
of the system’s ground state (GS).

Another powerful and elegant approach able to predict the
universal behaviors of FQH phases is known as the coupled-
wire (CW) construction [9,10]. This approach has found
applications in widely different models [11–15], sometimes
far away from the conventional FQH phases [16–18]. In the
CW construction, a higher-dimensional system is decomposed
into a collection of one-dimensional subsystems, the quan-
tum wires. Specific targeted topological phases arise due to
suitable couplings between the wires and careful choices of
interactions [19]. The effectiveness of the CW construction
relies on powerful bosonization and renormalization tech-

niques [20,21]. In the FQH case, this construction provides an
intuitive understanding of the bulk-edge correspondence [22]:
the edge effective theory is used for the wires to generate the
bulk physics [23]. Often, the interacting CW models are not
chosen for their experimental relevance, but rather to provide
an intuitive picture for a given topological phase or to ease the
renormalization group analysis.

CW models may however find a greater microscopic rele-
vance and a wider range of application in ultracold quantum
gases [24]. These physical systems have been envisioned for
the realization of FQH phases for the last decade [25,26],
due to the many experimental advances in the generation
of artificial magnetic fields [27–32]. In this prospect, the
implementation of CW models with cold atoms in optical
lattices displays several advantages. First, cooling of one-
dimensional wires below the Doppler limit [33] and strong
artificial magnetic fluxes [34] have already been demonstrated
in such setups. Then, ultracold collisions between neutral
particles in s or p waves [35,36] naturally realize the idealized
interactions of certain CW models [9]. Finally, subwavelength
spacing of the wire should provide the necessary tunneling
coefficients to create flat Chern bands [24]. More recently,
experimental breakthroughs in ultracold gases with a synthetic
dimension [37,38] open another route toward experimen-
tal realizations of CW models, as theoretically envisioned
and numerically evidenced in Refs. [39–43]. However, the
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long-range interactions in the synthetic dimension tend to
stabilize crystal phases rather than FQH ones in these se-
tups [44,45].

To support these prospective realizations of FQH physics
in optical lattices, a closer microscopic understanding of
CW models is required. In fact, the low-energy and strong-
coupling limits, used in analytical treatments of CW models,
blur crucial microscopic properties. The precise range of
tunneling and interaction strengths required for the emergence
of FQH phases remains unknown in most of these models. We
still lack a microscopic characterization of CW ground states,
for instance via model WFs, to connect with simple experi-
mental probes such as density. The competing phases in these
models and their distinctive features have yet to be identified.
These problematics demand sustained efforts in the micro-
scopic study of the CW model, either analytically or numeri-
cally, but without recurring to effective low-energy theories.

This paper addresses some of these questions for a class
of coupled-wire models. In particular, we show how and in
which regimes the CW construction is microscopically related
to the continuous description of the FQH effect. Moreover,
we numerically study the phase diagram of a CW model in
realistic experimental conditions.

The paper is organized as follows. In Sec. II, we begin
with a short review of the continuum FQH system and of the
pseudopotential approach for the Laughlin state. In Sec. III,
we show the emergence of a Landau level structure for
quantum wires strongly coupled by tunneling in an external
magnetic field. Thanks to this correspondence, we adapt the
pseudopotential approach to our coupled-wire system, and
bridge the CW construction and model WFs (see Sec. IV).
In Sec. V, we use exact-diagonalization methods to sketch the
phase diagram of an interacting CW model. We characterize
the weakly interacting phases and highlight an experimental
probe to discriminate them from the Laughlin phase. Fi-
nally, we propose a plausible experimental realization of our
model with cold atoms in spin-dependent optical lattices (see
Sec. VI). Our estimates indicate that the FQH-like phases
could be observed in optical lattices for experimentally realis-
tic parameters, provided temperature can be kept low enough.

II. QUANTUM HALL EFFECT ON
THE CYLINDER GEOMETRY

In this section, we briefly review the quantized motion of
charged particles on the cylinder geometry, i.e., assuming pe-
riodic boundary condition along one direction. We introduce
model interactions for which the Laughlin wave functions
(WFs) are the exact densest ground state of the many-body
problem [2].

A. Landau levels

We consider a two-dimensional gas of N particles of charge
e moving in the (x, y) plane and subject to a perpendicular
magnetic field B = ∇ × A. We assume periodic boundary
conditions along the x direction and identify x = 0 with x =
L, thus mapping the problem to a cylinder. In the Landau
gauge A = (sgn(e)By, 0), the momentum along the compact
direction kx is a good quantum number and periodic boundary

conditions impose

kx = γ k, with γ = 2π

L
and k ∈ Z. (1)

The kinetic Hamiltonian

Hkin = (p − eA)2

2m
(2)

splits the Hilbert space into Landau levels evenly spaced in
energy by h̄ωc = h̄|e|B/m. Most of the quantum Hall effect
physics is already apparent in the lowest Landau level (LLL).
Hence, ignoring spin degeneracies and assuming the temper-
ature is low enough, we will focus on the LLL physics from
now on. This subspace is spanned by momentum eigenfunc-
tions of the form

φk (x, y) = eiγ kx√
π

√
L

exp

(
− (y − yk )2

2�2
B

)
, (3)

where

�B =
√

h̄

|e|B (4)

denotes the magnetic length. In this geometry, the momentum
label k also determines the center of the Gaussian wave packet
in the y direction, yk = γ k�2

B. We denote by c̃†
k the particle

creation operator in orbital k, thus φk (x, y) = 〈x, y|c̃†
k |0〉. For

noninteracting fermions, the integer quantum Hall effect oc-
curs when a Landau level is completely filled. Here, we focus
on the completely filled LLL with filling factor ν = 1. We can
write the many-body WF as a Slater determinant involving
orbitals of the form Eq. (3). Denoting by z j = x j − iy j the
complex coordinate of the jth particle, this many-body WF
can be rewritten (up to a global normalization prefactor) as

�ν=1(z1, . . . , zNe ) =
∏
i< j

(eiγ zi − eiγ z j )
∏

i

e
− y2

i
2�2

B . (5)

B. Model interactions in the LLL

The study of the FQH effect is much more difficult be-
cause standard perturbation methods are not available. Indeed,
the Hamiltonian projected on the LLL consists solely of an
interaction term projected on the flat and highly degenerate
LLL. The theoretical understanding of the FQH effect has
thus heavily relied on trial WFs [46,47]. The most celebrated
example is the Laughlin WF at filling ν = 1/q with q a
positive integer. It reads [2]

�1/q(z1, . . . , zNe ) =
∏
i< j

(eiγ zi − eiγ z j )q
∏

i

e
− y2

i
2�2

B , (6)

and describes fermionic (resp. bosonic) statistics when q is
odd (resp. even). Although these trial WFs might not describe
the exact ground state of a realistic microscopic Hamiltonian
at filling factor ν = 1/q, they are believed to be adiabatically
connected to the latter. Some of the physical content of these
strongly interacting phases can then be revealed by the struc-
ture and analytical properties of the trial WFs. For instance,
the plasma analogy enables predictions on Eq. (6) such as
the existence of quasiparticles with fractional electric charge
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e/q, which were indeed observed experimentally [4,5]. The
physical relevance of the Laughlin WFs also stems from the
ability to derive a microscopic interacting Hamiltonian whose
densest ground state is exactly Eq. (6) [8]. These interaction
Hamiltonian are called Haldane’s pseudopotentials [7], which
we now review.

We will focus on the model interactions whose densest
ground state is either the bosonic Laughlin ν = 1/2 state or
the fermionic Laughlin ν = 1/3 state, respectively denoted
as V (0) and V (1), but the discussion can be extended to any
Laughlin wave function [7,8,48–50]. Their action in real space
is

V (0)(z1, z2) = δ(2)(z1 − z2),

V (1)(z1, z2) = ∇2δ(2)(z1 − z2), (7)

properly symmetrized to account for the periodic boundary
conditions in the x direction. Their matrix elements in the LLL
can be computed with Eq. (3) [49,51,52]. Up to an irrelevant
prefactor, the parent Hamiltonian for the bosonic Laughlin
ν = 1/2 reads

V (0) =
∑

u,k,l∈Z

[
e−(γ �B )2(k2+l2 )

]
c̃†

u+k c̃†
u−k c̃u+l c̃u−l , (8)

while the one for the fermionic Laughlin ν = 1/3 state is

V (1) =
∑

u,k,l∈Z

[
kle−(γ �B )2(k2+l2 )

]
c̃†

u+k c̃†
u−k c̃u+l c̃u−l . (9)

Notice that the momentum conservation is readily satisfied
and that the translational invariance along the cylinder axis
is explicit as the matrix coefficients do not depend on the
center of mass u. In the rest of the article, we will exactly
recover the LLL physics, including possible interactions and
the Laughlin physics, starting from a tight-binding model of
one-dimensional wires of free particles in the presence of a
magnetic field.

III. LANDAU LEVELS FROM COUPLED WIRES

In this section, we consider an array of one-dimensional
wires of free particles coupled by tunneling under a magnetic
field. We prove that for large enough tunneling strengths,
this system has all the features of the equivalent continuum
Laudau problem studied in Sec. II. At the single-particle
level, eigenfunctions are labeled by their momentum along the
direction of the wires which also determines their center-of-
mass position as in Eq. (3). Altogether, these states form bands
with nontrivial topological properties which are unveiled by
adapting Laughlin’s charge-pumping argument [53]. The re-
sults can be intuitively regarded as the consequence of taking
the continuum limit in the x direction of the Hofstadter model.

A. Model

We consider an array of equally spaced one-dimensional
wires of free particles in the (x, y) plane. As sketched in
Fig. 1, the wires are along the x direction for which we assume
periodic boundary conditions and identify x = 0 to x = L. The
distance between two consecutive wires is d such that the jth
wire lies at y = jd . A magnetic field is applied perpendicular
to the (x, y) plane and we denote the nonvanishing component

FIG. 1. Periodic array of one-dimensional wires of length L (in
red). Periodic boundary conditions are assumed along x, the direction
of the wires. They are equally spaced and centered at positions y =
jd with j ∈ Z. A magnetic flux φ = BLd is threaded between each
pair of consecutive wires (gray area).

of the vector potential as Ax(y) = sgn(e)By. The Hamiltonian
consists of two terms, the kinetic energy from the unconfined
x direction and the tunneling between wires. We denote as
c†

j (x) the creation operator of a particle at position x ∈ [0, L)
on wire j. In second quantized form, the Hamiltonian reads

H =
∑
j∈Z

∫
dx

{
c†

j (x)
[px − eAx( jd )]2

2m
cj (x)

− t[c†
j+1(x)c j (x) + c†

j (x)c j+1(x)]

}
, (10)

where px = −ih̄∂x denotes the momentum operator along
x and where we have introduced the tunneling strength t
between neighboring wires. As in Sec. II A, the momentum px

commutes with the kinetic Hamiltonian H and is quantized in
units of h/L due to periodic boundary conditions. Introducing
the Fourier components

c†
j,k = 1√

L

∫
dx e

2iπ
L kxc†

j (x), (11)

with k ∈ Z an integer, we can split the Hamiltonian of Eq. (10)
into different momentum sectors H = ∑

k∈ZHk with

Hk =
∑
j∈Z

(h̄γ k − |e|B jd )2

2m
c†

j,kc j,k − t[c†
j+1,kc j,k + H.c.].

To simplify the notations, we introduce the natural kinetic
energy scale

E0 = (eBd )2

2m
= h̄2

2m

(
d

�2
B

)2

, (12)

with �B the magnetic length, and we define the dimensionless
tunneling parameter

λ = t

E0
. (13)

We also call νw the inverse number of flux quanta φ0 = h/e
threading the x-y plane between two consecutive wires

νw = φ0

φ
= 2π�2

B

Ld
, (14)
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FIG. 2. Spectrum of Eq. (15) for several tunneling strengths λ in a system of 25 wires with νw = 1 and open boundary conditions in j.
The free parabolic branches obtained at λ = 0 hybridize near crossing points when tunneling between wire increases, until the lowest bands
become flat. This happens to the lowest band (blue) for moderate tunneling strength λ ∼ 1. Beyond this point, the system becomes exactly
analogous to the Landau levels studied in Sec. II.

where the flux φ = BLd is depicted in Fig. 1. For a finite-
size system with Nw wires, it is equal to the total filling factor
of wires in the system νw = Nw/Nφ with Nφ the number of
flux quanta threading the system. Using these notations, the
Hamiltonian in the momentum sector k becomes

Hk

E0
=

∑
j∈Z

( j − νwk)2c†
j,kc j,k − λ(c†

j,kc j+1,k + c†
j+1,kc j,k ).

(15)

Its spectrum is depicted in Fig. 2 as a function of the
momentum k. We observe that the free parabolic branches
obtained for λ = 0 hybridize near crossing points when tun-
neling between wires increases. For λ > 1/4, the gap opened
by the new avoided crossing of width become larger than
the initial position of the crossing leading to a nearly flat
low-energy spectrum. Higher in energy, the unbounded ki-
netic energy dominates and tunneling is negligible for the
highly energetic bands. We can make these statements more
precise by mapping the Schrödinger equation originating
from Hk on Mathieu’s differential equation, as detailed in
Appendix A. This enables us to use the properties and
asymptotics of the solutions of this differential equation
[[54], Chap. 28].

For small tunneling strengths λ � 1, the perturbative pic-
ture of avoided crossing described above matches the exact
solution and the eigenenergies of the system can be obtained
as power series in λ near the uncoupled-wire point λ = 0.
The first-order corrections are simply those obtained within
perturbation theory with a gap between the first two bands
	 λ, while higher-order terms can be obtained iteratively [55].
These power series however have a finite radius of conver-
gence ρ (n) in each band n [[54], Chap. 28], which set the
transition between a perturbative regime λ < ρ (n) and the
flat-band regime λ > ρ (n) (as can be seen in Fig. 2). These
radii have been numerically estimated in Ref. [[56], Chap.
2.4]. Their results ρ (0) 	 0.3672 and ρ (1) 	 0.9425 agree
extremely well with both those presented in Fig. 2 and the
study carried out in Appendix A. When λ > ρ (0), we can no
longer use the previous perturbative expansion and must rely
on uniform semiclassical approximations [57,58] to obtain

estimates of, for instance, the spread of the lowest band:

δ(0) 	
λ
1

√
2

π
(8

√
λ)3/2e−8

√
λ. (16)

Due to the exponentially small spread of the energy bands,
we shall refer to the limit λ 
 1 as the flat-band regime.
We show in Appendix A that Eq. (16) agrees within 1% to
numerical simulations even for moderate tunneling strengths
λ ∼ 1. Finally, we come back to the role of kinetic energy
in highly excited bands n 
 1. There, the flat-band limit is
extremely hard to achieve as ρ (n) ∝ n2 [59], explaining why
the parabolic profile still dominates for high energies in Fig. 2.

B. Strong tunneling: Emergence of Landau levels

Let us define as d (n)†
k the operator creating a particle in band

n with momentum k, with energy ε
(n)
k . The corresponding

eigenfunction ψ
(n)
k has the form

ψ
(n)
k (x, j) = eiγ kxg(n)

k ( j − νwk), (17)

where the g(n)
k is centered around zero and can be expressed in

terms of Mathieu special functions [see Eq. (A7)]. We recover
a structure analogous to the LLL on the cylinder studied in
Sec. II where the momentum label k also determines their
center yk along the cylinder:

yk = νwdk = γ k�2
B. (18)

We now focus on the flat-band regime, and show that these
eigenstates become analogous to the LLL orbitals of Sec. II.
This result can be rationalized if we interpret our model
Eq. (10) as a variant of the Hofstadter Hamiltonian in which
the continuum limit has been taken along the wire direction
x. In the strong-tunneling limit, the system is asymptotically
equivalent to a harmonic oscillator [60,61] of characteristic
frequency h̄ωc = 2

√
λE0. The convergence is extremely fast

for low-lying bands such that the functions g(n)
k for different

momenta are exactly equal up to corrections exponentially
small in

√
λ. In particular, they all have the same expression

g(n) and the same Taylor expansion up to arbitrarily large pow-
ers of 1/

√
λ when λ 
 1. Similarly all eigenenergies within

235158-4



MICROSCOPIC STUDY OF THE COUPLED-WIRE … PHYSICAL REVIEW B 101, 235158 (2020)

a given band are equal up to exponentially small corrections.
For instance, we have the asymptotic behavior [57,62]

ε
(0)
k 	 1

2 h̄ωc + δ(0) sin(2πνwk), (19)

with δ(0) given in Eq. (16). As a consequence, we will ap-
proximate the system in the flat-band regime by perfectly
flat bands of energy ε (n) and corresponding eigenfunctions
ψ

(n)
k (x, j) = eγ kxg(n)( j − νwk). As in Sec. II A, the single-

body wave functions of a given Landau level are shifted copies
of the same envelope along y, and plane waves along the com-
pact dimension. Let us stress again that this approximation is
really well satisfied for the lowest band, where we only require
λ > ρ (0) 	 0.3672 (see lower right corner of Fig. 2 for which
λ = 1).

Not only do the eigenvalues converge toward those of a har-
monic oscillator, but the envelopes g(n) themselves uniformly
converge to Hermite functions, as shown in Ref. [63]. In the
lowest band, this reduces to

g(0)(u) −−→
λ
1

g(0)(u) = 1

(π
√

λ)1/4
exp

(
− u2

2
√

λ

)
. (20)

For larger tunneling strength λ, a similar behavior is observed
in the higher bands of the system. Although it is not necessary
for the quantum Hall physics to arise [64–66], we can recover
the initial isotropy of the Landau problem on the cylinder (see
Sec. II) by matching the width of the obtained Gaussian with
the magnetic length. This is achieved by a fine-tuning of either
the tunneling strength or the interwire distance in order to get

√
λd2 = �2

B ⇐⇒ t = h̄2

2md2
. (21)

We now summarize the results obtained in the flat-band
regime, which for low-lying bands only require moderate
tunneling strengths λ � 1. First the spectrum of our model
Eq. (10) is, up to exponentially small corrections, made of
highly degenerate flat bands centered on nh̄ωc + ε (0) with
h̄ωc = 2

√
λE0 and ε (0) = −2λ + √

λ − 1/16 [54]. The eigen-
functions with momentum k are centered around yk = γ k�2

B
and their envelope g(n) does not depend on the momentum
label k, recovering the Landau level structure of Sec. II. When
λ 
 1, the analogy can be pushed further and eigenfunctions
of the lowest band have a Gaussian shape Eq. (20), which ex-
actly matches that of the cylinder LLL orbitals when Eq. (21)
is fulfilled.

C. Charge pumping and quantized Hall conductance

The momentum periodicity of the spectrum obtained in
Eq. (19) reflects another translational symmetry in our model.
Writing νw = pw

qw
with pw and qw relatively prime, we observe

that the Hamiltonian Eq. (10) is invariant under the action of
the magnetic translation operator sending both j → ( j + pw )
and k → (k + qw ). This symmetry explains why the spectra
at k and k + qw are equivalent. Similarly, it allows us to relate
the eigenfunctions of Eq. (17), derived in Appendix A, by the
pseudoperiodic relation

ψ
(n)
k+qw

(x, j + pw ) = eiγ qwxψ
(n)
k (x, j). (22)

From now on, we focus on the lowest band of the system but
the discussion applies equally well to more energetic ones.
The first consequence of Eq. (22) is that there are only qw

distinct functions g(0)
k and we rewrite

ψ
(0)
k (x, j) = eiγ kxgr(k)( j − νwk), (23)

with r(k) the remainder after division of k by qw.
With this result in hand, we would like to repeat Laughlin’s

charge-pumping argument [53]. In other words, we want to
show the quantized Hall conductivity of our model at filling
ν = 1 and thus unveil the nontrivial topology of our model.
This will make the analogy with a continuum LLL complete.
The particle filling of the lowest band is obtained as ν =
n1Dνw with

n1D = N

Nw

(24)

the number of particles per wire. Here, we implicitly consider
a finite-size system of Nw wires with open boundary condi-
tions along j. However, we still use Eq. (22) which remains
extremely well satisfied in the bulk of the system where we
can neglect the edge effects (see lower-right panel of Fig. 2
where Nw = 25 and qw = 1).

Laughlin’s charge-pumping argument starts by introducing
a time-dependent flux � = θ (t )�0, with �0 = h/|e| the quan-
tum of flux, threading the surface enclosed by the wires in a
system at ν = 1 [53]. This situation can be described by the
modified gauge potential Ax(y) = sgn(e)By + �/L. The flux
is increased from θ (0) = 0 to θ (t f ) = qw adiabatically, i.e.,
ωc(∂tθ ) � 1, in order to adiabatically follow the eigenstates
of the lowest band. We thus have ψ

(0)
k (x, j; θ ) = eikx fθ (k, j)

where the function fθ takes simple forms at specific values
of θ :

f0(k, j) = gr(k)( j − νwk),

f1(k, j) = gr(k+1)[ j − νw(k − 1)],

...

fqw
(k, j) = gr(k)( j + pw − νwk) = f0(k, j + pw ). (25)

We emphasized a few well-chosen intermediate states which
can be exactly described for any value of the tunneling
strength λ > 0. In the flat-band limit, the discussion simplifies
since all gr are equivalent. After a full ramp-up of the flux �,
all orbitals recover their original expressions, with a shift of
their center of mass by �y = νw pwd in the y direction [see
Eq. (18)]. This displacement leads to a current whose response
is determined by the transverse conductance [67,68]

σxy = L�Py

θ (t f )�0
, (26)

with �Py the polarization induced by threading opera-
tion [69–71]. It can be computed as the density of displaced
charged �Py = |e|pwNφ

LNw
, where we have used that each of the

Nφ was filled and the previously computed displacement �y.
Combining the different pieces, this gives the quantized Hall
conductance

σxy = e2

h
ν = e2

h
, (27)
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and reveals the nontrivial topology of the lowest band of the
system.

IV. INTERACTIONS IN THE FLAT LOWEST BAND:
FRACTIONAL QUANTUM HALL STATES

In this section, we want to extend our discussion to include
interactions between particles originally on the same wire.
For simplicity, we consider the flat-band regime and require
the temperature of the system to satisfy δ(0) � kBT � h̄ωc

in order to project the whole dynamics onto the lowest band
of the system. Our discussion will closely follow that of
Sec. II B, and we will borrow the exact results known in
continuum FQH systems to show that similar physics arise
in the coupled-wire model of Eq. (10).

A. Projection onto the lowest band

Consider on-wire density-density interactions depending
on the arbitrary potential V :

Hint =
∑
j∈Z

∫
dx dx′ V (x − x′) : ρ j (x)ρ j (x

′) :, (28)

where ρ j (x) = c†
j (x)c j (x) is the density operator

for the wire j. Using the Fourier components Vq =∫
dxV (x) exp(−2iπqx/L), we can rewrite this as

Hint =
∑

u,k,l∈Z
Vk−l

∑
j∈Z

c†
j,u+kc†

j,u−kc j,u+l c j,u−l . (29)

Momentum conservation follows from translation invariance
in the x direction. Projecting this interaction onto the occupied
band [n = 0 in Eq. (17)] yields

Hint =
∑

u,k,l∈Z
Vk−l�

u
k,l d (0)†

u+k d (0)†
u−k d (0)

u+l d
(0)
u−l . (30)

The form factor �u
k,l involved has the form

�u
k,l =

∑
j∈Z

g(0)
u+l [ j − νw(u + l )]g(0)

u−l [ j − νw(u − l )]

× {
g(0)

u+k[ j − νw(u + k)]g(0)
u−k[ j − νw(u − k)]

}∗
,

(31)

which can be simplified in the flat-band limit, as detailed in
Sec. III B. Using Eq. (20) within the flat-band approximation,
we can evaluate the form factor explicitly:

�u
k,l = Kα(u)(λ)e−(rγ �B )2(k2+l2 ), r =

[
h̄2

2mtd2

] 1
4

, (32)

where we have defined α(u) = νwu. This function only takes
integer values when there is an equal number of wires and
fluxes (as in Fig. 2). It can take half-integer values when
there are twice as many fluxes as wires, and so on. Here, the
tunneling-dependent function K satisfies

Kα (λ) = K−α (λ) = Kα+1(λ) (33)

FIG. 3. Function Kα (λ) of Eq. (34) appearing in the expression
of the form factors �u

k,l . In the flat-band regime of Sec. III B charac-

terized by λ > 1, it is very well approximated by (2π
√

λ)−1/2.

and reads

Kα (λ) = 1

π
√

λ

∑
j∈Z

exp

(
−2( j + α)2

√
λ

)
. (34)

We have plotted this function in Fig. 3 as a function of λ

for several values of α in the only relevant range [0, 1/2]
[due to Eq. (33)]. We observe that it is well approximated by
(2π

√
λ)−1/2 when λ > 1, which is assumed in the flat-band

regime considered here (see discussion in Sec. III B). As a
consequence, we can write

Hint =
∑

u,k,l∈Z
[Vk−l e

−(rγ �B )2(k2+l2 )]d (0)†
u+k d (0)†

u−k d (0)
u+l d

(0)
u−l , (35)

where we have included the multiplicative factor Kα (λ > 1)
in the definition of the potential V . Due to the Gaussian
form factors in Eq. (35), the correspondence with the model
interactions of Eq. (7) becomes more precise and we now
show that similar FQH physics can be stabilized.

B. Laughlin states in the continuum limit

In the flat-band limit, the orbitals of the lowest band
Eq. (17) can be recast in the more familiar form

ψ
(0)
k (x, j) = eiγ kx

(π
√

λ)1/4
exp

(
− r2(y − yk )2

2�2
B

)
, (36)

thanks to Eq. (20). We have used the notation

r =
[

h̄2

2mtd2

]1/4

(37)

and y = jd for more straightforward comparison with Eq. (3).
The anisotropy of the single-particle state, measured by how
much r deviates from 1 [see Eq. (21)], can be incorporated
into a rescaling of the coordinates x̃ = x/r and ỹ = ry and a
redefinition of the complex coordinate z̃ = x

r − iry. This also
impacts the natural inverse length γ̃ = rγ . In this stretched
coordinate system, the single-particle WFs ψ

(0)
k exactly match

their continuum counterparts of Eq. (3).
Furthermore, the projected interactions Eq. (35) also be-

come equivalent to Eq. (7). Take for instance the one-
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dimensional version of the first pseudopotential as on-wire in-
teraction V (0)(x) = V0δ(x). Equation (35) gives its expression
after projection to the lowest flat band of the system:

H(0)
int = V0

∑
u,k,l∈Z

e−(γ̃ �B )2(k2+l2 )d (0)†
u+k d (0)†

u−k d (0)
u+l d

(0)
u−l , (38)

which is exactly equivalent to Eq. (8) in a rescaled coor-
dinate system. The pseudopotential analysis [7] can be re-
peated to obtain the densest zero-energy state of H(0)

int [48]
for a particle filling factor ν = n1Dνw = 1/2. The latter has
the same coefficients in the many-body occupation num-
ber basis as the Laughlin state Eq. (6) at filling ν = 1/2.
The only difference is the real-space representation of the
many-body wave function �2 which depends on the rescaled
coordinates

�2(z̃1, . . . , z̃Ne ) =
∏
i< j

(eiγ̃ z̃i − eiγ̃ z̃ j )2
∏

i

e
− ỹ2

i
2�2

B . (39)

With this formal mapping of our problem to the continuum,
we also recover the exact ν = 1/2 bosonic Laughlin state
when the isotropy condition Eq. (21) is satisfied, correspond-
ing to the r = 1 case. Following Haldane [64], we highlight
that the coordinate rescaling does not wash out the topological
properties of the Laughlin state. Indeed, it can be seen as a
geometric deformation of the cyclotron orbits only, leaving
the guiding centers’ distribution and all the properties of
the Laughlin state such as fractional excitations and braiding
statistics intact [65].

We can treat similarly the fermionic case with an on-
wire interaction V (1)

k−l = −V1(k − l )2, corresponding to the
one-dimensional version of the first Haldane pseudopotential
Eq. (7). Its projection onto the lowest flat band reads

H(1)
int = V1

∑
u,k,l∈Z

kle−(γ̃ �B )2(k2+l2 )d (0)†
u+k d (0)†

u−k d (0)
u+l d

(0)
u−l , (40)

which should this time be compared to Eq. (9). We have used
fermionic anticommutation relations to cancel all contribu-
tions of monomials even under the transformations k → −k
or l → −l . Considering the ν = 1/3 case, the pseudopotential
reasoning applies [8] and the densest ground state of the
interaction is

�3(z̃1, . . . , z̃Ne ) =
∏
i< j

(eiγ̃ z̃i − eiγ̃ z̃ j )3
∏

i

e
− ỹi

2

2�2
B . (41)

The discussion could be extended, as in Ref. [65], to other
Laughlin states at filling ν = 1/m with m > 3.

By a formal mapping of the coupled-wire model in the
flat-band limit to a continuum FQH system, we proved that
it hosts strongly correlated FQH states for fractional filling
of the lowest band. This result agrees with those presented in
the pioneering works of Refs. [9,10] and provides a way to
tackle the interacting coupled-wire problem without relying
on effective low-energy theory or renormalization group argu-
ments. Our results mainly come from the Gaussian form fac-
tors �u

k,l obtained thanks to the asymptotic behavior Eq. (20).

FIG. 4. Lowest two bands for a finite system of Nw = 5 wires
with tunneling parameter λ = 0.75. The single-particle state of the
lowest (resp. first excited) band, labeled by its momentum k, is
represented with blue (resp. orange) dots. To simulate a system near
total filling factor ν = 1/2, we tune the magnetic field strength in
order to keep precisely Norb = 2N + 3 orbitals below the single-
particle gap (darker blue). We only consider those orbitals in our
ED calculations. Note that Norb is larger than the natural number of
orbitals for the Laughlin state.

This asymptotic regime is reached for λ > 1 as discussed in
Sec. III B (see also Fig. 3 for a more pictorial view).

V. EXACT-DIAGONALIZATION RESULTS

We have just proved that FQH-like phases arise in our
model, when we consider the idealized limit λ 
 1 with an
infinite number of wires. Experimentally relevant situations
are however likely to deviate from this asymptotic limit.
The stabilization of the previous strongly correlated phases
ultimately depends on the accessible range of tunneling λ and
interaction strength. In this section, we provide a full-fledged
exact-diagonalization (ED) study of our interacting problem
to precisely locate the transition toward the Laughlin state
Eq. (39). Moreover, our calculations show how to experimen-
tally discriminate the strongly correlated Laughlin phase from
weakly interacting phases.

A. Setup

Let us first fix the scope of our ED study. Anticipating the
ultracold alkali vapors considered in Sec. VI, we focus on a
bosonic system with on-wire contact interactions V (0)(x) =
V0δ(x). In all our finite-size calculations, we work with N �
12 particles distributed in Nw = 5 wires.1 For simplicity, we
assume that particles only occupy the Norb orbitals centered
around k = 0 in the lowest energy band, as illustrated in
Fig. 4. In other words, we keep all states of the lowest
band with momentum |k| � Norb/2. The truncated many-
body Hamiltonian splits into a dispersive and an interacting

1While we focus on the case Nw = 5 throughout Sec. V, we have
also performed ED simulations for finite-size systems with 3 �
Nw � 7. All these systems display similar physics.
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FIG. 5. (a) Relative contribution of the dispersive energy Edisp to the total ground-state energy EGS = Edisp + Eint as a function of the
interaction strength V0, for different particle numbers 6 � N � 12. Beyond V0 	 0.075h̄ωc, the system suddenly jumps to a phase where the
interaction is almost entirely screened (black). This behavior is reminiscent of the Laughlin state |�1/2〉 described in Sec. II B. (b) Overlap
of the many-body ground state |�GS〉 with the Laughlin state |�1/2〉. The high overlaps, above 95% for V0 = 0.15h̄ωc (highlighted in white
for each N), allow us to identify the phase at large V0 as the asymptotic ν = 1/2 Laughlin phase studied in Sec. IV B. (c) Focus on ED
results at N = 12. The abrupt phase transition to the Laughlin state with Eint � Edisp (respectively in orange and green) near V0 	 0.075h̄ωc is
accompanied with a closing of the many-body gap (blue). Other phases and phase transition can be observed, for instance near V0 	 0.025h̄ωc.
Their nature is investigated in more detail in Sec. V D.

part Htot = Hdisp + Hint with

Hdisp =
∑

|k|�Norb/2

ε
(0)
k d (0)†

k d (0)
k , (42a)

Hint = V0

∑
p1 + p2 = q1 + q2
|pi|, |qi| � Norb/2

�q+
q−,p− d (0)†

q1
d (0)†

q2
d (0)

p1
d (0)

p2
,

(42b)

where we have used the shorthand notations p± = (p1 ±
p2)/2 and q± = (q1 ± q2)/2. The � coefficients have been
defined in Eq. (31).

To simulate a system near filling factor ν = 1/2, where
we expect the bosonic Laughlin state Eq. (39), we tune the
magnetic field strength in order to have precisely Norb = 2N +
3 orbitals below the cyclotron energy h̄ωc, as depicted in
Fig. 4. While the densest Laughlin droplet only needs 2N − 1
orbitals to appear, the four extra orbitals avoid hard boundary
conditions and let the system smoothly accommodate the
dispersion relation at the edge.

B. Laughlin states

We first diagonalize the Hamiltonian (42) for λ = 0.75
and a variable interaction strength V0. We observe features
reminiscent of the Laughlin phase for strong interactions. The
many-body ground state |�GS〉 is characterized by the relative
contribution of its dispersive and interacting energies, Edisp =
〈�GS|Hdisp|�GS〉 and Eint = 〈�GS|Hint|�GS〉. We denote the
total energy by EGS = Edisp + Eint. Our numerical results are
depicted in Figs. 5(a)–5(c), where we observe an abrupt
change of behavior near V0 	 0.075h̄ωc. Beyond this point,
the ground state almost entirely screens the interaction and all
its energy comes from the dispersion of the lowest band. This
feature is reminiscent of the Laughlin state which is an exact
zero energy state of Hint (see Sec. IV B).

To confirm our intuition and to identify the sharp feature
of Fig. 5(c) as the transition toward the asymptotic Laughlin
phase studied in Sec. IV B, we compute the overlap of |�GS〉
with the Laughlin state |�1/2〉 at filling factor ν = 1/2 ob-
tained on the cylinder geometry [see Eq. (6)]. We show in
Appendix B how the perimeter of the cylinder Lcyl should be
chosen to match the aspect ratio of our anisotropic system.
The overlaps presented in Fig. 5(b) show a jump from zero to
almost 1 at the transition, and remain above 95% for V0 =
0.15h̄ωc for all the system sizes considered. These results
provide clear evidence that the states at large interactions V0 >

0.075h̄ωc belong to the asymptotic Laughlin phase studied in
Sec. IV B. For large enough interactions, the Laughlin physics
arise in our finite-size system.

Finally, we vary the tunneling parameter λ in order to
locate the boundaries of the Laughlin phase in the (λ,V0)
parameter space. Our finite-size calculations suggest that the
Laughlin physics can be stabilized near half-filling in our
model provided λ > 0.5 and V0 > 0.075h̄ωc. As shown in
Fig. 5(a), we use Edisp/EGS as a probe to characterize the
strongly correlated FQH phase. This quantity is extracted for
several values of (λ,V0) and N = 12 particles to obtain the
phase diagram of Fig. 6. For λ > 0.5, the transition toward
the Laughlin phase lies very close to the previously extracted
value V0 = 0.075h̄ωc. This simply reflects the exponentially
small dispersion of the lowest band in this tunneling regime
(see Sec. III B). For small λ, the width of the lowest band
increases forming well-separated potential wells [see also
Fig. 7(a)]. This dispersion makes it harder for the system to
build long-range correlation. There is however an intermedi-
ate region 0.225 � λ � 0.5 where an FQH state can still be
observed for large V0. There, the density oscillations intro-
duced by the dispersion of the lowest band are commensurate
with those of the Laughlin state |�1/2〉 on a cylinder with a
small perimeter [72]. Our finite-size numerics tend to suggest
that this commensuration effect moves the transition toward
lower interaction strengths. The wires eventually decouple,
and we do not see any signatures of the Laughlin phase in
our finite-size numerics for λ < 0.225.
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FIG. 6. Phase diagram corresponding to Eq. (42) obtained for
N = 12 particles. As in Fig. 5(a), we use Edisp/EGS to distinguish
the weakly interacting phases from the Laughlin one. The parameter
range where the FQH physics can be realized is surrounded by a
dashed dark blue line.

C. Experimental signatures: Momentum-space
density distribution

Having understood under which conditions the Laugh-
lin physics arise in our model, we now highlight that the
momentum-space density distribution provides clear signa-
tures allowing us to discriminate the FQH state from the
weakly interacting phases of our model. This probe is acces-

sible in cold-atom experiments with standard time-of-flight
(TOF) measurements, which further motivates the experimen-
tal proposal of Sec. VI.

We have computed the mean occupation of all momen-
tum states 〈Nk〉 = 〈�GS|d (0)†

k d (0)
k |�GS〉, the quantity usually

accessed through TOF measurements, for the ground state of
Eq. (42). Our numerical results are exemplified in Figs. 7(a)–
7(d) for N = 12 particle and λ = 0.375. We observe two
strikingly different behaviors depending on the interaction
strength. In the weakly interacting phases V0 < 0.055h̄ωc,
particles are gathered around the minima of the dispersion
relation, which are highlighted in gray in Figs. 7(a) and 7(b).
On the contrary, in the Laughlin phase for V0 > 0.055h̄ωc,
the momentum-space density distribution is almost flat and
all orbitals in the bulk approach 〈Nk〉 	 ν = 1/2. For large
interaction strengths, the ground state also presents the typical
density fluctuations of the Laughlin state near the edges of the
system [3].

Figure 7(c) shows the same quantity 〈Nk〉 over a finer grid
in the interaction parameter V0. It highlights that the transition
between the two previous behaviors is abrupt, hence showing
that the momentum-space density distribution can be used as
a probe of the transition toward the FQH-like states identified
in Sec. V B. As an illustrative example, we show in Fig. 7(d)
that the mean deviation of 〈Nk〉 from ν = 1/2 is discontinuous
at the transition, heralding the FQH-like state.

For all the considered parameters (λ,V0) and system sizes,
we have witnessed the same signatures of the weakly inter-
acting and Laughlin phases. This promotes the momentum-
space density distribution as a simple probe to appraise the
appearance of the FQH-like states predicted in Sec. IV B
in our model. Let us insist on the experimental real-
ization of Fig. 7(d) in cold-atom experiments where the
momentum-space density distribution is accessible with TOF

FIG. 7. (a) Dispersion relation of the lowest band for λ = 0.375 and Nw = 5 wires. There and below, we highlight the position of the
lowest energy orbitals with gray shades. (b) Mean occupation number of momentum states 〈Nk〉 = 〈�GS|d (0)†

k d (0)
k |�GS〉 as a function of the

momentum k for various values of the interaction parameter V0. We show the numerical results for a system of N = 12 particles. The weakly
interacting phases, investigated further in Sec. V D, show strong peaks near the minima of the dispersion relation. On the contrary deep in
the Laughlin phase (red line), the momentum-space density distribution is almost flat and equal to ν = 1/2 except near the edges where we
observe density fluctuation characteristics of this FQH state [3]. (c) Same as (b) over a finer grid in V0, in order to highlight the transition
between the weakly interacting and Laughlin phases near V0 = 0.055h̄ωc. (d) The mean deviation of 〈Nk〉 from ν = 1/2 can be used to probe
the transition toward FQH-like states. The nonzero contributions at large V0 are mostly due to the empty orbitals near the edge of the system
(here |k| � 12).
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measurements, and the interaction strength V0 can be tuned by
varying a static magnetic field near a Feshbach resonance.

D. Nature of the intermediate phase

To complete our understanding of the phase diagram, we
finally investigate the weakly interacting phases of our model
in more details. They are well captured within a mean-field
approach that we briefly detail here, before comparing it to
numerical results.

1. Very weakly interacting phase: Bogoliubov theory

For V0 = 0, the ground state is a Bose-Einstein condensate
(BEC) with all particles occupying the lowest energy orbital
with momentum k = 0. Formally, it can be written as

|�GS(V0 = 0)〉 = 1√
N!

(
d (0)†

0

)N |∅〉 (43)

with |∅〉 the state with no bosons. This situation is depicted
with blue lines in Fig. 7, where we indeed measure

〈Nk (V0 = 0)〉 =
{

N, if k = 0,

0, if k �= 0.
(44)

Switching on an infinitesimally small interaction strength
V0, the ground state can be obtained with a standard Bo-
goliubov analysis [73], as detailed in Appendix C. Here, we
summarize the main ideas of this approach and adapt them to
our finite-size systems.

Within the Bogoliubov approximation, the weak inter-
actions with the BEC slightly admix the original orbitals
with momentum ±k, with k > 0, together. Due to the weak
interactions, excitations can still be described as quasiparticles
of the mean-field Hamiltonian. To remain in the vacuum
state for these new excitations, the BEC is depleted by the
creation of particle pairs with nonzero momenta. The weakly
interacting ground state is more easily described in the limit√

N 
 1, where we can neglect the particle number fluc-
tuations in the BEC. In this regime, we have the simple
form

|�Bogo(V0)〉 =√
N
1

exp

(
−

∑
k>0

tk d (0)†
k d (0)†

−k

)
|�GS(0)〉, (45)

derived in Appendix C, where we provide an explicit expres-
sion for the coefficients tk .

In order to compare the weakly interacting theory to our
ED results, we must adapt Eq. (45) to finite-size systems,
where

√
N is not much larger than 1, and ensure particle

number conservation. We thus consider the following ansatz:

|�Bogo(V0)〉 = e− ∑
k>0

tk
N d (0)†

k d (0)†
−k d (0)

0 d (0)
0 |�GS(0)〉. (46)

The coefficients {tk}k>0 are variationally optimized around
their

√
N 
 1 theoretical value to correct for small finite-size

effects.2 The depletion of the BEC is explicitly accounted for
by gluing the operator d (0)

0 d (0)
0 /N to the pair creation operator

2The number of variational parameters, (Norb − 1)/2 = 13 for N =
12 particles, remains much smaller than the many-body Hilbert space
dimension, equal to 33 427 622 for the same parameters.

FIG. 8. (a) For very weak interactions, the standard Bogoliubov
approach |�Bogo(V0)〉 well captures the physics of our model. As
explained in Sec. V D 2, it fails to describe the other weakly in-
teracting phases which display multiple peaks in Fig. 7. For V0 >

2.5 × 10−4 h̄ωc, we have to rely on an extended ansatz |�Ext
Bogo(V0)〉

adapted to the multiple peaks in the momentum-space density dis-
tribution of the weakly interacting phases depicted in Fig. 7 (see
Appendix C). (b) Overlap of the ED ground state |�GS(V0)〉 with
the extended Bogoliubov ansatz |�Ext

Bogo(V0)〉 (orange) and the bosonic
Laughlin state |�1/2〉 at filling factor ν = 1/2 (red). These two states
accurately describe the physics of our model on each side of the
transition. All the results presented in this figure were obtained for
N = 12 particles and λ = 0.25.

in the exponential of Eq. (46). This formally implements the
required particle number conservation.

The finite-size ansatz Eq. (46) almost perfectly captures
the ED ground states for very weak interaction strengths
V0 � 2.5 × 10−4 h̄ωc, as shown by their overlaps in Fig. 8(a).
However, it quickly fails to capture the nature of the other
intermediate phases, characterized by more than one peak in
their momentum-space density distribution (see orange and
green lines of Fig. 7).

2. Extension to other mean-field phases

Because of the multiple local minima of the lowest band
[see Fig. 7(a)] and the finite range of the interaction [see
Eq. (32)], even weak interactions tend to favor the creation
of multiple condensates with very different momenta. Indeed,
particles have a similar dispersion energy in all the potential
wells of the lowest band ε

(0)
k 	 ε

(0)
0 . However, particles in

distant minima of the dispersion relation hardly interact due
to the finite range of the form factors � [see Eq. (31)]. A
rough estimate shows that two BECs each with N/2 particles
located in minima with large momentum difference have an
interaction energy twice smaller than a single BEC gathering
N particles at k = 0. This simple argument is confirmed by
Fig. 8(a), where we observe that Eq. (46) correctly captures
our ED ground state for V0 	 2.5 × 10−4 h̄ωc which should
be compared to the energy difference between the two local
minima N (ε(0)

k − ε
(0)
0 ) 	 2.4 × 10−4 h̄ωc (the last factor of

N accounts for the different scalings of the dispersive and
interacting Hamiltonian with respect to density). The same
reasoning shows that the BEC at k = 0 is destabilized toward
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FIG. 9. (a) Sketch of the experimental setup. Two strong laser beams (blue arrows) counterpropagating along z in a lin-θ -lin configuration
create a spin-dependent optical lattice. We identify three inequivalent Wannier centers within a unit cell of the lattice (see text and b), here
schematically depicted with three different tones of orange. The Raman beams (green arrows) counterpropagating along y generate complex
tunneling coefficients between the wires 2© and their neighbors, thus generating an artificial gauge field mimicking the Landau vector potential.
(b) Spin-dependent adiabatic potential obtained by diagonalization of UOL + UZM for θ = 80◦, U0 = 45ER, and h̄ωZ = 5ER. In absence of
transverse magnetic field (dotted lines), the spin eigenvectors |χ±(z)〉 are eigenstates of Fz. They are admixed close to the avoided crossing
opened by the transverse magnetic field (solid lines), as can be seen from the background line color representing the spin polarization
〈χ±(z)|Fz|χ±(z)〉. Within one unit cell of size π/kL , three potential wells denoted as 1©- 2©- 3© give rise to localized Wannier states entering
our tight-binding description of the system. (c) While 1© and 3© are naturally coupled by tunneling matrix elements in the tight-binding limit
(see text), we need to engineer light-assisted hopping elements to couple them to 2©. Due to the polarization of |χ±(z)〉, the transitions 1© →
2© and 2© → 3© can only de driven by an F− operator. (d) Close-up of Fig. 9(b) around the potential wells 1© and 3©. To estimate the tunneling

matrix element between the Wannier states at energy E1 and E2, we use a semiclassical analysis and see this reduced problem as a simpler
double-well potential [74]. The results of this semiclassical analysis involve the mean energy E = E1+E2

2 and the turning points z< and z>

which are schematically pictured.

intermediate phases with multiple macroscopically populated
momentum states for an interaction strength V0 ∝ 1/N . There-
fore, we only expect to see these latest in the thermodynamic
limit (see orange and green lines in Fig. 7).

The previous Bogoliubov approach can be extended to
the case of multiple smaller condensates, and allows us to
capture the other intermediate phases observed in Fig. 5(c)
and Fig. 7(c). The idea is to conserve the variational pa-
rameters of Eq. (46), which measure the depletion of the
condensates by pair creation in order to accommodate the
weak interactions of the system, while changing the state they
act on to describe the presence of multiple smaller BECs. The
explicit expression of this generalized ansatz |�Ext

Bogo(V0)〉 can
be found in Appendix C. As can be seen in Fig. 8(a), this
adjusted ansatz overcomes the limits of Eq. (46) and perfectly
captures the phases for weak interactions.

In Fig. 8(b), we compare our ED results with this gen-
eralized Bogoliubov ansatz |�Ext

Bogo(V0)〉 across the transition
from the noninteracting regime to the Laughlin state. We
observe that all the mean-field phases are well captured by this
mean-field approach, which eventually breaks down when the
Laughlin phase arises.

VI. POSSIBLE REALIZATION IN SPIN-DEPENDENT
OPTICAL LATTICE

In this section, we propose a plausible realization of the
coupled-wire model Eq. (10) where a one-dimensional spin-
dependent optical lattice creates the initial wires [75]. This
configuration allows us to cool the gas to subrecoil tempera-
tures, mitigating the effects of interband mixing. Moreover,
the subwavelength spacing of potential wells in the spin-

dependent potential allows us to reach the strong-tunneling
regime of Sec. III B. The spin degree of freedom of the poten-
tial is also used to selectively drive Raman-assisted hopping
between wires [76], which creates an artificial gauge field
mimicking a uniform magnetic field [30]. We now explain in
more detail how these different elements can be combined.

A. Building the wires: Spin-dependent trapping potential

The first ingredient of our experimental proposal is a strong
optical lattice obtained by interfering a pair of red-detuned
laser beams counterpropagating along y with intensity I and
angle θ between their linear polarizations as depicted in
Fig. 9(a). For simplicity, we consider alkali atoms whose
ground-state manifold, characterized by the hyperfine spin F,
is immune to rank-2 tensor light shifts [77]. As a consequence,
the spin-dependent potentials created by the previous laser
configuration, dubbed lin-θ -lin [78,79], only linearly couples
to the spin F. More precisely, it is diagonal in the spin basis
Fy|my〉 = my|my〉 and reads [80–82]

UOL = U0[cos θ cos(2kLy) + u sin θ sin(2kLy)Fy], (47)

with kL the lasers’ wave vector, U0 an overall multiplication
factor proportional to I , and where the coefficient u gathers
all the relevant information on the excited hyperfine struc-
ture [83]. As in Ref. [75], we focus on the case F = 1/2 and
u = 1 which constitutes the simplest realization of the ideas
put forward in this article. Our conclusions can be extended
to other atomic species. For instance, we refer the interested
reader to Refs. [30,84–86] for an extensive theoretical study
and many experimental details on the F = 1 case of 87Rb.
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The spin eigenstates |my〉 diagonalizing Eq. (47) are further
coupled by a magnetic field in the y-z plane giving the
additional energy

UZM = h̄ωZ (Fy + Fz ). (48)

In absence of transverse magnetic field ωZ = 0, we can
rewrite the spin-dependent potentials as

ULO| ± 1/2〉 = Ũ0 cos[2kL(y ± δy)]| ± 1/2〉, (49)

with

δy = tan−1

(
tan θ

2

)
, Ũ0 = U0

2

√
3 cos2 θ + 1. (50)

The angle θ thus modulates the depth of the optical potential
and shifts the |my = ±1/2〉 potential wells as shown with
dotted lines in Fig. 9(b). Upon applying the mixing term UZM,
the degeneracies are lifted and we obtain two distinct branches

(UOL + UZM)|χ±(z)〉 = U±(z)|χ±(z)〉 (51)

with U+(z) > U−(z). With an appropriate choice of the angle
between the laser polarizations and magnetic field strength,
we can design two decoupled lattices of double-well poten-
tials with an adjustable energy barrier between them. This
situation is depicted in Fig. 9(b), where the underlying color
indicates the polarization 〈χ±(z)|Fy|χ±(z)〉 of the spin eigen-
states.

We identify three almost equally separated potential wells
1©, 2©, and 3© which are depicted in Fig. 9(b). We would like to

derive an effective tight-binding model for the latter. Within a
harmonic approximation, the small oscillatory motion in the
wells have natural frequencies determined by Taylor expan-
sion around the local minima,

h̄ω1 = h̄ω3 =
√

2Ũ0ER, h̄ω2 = 2Ũ0

√
ER sin(2kLδz)

h̄ωZ
, (52)

where we have introduced the recoil energy ER =
(2h̄kL )2/2m. As stated earlier, the original unperturbed
optical lattice with ωZ = 0 enables the cooling of the atomic
cloud to sub-Doppler temperatures kBT < ER [33,87]. In this
temperature regime and assuming U0 
 ER, the previous
energy scales h̄ωi are much larger than the thermal energy
of the atoms. As a consequence, we can approximate the
system’s dynamics by keeping only the lowest-energy
Wannier state of each potential well 1©, 2©, and 3© within a
tight-binding approximation [88,89].

B. Tunneling and artificial gauge field

To obtain the effective tight-binding model of our system,
we first consider a single unit cell of length π/kL along y.
We denote the Wannier state centered around the potential
well i© with the first quantized notation |i〉 [see Fig. 9(b)],
and its on-site energy as Ei for i = 1, 2, 3. While the orbitals
1© and 3© lie in the same band and can overlap, hopping

from these states to 2© is prohibited by the orthogonality
condition 〈χ+|χ−〉 = 0 [76]. Light-assisted tunneling may
however be used to couple these orbitals with two-photon
Raman transitions. These two different tunneling mechanisms
are considered separately thereafter.

(a) Real tunneling amplitude. To evaluate the tunneling
matrix element t between 1© and 3©, we follow the semiclas-
sical treatment of a double-well potential of Ref. [74] [see
Fig. 9(d)]. This approach does not account for the periodic
structure of the lattice, usually underestimating the tunneling
strengths of the original model [90]. The investigation made
in Ref. [74] gives the estimate

t = h̄ω1

2π
e−θ , θ =

∫ y>

y<

dy′

h̄

√
2m[U−(y′) − E ], (53)

where the turning points y< and y> and the energy E are
schematically depicted in Fig. 9(d). For the parameters of
Fig. 9, the numerical evaluation of these quantities gives θ 	
2.5 and

t 	 0.75ER. (54)

This large value compared to other cold-atom experiments
with optical lattices [91] is explained by the subwavelength
separation of the potential wells 1© and 3© in the spin-
dependent optical lattice Eq. (47) [24].

(b) Raman-assisted tunneling. We finally turn to the engi-
neering of light-assisted hopping toward the Wannier state 2©,
which not only couples the latter to the effective tight-binding
model but also generates an artificial gauge field for our
system. These couplings can be achieved with two additional
laser beams counterpropagating along the x direction, very
far detuned from any atomic line. The first one is polarized
along y and has frequency ωR while the second is polarized
along z and possesses two different tones ωR + ω12 and ωR +
ω23, with ωi j = (Ej − Ei )/h̄ [see Fig. 9(a)]. They coherently
couple spin states with |�my| = 1 through two-photon Raman
transitions and thus allow us to drive the two transitions 1© →
2© and 2© → 3©.

Adiabatically eliminating the very off-resonantly cou-
pled excited atomic states [92] and within the rotating-
wave approximation (RWA) [93], the Raman Hamiltonian
reads [94–96]

HRam = −[(tRe2ikLx + t ′
Re−2ikLx )|2〉〈1| + H.c.]

− [(t̃Re2ikLx + t̃ ′
Re−2ikLx )|3〉〈2| + H.c.]. (55)

All four Rabi frequencies tR, t ′
R, t̃R, and t̃ ′

R are proportional
to the Raman lasers’ intensity IR. However, they crucially in-
volve different spinorial and spatial overlaps between Wannier
states [76,85], for instance

tR ∝
∫

dy 〈χ+(y)|F−|χ−(y)〉〈2|y〉〈y|1〉, (56)

while

t ′
R ∝

∫
dy 〈χ+(y)|F+|χ−(y)〉〈2|y〉〈y|1〉. (57)

As observed in Fig. 9(c), the strong polarization of the spin
states |χ±(y)〉 leads to tR 
 t ′

R. Similarly t̃R 
 t̃ ′
R and for sim-

plicity we assume t̃R = tR such that the light-atom interaction
with the Raman fields is described by

HRam = −tR[e2ikLx(|2〉〈1| + |3〉〈2|) + H.c.]. (58)

This formula obtained within the RWA is valid as long
as tR � min(E2 − E1, E3 − E1). For the parameters used in
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Fig. 9 and Eq. (54), this corresponds to tR � 30ER. Under
realistic experimental conditions, technical limitations will set
in before the saturation of this inequality which is another
nice feature of our spin-dependent lattice. The intensity of the
Raman lasers can be increased or the detuning to the excited
states decreased in order to achieve tR 	 t , which we will
assume from now on.

Equation (58) shows that a particle moving along increas-
ing y picks a phase proportional to x because of the momen-
tum difference between the two Raman beams, which is remi-
niscent of the effect of a gauge field. This analogy can be made
exact [84,86,95] (also see below) and was used experimentally
to create an artificial gauge field for neutral atoms [30,37,38].
The introduction of the Raman laser beams thus creates an
effective gauge field for the atoms and connects the Wannier
state 2© to our tight-binding model.

C. Matching the parameters of the two models:
Experimental feasibility

We have seen that the added pair of Raman laser beams
allows us to create an artificial gauge field thanks to spin-
selective two-photon transitions between the two bands of the
optical lattice while the subwavelength spacing of Wannier
states provides significant tunneling amplitudes t 	 0.75ER.
To make connection with Sec. III, we call L the system length
along the weakly confined x direction and introduce c†

j (x)
the creation operator at position x in the (r + 1)th Wannier
orbital of the qth unit cell with j = 3q + r. The effective tight-
binding Hamiltonian following from Secs. VI A and VI B is

H =
∑
j∈Z

∫ L

0
dx c†

j (x)
p2

x

2m
cj (x)

− t[eiφ′ ( j)xc†
j+1(x)c j (x) + H.c.], (59)

where the phases follow from

φ′( j) =
{

2kL, if r = 0, 1,

0, if r = 2.
(60)

The connection with Eq. (10) is cleaner after a gauge transfor-
mation c†

j (y) → exp(4ikLy/3)c†
j (y) under which H becomes

H =
∑
j∈Z

∫ Ly

0
dy c†

j (y)

(
py − 4h̄kL

3 j
)2

2m
cj (y)

− t[eiφ̃′( j)yc†
j+1(y)c j (y) + H.c.], (61)

where the tunneling phases now sum to zero,

φ̃′( j) =
{

2kL
3 , if r = 0, 1,

− 4kL
3 , if r = 2,

(62)

showing that all the artificial gauge fields have been trans-
ferred to the kinetic part of the Hamiltonian. Pushing the
analogy further, we can identify

E0 = 16

9

h̄2k2
L

2m
= 4

9
ER, (63)

such that the typical tunneling parameters obtained in Eq. (54)
translate into

λ = t

E0
	 1.7 > 1. (64)

The ultracold-atomic system reaches the flat-band limit stud-
ied in Sec. III B for the experimentally relevant parameters
used in Fig. 9. This emphasizes the experimental feasibility
of our proposal, potentially leading to the observation of
quantum Hall physics in large ultracold-atom ensembles. Sub-
Doppler temperatures are however necessary if one wants
to only populate the lowest band of the system because of
the rather small cyclotron frequency h̄ω 	 ER/π in the cold-
atomic case.

Finally, we comment on the possibility to reach the
strongly correlated states of Sec. IV. Since bosons at ultracold
temperature only interact with s-wave scattering, correspond-
ing to the zeroth Haldane pseudopotential Eq. (7), it is natural
to investigate the experimental conditions required to achieve
a total filling fraction ν = 1/2. For on-wire initial density
n1D = N/Nw 	 100, we would need a wire filling

νw = 3π

2kLLy
	 1

200
. (65)

This estimation leads to a length Ly 	 150λL along the weakly
confined direction with λL the Raman laser wavelength, which
corresponds to Ly ∼ 100 μm under typical experimental con-
ditions. This can be realized with a very weak confinement
along y. Most of the quantities computed here can be im-
proved by numerical factors of order 1 either by introducing
an angle between the two Raman beams [97] or by choosing
very different wavelengths for the lattice and Raman beams.
However, Eq. (64) and the possible sub-Doppler temperatures
already give very favorable estimates with regard to the exper-
imental realization of quantum Hall physics in such systems.

VII. CONCLUSION

In this article, we have provided a microscopic characteri-
zation of a class of coupled-wire models. First, we have shown
the emergence of Landau levels for strong interwire tunneling.
This equivalence with a continuum system in the deep frac-
tional quantum Hall regime allows us to adapt the pseudopo-
tential approach to the coupled-wire system. In particular,
we could exhibit model on-wire interactions stabilizing both
bosonic and fermionic Laughlin phases in the thermodynamic
limit. Turning our attention toward potential experimental
implementations of our model in cold-atom setups, we have
used exact diagonalization to observe and characterize the dif-
ferent phases for realistic parameters. We provided evidence
that time-of-flight measurements can distinguish between the
Laughlin and the other weakly interacting Bogoliubov phases.
Finally, we have proposed an experimental realization of our
model with cold atoms in a spin-dependent optical lattice.
The spin-dependent trapping potential leads to subwavelength
spacing of the one-dimensional atomic wires, and allows us to
reach the strong-tunneling regime. Our estimates indicate that
the FQH-like phases could be observed in optical lattices for
experimentally realistic parameters if spontaneous heating is
mitigated.
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APPENDIX A: MATHIEU’S DIFFERENTIAL EQUATION
AND ASYMPTOTICS

In this Appendix, we show how the stationary Schödinger
equation corresponding to Eq. (15) maps onto Mathieu’s
differential equation, we review its solutions, and we analyze
further the weak and strong tunneling limits.

1. Relevance of Mathieu’s equation

In this section, we fix the momentum sector k, and we
will omit the explicit dependence in momentum when it is
unnecessary. We use the first quantized notations | j〉 = c†

j,k|0〉
for the state localized on wire j. The stationary Schrödinger
equation for the eigenstate 〈 j|ψ〉 = ψ ( j) of Eq. (15) reads

( j − j0)2ψ ( j) − λ[ψ ( j + 1) + ψ ( j − 1)] = μψ ( j) (A1)

with j0 = νwk and where μ is the eigenenergy in unit of E0.
The coupled-wire system studied in Sec. III is thus equivalent
to the well-studied Cooper pair box Hamiltonian [98,99],
which is usually solved introducing the conjugate variable
of j. Thus, we introduce the phase ϕ ∈ [−π, π [, canonically
conjugated to the wire position j ∈ Z:

|ϕ〉 =
∑
j∈Z

ei( j− j0 )ϕ| j〉, | j〉 =
∫ π

−π

dϕ

2π
e−i( j− j0 )ϕ|ϕ〉. (A2)

It yields

d2ψ (ϕ)

d ϕ2
+ (μ + 2λ cos ϕ)ψ (ϕ) = 0, (A3)

where ψ (ϕ) = 〈ϕ|ψ〉. Notice that the inclusion of j0 in the
definition of the conjugate variable makes the function ψ (ϕ)
pseudoperiodic ψ (ϕ + 2π ) = e2iπ j0ψ (ϕ). This can also be
seen as a gauge transformation in the ϕ representation. After
the final change of variable x = (ϕ + π )/2, this equation
takes the standard form of Mathieu’s equation [[54], Sec. 28]:

w′′(x) + (γ − 2q cos 2x)w(x) = 0, (A4)

with γ = 4μ and q = 4λ.

2. Formal solutions

Equation (A3) together with the pseudoperiodicity of ψ

allows us to identify

ψ (ϕ) = meνM (4λ, (ϕ + π )/2), (A5)

where meνM denotes the Floquet solution of Mathieu’s equa-
tion with characteristic exponent

νM = 2( j0 + η), (A6)

with η ∈ Z labeling the solutions of Eq. (A3). To interpret
η as a band index, we shall sort the corresponding eigen-
values μ = (1/4)aνM (4λ) in ascending order, where we used
Mathieu’s characteristic function aνM (q) [[54], Chap. 28]. For
the nth band, the sorting function η( j0, n) is a nontrivial
function of j0 and of the band index whose explicit form
is known [99]. Denoting as d (n)†

k the creation operator of a
particle of momentum k in band n (see Sec. III B), and by
|n〉 = d (n)†

k |0〉 the corresponding wave function, we finally
arrive at the closed-form expression of the function g(n)

k used
in Eq. (17):

〈 j|n〉 = g(n)
k ( j − j0)

=
∫ π

−π

dϕ

2π
ei( j− j0 )ϕme{2[ j0+η( j0,n)]}(4λ, (ϕ + π )/2). (A7)

Our main interest in the formal mapping onto Mathieu’s
equation is to know whether the flat-band approximation
invoked in the main text is justified [see for instance Eq. (20)
or Eq. (19)]. Let us define δ(n)(λ) as the spread of the nth
band of the spectrum of Eq. (15). Using uniform semiclassical
approximations [57,58], it is possible to obtain an expansion
of the spread for large tunneling strength λ 
 1:

δ(n)(λ) 	 24n+3

n!

(
2

π

)1/2

(2
√

λ)n+3/2e−8
√

λ

×
[

1 − 6n2 + 14n + 7

64
√

λ
+ O

(
1

λ

)]
. (A8)

We have numerically diagonalized the Hamiltonian Eq. (15)
for several tunnelings and we compare in Table I the asymp-
totic behavior Eq. (A8) to the numerically extracted values. In
practice, the exponentially small spread makes the flat-band
approximation very accurate, even for moderate tunneling
strength, as evidenced by the large spread-to-gap ratio gath-
ered in Table I.

APPENDIX B: LAUGHLIN STATE WITH SIMILAR
ASPECT RATIO

In the main text, we have compared our ED ground states
|�GS〉 with Laughlin states on a cylinder |�1/2(Lcyl )〉 of
perimeter Lcyl. In this Appendix, we provide more details
on the choice of Lcyl. To differentiate this cylinder from
the wire system, we respectively denote as Bcyl, �

cyl
B , ω

cyl
c

the magnetic field threading the cylinder, the corresponding
magnetic length, and the cyclotron energy.
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TABLE I. We numerically diagonalized Hamiltonian Eq. (15) for
over 1000 wires. We compute the spread of the lowest band δ(0) and
compare it to the asymptotic limit given of Eq. (A8). We find that
the flat-band limit is extremely well satisfied even for very moderate
tunneling strengths λ ∼ 1. We also extract the flatness of the lowest
band, defined as the ratio of its spread to the gap separating it to the
first excited band. We find that the gap is orders of magnitude greater
for λ � 1, justifying our projection onto the lowest band in Sec. IV.

λ δ(0) Asymptotic Eq. (A8) Flatness

0.10 1.649 × 10−1 1.673 × 10−1 8.266 × 10−1

0.33 6.051 × 10−2 6.333 × 10−2 9.327 × 10−2

0.66 1.618 × 10−2 1.680 × 10−2 1.366 × 10−2

1.00 5.334 × 10−3 5.394 × 10−3 3.243 × 10−3

3.33 1.894 × 10−5 1.899 × 10−5 5.605 × 10−6

6.66 7.663 × 10−8 7.673 × 10−8 1.564 × 10−8

10.0 1.009 × 10−9 1.010 × 10−9 1.665 × 10−10

33.3 1.42 × 10−14 2.144 × 10−18 1.259 × 10−15

For an infinite system Nw 
 1, we have derived a rescaling
of the coordinates x and y which allows us to directly compare
the wire ground state with the cylinder Laughlin state (see
Sec. IV B). In particular, equating the perimeter of the cylinder
and the interorbital distance leads to

Lcyl = L/r
2π (�cyl

B )2

Lcyl
= rdνw

}
�⇒ Lcyl

�
cyl
B

=
Nw
1

2π

νw

λ1/4. (B1)

This formula can be understood as matching the aspect ratio
of the two models. However, it relies on the bulk properties
derived in Sec. IV assuming a very large number of wires and
cannot be used directly for the finite-size systems in which we
are interested in Sec. V. We have thus relied on the following
numerical approach.

Consider the ground state |�GS〉 obtained with the param-
eters (λ, Nφ, N, Norb) and interaction strength V0. To find Lcyl,
we first diagonalize the wire Hamiltonian Eq. (42) for the
same parameters (λ, Nφ, N, Norb) but with V0 
 1 (typically
V0 = 5h̄ωc). This leads to a new ground state |�GS(V0 

h̄ωc)〉. Then, we generate several Laughlin states |�1/2(Lcyl )〉
with different aspect ratios,

rcyl = 2πNorb

(
�

cyl
B

Lcyl

)2

, (B2)

by varying the parameter Lcyl/�
cyl
B . Practically, we obtain

the states |�1/2(Lcyl )〉 either by ED of the model interaction
Eq. (8) or through exact matrix product states [100–102].
We finally choose the perimeter maximizing the overlap
|〈�1/2(Lcyl )|�GS(V0 
 h̄ωc)〉|.

Our numerical results are presented in Fig. 10. The best
overlaps obtained with this technique are never lower than
0.98, providing further evidence for the emergence of the
Laughlin physics in our model (see Sec. V B). They also
increase with greater tunneling strengths λ, as expected from
our analytical result of Sec. IV B in the limit λ > 1. Moreover,
we observe that the perimeters maximizing the overlaps lie

FIG. 10. Overlap between the ED ground state obtained for very
large interaction strengths and the Laughlin state on a perimeter Lcyl.
Different colors indicate different tunneling strengths λ or a different
number of extra orbitals (see Sec. V A), while dotted, dashed, and
solid lines are respectively used for N = 10, 11, and 12. The cylinder
maximizing the overlap is highlighted with gray vertical bars. For
all the considered parameters (λ, Nφ, N, Norb), the optimal perimeter
lies within ten percent of 2π

νw
λ3/8�

cyl
B . This fact is made apparent by

the normalization of the x axis.

close to

Lcyl

�
cyl
B

	 2π
λ3/8

νw

. (B3)

Among all the considered parameters (λ, Nφ, N, Norb), we
have only observed fluctuations of less than 10% from this
empirical formula. Therefore, we have used this empirical
finding as an initial guess to limit our numerical burden.

While we are not able to justify Eq. (B3) analytically, we
can understand the scaling with λ as follows. Equating rcyl

of Eq. (B2) to the aspect ratio r = Nwd/L of the finite wire
system, we find

Lcyl

�
cyl
B

= 2π

νw

λ1/4

√
Norb

Nφ

. (B4)

For an infinite system, it reduces to Eq. (B1) since Nφ 	
Norb. In our ED calculation, however, the magnetic field B
of the wire system is tuned away from Bcyl such as to have
precisely Norb orbitals below the single-particle gap. This
introduces a difference between Nφ and Norb in the calcula-
tions of Sec. V and explains the different scaling observed in
Eq. (B3). Considering the quadratic dispersion near the edge
ε

(0)
k 	 (νwk)2E0 and requiring that the orbital with momentum

k = Norb/2 has energy h̄ωc 	 2
√

λE0 [see Eq. (V A)], we get

Norb

Nφ

∝ λ1/4 ⇒ Lcyl

�
cyl
B

∝ λ3/8. (B5)

APPENDIX C: BOGOLIUBOV EXCITATIONS

In this Appendix, we provide more details about the Bo-
goliubov approach sketched in Sec. V D used to describe the
weakly interacting phases in the model Eq. (42) (see, for
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instance, Ref. [103] for a more thorough and comprehensive
review of the method). Due to both the finite-size of our sys-
tem and to the presence of other local minima in the dispersion
relation (see Fig. 7), the standard Bogoliubov analysis only
holds for very small interaction strength. We thus provide a
modified version to take into account the finite size and the
presence of multiple disconnected minima in the dispersion
relation.

1. Very weakly interacting phase: Thermodynamic limit

Let us first follow the standard derivation of the Bogoli-
ubov quadratic Hamiltonian [103]. We assume that the macro-
scopically populated BEC of Eq. (43) is only slightly depleted,
such that we can replace N0 = d (0)†

0 d (0)
0 	 N and d (0)

0 	 √
N0

with their expectation value. The different terms of the Hamil-
tonian Eq. (42) can then be sorted in decreasing order of
importance, according to their scaling with N . Keeping only
terms at least proportional to the particle number, we find
the following Bogoliubov approximation of the many-body
Hamiltonian,

HBogo = ε
(0)
0 N + V0N2v(0)

+
∑
k �=0

{(
ε

(0)
k − ε

(0)
0

)+ 2V0N[2v(k)− v(0)]
}︸ ︷︷ ︸

D(k)

d (0)†
k d (0)

k

+
∑
k �=0

V0Nv(k)
(
d (0)†

k d (0)†
−k + d (0)

k d (0)
−k

)
, (C1)

where v(k) = �
k/2
k/2,k/2 = �0

0,k = �0
k,0 is real. Note that the

inversion symmetry of the problem implies v(k) = v(−k)
and ε

(0)
k = ε

(0)
−k . The first line of Eq. (C1) corresponds to the

energy of the weakly interacting BEC EBEC(N,V0) = ε
(0)
0 N +

V0N2v(0). The last two lines show the quadratic Hamiltonian,
which accounts for the entire many-body problem in the
Bogoliubov approach.

This quadratic Hamiltonian can be diagonalized as

HBogo = EBEC(N,V0) +
∑
k �=0

εB
k B†

kBk, (C2)

where the operators Bk are obtained by the squeezing (or
Bogoliubov) transformation

d (0)
k = ukBk − vkB†

−k, d (0)†
−k = ukB†

−k − vkBk . (C3)

The real coefficients uk and vk must satisfy u2
k − v2

k = 1 for
the new operators to obey bosonic commutation relations
[Bk, B†

k] = 1. They can thus be parametrized by a hyperbolic
angle uk = cosh θk and vk = sinh θk . Plugging Eq. (C3) into
Eq. (C1), this angle is chosen to make the BkB−k and B†

kB†
−k

terms vanish:

tanh(2θk ) = 2V0Nv(k)

D(k)
. (C4)

This allows us to derive the following expressions for the
quasiparticle eigenenergies and weights:

εB
k =

√
D(k)2 − 4[V0Nv(k)]2, (C5)

uk =
√

D(k)

2εB
k

+ 1

2
, vk =

√
D(k)

2εB
k

− 1

2
. (C6)

The ground state of the system is now defined as the vac-
uum state for the quasiparticle operators, i.e., Bk|�Bogo(V0)〉 =
0. It can be expressed as

|�Bogo(V0)〉 = exp

(
−

∑
k>0

tk d (0)†
k d (0)†

−k

)
|�GS(0)〉, (C7)

with tk = vk/uk . This equation makes clear that the system
accommodates the weak interaction by the creation of particle
pairs with nonzero momenta ±k, as stated in the main text.

2. Very weakly interacting phase: Finite-size systems

In order to compare the weakly interacting theory to our
ED results, we must adapt Eq. (C7) to finite-size systems,
where

√
N is not much larger than 1, and ensure particle

number conservation. We thus consider the following ansatz,
reproduced from Eq. (46):

|�̃Bogo(V0)〉 = e− ∑
k>0

tk
N d (0)†

k d (0)†
−k d (0)

0 d (0)
0 |�GS(0)〉. (C8)

The coefficients {tk}k>0 are variationally optimized around
their

√
N 
 1 theoretical value [Eq. (C6)] to correct for small

finite-size effects. The depletion of the BEC is explicitly
accounted for by gluing the operator d (0)

0 d (0)
0 /N to the pair

creation operator in the exponential of Eq. (C8). This formally
implements the required particle number conservation.

As explained in the main text and numerically demon-
strated in Fig. 8, Eq. (C8) almost perfectly captures the ED
ground states for very weak interactions V0N � 1. However,
it fails to capture the nature of the other intermediate phases,
characterized by more than one peak in their momentum-
space density distribution (see Fig. 7).

3. Other weakly interacting phases

As explained in Sec. V D, the multiple local minima of
the lowest band [see Fig. 7(a)] and the finite range of the
interaction [see Eq. (32)] tend to favor the creation of mul-
tiple condensates with very different momenta. The previous
Bogoliubov approach can be adapted to this case as well. The
idea is to conserve the variational parameters of Eq. (46),
which measure the depletion of the condensates by pair
creation in order to accommodate the weak interactions of
the system, while changing the initial state they act on. This
initial state is composed of P multiple BECs located near the
minima of the dispersion relation with momenta k1, . . . , kP,
and hosting N1, . . . , NP particles. They can be written as

|(ki, Ni )i=1,...,P〉 =
P∏

i=1

1√
Ni

(
d (0)†

ki

)Ni |∅〉. (C9)
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The original state |�GS(0)〉, corresponding to the blue lines
in Fig. 7, is recovered by choosing P = 1, k1 = 0, and N1 =
N . For all the other interaction strengths V0 in the weakly
interacting phases, we fix these new parameters such that
|(ki, Ni )i=1,...,P〉 corresponds to the highest-weight number
state in the many-body decomposition of the ED ground state
|�GS(V0)〉. For instance, the case depicted in orange in Fig. 7
has P = 3 peaks located at k1 = −5, k2 = 0, and k3 = 5, and
hosting N1 = N2 = N3 = 4 particles each (before depletion by
the pair creation operators).

Once the initial |(ki, Ni )i=1,...,P〉 has been determined as de-
tailed above, the Bogoliubov ansatz is obtained by appending

the exponentiated particle pair creation operator as in Eq. (46).
This results in the following ansatz:

|�Bogo(V0)〉 = exp

(
−

∑
k>0

tk
N

d (0)†
k d (0)†

−k d (0)
ki

d (0)
k j

)
|�GS(0)〉.

(C10)
The overlaps between this ansatz and our numerical ground
states are shown in Fig. 8. They nicely capture the underlying
physics of our model before the transition toward the FQH-
like state.
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