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Weyl semimetals (WSMs) have unusual optical responses originating from unique topological properties
of their bulk and surface electron states. Their third-order optical nonlinearity is expected to be very strong,
especially at long wavelengths, due to linear dispersion and high Fermi velocity of three-dimensional Weyl
fermions. Here we derive the third-order nonlinear optical conductivity of WSMs in the long-wavelength limit
and calculate the intensity of the nonlinear four-wave mixing signal as it is transmitted through the WSM film or
propagates away from the surface of the material in the reflection geometry. All results are analytic and show the
scaling of the signal intensity with variation of all relevant parameters. The nonlinear generation efficiency turns
out to be surprisingly high for a lossy material, of the order of several mW per W3 of the incident pump power.
Optimal conditions for maximizing the nonlinear signal are realized in the vicinity of bulk plasma resonance.
This indicates that ultrathin WSM films of the order of skin depth in thickness could find applications in compact
optoelectronic devices.
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I. INTRODUCTION

Weyl semimetals (WSMs) are fascinating materials with
nontrivial topology of both bulk and surface electron states
[1–8]. Although most of the research on WSMs has been
focused on their electronic structure and transport, a number
of recent studies have suggested that WSMs should also have
highly unusual optical properties; see, e.g., Refs. [9–22] and
references therein. Their optical response can be used to pro-
vide detailed spectroscopic information about their electronic
structure, which is in a sense complementary to the one ob-
tained from transport studies. Furthermore, strong anisotropy
and gyrotropy of their optical response in combination with
strong optical nonlinearities [18,22,23] makes WSM films
promising for applications in optoelectronics and quantum
technologies.

Due to the presence of one or more pairs of separated Weyl
nodes, the electron band structure of WSMs is anisotropic
and includes both bulk and surface states. As a result, even in
the weak-field linear regime, the optical conductivity tensor is
quite complicated and generally cannot be expressed analyti-
cally even within the simple microscopic model of a two-band
WSM Hamiltonian with two separated Weyl nodes ([2,24]);
see, e.g., Refs. [18,22] where bulk and surface conductivity
tensors were derived and the properties of bulk and surface
electromagnetic eigenmodes were described. Fortunately, one
expects the strongest nonlinear optical response in the high-
doping, long-wavelength limit h̄ω � 2EF , h̄vF b, where EF

is the Fermi energy and 2h̄b is the Weyl point separation
in momentum space [18]. In this limit, the electron band
structure takes a simple universal form of 3D cones for both
Dirac and Type-I WSMs. As a result, one can obtain analytic,
although a bit cumbersome, expressions for the nonlinear
conductivity of any order.

There are several reasons why the power of the nonlinear
four-wave mixing (FWM) efficiency from WSMs should be
high in the long-wavelength limit. First, the dispersion of
massless Weyl fermions is, of course, very far from parabolic,
which ensures strong nonlinearity of intraband electron oscil-
lations in an external optical field. This is to be contrasted with
electrons near the conduction band minimum of conventional
semiconductors that are only weakly nonparabolic: see, for
example, Refs. [25–27] where the third-order intraband non-
linear response due to band nonparabolicity has been observed
and explained.

Second, the magnitude of the dipole matrix element of
the optical transitions between two states |n〉 and |m〉 with
eigenenergies εn and εm is �μmn = e · 〈m|r|n〉 = ih̄e

εn−εm
〈m|v̂|n〉.

For electron systems with continuous energy spectra, the main
contribution to the optical response at frequency ω comes
from energy states separated by εn − εm = h̄ω. Furthermore,
for massless fermions, the magnitude of the velocity is con-
stant: v̂ = vF �̂σ , i.e., |v| = vF , where vF is the Fermi velocity.
Therefore, the magnitude of the dipole moment scales as
μ ∼ evF /ω. This is true for both intraband and interband tran-
sitions. Note the linear scaling with wavelength λ, μ ∝ λ for
Weyl fermions as compared to the usual μ ∝ √

λ scaling for
massive electrons with parabolic dispersion. As a result, the
nonlinear nth order conductivity grows rapidly, |σ (n)| ∝ μn+1,
with increasing wavelength. Taking into account the density of
states, one can immediately predict the scaling |σ (3)| ∝ e4vF

(h̄ω)3 ,

which is confirmed below. The resulting magnitude of |χ (3)|
is many orders of magnitude higher than in conventional
nonlinear materials.

The third reason is that at low frequencies h̄ω � 2EF ,
the interband absorption is eliminated by Pauli blocking.
Finally, the electric field of the nonlinear signal is enhanced
in the vicinity of bulk plasma resonance due to the boundary
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conditions at the interface. The latter effect is similar to the
observed enhancement of Kerr index modulation and third-
harmonic generation in so-called epsilon-near-zero materials;
see, e.g., Refs. [28,29]. An exceptionally high value of |χ (3)|
in combination with field enhancement at plasma resonance
lead to a surprisingly high efficiency of the nonlinear gener-
ation, of the order of several mW per W3 of incident pump
power.

The third-order conductivity has been calculated in Ref.
[30] in the hydrodynamic limit and for frequencies lower than
the scattering rate 1/τ . Here we are interested in the frequen-
cies higher than the scattering rate, but still low enough to
limit the response to the vicinity of the Weyl points, as argued
above. Therefore, we need to use the kinetic approach. There
is some controversy surrounding the kinetic theory of the
third-order response. In Ref. [31], the third-order conductivity
in the terahertz spectral range was calculated for degenerate
FWM (ω + ω − ω) and third-harmonic generation processes.
However, in a very recent paper [32], the third-order conduc-
tivity was found to be zero in the low-frequency limit and the
zero result was rationalized by symmetry arguments. While
the inversion symmetry prohibits the nonzero second-order
response in electric-dipole approximation, we don’t see any
symmetry arguments that would require the third-order re-
sponse of WSMs to be zero, even assuming perfectly isotropic
conical dispersion near every Weyl point. And indeed, we
present a very general kinetic equation-based derivation of the
third-order conductivity to show that it remains finite and in
fact quite large in magnitude at low frequencies.

In Sec. II of this paper, we derive the general expression
for the third-order nonlinear conductivity by using the ki-
netic equation formalism for frequencies higher than the phe-
nomenological relaxation rate. We then proceed in Sec. III to
calculate the FWM signal power transmitted through a WSM
slab or propagating away from the surface of the material
opposite to the direction of incident pump beams as a function
of relevant parameters. The Appendix contains details of the
derivation of the third-order susceptibility.

II. THIRD-ORDER NONLINEAR OPTICAL
CONDUCTIVITY

We consider the optical response of a doped WSM at
frequencies 1/τ < h̄ω < 2EF that are low enough so the
electron excitations in the vicinity of each Weyl point satisfy
the linear dispersion,

Es = sv · p, (1)

where s = ±1 is for the conduction and valence bands, re-
spectively. We assume for simplicity that the velocity has
the same magnitude in every direction, i.e., the cone is
isotropic. Anisotropic cones can be easily incorporated into
the analytic theory below, but they will make the expressions
more cumbersome without changing the nonlinear response
qualitatively. We will assume for definiteness that the Fermi
level is in the conduction band. Thus we have

v = ∂E+
∂p

= vF n, (2)

where E+ is the electron energy in the conduction band, p =√
p2

x + p2
y + p2

z is the magnitude of electron momentum, and
n = p

p = (sin θ cos φ, sin θ sin φ, cos θ ) is the unit vector in
the direction of the electron velocity in spherical coordinates.
For h̄ω < 2EF and in the limit of strong Fermi degeneracy,
intraband transitions make the dominant contribution. When
only the intraband transitions are included, the fully quantum
approach based on the von Neumann equation for the density
matrix gives the same result as the semiclassical kinetic
equation approach. For massless 2D Dirac fermions, this was
checked explicitly in Ref. [33]. The kinetic equation with a
phenomenological collision term has a standard form,

∂ f

∂t
+ vF (n · ∇) f − e[E + vF

c
(n × B)] · ∂ f

∂p

= γ [F (p) − f ], (3)

where E and B are external electric and magnetic fields,
respectively, γ is the electron relaxation rate, F (p) is an
unperturbed (zeroth order) distribution function, which is
chosen as the equilibrium Fermi-Dirac distribution, and f is
the nonequilibrium distribution function in the presence of
external fields. We are interested in the electric-dipole optical
response, so we will neglect the magnetic-field-dependent
terms and the terms with spatial gradients in Eq. (3). The
latter would lead to corrections that scale as powers of the
small parameter vF /(Lω), where L is a characteristic scale of
the optical field nonuniformity in the material [33,34]. In a
transparent medium, L would be equal to the wavelength of
radiation.

The current density can be calculated as

j(r, t ) = −e
∫

v f (r, p, t ) d3 p. (4)

We assume that the electric field has the form

E(r, t ) =
∑

n

En(r, ωn)e−iωnt =
∑

n

Aneiknz−iωnt , (5)

and make an ansatz for the nonequilibrium distribution func-
tion,

f =
∑

m

ξmeiqmz−iωmt , (6)

where we have set ξ0 = F (p), E0 = 0, ω0 = q0 = 0. Because
both the electric field and the nonequilibrium distribution
function are real, i.e., E(r, t ) = E∗(r, t ) and f = f ∗, we
obtain E−n = E∗

n , ξ−n = ξ ∗
n , ω−n = −ωn, q−n = −qn.

Substituting Eqs. (5) and (6) into Eq. (3) and transforming
into spherical coordinates, one can solve for the distribution
function in any required order and then perform an integration
in Eq. (4) to find the nonlinear current. The details of the
derivation are in the Appendix. The resulting third-order
nonlinear optical conductivity tensor at frequency ωn = ω1 +
ω2 + ω3 has the form

σi jkl = e4vF gsgwi jkl

90π2 h̄3(γ − iω1)

× 1

[γ − i(ω1 + ω2)][γ − i(ω1 + ω2 + ω3)]

+ all permutations of ω1, ω2, ω3, (7)
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FIG. 1. The absolute value of χ (3) as a function of detuning δω =
ω2 − ω1 for several values of ω1. Other parameters are h̄γ = 5 meV,
vF = 108 cm/s, gs = 2, gw = 4.

where i jkl ≡ δi jδkl + δikδ jl + δilδ jk . Here, δi j is the Kro-
necker delta.

In the particular case of the third-harmonic generation,
ω1 = ω2 = ω3 = ω. Then the nonlinear current at ωn = 3ω

is

j (3)
k (3ω) = e4vF gsgw

(
E2

1,x + E2
1,y + E2

1,z

)
5π2h̄3(γ − i3ω)(γ − i2ω)(γ − iω)

E1,k, (8)

where k = (x, y, z). This is consistent with the result for
σ intra

3 (3ω) in Ref. [31] when E1,x,y,z = E0.

In another special case of partially degenerate FWM, we
consider the nonlinear current at frequency ωs = 2ω1 − ω2.
For simplicity, we assume that the electric field is along the z
axis; then the z component of the nonlinear current is

j (3)
z (ωs) = e4vF gsgwE2

1,zE
∗
2,z

15π2 h̄3(−iωs + γ )

[ 1
iω2+γ

+ 1
−iω1+γ

(−i(ω1 − ω2) + γ )

+ 1

(−i2ω1 + γ )(−iω1 + γ )

]
. (9)

Note the resonance at ω1 = ω2. The absolute value of
the third-order susceptibility χ (3) = iσ (3)

ωs
, which follows from

Eq. (9), is plotted in Fig. 1 as a function of detuning δω =
ω2 − ω1 for several values of ω1. The magnitudes of χ (3)

are many orders of magnitude higher as compared to typical
values in the conventional nonlinear crystals [35]. Moreover,
the numerical results in Fig. 1 and other figures below were
obtained for gw = 4, i.e., two pairs of Weyl points. Even
higher nonlinearity and the nonlinear signal intensity are
expected for larger values of gw. However, strong optical
absorption in WSMs limits the nonlinear signal power, as we
show in the next section.

III. INTENSITY AND POWER OF THE FOUR-WAVE
MIXING SIGNAL

As the simplest problem relevant to the experiment, we
consider two monochromatic pump fields at frequencies ω1

and ω2 normally incident at the WSM layer from the air.
The case of an oblique incidence can be easily solved in
the same way, but we will try to keep the expressions less
cumbersome. The nonlinear FWM signal at frequency ωs =
2ω1 − ω2 is generated by the nonlinear current inside the
WSM material. It can be observed both in the transmission
geometry, i.e., propagating through the WSM layer, or in

EF = 12 meV
EF = 30 meV
EF = 50 meV
EF = 100 meV
EF = 150 meV

[ ]

( ( ))

EF = 12 meV
EF = 30 meV
EF = 50 meV
EF = 100 meV
EF = 150 meV

[ ]

( ( ))

(a)

(b)

FIG. 2. Real (a) and imaginary (b) parts of the linear refractive
index as a function of frequency at different Fermi energies for εb =
10, h̄γ = 5 meV, vF = 108 cm/s, gs = 2, gw = 4.

the reflection geometry where it propagates away from the
WSM surface into the air, opposite to the direction of the
incident pump beam. Although there is no incident nonlinear
signal, the presence of the “reflected” wave is mandated by the
boundary conditions, since the nonlinear current exists only
on one side of the air-WSM interface.

First, it is instructive to find the linear dispersion and
absorption of electromagnetic (EM) waves propagating in
the bulk WSM. Since the material is isotropic within our
model, the normal modes are transverse waves with the wave
vector magnitude k = n(ω)ω

c . Here n(ω) = √
ε(ω) and ε(ω) =

εb + 4π iσ (1)

ω
, where εb is the background dielectric permittivity

due to off-resonant transitions to remote bands and σ (1) is
the linear response of Weyl fermions given by Eq. (A7). The
absorption length can be obtained as Lab(ω) = c

ωIm[n] .
Figures 2 (a) and 2(b) show real and imaginary parts of the

linear refractive index as a function of frequency at different
Fermi energies. At low frequencies, the linear response is
dominated by the plasmonic response of Weyl fermions. The
plasmonic resonance Re[ε(ω)] = 0 is clearly visible in the
refractive index spectra. Below the plasmonic resonance,
the absorption length drops to the values shorter than the
wavelength. Note that the plots cannot be applied to the
interband transition region h̄ω > 2EF .
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FIG. 3. Sketch of the simplest experimental geometry. The third-
order nonlinear current generated in bulk WSM by incident pump
beams gives rise to the FWM signals propagating both into and out
of the material.

Next, we calculate the intensity and power of the nonlinear
signal. Assume that the interface between the WSM and the
air is in the (x, y) plane and the WSM is at z > 0, as shown in
Fig. 3. EM fields in the air above the WSM consist of incident
and reflected pump waves, Ei1,2ei(ω1,2/c)z and Er1,2e−i(ω1,2/c)z,
and the nonlinear signal wave propagating away from the
interface: Ea = E (−)

a e−ik0z, where k0 = ωs/c. Here we assume
that all fields are linearly polarized in the same direction and
drop the polarization vectors.

The EM fields in the WSM consist of transmitted pump
waves t1,2Ei1,2eik1,2z, where t1,2 are Fresnel transmission coef-
ficients for the field at frequencies ω1,2, and the copropagating
nonlinear signal. The nonlinear correction to the refractive
index for the pump waves in the WSM is not important
because they interact with the signal wave over a short dis-
tance comparable or smaller than the wavelength, as we will
see below. The monochromatic electric field of the nonlinear
signal at frequency ωs satisfies Maxwell’s wave equation with
the nonlinear polarization P(3)(ωs) as the source term and
appropriate boundary conditions for electric and magnetic
fields at z = 0:

d2Ew

dz2
+ ε(ωs)k2

0Ew = −4πω2
s

c2
P(3)(ωs). (10)

After expressing the nonlinear polarization through the third-
order susceptibility and the pump fields in the material, the
right-hand side of Eq. (10) can be written as

d2Ew

dz2
+ ε(ωs)k2

0Ew = Aeikz, (11)

where k ≡ 2k1 − k2 and

A = −4πω2
s

c2
χ (3)t2

1 t∗
2 E2

i1E∗
i2. (12)

Note that the dielectric function ε(ω) is complex at all fre-
quencies and therefore all relevant wave numbers are com-
plex: k1,2 = (ω1,2/c)n1,2, ks = k0ns, where n1,2 = √

ε(ω1,2),
ns = √

ε(ωs), and all imaginary parts Im[n1,2,s] are greater
than zero.

The solution to Eq. (11) can be written as a sum of the
general solution to the homogeneous part and a particular

EF = 12 meV
EF = 30 meV
EF = 50 meV
EF = 100 meV
EF = 150 meV

[ ]

( )
[ − ]

FIG. 4. The nonlinear signal power in reflection geometry, i.e.,
when the signal propagates away from the interface into the air, as a
function of frequency and for several values of the Fermi energy.

solution to the inhomogeneous equation,

Ew = E (+)
w eiksz + A

k2
s − k2

eikz, (13)

where we dropped the E (−)
w e−iksz term.

The continuity of the tangential electric and magnetic fields
at the interface z = 0 give Ea = Ew and dEa

dz = dEw

dz , or

E (−)
a = E (+)

w + A

k2
s − k2

,

−k0E (−)
a = ksE

(+)
w + k

A

k2
s − k2

. (14)

This leads to the following expressions for the nonlinear
signal fields propagating from the interface into the air and
into the WSM,

Ea = 1

ks + k0

A

ks + k
e−ik0z,

Ew = A

k2
s − k2

(
eikz − k0 + k

k0 + ks
eiksz

)
, (15)

where as a reminder k = 2k1 − k2. These expressions can be
used to calculate the nonlinear signal power in both transmis-
sion and reflection geometry.

In the absence of any dissipation (i.e., when all wave
numbers are real) and for exact phase matching ks → k, the
monochromatic signal field propagating into the WSM grows
linearly with z, as expected:

Ew = A
eiksz

2ks

(
1

k0 + ks
− iz

)
, Ea = A

2ks(ks + k0)
e−ik0z.

(16)

Of course, for realistic fields of finite duration, the region of
linear growth of the field is limited by the pulse duration.
Moreover, field dissipation is always important because of a
fast electron scattering rate γ expected in real materials and
especially in the region around plasma resonance.

Figure 4 shows the power of the nonlinear signal in the
reflection geometry, in W per W3 of incident pump power, for
degenerate FWM with ω1 = ω2 and assuming that all beams
are focused into an area equal to vacuum wavelength squared,
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EF = 12 meV
EF = 30 meV
EF = 50 meV
EF = 100 meV
EF = 150 meV

[ ]

| ( )|

FIG. 5. Absolute value of the linear refractive index as a function
of frequency at different Fermi energies for εb = 10, h̄γ = 5 meV,
vF = 108 cm/s, gs = 2, gw = 4.

i.e., Pa = c
2π

|Ea|2( 2π
k0

)
2

and similarly for the pump. All other
parameters are the same as in Figs. 1 and 2.

The sharp peaks in the spectrum are entirely due to a strong
dependence of the signal field intensity from the refractive
index of the WSM:

|Ea|2 = 256π2|χ (3)|2
|ns|2|ns + 1|8 |Ei|6. (17)

Indeed, the absolute value of the refractive index has a sharp
minimum in the vicinity of plasma resonance, see Fig. 5,
which is manifested in the power spectra. Note a simple “uni-
versal” character of the expression Eq. (17) for the nonlinear
signal, especially given the fact that the value of χ (3) in this
expression does not depend on the Fermi energy. The Fermi
energy dependence in Eq. (17) which is shown in Fig. 4 enters
entirely through the refractive index ns.

The efficiency of the FWM process is quite high, a few mW
per W3 of incident pump power, especially in view of the
fact that the reflected nonlinear signal is generated in the
subwavelength skin layer below the air/WSM interface. It
originates from the high magnitude of |χ (3)| and strong refrac-
tive index dependence mandated by the boundary conditions.
The sharp increase in the FWM signal near plasma reso-
nance is conceptually similar to the predicted and observed
enhancement of the third-order nonlinear effects for intense
laser field propagating in epsilon-near-zero materials; see,
e.g., Refs. [28,29] or the recent reviews [36,37] and references
therein.

With detuning from resonance δω = ω2 − ω1 = 0, the
FWM power will decrease following |χ (3)|2 ∝ 1/(δω)2 as one
can see from Eq. (9) and Fig. 1.

The field intensity of the transmitted nonlinear signal in the
degenerate FWM process at the distance z into the sample is
given by

|Ew|2 = 256π2|χ (3)|2|Ei|6
|ns|2|ns + 1|6

∣∣∣∣ 1

1 + ns
− ik0z

∣∣∣∣
2

e−2k0Im[ns]z. (18)

The corresponding power after propagating the distance
equal to the absorption length Lab = 1/Im[ks] into the sample
is plotted in Fig. 6 as a function of frequency for different

EF = 30 meV
EF = 50 meV
EF = 100 meV
EF = 150 meV

[ ]

( )
[ − ]

FIG. 6. The nonlinear signal power after propagating a distance
equal to one absorption length Lab = 1/Im[ks] into the sample, as a
function of frequency and for several values of the Fermi energy.

Fermi energies. Here we again assumed that the pump beam
was focused into the area of (2π/k0)2.

The characteristic feature of each spectrum is a sharp peak
just above plasma resonance, when the refractive index ns(ω)
is still close to its minimum value, followed by a gradual
increase. The gradual increase is entirely due to the absorption
length increasing with frequency, as shown in Fig. 7. Note,
however, that the plots in Figs. 6 and 7 cannot be extended
beyond ω = 2EF where the interband transitions become
important.

Therefore, for a sample with a given electron density, one
can get similar levels of the transmitted nonlinear signal power
when using a very thin film at frequencies near the plasma
resonance and when using thicker films at higher frequencies
near the interband transition cutoff. This is illustrated in Fig. 8
which shows the nonlinear signal power as a function of
distance into the sample at two different frequencies and the
same Fermi level.

Various strategies can be employed to extract the transmit-
ted nonlinear signal from the sample on the bottom side of the
WSM film: an index-matching substrate, tailoring the layer
thicknesses to form a Fabry-Perot cavity or a coupled cavity,
etc. We won’t go into these technical details here. Moreover,
since the magnitudes of the signal power in transmission
and reflection geometries are similar (compare Figs. 4 and

EF = 30 meV
EF = 50 meV
EF = 100 meV
EF = 150 meV

[ ]

[ ]

FIG. 7. Absorption length Lab = 1/Im[ks] as a function of fre-
quency at different Fermi energies for εb = 10, h̄γ = 5 meV, vF =
108 cm/s, gs = 2, gw = 4.
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EF = 30 meV, = 20 meV
EF = 30 meV, , = 50 meV

[ ]

( )
[ − ]

FIG. 8. The nonlinear signal power as a function of distance z
into the sample at two different frequencies and the same Fermi
energy.

8), in many cases it is more convenient to use the reflected
(backward-propagating) FWM signal |Ea|2 which is formed
in the subwavelength layer of the order of skin depth at the
surface. Then the details of the substrate and actual sample
thickness don’t matter, as long as this thickness is much
larger than the skin depth. Since the electric field decays
exponentially into the sample over the scale of the skin depth,
the structure of the sample at several or more skin depths
below the surface can’t affect the signal.

IV. CONCLUSIONS

We studied the nonlinear optical response of WSMs within
the kinetic equation approach which is valid at low enough
frequencies in the vicinity of Weyl nodes and below the onset
of interband transitions. We calculated the intensity of the
nonlinear FWM signal in both transmission and reflection
geometry. The doped bulk WSM exhibits extremely high
third-order nonlinearity combined with very high absorption
loss. This led us to rethink the optimal strategies for nonlinear
signal generation. The nonlinear signal intensity is maximized
in the vicinity of bulk plasma resonance, which allows one
to use ultrathin WSM films of the order of skin depth. The
nonlinear generation efficiency turns out to be quite high
for a thin film of a highly dissipative material: of the order
of several mW per W3, in both transmission and reflection
geometries. This could pave the way to interesting optoelec-
tronic applications.
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APPENDIX: NONLINEAR OPTICAL
CONDUCTIVITY DERIVATION

Substituting Eqs. (5) and (6) in the main text into Eq. (3)
and transforming into spherical coordinates, one can write

Eq. (3) in the following form:

ξn =
∑
m,k

Gn,mξk . (A1)

The summation in Eq. (A1) is over all frequencies ωm and ωk

that satisfy the condition ωm + ωk = ωn. The operator Gn,m is
determined by

Gn,m(p, φ, θ ) ≡ gn,m
1 (φ, θ )

∂

∂ p
+ gn,m

2 (φ, θ )
∂

p∂φ

+gn,m
3 (φ, θ )

∂

p∂θ
, (A2)

where p, φ, θ are spherical coordinates in momentum space
and

gn,m
1 ≡ e

Em,x cos φ sin θ + Em,y sin φ sin θ + Em,z cos θ

−iωn + γ
,

(A3)

gn,m
2 (φ, θ ) ≡ e

Em,y cos φ − Em,x sin φ

sin θ (−iωn + γ )
, (A4)

gn,m
3 (φ, θ ) ≡ (Em,x cos φ cos θ + Em,y sin φ cos θ − Em,z sin θ )

× e

(−iωn + γ )
. (A5)

The optical response in any order for an arbitrary nonde-
generate multiwave mixing can be calculated by the repetitive
applying of Gn,m to the equilibrium distribution function. For
example, the first-order approximation describing the linear
optical response is

ξ (1)
n = Gn,nξ0 = g(n,n)

1

∂F

∂ p
. (A6)

Substituting this into Eq. (4) and using
∫ ∞

0
∂F (p)

∂ p p2d p = −p2
F

in the strong degeneracy/low-temperature limit, one can get

σ (1)(ω) = e2vF p2
F gsgw

6π2h̄3(γ − iω)
, (A7)

where gs and gw are the degeneracy factors associated with
spin and the number of Weyl nodes, respectively.

The second-order approximation of the nonequilibrium
distribution function is ξ

(2)
l ,

ξ
(2)
l =

∑
m,k

Gl,mξ
(1)
k =

∑
m,k

Gl,mGk,kξ0 (A8)

for all possible ωm and ωk satisfying the relation ωl = ωm +
ωk . Similarly, the third-order response is described by

ξ
(3)
i =

∑
j,m,k

Gi, jξ
(2)
l =

∑
j,m,k

Gi, jGl,mGk,kξ0 (A9)

for all possible ω j, ωm and ωk satisfying the relation ωi =
ω j + ωm + ωk .

To evaluate Eq. (A9)for the third-order perturbation
of the distribution function, we need to calculate
G(n3,m3 )G(n2,m2 )g(n1,m1 )

1
∂F
∂ p . First, by acting with G(n2,m2 ) ≡ G2

on g(n1,m1 )
1

∂F
∂ p = g1

1
∂F
∂ p , we obtain

G2g1
1
∂F

∂ p
= g2

1g1
1∂

2
p2 F + g2

2∂φg1
1
∂pF

p
+ g2

3∂θg1
1
∂pF

p
. (A10)
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Second, acting with G(n3,m3 ) = G3 on Eq. (A10), we get

G3G2g1
1
∂F

∂ p
=

(
g3

1∂p + g3
2
∂φ

p
+ g3

3
∂θ

p

)(
g2

1g1
1∂

2
p2 F + sin2 θg2

2g1
2
∂pF

p
+ g2

3g1
3
∂pF

p

)
. (A11)

The nonlinear current j(ωn=ω1+ω2+ω3 ) is then given by⎛
⎜⎝

jωn
x

jωn
y

jωn
z

⎞
⎟⎠ = −evF

∫ ∞

0

∫ 2π

0

∫ π

0
ξ (3)

n

⎛
⎝cos φ sin θ

sin φ sin θ

cos θ

⎞
⎠p2 sin θdθdϕd p

= 1

3!

(
I3,2,1
i + Permutation(ω1, ω2, ω3)

)
, (A12)

where

I3,2,1
i = −evF

∫ ∞

0

∫ 2π

0

∫ π

0
G3G2g1

1
∂F

∂ p

⎛
⎝cos φ sin θ

sin φ sin θ

cos θ

⎞
⎠p2 sin θdθdφd p

= 8πe4vF F (0)

15(γ − iω1)(γ − i(ω1 + ω2))

i jkl E
j

1 Ek
2 El

3

(γ − i(ω1 + ω2 + ω3))
, (A13)

where i jkl = δi jδkl + δikδ jl + δilδ jk and δi j is the Kronecker delta. Here we used the relations
∫ ∞

0
∂F (p)
p2∂ p p2d p =

− ∫ ∞
0

∂2F (p)
p∂ p2 p2d p = −F (0) and

∫ ∞
0

∂3F (p)
∂ p3 p2d p = − ∫ ∞

0

∂ ( ∂F (p)
p∂ p )

∂ p p2d p = −2F (0). The summation over repeating indices is
assumed.

For a strongly Fermi-degenerate distribution, we can replace the equilibrium distribution function with its zero-temperature
limit, F (p) = F (0)�(pF − p), where F (0) = gsgw

(2π h̄)3 . Here gs and gw are the spin and Weyl node degeneracy, respectively. In this
case, Eq. (A12) becomes

ji(ωn) = σi jkl E
j

1 Ek
2 El

3, (A14)

where

σi jkl = 1

3!

(
8πe4vF gsgwi jkl

15(2π h̄)3(γ − iω1)

1

[γ − i(ω1 + ω2)][γ − i(ω1 + ω2 + ω3)]
+ Permutation(ω1, ω2, ω3)

)
(A15)

is the third-order nonlinear optical conductivity at zero temperature.
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