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Renormalization of the spectrum of in-depth excitations below the Fermi level
in a two-dimensional electron system with strong interaction
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The dependence of quasiparticle Fermi energy on electron density is investigated by analyzing radiative
recombination spectra of two-dimensional electrons with photoexcited holes bound to remote acceptors. This
method enables us to measure the dependence of renormalized quasiparticle mass on the concentration of
two-dimensional electrons. It is established that with decreasing electron density (increasing parameter rs up to
4.5) the density-of-states effective mass of quasiparticles increases by 35% compared to the cyclotron electron
mass. It is shown that in a perpendicular magnetic field the concept of quasiparticles in a two-dimensional Fermi
liquid is applicable not only near the Fermi level but also deep below the Fermi surface, down to the bottom
of the size-quantization band, since the broadening of excitations appears to be much less than their energy.
The effective mass and broadening of quasiparticles were found to be significantly dependent on their energy
measured from the Fermi surface down to the very bottom of the size-quantization band.
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I. INTRODUCTION

In 1956 Landau proposed his theory of Fermi liquid to
describe the low-temperature properties of electron systems
with strong interaction [1]. The fundamental idea of this
theory is that at low temperatures all the properties of such
a strongly correlated system can be described in terms of
noninteracting quasiparticles whose number is equal to that
of real electrons; the distribution function of quasiparticles
is described by Fermi statistics, and their dispersion can be
strongly modified by the interaction. The simplest example
of such a modification is mass renormalization as a result of
which the quasiparticle mass can essentially differ from the
electron mass, and the stronger the interaction is, the stronger
the effects of mass renormalization are. The measure of the
electron-electron interaction strength is the parameter

rS = 1/[aB(πnS )1/2], (1)

where nS is the concentration of two-dimensional electrons
and aB is the Bohr radius, equal to the ratio between Coulomb
and Fermi energies. The modified quasiparticle mass is in-
dependent of temperature and magnetic field and is a theory
parameter dependent only on the strength of electron-electron
interaction. Another conclusion of the Landau Fermi-liquid
theory is that the quasiparticle energy calculated from the
Fermi surface is also characterized by an imaginary part (at-
tenuation) which is minimal on the Fermi surface and grows
quadratically as the energy deviates from the Fermi surface.
This results in the conclusion of the Landau theory that the
quasiparticles are well defined only near the Fermi surface
and cease to exist well below the Fermi surface. For Landau’s
theory this statement is acceptable as it claims to describe the
low-temperature properties of the electron system, i.e., when
only a small number of excitations originates thermally near

the Fermi surface. These thermal excitations are neutral pairs
of quasielectrons and quasiholes created above and below
the Fermi surface, respectively. The Fermi-liquid theory was
constructed [1–5] for three-dimensional electron systems, yet
as shown later, the basic conclusions of the theory are also
applicable to two-dimensional electron systems [6,7] and
magnetic field [8].

For the weak interaction in the three-dimensional case
Abrikosov and Khalatnikov [5] derived the relationship con-
necting the renormalized mass in an electron Fermi liquid mFL

e
and the electron-electron interaction potential V (r):

mFL
e

me
= 1 + ak2

F , (2)

where kF is the Fermi momentum, me is the electron mass,
and a is the scattering length that, in the Born approximation,
is given by the expression

a = me

4π h̄2

∫
V (r)d3x. (3)

The experimental techniques of the investigation of the
Fermi-liquid effects in the strongly interacting electron system
usually involve temperature studies of the transport proper-
ties, namely, analysis of the Shubnikov–de Haas oscillation
amplitude [9–13]. Such studies claim to estimate the effect
of electron mass renormalization only near the Fermi energy
and do not allow analysis of quasiparticle dispersion changes
deep below the Fermi surface. These measurements can yield
integral Fermi-liquid parameters, F a,s

0 and F a,s
1 , corresponding

to the characteristics of the electron-electron scattering poten-
tial [14]. A review of the current status of the experimental
research performed with an electron Fermi liquid in silicon-
based two-dimensional (2D) structures can be found in [15].
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However, in two-dimensional semiconductor quantum
wells there is an experimental technique that enables di-
rect measurements of the properties of a strongly interact-
ing electron Fermi liquid [16]. The method is based on
the measurement of the radiative recombination spectrum of
two-dimensional electrons with photoexcited holes bound to
remote acceptors. In this case the luminescence spectrum
directly reflects the distribution function, the density of states,
and quasiparticle (quasihole) attenuation in the Fermi liquid.
Indeed, if the acceptor center is located a sufficiently large
distance from the two-dimensional channel (an easily satisfied
requirement [17]), then, in the initial and final states, the ac-
ceptor’s influence on the two-dimensional electron properties
can be neglected. As a result, in accordance with Fermi’s
golden rule, the radiative spectrum will appear as a convolu-
tion of the quasiparticle density of states (quasiholes in the
Fermi sea of two-dimensional electrons) and the acceptor-
bound photoexcited hole state. As the energy distribution
function of acceptor-bound holes corresponds to the δ func-
tion of energy equal to acceptor energy, the radiative spectrum
is the product of the density of states and the distribution
function of quasiparticles whose spectrum is renormalized by
the electron-electron interaction. The recombination process
herein looks just like an act of removing an electron (leaving
a quasiparticle in its place) from the Fermi sea followed by
placing the electron at infinity. Attenuation of such a quasipar-
ticle is greater the deeper it is from the Fermi surface, which
is associated with the short scattering time of the quasiparticle
upon its rising to the Fermi surface. In a perpendicular mag-
netic field, as shown in numerous experiments [16], the ra-
diative recombination spectrum of two-dimensional electrons
with photoexcited holes bound to remote acceptors is split into
Landau levels. The splitting clearly reveals the position of the
size-quantization band bottom and the position of the Fermi
level. It also allows direct measurements of cyclotron splitting
and Landau-level width as functions of quasiparticle energy
calculated from the Fermi surface. Thus, this experimental
technique makes it possible to measure the key parameters
of two-dimensional electron Fermi liquids and their changes
with varying electron density.

In the present work we investigate the dependence of quasi-
particle Fermi energy on electron density by analyzing radia-
tive recombination spectra of two-dimensional electrons with
photoexcited holes bound at remote acceptors, which enables
us to measure the dependence of renormalized quasiparticle
mass on the concentration of two-dimensional electrons. It is
established that with decreasing electron density (increasing
parameter rs up to 4.5), the density-of-states effective mass
of quasiparticles increases by 35% compared to the cyclotron
electron mass. It is also shown that in the two-dimensional
electron system placed in a magnetic field the energy broaden-
ing of the quasiparticle levels increases with increasing energy
calculated from the Fermi energy, yet this broadening turns
out to be less than the quasiparticle energy down to the very
bottom of the size-quantization band.

II. EXPERIMENTAL METHOD AND STRUCTURES

We studied high-quality GaAs/AlGaAs quantum wells
with a width of 50 nm grown by molecular beam epitaxy

in which an acceptor carbon monolayer with an approximate
concentration of 0.5 × 1010 cm−2 was built at a distance of
40 nm from the heterostructure. In all the structures the
thickness of the undoped AlGaAs layer (spacer) was 100 nm,
which ensured high mobility of two-dimensional electrons
(∼107 cm2/V s at an electron concentration ∼1011 cm−2).
The electron density was varied using specially grown struc-
tures with various doping levels, and in addition, the electron
concentration could be varied over a certain interval by the
photodepletion method [18]. All the structures were enabled
to study and compare the recombination spectra and kinetics
of two-dimensional electrons with free holes and holes bound
to the acceptor monolayer.

As shown earlier [16], in the case of recombination of
two-dimensional electrons with photoexcited holes bound to
remote acceptors the luminescence spectrum directly reflects
the density of states of two-dimensional electrons. The in-
fluence of the acceptor center on the luminescence spectrum
can be reduced and made negligible by ensuring sufficient
distance between the acceptor layer and the two-dimensional
channel [17]. The significant spatial separation of the electron
channel and the acceptor layer also enables us to increase
recombination times up to several microseconds, which, in
turn, allows reaching really low temperatures of the two-
dimensional electron system (down to 20 mK) even in pho-
toexcitation conditions [16]. All the necessary requirements
for spatial separation of electrons and holes were fulfilled
in the measurements presented, and therefore, the lumines-
cence spectra could be used for direct measurements of the
energy spectrum of the electron Fermi liquid. For instance, in
zero magnetic field the luminescence spectrum reflected the
constancy of the density of states of two-dimensional elec-
trons, and in perpendicular magnetic field the luminescence
spectrum splits into well-defined Landau levels which could
be characterized by spectral splitting and broadening. The
number of Landau levels observed in the luminescence spec-
trum corresponded strictly to the filling factor of the electron
system. The measurements were made using the optical fiber
technique in a dilution cryostat at a base temperature of 20 mK
in a magnetic field up to 15 T. Photoexcitation was produced
by a tunable titanium:sapphire laser; the characteristic power
on the sample did not exceed 50 nW. The luminescence
spectra were measured with the use of a U-1000 double
spectrometer and a CCD camera cooled by liquid nitrogen.
We also studied the concentration dependence of the cyclotron
mass of two-dimensional electrons using microwave magne-
toplasmon resonance in order to compare this dependence
with the similar dependence of the renormalized quasiparticle
mass. The cyclotron mass of two-dimensional electrons was
determined from analysis of dimensional microwave mag-
netic plasmon resonance measured by the optical detection
method [19]. Within the standard approach it was possible to
determine separately the plasma and cyclotron contributions
to the hybrid magnetoplasmon resonance frequency, while
the electron cyclotron mass was measured from the magnetic
field dependence of the cyclotron frequency. An Agilent mi-
crowave generator was used to measure the magnetoplasmon
resonance in the frequency range of 1–40 GHz.

It was extremely important to develop a very re-
liable technique which gives the possibility to extract
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electron density under illumination conditions (especially
in the case of samples with very low concentrations). The
first method of extraction of electron density is based on
measurements of dimensional plasma resonance. It is well
known that in the case of finite size of the sample the 2D
electron system supports a dimensional plasma mode and the
plasma frequency ωp depends on both the electron density and
diameter d of the sample:

ω2
p = 4πe2nS

mεd
, (4)

where ε is the effective dielectric permittivity of the surround-
ing medium. Therefore, this method gives the possibility to
measure 2D electron density with rather high accuracy even
at extremely low concentrations [19].

In order to study microwave dimensional plasma modes of
electrons, disk-shaped mesas were fabricated with diameters
of 0.5 and 1 mm. Microwave excitation was transferred to the
sample by a microwave cable with an antenna at the end. For
optical detection of plasma resonances, the sensitivity of the
luminescence spectra to resonant microwave absorption was
exploited. The technique is based on a comparison between
spectra in the absence and presence of microwave radiation.
At zero magnetic field, luminescence spectra with and without
microwave excitation were recorded consecutively. The differ-
ential luminescence spectrum is obtained by subtracting the
spectrum without microwave irradiation from the spectrum
obtained under microwave excitation. Subsequently, we inte-
grated the absolute value of the averaged differential spectrum
over the entire spectral range, and this value was proportional
to the microwave absorption amplitude. The same procedure
was then repeated for different microwave frequencies. As
a result we obtained a spectrum of resonant microwave ab-
sorption corresponding to the plasma resonance. This method
allowed us to measure the plasma resonance at rather low
microwave frequencies (1–30 GHz) under illumination con-
ditions simultaneously with measurements of luminescence
spectra.

In Fig. 1(a) we present spectra of resonant microwave
absorption measured for two samples with low concentra-
tions. Dimensional plasma resonance is clearly detected in
both cases, and the small width of the resonance defines the
rather high accuracy of the measured resonant frequency. In
order to test the validity of the procedure we investigated the
dependence of the resonant plasma frequency on the size of
the sample. It is clear from Fig. 1(b) that resonant frequency
depends on electron density and the diameter of the structure,
in good agreement with formula (4). This fact means that the
method based on plasma resonance gives the possibility to
detect electron density with high accuracy.

We also used the second method to measure electron den-
sity, and this approach is based on the observation of Landau
levels in the luminescence spectrum in magnetic field [see
Fig. 2(a)]. The filling factor of the 2D electron system is
obvious from the number of occupied Landau levels visible in
the spectrum. It was possible to extract the 2D electron density
from the variation of occupied Landau levels as a function
of magnetic field. Such a procedure provides very accurate
measurements of electron density for higher concentrations;
however, at low densities this method becomes less accurate.

. . . . .

FIG. 1. (a) Spectra of resonant microwave absorption measured
at B = 0T for two samples with low concentrations, d = 0.5 mm.
(b) Dependencies of resonant plasma frequency on electron density
measured for two diameters: d = 0.5 mm and d = 1 mm.

In Table I we present values (and accuracy) of elec-
tron densities extracted for seven low-density samples using
two methods. Table I illustrates the high reliability of the
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FIG. 2. (a) Radiative recombination spectra of two-dimensional
electrons with photoexcited holes bound to remote acceptors mea-
sured in magnetic fields B = 0 and 0.9 T (ν = 14). (b) The Landau
level fan diagram used to determine the spectral position of the
size-quantization band bottom and the Fermi energy. The electron
concentration in the sample is equal to 3.05 × 1011 cm−2. T = 0.4 K.
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TABLE I. Values (and accuracy) of electron densities extracted
by two methods.

Density from Density from
plasma resonance luminescence

(1011 cm−2) (1011 cm−2)
Sample and accuracy (%) and accuracy (%)

1 0.17, 5% 0.18, 15%
2 0.22, 4% 0.24, 15%
3 0.32, 3% 0.31, 10%
4 0.48, 3% 0.45, 10%
5 0.71, 2% 0.73, 8%
6 1.10, 2% 1.12, 5%
7 1.62, 2% 1.66, 5%

determination of 2D electron concentration, which is very
important for our investigations.

III. MEASUREMENT OF DENSITY-OF-STATES MASS

Figure 2(a) shows the characteristic spectra of radiative
recombination of two-dimensional electrons with photoex-
cited holes bound to remote acceptors which were measured
at an electron concentration of 3.05 × 1011 cm−2 in zero
magnetic field and a perpendicular magnetic field B = 0.9 T.
The distinctive feature of the luminescence spectra at B = 0
is that the luminescence intensity is practically independent
of energy over a wide frequency range, and the luminescence
linewidth appears to be equal to the electron Fermi energy.
On the high-energy side the luminescence line exhibits a very
sharp threshold, which corresponds to very low temperature
of the electron system [see Fig. 2(a), T = 0.4 K]. Such a
luminescence spectrum reflects the constancy of the density
of states of two-dimensional electrons in zero magnetic field
as well as the Fermi distribution function. In the simplest
model, according to Fermi’s golden rule, the recombination
spectrum of two-dimensional electrons with remote holes
bound to acceptors, at T = 0, should be a � function with
a width equal to the Fermi energy and sharp thresholds on
both the high- and low-energy sides. As seen from Fig. 2(a),
the spectrum measured in zero magnetic field at low temper-
atures has a sharp threshold only on the high-energy side,
and the low-energy side exhibits broadening occurring due to
significant attenuation of quasiparticles (quasiholes below the
Fermi level). The observed broadening of the low-energy side
of the spectrum does not allow us to reliably and accurately
determine the position of the bottom of the size-quantization
band. This fact complicates the task of accurate measurement
of the Fermi energy of two-dimensional electrons with known
electron density. To solve the problem, it is necessary to study
the pattern of Landau levels observed in the perpendicular
magnetic field.

Figure 2(b) shows a luminescence spectrum measured in
the perpendicular magnetic field at B = 0.9 T, which corre-
sponds to the filling factor ν = 14 (at electron density 3.05 ×
1011 cm−2). It is seen that, in full agreement with filling factor
ν = 14, the luminescence spectrum exhibits seven lines (each
Landau level is doubly spin degenerate), each of them corre-
sponding to recombination of electrons from different Landau

levels. The splitting between the lines is equal to cyclotron
energy. A detailed analysis of the spectra shows the following:
(a) The widths of the Landau levels are very different; the
minimum broadening is observed near the Fermi energy, and
the maximum broadening takes place at the bottom of the
size-quantization band. (b) The energy splitting between the
Landau levels is not the same and depends on the spectral
position. The first distinctive feature is in full agreement with
the predictions of the Landau Fermi-liquid theory in which
quasiparticle broadening is minimal on the Fermi surface and
increases appreciably the further it is from the Fermi energy.
The other discovered phenomenon is that the quasiparticle
mass is not a constant value; instead, the spectrum shows some
nonparabolicity.

A detailed study of these phenomena will be given later,
but now our first-order interest is the Fermi-liquid density-of-
states effective mass of two-dimensional electrons mFL

e and its
electron density dependence. To determine the value of mFL

e it
is necessary to measure the Fermi energy EF and then

mFL
e = π h̄2nS

EF

(where h̄ is Planck’s constant). Precise measurement of the
energy positions of the size-quantization bottom and Fermi
energy in the luminescence spectrum requires analysis of the
Landau-level fan diagram (the magnetic field dependence of
Landau-level energy) presented in Fig. 2(b). The low-energy
focus of the fan diagram where all the Landau levels converge
allows a highly accurate determination of the position of
the size-quantization bottom. The spectral position of the
Fermi energy can be also determined by analyzing the energy
positions of the Landau levels, bearing in mind that at integer
filling (at ν = 4, 6, 8, 10, 12, 14, 16, 18, . . .) the chemical po-
tential of the electron system lies exactly between the Landau
levels, and therefore, the energy of the upper filled level
is lower than that of the Fermi level (chemical potential)
by half the cyclotron energy. For this reason, if we draw
a linear dependence from the magnetic field for the upper
filled Landau level at different integer filling factors, this
dependence, in the zero magnetic field limit, will point to the
spectral position corresponding to the Fermi energy of two-
dimensional electrons. This analysis, presented in Fig. 2(b),
shows that the Fermi energy value can be measured with
high accuracy as the spectral splitting between the foci of
the Landau-level fan diagram. For a two-dimensional electron
concentration of 3.05 × 1011 cm−2 we established that EF =
10.40 meV, and hence, the density-of-states effective mass
mFL

e = (0.0705 ± 0.0002)m0.
A similar procedure for measuring the Fermi energy

of two-dimensional electrons and density-of-states effective
mass was performed for various electron concentrations in the
range from 0.17 × 1011 to 5.4 × 1011cm−2. Figure 3 presents
the luminescence spectra measured for a two-dimensional
electron concentration of 0.22 × 1011 cm−2 in the zero mag-
netic field and in a perpendicular field of 0.15 T at filling
factor ν = 6. It should be noted that in this case the spectra
were measured at much lower temperature, T = 0.05 K. At
such low concentrations of two-dimensional electrons the
luminescence spectrum retains its main features: It clearly
exhibits constancy of the density of states in the zero mag-
netic field as well as the Landau-level fan diagram in the
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FIG. 3. (a) Radiative recombination spectra of two-dimensional
electrons with photoexcited holes bound to remote acceptors mea-
sured in magnetic field B = 0 and 0.15 T (ν = 6). (b) The Landau
level fan diagram used to determine the spectral position of the
size-quantization band bottom and the Fermi energy. The electron
concentration in the sample is equal to 0.22 × 1011 cm−2. T =
0.05 K.

perpendicular field, which enables us to make accurate mea-
surements of the spectral positions of the size-quantization
band bottom and the Fermi energy. For a two-dimensional
electron concentration of 0.22 × 1011 cm−2 we established
that EF = 0.59 meV, and hence, the density-of-states mass
turned out to be equal to mFL

e = (0.0890 ± 0.0005)m0, which
by far exceeds the standard cyclotron electron mass in GaAs
me = 0.067m0. Note that we also observed a similar de-
pendence of the effective mass of quasiparticles on electron
density in another 2D electron system realized in ZnO-based
heterostructures [20]. Figure 4 shows the measured electron
concentration dependence of the density-of-states effective
mass in the two-dimensional electron Fermi liquid. It is seen
that the increase in parameter rS from 1 to 4.5 is accompanied
by a significant (over 35%) increase in the density-of-states
effective mass of electrons. For comparison we studied the
variation of the cyclotron mass of two-dimensional electrons
in the same range. This dependence is also presented in Fig. 4.
It is seen that the measured electron density dependencies of
the cyclotron mass and the Fermi-liquid mass are opposite
in the low-concentration limit: The cyclotron mass decreases,
and the density-of-states effective mass in the electron Fermi
liquid increases considerably. It should be emphasized that the
discovered increase in the cyclotron mass of two-dimensional
electrons with increasing density is due to the nonparabolicity
of the electron spectrum in GaAs and in good agreement with
previous studies of band mass nonparabolicity [21].

Note that the density dependence of the mass renormal-
ization detected in optical studies agrees completely with
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the dependence found in the transport measurements. Cru-
cially, the transport measurement technique measures only
the mass changes at the Fermi surface, whereas the optical
measurements reveal the mass renormalization effect for all
electron energies well below the Fermi surface. The density
dependence of the renormalized mass shows qualitative agree-
ment as measured with the transport and optics techniques,
which is to be expected as both cases manifest the same
interaction effects. However, in the case of optical studies the
data obtained are much more comprehensive and ultimately
exhaustive, and furthermore, this very method goes far beyond
that to give us the tool to measure the energy dependences of
the excitation attenuation.

IV. VARIATIONS OF THE LANDAU-LEVEL WIDTH
AND SPLITTING BELOW THE FERMI SURFACE

In the previous sections we studied the changes in the
mean values of the renormalized density-of-states mass as a
function of electron density. To this end, the Fermi energy was
measured at different electron concentrations, and the mean
density-of-states mass was determined under the assumption
that the mass of quasiparticles is independent of their energy.
However, as will be clear from further study, this approach
is not quite correct, and in fact, there is a significant energy
dependence of quasiparticle mass measured from the Fermi
surface down to the very bottom of the size-quantization band.
To study the nonparabolicity of the quasiparticle dispersion
below the Fermi level, we investigated the magnetic field
dependence of splitting between the Landau levels at various
approximately fixed quasiparticle energy values calculated
down from the Fermi energy. The discovered effect of the
nonparabolicity of the excitation dispersion was measured
at different concentrations of the electron system. In addi-
tion, it was found that the Landau-level width was signifi-
cantly dependent on quasiparticle energy: The broadening was
minimal near the Fermi surface and increased substantially
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(almost twofold) deep at the bottom of the size-quantization
band.

Figure 5 shows radiative recombination spectra of two-
dimensional electrons with holes localized at acceptors mea-
sured at a two-dimensional electron concentration of 1.6 ×
1011 cm−2. Shown are the spectra measured in zero magnetic
field and in magnetic field B = 0.66 T, corresponding to the
filling factor of the Landau levels ν = 10.

In this case the spectra in the magnetic field were measured
for one circular light polarization (−σ ). It is seen that at
ν = 10 the luminescence spectrum exhibits five Landau levels
(each of them doubly spin degenerate), and their width is not
energy independent but varies significantly from the minimal
value near the Fermi surface to the maximal value at the
bottom of the size-quantization band. For a detailed analysis
of the variations of the Landau-level width and splitting
energy as functions of quasiparticle energy we approximated
the measured spectrum with a sum of five levels of the same
integral intensity described by the Lorentz law. The adjustable
parameters for each level were (a) its spectral position and (b)
its width.

A comparison of the experimentally measured and opti-
mally approximated spectra is presented in Fig. 6. Shown are
the results of the line profile separation procedure from which
it follows that the Landau-level widths vary from 0.3 meV
(lower level) to 0.75 meV (upper level). One can also see
from Fig. 6 that the Landau-level splitting in magnetic field
B = 0.66 T varies from 1.15 meV (near the Fermi surface)
to 0.94 meV (near the bottom of the size-quantization band).
Figure 7 presents the Landau-level widths as functions of
the quasiparticles energy measured from the Fermi surface.
It should be noted that the level width measurements were
made in different magnetic fields for different numbers of
Landau levels, yet the measured excitation energy dependence
of the level width appeared to be universal and close to the
quadratic function. Similar quasiparticle energy dependencies
of Landau-level widths were measured for two concentra-
tions of electrons, 1.6 × 1011 and 3.05 × 1011 cm−2, both
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shown in Fig. 7. Both dependencies reveal a smooth (close
to quadratic) increase in the level width with increasing exci-
tation energy calculated from the Fermi energy. In addition,
for lower concentrations we observe a much faster increase
in the energy dependence of Landau-level broadening. The
discovered dependence of Landau-level broadening on quasi-
particles energy can be naturally related to the mechanism
proposed by Landau in the Fermi-liquid theory. According to
this mechanism, the excitation (quasihole) originating below
the Fermi surface flows up to the surface, and therefore, the
deeper its origin is, the more capable it is of scattering, and
hence, the faster its surfacing is, whereas near the Fermi sur-
face the surfacing processes are slowed down and take much
longer. The short scattering and energy relaxation time deep
below the Fermi surface indicates a considerable Landau-level
broadening, whereas near the Fermi surface there will be
practically no level broadening due to very slow relaxation
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FIG. 7. Landau-level width as a function of excitation energy
measured for two concentrations of two-dimensional electrons,
1.6 × 1011 and 3.05 × 1011 cm−2.
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FIG. 8. Magnetic field dependencies of energy splitting between
Landau levels measured for two values of quasiparticle energy, 1.5
and 4.5 meV, at an electron density of 1.6 × 1011 cm−2.

processes. The discovered quadratic energy dependence
of level broadening agrees also with the conclusions of
the theory. The much weaker increase in the energy de-
pendence of the Landau-level broadening at high con-
centrations (see Fig. 7) is likely to be associated with
the fact that at higher densities of the electron sys-
tem the Fermi-liquid effects become less important, which
is revealed by the suppression of the effects of quasi-
particle mass renormalization as well as their energy
broadening.

From Fig. 6 it is also seen that, besides the energy de-
pendence of the Landau-level width, there is an appreciable
change in splitting between the Landau levels down from
the Fermi surface. For instance, at B = 0.66 T the splitting
between the levels located near the Fermi surface is equal
to 1.15 meV, whereas the splitting between the deeper levels
is much less and equals 0.94 meV. The reduction in the
cyclotron splitting deep below the Fermi surface implies that
the quasiparticle mass is not constant and varies depending
on their energies. To study this effect of nonparabolicity of
quasiparticle dispersion below the Fermi surface, we inves-
tigated the magnetic field dependence of splitting between
the Landau levels at various approximately fixed quasiparticle
energies calculated down from the Fermi energy.

Figure 8 shows the magnetic field dependencies of the
energy splitting between the Landau levels measured for two
values of excitation energy, 1.5 and 4.5 meV, at an electron
density of 1.6 × 1011 cm−2. It is seen that, provided the
magnetic field dependence of the energy splitting between
the Landau levels is measured at the fixed quasiparticle en-
ergy, this dependence is close to linear. This fact enables
us to measure the quasiparticle mass at the specified en-
ergy. Moreover, from Fig. 8 it is also seen that the slopes
of the magnetic field dependencies measured at different
energy values differ markedly. At an excitation energy of
4.5 meV the excitation mass is about 0.082m0, which by
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FIG. 9. Energy dependencies of renormalized quasiparticle mass
measured for two values of electron density, 1.6 × 1011 and 3.05 ×
1011 cm−2. The mean values of the density-of-states mass measured
for these concentrations are also shown.

far exceeds the value of 0.068m0 measured for an energy of
1.5 meV. The excitation energy dependencies of the renor-
malized quasiparticle mass are presented in Fig. 9 for two
values of electron density, 1.6 × 1011 and 3.05 × 1011 cm−2.
The values of the mean density-of-states mass measured for
these concentrations are also shown in Fig. 9. It is seen that
the effect of mass nonparabolicity is much more pronounced
in the case of low concentration (at 1.6 × 1011 cm−2 it
reaches 25%, while at 3.05 × 1011 cm−2 the effect amounts to
only 9% ).

V. CONCLUSION

We have investigated the electron density dependence of
the Fermi-liquid effects of the quasiparticle effective mass
renormalization in the two-dimensional electron system with
strong interaction. We established that with decreasing elec-
tron density (increasing parameter rs to 4.5) the density-
of-states effective mass of quasiparticles increases by 35%
compared to the cyclotron electron mass. We showed that
in a perpendicular magnetic field the concept of quasipar-
ticles in a two-dimensional Fermi liquid is applicable not
only near the Fermi level but deep below the Fermi surface,
down to the bottom of the size-quantization band. The mass
and broadening of quasiparticles were found to be signifi-
cantly dependent on their energy measured from the Fermi
surface down to the very bottom of the size-quantization
band.
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