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Non-Hermitian quantum many-body systems are a fascinating subject to be explored. Using the generalized
density matrix renormalization group method and complementary exact diagonalization, we elucidate the many-
body ground states and dynamics of a 1D interacting non-Hermitian Aubry-André-Harper model for bosons.
We find stable ground states in the superfluid and Mott-insulating regimes under wide range of conditions in
this model. We reveal a skin superfluid state induced by the non-Hermiticity from the nonreciprocal hopping.
We investigate the topology of the Mott-insulating phase and find its independence of the non-Hermiticity. The
topological Mott insulators in this non-Hermitian system are characterized by four equal Chern numbers and a
quantized shift of biorthogonal many-body polarizations. Furthermore, we show generic asymmetric expansion
and correlation dynamics in the system.
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I. INTRODUCTION

Non-Hermitian systems have intriguing physics and appli-
cations beyond Hermitian systems [1–4]. Recently, the topo-
logical phases in noninteracting non-Hermitian systems have
been widely studied [5–47]. In addition, non-Hermitian many-
body physics is expected to be a fascinating but much less
explored area [48–64]. Notably, the interplay between non-
Hermiticity and interactions can bring exotic quantum many-
body effects, such as non-Hermitian extensions of the Kondo
effect [53,54], many-body localization [55], and fermionic su-
perfluidity [56,57]. Topological states in the one-dimensional
(1D) interacting non-Hermitian Su-Schrieffer-Heeger model
[65] and fractional quantum Hall system with non-Hermitian
interactions are revealed [58–60]. However, most of these
works focus on the static properties in the mean-field regime
or small systems with few particles [48–64]. Interacting non-
Hermitian systems of large sizes and their dynamics remain
largely unexplored, which is partially due to the lack of effi-
cient numerical tools for non-Hermitian quantum many-body
systems. For instance, the density matrix renormalization
group (DMRG) [66,67] is one of the most powerful numerical
methods for 1D strongly correlated Hermitian systems, but
the convergence of the calculation is not guaranteed for a
non-Hermitian Hamiltonian.

In this paper, based on our generalized DMRG method
and complementary exact diagonalization (ED), we elucidate
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the many-body ground states and quantum dynamics of a
1D interacting non-Hermitian Aubry-André-Harper (AAH)
model [68,69] for bosons. This model has not been studied
in previous work [48–64], probably because the usually used
DMRG fails to study this model in the non-Hermitian case.
We here first improve the DMRG approach and then investi-
gate the many-body non-Hermitian AAH model, and our main
results for this model are as follows: (i) We uncover well-
defined and stable ground states in the superfluid and Mott-
insulating phases in this non-Hermitian system under both
open boundary conditions (OBCs) and periodic boundary
conditions (PBCs). (ii) We reveal a skin superfluid state under
OBCs induced by non-Hermiticity from the nonreciprocal
hopping. (iii) We investigate the topological properties of the
Mott-insulating phase and find that the topological Mott insu-
lators (TMIs) [70–75] are independent of the non-Hermiticity.
The TMIs in our non-Hermitian system are characterized by
four equal Chern numbers defined under twisted PBCs and
a quantized shift of biorthogonal many-body polarizations
under OBCs. (iv) We show generic asymmetric expansion and
correlation dynamics due to the nonreciprocal hopping in the
system. The AAH model has been realized with (interacting)
bosonic atoms in 1D optical superlattices [76–81] and the
tunable non-Hermitian gain and loss and nonreciprocal hop-
ping have been effectively engineered for cold atoms [82,83].
Since combining these two ingredients is easy in current
experiments, our results are observable. Moreover, our numer-
ical methods can be used to explore non-Hermitian quantum
many-body physics in both equilibrium and nonequilibrium
cases.

The rest of this paper is organized as follows. Section II
introduces the 1D interacting non-Hermitian AAH model and
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the non-Hermitian DMRG method. In Sec. III, we present and
discuss our results, which include the stable ground states, the
skin superfluid, the non-Hermitian TMIs, and the asymmetric
dynamics in this system. Finally, a short conclusion is given
in Sec. IV.

II. MODEL AND METHOD

We start by considering a 1D optical superlattice of inter-
acting bosons [76,77] with nonreciprocal hoppings [84,85],
which is described by the 1D interacting non-Hermitian AAH
Hamiltonian

Ĥ = −
∑

j

(Jrâ†
j+1â j + Jl â

†
j â j+1)

+V
∑

j

cos(2πα j + δ)n̂ j + U

2

∑
j

n̂ j (n̂ j − 1), (1)

where â†
j (â j) is the creation (annihilation) operator of bosons

at site j, n̂ j = â†
j â j is the particle number operator, Jr and Jl

are the nonreciprocal hopping strengths, V , α, and δ denote
the modulation parameters of the superlattice, and U is the
on-site interaction strength. We focus on the periodic mod-
ulation with α being a rational number and the phase δ ∈
[0, 2π ] acting as an effective quasimomentum in a synthetic
dimension [86–88]. We set Jr = J and Jl = J (1 − γ ), with
the non-Hermiticity parameter γ (let γ � 0) and J = 1 as the
energy unit hereafter.

When γ = 0, the Hamiltonian becomes Hermitian with
topological insulating phases in the Mott regime [71–73].
When U = 0, the Hamiltonian reduces to the single-particle
non-Hermitian AAH model with nontrivial topological prop-
erties [41–44,89] (see Appendix A). The topological phases
in this case can be characterized by nonzero Chern numbers
(defined in the k-δ space with quasimomentum k under PBCs)
[43,44]. We find a quantized shift of biorthogonal polariza-
tions with respect to δ under OBCs as another topological
invariant, which is naturally generalized to the interacting
cases, as given in Eq. (4). In the rest of this work, we explore
the many-body ground states and dynamics in the general
non-Hermitian interacting cases with γ �= 0 and U �= 0.

To numerically study 1D interacting non-Hermitian sys-
tems of size unreachable in the ED, we develop a non-
Hermitian extension of the DMRG method. The DMRG
method is powerful in the numerical calculation of the ground
state of a 1D strongly correlated system [66,67]. For Hermi-
tian systems, the convergence of the ground-state calculation
is mainly determined by the DMRG sweeps instead of the
eigensolver in each variational update. However, due to the
nonorthogonality of eigenstates in non-Hermitian matrices,
the convergence usually fails by merely increasing the DMRG
sweeps. We solve this convergence problem by using a more
accurate eigensolver, the implicitly restarted Arnoldi method
[90], to target to the ground state defined by the lowest real-
part energy. We find that this non-Hermitian DMRG method
can accurately obtain the energies and wave functions of
many-body ground states. Furthermore, by generalizing the
Krylov-subspace approach in Arnoldi formalism [91] and the
time-dependent variational principle (TDVP) method [92,93],
we can simulate the nonunitary time evolution (dynamics) in

this model. The ingredients and benchmarks of these non-
Hermitian algorithms are presented in Appendix B.

In our numerical simulations, more than 200 Schmidt
values in the virtual index of the matrix product state are
kept for most conditions (400 Schmidt values are kept when
the system is in the superfluid phase). The maximum local
occupation is restricted to 4 and 5 bosons per site for large
and small U ’s, respectively. The convergence criterion of
DMRG is set to |�Ec|/Ec < 10−8, where Ec is the current
energy and �Ec is the difference between previous and current
energies [66,67]. For the non-Hermitian TDVP method, up
to 400 Schmidt values are kept during the time evolution
with each time step τ = 0.01/J , and a maximum of 5 bosons
per site is ensured. The Krylov-subspace approach to the
matrix exponential applying on a vector in each local update is
carried out with an exponential residual norm less than 10−15.

III. RESULTS AND DISCUSSION

A. Stable ground states

The complex energy spectrum En and wave functions of
the right (left) states |�r

n〉 (|� l
n〉) with n = 0, 1, 2, . . . can

be obtained by solving the eigenfunction Ĥ |�r
n〉 = En|�r

n〉
(Ĥ†|� l

n〉 = E∗
n |� l

n〉), which is ordered by the real-part ener-
gies Re(En). The ground states have the minimum value of
Re(En) and then the excitation gap can be defined as

�ex = Re(E1) − Re(E0) (2)

for the nondegenerate ground state |�r
0〉 (|� l

0〉), as a natural
extension of Hermitian systems. We numerically obtain En

for a lattice L = 18 (ED) with α = 1/3 and the filling f =
N/L = 1/3 with the particle number N = 6, with an example
shown in Fig. 1(a). Under OBCs, we find that all En are
purely real for any U when γ < 1, which generally becomes
complex when γ > 1. Thus, γ = 1 is the exceptional point
with the parity-time symmetry breaking for the many-body
ground state under OBCs, as shown in Fig. 1(b).

The result can be understood that there is a similarity
transformation S mapping the non-Hermitian Hamiltonian
to a Hermitian counterpart Ĥ ′ = SĤS−1 under OBCs when
γ < 1, where S is a diagonal matrix in the Fock space and
Ĥ ′(J ′,V ′,U ′) denotes the corresponding Hermitian interact-
ing AAH Hamiltonian with parameters J ′ = J

√
1 − γ , V ′ =

V , and U ′ = U . The same energy spectra of Ĥ and Ĥ ′ are
confirmed in our numerical simulations. More interestingly,
we find the eigenenergies of Ĥ under PBCs are complex
conjugate pairs or real for any values of γ , δ, and U ; in
particular, E0 is real in this case. This is guaranteed by the
pseudo-Hermiticity of Ĥ under PBCs as it satisfies Î Ĥ Î−1 =
Ĥ† [94,95], where Î : â j → âL+1− j is the inversion symmetry
in this system. The nondegeneracy of |�r

0〉 (|� l
0〉) guarantees

E0 to be real. Thus, this interacting non-Hermitian system
always has well-defined and stable many-body ground states
with the real and smallest energy under OBCs with γ < 1 or
under PBCs.

We also calculate the low-energy spectra of the system
Hamiltonian as a function of the modulation phase δ under
both PBCs and OBCs, as shown in Figs. 1(c) and 1(d). We
numerically confirm that for all δ, the energy of the ground
state [with smallest Re(En)] is always real under PBCs and
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(a) (b)
= 4, γ = 0.4

= 4

(c) (d)

PBC OBC

FIG. 1. Energy eigenvalues of (a) five lowest states in the com-
plex energy plane under OBCs and PBCs and (b) two lowest states
as a function of γ under OBCs for U = 4 and δ = 0. Low-energy
spectra (upper for the real part and lower for the imaginary part)
as a function of δ under (c) PBCs and (d) OBCs for U = 10.
Other parameters are J = V = 1, α = 1/3, L = 18, and the filling
f = 1/3.

the whole energy spectrum is real under OBCs. In addition,
by taking δ as an effective quasimomentum (periodic along
this artificial dimension) and finite lattice site under OBCs in
real space, one can find that the ground state and the excited
states cross near δ = 2π/3 in the real bulk gap, where the
gapless excitations emerge. The edge localization and the
topological nature of these gapless excitations in the Mott-
insulating phase will be studied in Sec. III C.

B. Skin superfluid under OBCs

The many-body ground state of the interacting bosons is in
the superfluid or Mott-insulating phase with a critical interact-
ing strength Uc. We now consider the superfluid state, which
can be characterized by the one-particle density matrix. For
generic non-Hermitian systems, four components of the one-
particle density matrix can be defined according to whether
left or right eigenstates are assigned in the expectation value
[56,62], which are given by ρab = 〈�a

0 |â†
1âL/2+1|�b

0〉 for right
and left ground states under PBCs, with a, b = l/r. Here ρrr

(ρll ) characterizes only the ground state |�r
0〉 (|� l

0〉) governed
by the Hamiltonian H (Ĥ†), and the biorthogonal compo-
nent ρrl (ρlr) can give the probability-conserving expectation
value. As we are interested in the system governed by H ,
we can focus on the ground state |�r

0〉. Under PBCs, ρab can
capture the momentum distribution of the interacting bosons
and is associated with an off-diagonal quasi-long-range order
if ρab remains finite at large L. The typical results of ρab

from the ED (L = 18) and the DMRG (L = 90) as a function
of U are shown in Fig. 2(a). The four components ρab are

(a) (b)

(d)(c)

FIG. 2. (a) One-particle density matrix ρab as a function of U
for L = 18 (ED) and L = 90 (DMRG) under PBCs, respectively.
(b) Finite-size scaling of �ex for various U (the labels) and γ =
0.8 under OBCs. (c) Critical point Uc/J as a function of γ for
V/J = 1 and V/J ′ = 1, respectively. (d) Density distribution nj of
the superfluid ground state |�r

0〉 for U = 0.4. Other parameters are
J = V = 1, α = 1/3, δ = 0, and the filling f = 1/3.

real (here the slight differences among ρab are due to the
modulation potential V ) and indicate the superfluid (Mott-
insulating) phase for small (large) U/J , similarly to those in
Hermitian Bose-Hubbard models [96]. In the case of OBCs,
the four components ρab are dramatically different because
the asymmetric hopping can induce the accumulation of the
right (left) state |�r

0〉 (|� l
0〉) to the right (left) boundary (see

Fig. 2(b) for such a non-Hermitian skin effect [16]). To better
characterize the two phases of the model Hamiltonian H under
OBCs, we can calculate the excitation gap for the right states.

The excitation gap can be used to determine the critical
point Uc/J (at zero temperature and in the thermodynamic
limit) between the gapless superfluid phase and the gapped
Mott-insulting phase. For realistic systems under OBCs,
the excitation gap �ex for the non-Hermitian Hamiltonian
Ĥ (J,U,V ) can be obtained from that for the Hermitian
counterpart Ĥ ′(J ′,U,V ) after the similarity transformation
when γ < 1. Figure 2(b) shows the finite-size scaling of �ex

for various U and γ = 0.8, which gives Uc/J ∼ 0.5 through
extrapolation to the L → ∞ limit. Using this procedure, we
numerically obtain Uc/J as a function of the non-Hermiticity
γ for fixed V/J = 1 or V/J ′ = 1, as shown in Fig. 2(c). One
can find that Uc/J is decreased when increasing γ and Uc/J ∝√

1 − γ for the case with fixed V/J ′, which can be understood
from the reduced effective reciprocal hopping J ′ = J

√
1 − γ

under OBCs.
In Fig. 2(d), we show the superfluid density distribution

n j = 〈�r
0|n̂ j |�r

0〉 defined for the right ground state for dif-
ferent conditions. Under PBCs, we find that the superfluid
density distribution is periodically modulated by the superlat-
tice potential V , which is independent on γ and will become
nearly uniform when V/J 
 1. Under OBCs, in contrast, the
superfluid tends to localized at the right side of the lattice by
increasing γ (0 � γ < 1) due to the asymmetric hopping Jr >

Jl . This can be understood as a many-body generalization of
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(a) (b)

(d)
(c)

(f)
(e)

FIG. 3. Excitation gap �ex and four Chern numbers Cab = C as
a function of (a) U and (e) γ , for L = 12 and N = 4 obtained from
the ED under PBCs. (b) Biorthogonal polarization P̃ as a function
of δ. (c) Four middle branches of the quasiparticle energy spectrum
δEN . (d) Biorthogonal and right-state density distributions ñ j and nj

of the two in-gap modes with δ = 2π/3, obtained from the DMRG
for L = 90 under OBCs. (f) Finite-size scaling of C from the DMRG.
Other parameters are J = V = 1, U = 10, α = 1/3, and γ = 0.2.

the non-Hermitian skin effect [16], and thus such a superfluid
state under OBCs is dubbed a skin superfluid. Notably, the
skin superfluid under OBCs is more significant for larger γ

and smaller U/J , and the potential V just adds the overall
modulation in the density distribution.

C. Non-Hermitian TMIs

We proceed to investigate the topological properties of the
Mott-insulating phase. Figure 3(a) depicts that the excitation
gap �ex increases as a function of U and saturates at a finite
value for large U . Note that the nonzero value of �ex for the
superfluid phase in the small-U limit is actually the finite-size
gap in the ED simulation. In the presence of a finite gap,
we can use the Chern number to characterize the topology of
the Mott insulators. For our non-Hermitian system, under the
twisted PBCs with a twisted phase θ [97], we can define four
Chern numbers in the θ -δ space as

Cab = 1

2π

∫ 2π

0
dθ

∫ 2π

0
dδFab(θ, δ), (3)

where Fab(θ, δ) = i〈∂θ�
a
0 |∂δ�

b
0〉 is the four Berry curvatures

related to the left and right many-body ground states. We
calculate Cab by evaluating Fab using a discrete manifold
method [98], and find that four Chern numbers are equal
Crr = Cll = Crl = Clr = C as a function of U as shown in

Fig. 3(a). This implies that the Chern number C is invariant
to different choices of right and left many-body ground states
[24]. In the deep Mott insulator regime, such as U = 10, one
has C = 1, indicating a TMI. Note that the Chern number
is actually not well defined for small U although C remains
quantized in Fig. 3(a) due to the finite-size effect.

We find another topological invariant to characterize the
TMI under OBCs, which is related to the biorthogonal po-
larization P̃ [19,59]. For the many-body ground state under
OBCs, the expression of P̃ for L lattice sites and N bosons is
given by

P̃(δ) = 1

N

L∑
j=1

j
〈
� l

0(δ)
∣∣n̂ j

∣∣�r
0 (δ)

〉
, (4)

which is a function of the periodical modulation phase δ.
Figure 3(b) depicts the DMRG results of P̃(δ) for L = 3N =
90, γ = 0.2, and U = 10. Here P̃ exhibits a jump of nearly
one unit cell (three sites) by varying δ from 0 to 2π , corre-
sponding to C = 1. So a quantized shift (when L → ∞) of the
biorthogonal many-body polarization under OBCs is also a
topological invariant for our interacting non-Hermitian model.

The quasiparticle energy spectrum under OBCs can be
obtained from the DMRG, which is real and given by δEN =
E0,N+1 − E0,N . Here E0,N is the energy of the ground state
with N bosons denoted by |�r

0,N 〉 and is real under OBCs
(γ < 1). Figure 3(c) shows δEN as a function of δ near the
filling f = 1/3 for L = 90. There are two branches of in-gap
edge modes that are degenerate at δ = 2π/3 and connect the
lower and the upper bulk spectra when δ varies from 0 to
2π , corresponding to the TMI with C = 1. The right-state and
biorthogonal density distributions of quasiparticles are respec-
tively given by δnj = 〈�r

0,N+1|n̂ j |�r
0,N+1〉 − 〈�r

0,N |n̂ j |�r
0,N 〉

and δñ j = 〈� l
0,N+1|n̂ j |�r

0,N+1〉 − 〈� l
0,N |n̂ j |�r

0,N 〉. The results
of δnj and δñ j for the two degenerate edge modes at δ = 2π/3
are shown in Fig. 3(d). Due to the asymmetric hopping for
the right eigenstates, δn j for the two edge modes exhibit
asymmetric distributions. The asymmetric hopping is can-
celed under the biorthogonal eigenstates and then δñ j for the
two edge modes remain symmetric distributions.

We further study the non-Hermitian effect on the TMI.
Figure 3(e) shows that the obtained Chern number is inde-
pendent of the non-Hermiticity γ . Remarkably, it is preserved
even when γ > 1 as the ground state still has a finite gap
in the complex energy plane under PBCs. Thus, although
the many-body energy spectrum is generally complex, the
non-Hermitian TMI in this system can still be topologically
connected to the Hermitian TMI with γ = 0. This can be
understood that 1D interacting non-Hermitian systems share
the same topological classification as that of the Hermitian
systems [58]. We further confirm that the Chern number and
the stable ground states with real energies are preserved in the
large-L limit from the DMRG, as shown in Fig. 3(f).

D. Asymmetric dynamics

Based on the TDVP method, we can investigate the
dynamics in 1D non-Hermitian many-body systems (see
Appendix B). We find that the nonreciprocal hopping can
induce asymmetric expansion and correlation dynamics in this
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FIG. 4. Dynamics of one-particle density G1 and two-particle correlation G2 for the initial state with N = 5 bosons localized one per site
in the center of a L = 31 lattice. (a)–(d) G1 with zero and nonzero asymmetric hopping γ , and moderate and strong interaction strength U .
(e)–(h) G2 for the same parameters with respect to the upper panels (a)–(d).

system. We consider the time evolution of the one-particle
density G1( j, t ) = 〈�r (t )|â†

j â j |�r (t )〉 and the two-particle
correlation function G2(q, p, t ) = 〈�r (t )|â†

qâ†
pâpâq|�r (t )〉

[99] to show the generic asymmetric dynamics, which are
defined for the right states |�r (t )〉. Note that G1 and G2 (re-
lated to the density-density correlation) are both measurable
for ultracold bosons in optical latices. Typically, we consider
the initial state |�r (0)〉 as a product state in the Fock space
with N = 5 bosons localized at the center five sites of a lattice
with L = 31. The system is then driven by the non-Hermitian
Hamiltonian Ĥ in Eq. (1).

The time-evolved state |�r (t )〉 = e−iĤt |�r (0)〉 is cal-
culated with the TDVP method with J = 1 and V = 0.
We fix the lattice site p = 16 at the center of the lat-
tice and then rewrite the two-particle correlation G2(d, t ) =
〈�r (t )|â†

p+d â†
pâpâp+d |�r (t )〉 by introducing the distance d =

q − p. The expansion dynamics of G1 and the correlation
dynamics of G2 for zero and nonzero asymmetric hoppings
γ and two interaction strengths U are shown in the upper
and lower panels of Fig. 4, respectively. In the absence of
asymmetric hopping γ [Fig. 4, panels (a), (c), (e), (g)], the
dynamics of both G1 and G2 are symmetric with respect to
the center of the lattice. For the non-Hermitian cases, the
one-particle density G1 prefers to propagate to the right-hand
side of the lattice [Fig. 4, panels (b) and (d)] as the hopping
Jr > Jl . This preference can be observed in the superfluid
and Mott-insulating phases for the two calculated interacting
strengths. Similar asymmetric dynamics occur in the two-
particle correlation G2 [Fig. 4, panels (f) and (h)]. At the
same time t , G2 for d > 0 enjoys a larger value than for
d < 0. This means that it is more likely to detect particles
simultaneously at the center and right-hand side of the lattice
than at the left-hand side. Notably, the asymmetric expansion
and correlation dynamics are absent under the biorthogonal
eigenstates since the asymmetric hopping is canceled in this
basis.

IV. CONCLUSIONS

In summary, we have explored the stable many-body
ground states and quantum dynamics in the 1D inter-

acting non-Hermitian AAH model. We have revealed the
nonreciprocal-hopping-induced skin superfluid under OBCs
and the TMIs’ independence from non-Hermiticity. The TMIs
are characterized by four equal Chern numbers and a quan-
tized shift of biorthogonal many-body polarizations. We have
also shown generic asymmetric expansion and correlation
dynamics due to the nonreciprocal hopping in this system.
The AAH model can be realized with interacting ultracold
bosons in 1D optical superlattices [76,77] and the effective
nonreciprocal hopping can be engineered by using an atomic
one-body loss [23,82,83]. Thus, our predicted results could be
observed in cold-atom experiments. Furthermore, our numeri-
cal methods are applicable to explore non-Hermitian quantum
many-body physics in both equilibrium and nonequilibrium
cases.

Note added in proof. We have noticed two complementary
works, which focus on the non-Hermitian TMIs of interacting
fermions and bosons [100,101].
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APPENDIX A: SINGLE-PARTICLE PHYSICS

In the noninteracting limit, the model Hamiltonian in
Eq. (1) becomes

Ĥ0 = −
∑

j

(Jrâ†
j+1â j + Jl â

†
j â j+1) + V

∑
j

cos(2πα j + δ)n̂ j,

(A1)
which is a non-Hermitian AAH model. The nth eigenstate
of the Hamiltonian is given by |�r

n〉 = ∑
j u j,nc†

j |0〉 with
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P

FIG. 5. (a)–(e) Energy spectra of the single-particle non-Hermitian AAH model with V = 1, γ = 0.2, and α = 1/3. (a) The real and
(b) imaginary parts of the energy bands under PBCs. (c) The energy spectrum in the complex plane under PBCs. (d) The real and (e) imaginary
parts of the energy spectrum under OBCs as a function of δ with L = 300. (f) The biorthogonal polarization P̃ as a function of δ under OBCs.

the eigenequation Ĥ0|�r
n〉 = En|�r

n〉, where u j,n is the wave
function at the jth site with the eigenenergy En. We can obtain
the generalized Harper equation

−(Jru j+1,n + Jl u j−1,n) + Vju j,n = Enu j,n. (A2)

In the commensurate case of rational α and periodic Vj with a
period Q, one can suppose ψ j (k) ( j = 1, . . . , Q) as the wave
function in the momentum space and take uj = eik jψ j (k)
for k ∈ [−π/Q, π/Q]; then the Harper equation in Eq. (A2)
becomes

−(Jreikψ j+1 + Jle
−ikψ j−1) + Vjψ j = E (k)ψ j . (A3)

Under PBCs, we can obtain the eigenenergies and eigenstates
by diagonalizing the following Hamiltonian matrix:⎡

⎢⎢⎢⎢⎢⎣

V1 Jl e−ik 0 · · · Jreik

Jreik V2 Jle−ik · · · 0
...

. . .
. . .

. . .
...

0 · · · Jreik VQ−1 Jl e−ik

Jl e−ik · · · 0 Jreik VQ

⎤
⎥⎥⎥⎥⎥⎦

.

In Fig. 5, we plot the energy spectra in the complex plane
for varying δ from 0 to 2π with α = 1/3 under PBCs. We
show that the real part of the energy spectrum consists of
three bands in Fig. 5(a). In addition, there is the nonzero
imaginary part of the energy in the non-Hermitian AAH
model, as shown in Fig. 5(b). Since the energy spectrum is
separated in the complex plane, the Chern number is still well
defined for this non-Hermitian system [24], which is defined
in the k-δ space in this case. Notably, we find that the Chern
number is quantized to be exactly 1 for the lowest band. For

OBCs, we calculate the eigenenergy and the biorthogonal
polarization of the system. The biorthogonal polarization is
given by [19] P̃(δ) = 1

N

∑L
j=1 j|� j (δ)|2, where the density

distribution |� j (δ)|2 of the occupied states at site j is calcu-
lated in the biorthogonal basis. As shown in Figs. 5(d) and
5(e), the non-Hermitian system has a real energy spectrum
under OBCs and the edge modes appear in the gapped regime.
We also see that the biorthogonal polarization P̃ exhibits a
change of nearly one unit cell when δ varies from 0 to 2π

in Fig. 5(f). Similarly to the Hermitian case, the change of the
biorthogonal polarization is proportional to the Chern number.

APPENDIX B: NUMERICAL METHODS
AND BENCHMARKS

The DMRG is one of the most powerful numerical methods
for 1D strongly correlated systems [66,67]. Here we discuss
the technical ingredients of the non-Hermitian DMRG and
TDVP methods and benchmark the flexibility of these numer-
ical methods for the system we investigated, which has real or
complex ground-state energy at different parameters. Let us
begin with the matrix product state (MPS) representation of a
general 1D quantum state |�〉:

|�〉 =
∑

j1,..., jL

∑
a0,a1,...,aL

Tr
(
M j1

a0,a1
M j2

a1,a2
· · ·

× M jL−1
aL−2,aL−1

M jL
aL−1,aL

) | j1, j2, . . . , jL−1, jL〉 . (B1)

Each M jn
an−1,an is a rank-three tensor with jn standing for the

index of a local state, and an is a virtual index which connects
adjacent sites (we will omit virtual indices for the sake of
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FIG. 6. (a), (b) Real and imaginary parts of the ground-state energy error �E0 as a function of the DMRG sweep. Parameters are chosen
as γ = 0.2, U = 10, L = 90 (red solid lines); γ = 0.2, U = 4, L = 45 (blue dashed lines); γ = 0.4, U = 4, L = 45 (green dash-dotted lines);
γ = 0.8, U = 10, L = 30 (black dotted lines). Other parameters are J = 1, V = 1, α = 1/3, δ = 2π/3, and the filling f = 2/3. (c) The
expected occupation on the central site c = 11 for a L = 21 lattice as a function of time t obtained by the ED (asterisk points) and TDVP (solid
curves) methods; the initial state is N = 3 bosons located in the central site. Parameters are chosen as γ = 0.4, U = 1 (red curve); γ = 0.4,
U = 4 (blue curve); other parameters are J = 1, V = 0. (d)–(f) The same as (a)–(c) with a different nonreciprocal hopping strength JL = eiγ J ,
where the system no longer has real ground-state energy.

simplicity). Under the OBCs, a0 and aL are dummy indices
and the trace operation is not needed. There exists a gauge
freedom and one can bring the MPS into canonical form:

|�〉 =
χn∑

α=1

�[n]
αα

∣∣l [n]
α

〉 ∣∣r[n]
α

〉
, (B2)

where n is the canonical center, �[n] is a diagonal
matrix containing the Schmidt values of the biparti-
tion {l, r}, χn is the total number of Schmidt values
kept, |l [n]

α 〉 = ∑
j1,..., jn

(Aj1 · · · Ajn )α | j1, . . . , jn〉 and |r[n]
α 〉 =∑

jn+1,..., jL
(B jn+1 · · · B jL )β | jn+1, . . . , jL〉 are the orthonormal

Schmidt states of the left and right parts, respectively, and
Aji (B ji ) is the left (right) canonical form of the M ji tensor
at site i. The two-site DMRG method converges to the ground
state |�0〉 by variationally optimizing two neighboring MPS
tensors M jn, jn+1 = Ajn�[n]B jn+1 at once and minimizing the
energy 〈�0|Ĥ |�0〉. The simple road map of the two-site
algorithm is as follows [67]:

(1) Prepare the MPS wave function |�0〉 with the canoni-
cal center at site n:

|�0〉 =
∑

α, jn, jn+1,β

M jn, jn+1
∣∣l [n−1]

α

〉 | jn〉 | jn+1〉
∣∣r[n+1]

β

〉
.

In the variational update, tensors belonging to |l [n−1]〉 and
|r[n+1]〉 are fixed and M jn, jn+1 = Ajn�[n]B jn+1 should be im-
proved.

(2) Generate the effective Hamiltonian Ĥeff under the pro-
jected basis |l [n−1]

α jn jn+1r[n+1]
β 〉.

(3) Numerically find the lowest-lying eigenvector M̃ jn, jn+1

of the effective Hamiltonian Ĥeff .

(4) Sweep from left: Update tensor Ajn = Ã jn on sites n
from the singular value decomposition (SVD) of M̃ jn, jn+1 =
Ã jn�̃[n]B̃ jn+1 ; prepare tensor M jn+1, jn+2 = �̃[n]B̃ jn+1 B jn+2 for the
next pair of sites.

Sweep from right: Update tensor B jn+1 = B̃ jn+1 on sites
n + 1 from the singular value decomposition of M̃ jn, jn+1 =
Ã jn�̃[n]B̃ jn+1 ; prepare tensor M jn−1, jn = Ajn−1 Ã jn�̃[n] for the
next pair of sites.

(5) Return to step 2 and sweep through the whole system
till convergence.

The nonorthogonality of a general matrix requires a more
accurate eigensolver in step 3 of the non-Hermitian DMRG
method and we implement a complex general version of
the implicitly restarted Arnoldi (IRA) method similar to the
widely used ARPACK package [102]. In practice, the IRA
method only requires the action of Ĥeff on a vector, and
steps 2 and 3 are combined to avoid an explicit computation
and storage of the effective Hamiltonian Ĥeff , which will
significantly reduce the performance of the algorithm. The
IRA method is set to target the eigenvalue with smallest real
part in the spectrum, and typically 3 ∼ 5 Arnoldi basis vec-
tors and a strict energy toleration are used during numerical
simulations.

In Figs. 6(a) and 6(b), we plot the real and imaginary
parts of the targeted ground-state energy error �E0 for the
1D interacting non-Hermitian AAH Hamiltonian during the
non-Hermitian DMRG sweeps, respectively. The energy error
is defined as the difference between the previous energy E ′

0
and current energy E0 reported by the DMRG algorithm:
�E0 = E ′

0 − E0. For strong interacting strength U = 10, the
non-Hermitian DMRG method can quickly converge in a L =
90 lattice, and for moderate interacting strength U = 4, it also

235150-7



ZHANG, CHEN, ZHANG, LANG, LI, AND ZHU PHYSICAL REVIEW B 101, 235150 (2020)

has good convergence in a lattice of L = 45. In this bench-
mark, a moderate L can be convergent even for a very large
non-Hermitian parameter γ = 0.8. The reachable lattice size
for small U is restricted because the energy gap between the
ground state and excited state becomes difficult to distinguish
in the variational optimization. In all cases benchmarked,
asymmetric hopping strengths γ = 0.2, γ = 0.4, and γ =
0.8 show zero imaginary parts during the DMRG sweeps.
We also benchmark systems with nonzero imaginary ground
state energy and present results in Figs. 6(d) and 6(e), where
the nonreciprocal hopping strengths Jr = J and Jl = eiγ J .
Parameters are chosen the same as in Figs. 6(a) and 6(b) and
both real and imaginary parts converge to �E0 = 10−12 for
all cases. The PBCs for asymmetric hopping systems are also
benchmarked with the same parameters as shown Figs. 6(a)
and 6(b). The zero imaginary parts are ensured during all
sweeps, and the real part of the ground-state energy error
�E0 is about two orders of magnitude larger than the OBC
counterpart, which is due to the fact that the systems under
PBCs usually take more sweeps for convergence in DMRG
simulations.

The TDVP method is similar to the DMRG implemen-
tation except the third step [92], where the eigensolver is
replaced by the application of the matrix exponential on the
local wave function: M̃ jn, jn+1 = exp(−iĤeffτ )M jn, jn+1 with a
small time step τ . There needs to be an addition operation
in step 4 after the SVD, backward evolution of �̃[n]B̃ jn+1

(when sweeping from left) or Ã jn�̃[n] (when sweeping from
right) before preparing the tensor M jn+1, jn+2 or M jn−1, jn and this
operation is actually similar to step 3 with time step −τ and a
different effective Hamiltonian [92]. By sweeping from n = 1
to n = L − 1, the initial wave function |�(0)〉 is involved
to |�(τ )〉, and the long-time evolved wave function can be
obtained by repeated sweeps along the lattice. In the non-
Hermitian version, the wave function after each sweep needs
normalization because the evolution operator exp(−iĤeffτ )
is not unitary. In practice, we employ the Krylov-subspace
approach in the Arnoldi formalism [91] and combine steps
2 and 3 in a matrix-free style to apply the non-Hermitian
effective Hamiltonian matrix exponential on the local wave
function. Figure 6(c) shows comparison of numerical results
of the expected occupation nc(t ) = 〈�r (t )|n̂c|�r (t )〉 obtained
from the ED and TDVP methods with c = 11 as the central
site of a L = 21 lattice. The initial state |�r (0)〉 is prepared
in a product state where N = 3 bosons locate in the center of
the lattice. The relaxations of nc obtained from the ED (aster-
isk points) and TDVP (solid curves) methods are consistent
with each other for all parameters simulated. The system for
Jr = J and Jl = eiγ J with a complex energy spectrum is also
simulated and displayed in Fig. 6(f).

Our implementation of the non-Hermitian DMRG
and TDVP algorithms is mainly based on the
ITensor library [103] and the demonstration codes are
available [104].
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