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We develop a 16-band k · p model for the description of wurtzite GaAs, together with a scheme to determine
electronic structure parameters for multiband k · p models. Our approach uses low-discrepancy sequences to fit
k · p band structures beyond the eight-band scheme to most recent ab initio data, obtained within the framework
for hybrid-functional density functional theory with a screened-exchange hybrid functional. We report structural
parameters, elastic constants, band structures along high-symmetry lines, and deformation potentials at the �

point. Based on this, we compute the bulk electronic properties (� point energies, effective masses, Luttinger-like
parameters, and optical matrix parameters) for a ten-band and a sixteen-band k · p model for wurtzite GaAs. Our
fitting scheme can assign priorities to both selected bands and k points that are of particular interest for specific
applications. Finally, ellipticity conditions can be taken into account within our fitting scheme in order to make
the resulting parameter sets robust against spurious solutions.
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I. INTRODUCTION

The development of novel electronic devices and light
sources requires efficient techniques to model the optoelec-
tronic properties of semiconductor nanostructures. For about
two decades now, the six- and eight-band k · p formalisms
represent the backbone of semiconductor device modeling
and have been extensively employed to study semiconductor
nanostructures of a wide range of shapes, dimensions, and ma-
terial compositions [1–6]. These approaches describe the bulk
electronic band structure of a material perturbatively, such
that it is well reproduced in the vicinity of a selected high-
symmetry point within the Brillouin zone (BZ), commonly
the zone center �. For the description of heterostructures
consisting of different materials or crystal phases, the k · p
formalism is employed within envelope functions that contain
the description of the shape and dimensions of the heterostruc-
ture in a continuum picture. An accurate description of the
electronic properties of semiconductor nanostructures using
k · p models can be achieved only if the electronic properties
are governed by the band structure around the high-symmetry
point selected for the corresponding k · p model. The small
number of relevant electronic structure parameters required
for these well-established k · p models: band offsets, energy
splittings, electron- and hole effective masses (the latter are
commonly translated to Luttinger-like parameters), defor-
mation potentials and optical matrix elements, are widely
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available for most III-V [7–9] and many II-VI compound
semiconductors [10,11].

On the other hand, the eight-band k · p model has short-
comings that, despite its past and recent successes, make
it unsuited for a number of material systems and devices:
The limitation of the set of basis functions to the top three
valence bands and the bottom conduction band with their
respective | ↑〉 and | ↓〉 components makes this model a priori
unsuited to materials such as GaSb or GaAs in the wurtzite
(WZ) phase, where an additional conduction band plays a
decisive role [12]. The perturbative approach yields a good
description of the electronic band structure around the BZ
center, k = 0, whereas the limitation to one conduction band
and three valence bands coupled via optical matrix elements
cannot resolve all features of the band structure throughout the
BZ, so that the description of indirect band gap materials such
as Si or Ge, where the minimum of the conduction band is
not at the same k value as the maximum of the valence band,
requires a larger basis, e.g., a 15-band or even 30-band k · p
model [13,14].

The existing parameter sets, for instance compiled in the
remarkable work by Vurgaftman and coworkers [7] and its
update for the III-N semiconductors [8], that provide all
essential parameters for most compound semiconductors, are
limited to the eight-band model. Furthermore, the application
of the eight-band k · p formalism and envelope function ap-
proach to heterostructures can—under some conditions—find
erroneous, so-called spurious solutions that result from a loss
of ellipticity of the respective k · p Hamiltonian operator [15].
While existing parameter sets have been evaluated for selected
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FIG. 1. Left: Band structure for WZ GaAs. Relevant bands for the 16-band Hamiltonian are depicted in red. The vicinity of � is shown in
an enlarged view, comparing simulation with (red) and without (green) SO splitting. Right: Band structure detail around �.

semiconductor materials [15–17], ellipticity conditions have,
to our knowledge, never been taken into account directly in
the calculation of k · p electronic structure parameter sets.

The scope of our work is to provide a versatile tool that
can generate parameter sets for k · p models of arbitrary com-
plexity and level of sophistication including, but also going
beyond, six or eight basis functions. We focus on WZ GaAs,
as this material can be employed in novel nanowire-based
crystal-phase heterostructures [18] and the description of its
electronic structure requires the consideration of at least one
additional conduction band [12,19].

We derive a sixteen-band k · p Hamiltonian that takes the
second relevant conduction band close to the band gap as
well as the following three conduction bands into account,
to provide a better accuracy and validity of the whole band
structure throughout wide parts of the BZ. We compute the
corresponding 16-band k · p parameter set by fitting the k · p
band structure to an up-to-date ab initio band structure.

We note that the parameter fitting tool presented is suited
to other materials such that it can be employed to provide a
full spectrum of up-to-date k · p parameters of III-V and II-VI
semiconductor materials as well as of any material of which
the band structure can be described using a parameterized
Hamiltonian, independent of the existence of a band gap. Our
approach enables us to increase the fitting priority of selected
bands and high-symmetry points within the BZ in order to
produce the best-suited set of parameters for applications
that rely on the correct description of these bands and high-
symmetry points. Furthermore, our tool facilitates the calcu-
lation of k · p parameter sets that avoid spurious solutions in

the simulation of the electronic properties of nanostructures
as it allows us to control the nonellipticity of the Hamiltonian
operator matrix to a certain extent.

II. BAND STRUCTURE CALCULATION

In order to obtain up-to-date band structure parameters for
multiband k · p models, we have carried out hybrid-functional
density functional theory (DFT) calculations of the electronic
properties of GaAs in the WZ phase (for details, see Appendix
A). Equilibrium lattice parameters and WZ internal parameter
were obtained by fitting the total energy of the crystal to
an equation of state. The elastic constants were computed
from the stress tensor, rather than total energy derivatives,

TABLE I. Structural and elastic parameters for ZB and WZ
GaAs. Experimental values, where available, are in round brackets,
values from previous theory in squared brackets. a: Ref. [7], b:
Ref. [20], c: Ref. [21].

ZB GaAs WZ GaAs

a (Å) 5.671 (5.642a) 3.997 (3.989b)
c (Å) n/a 6.588 (6.564b)
u n/a 0.3741 (0.3746c)
C11 (GPa) 119 (122.1a) 142
C12 (GPa) 51 (56.6a) 46
C13 (GPa) n/a 28
C33 (GPa) n/a 167
C44 (GPa) 80 (60.0a) 40
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TABLE II. Band gaps, position of the topmost valence band with
respect to the average electrostatic potential, SO splittings and CF
splittings of WZ GaAs obtained with SO coupling enabled. Values
reported in Ref. [34] are given in square brackets for comparison,
where applicable.

Eg (eV) 1.494 [1.453]

EVB (eV) 3.371
�cf = �1 (w/o SO, meV) 177
�cf = �1 (with SO, meV) 184 [129]
�2 = �3 = �so/3 (meV) 123 [116]

which allows for more accurate results [22]. The structural
parameters and elastic constants obtained are listed in Table I.
Note that the internal WZ parameter u is lower than the ideal
value, uid = 0.375, unlike for most other WZ materials. This
is an indication of inverse polarity (and piezoelectricity) in
GaAs, consistent with zincblende (ZB) results, for which the
piezoelectric coefficient is of opposite sign when compared
to the III nitrides [23]. Our computed values are in good
agreement with previously published ones (reference values
from experiment or theory are provided in the table).

The band structure of WZ GaAs along high-symmetry
lines, with spin-orbit (SO) coupling, is shown in Fig. 1 (left).
A detail of the six topmost valence bands and ten lowest
conduction bands around the � point is given in Fig. 1 (right).
Basic band structure information is presented in Table II.
The WZ �1,2,3 parameters have been obtained by fitting Eq.
(11) of Chuang and Chang [24] to the energy differences
obtained from the DFT calculation. We note that our crystal-
field (CF) splitting deviates from a previously reported value,
whereas band gap and SO coupling are in good agreement
(cf. Tab. II).

The SO coupling Hamiltonian acts as a perturbation, non-
self-consistently, on top of the self-consistent DFT band struc-
ture [25]. Thus, the effects of strain on the band structure
(i.e., the deformation potentials) are well captured in the
absence of SO coupling. The k · p Hamiltonian also treats SO
coupling as a perturbation, with the strain effects contained in
the main (SO coupling-free) Hamiltonian. Correspondingly,
deformation potentials were obtained in the absence of SO
coupling. We present results at the � point only. All the values
are given with respect to the average electrostatic (Hartree)
potential of the unit cells in Table III.

III. SIXTEEN-BAND HAMILTONIAN
FOR WURTZITE CRYSTALS

In order to provide an accurate description of the two
energetically close conduction bands closest to the band gap
in WZ GaAs within the perturbative approach of the k · p
formalism beyond the eight-band model, remote conduction
bands gain importance due to their coupling to the �8 con-
duction band. We have thus employed a sixteen-band model
taking the top three p-like valence bands, the �7 and �8

conduction bands, and the following three p-like conduction
bands into account, each with their respective | ↑〉 and | ↓〉
component to a total of sixteen bands. The details of the
Hamiltonian can be found together with a schematic plot
of bands and coupling terms in Appendix B. In total, 24
parameters need to be determined by fitting to the ab initio
band structure, namely: mc

‖, mc
⊥, m‖, m⊥ (4), the Luttinger-like

parameters Ai and Ac
i with i = 1..6 (12), and the optical matrix

elements P1, P2, Pc
1, Pc

2, P′
1, P′

2, P′′′
1 , and P′′′

2 (8).

IV. MULTIBAND PARAMETER EXTRACTION

The parameter sets required in k · p models of arbitrary
complexity can be obtained by fitting the respective k · p
band structure to an ab initio band structure as, e.g., the one
obtained in Sec. II. While some of these parameters can be
read directly from the band structure at � (e.g., the band
gap, CF and SO splitting parameters), effective masses and
Luttinger-like parameters as well as optical matrix elements
can be determined directly from nonlocal empirical pseudopo-
tentials or ab initio models with some limitations [26–28]
but are best determined by numerical fitting. This can be
done using gradient minimization schemes readily available in
standard mathematics libraries for k · p models with a limited
level of sophistication as, e.g., six- or eight-band models.
However, such schemes commonly fail for more complex
multiband models due to a large number of local minima
in the difference between original and fitted band structure
spanned by the amount of parameters to be fitted. To avoid
trapping in local minima, it is thus necessary to sample the
whole, multidimensional search space. For the example of an
eight-band model for ZB crystals, band gap, and SO splitting
can be obtained directly from the band structure, whereas the
electron effective mass me, three Luttinger parameters γ1,2,3,
and the Kane parameter EP need to be determined by fitting.
With nk data points of the ab initio input band structure and

TABLE III. Deformation potentials (in the absence of SO coupling) for WZ GaAs given as the partial derivative of the bands energies at
the � point. All the energies are given with respect to the average Hartree potential of the unit cell. Units are eV.

Band ordering (ε = 0) Band character
∂ (Ei−Eav

H )
∂ε1

∂ (Ei−Eav
H )

∂ε3

∂ (Ei−Eav
H )

∂ε4

∂ (Ei−Eav
H )

∂ε6

VBE − 1 z-like −6.39 −13.88 0 0
VBE y-like −6.79 −7.24 0.15 −3.47 ([xy]-like)
VBE x-like −13.82 −7.24 −0.15 3.47 ([x − y]-like)
CBE s-like −16.91 −20.30 0 0
CBE + 1 s-like −17.98 −0.62 0 0
CBE + 2 x-like −15.11 −4.65 0.20 −3.47 ([xy]-like)
CBE + 2 y-like −8.22 −4.65 −0.20 3.47 ([x − y]-like)
CBE + 4 z-like −6.32 −17.41 0 0
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FIG. 2. Schematic of the low-discrepancy parameter fitting algo-
rithm. First, the search space is moved with identical ranges until
the minimum remains in its center (green squares, red bullets, blue
triangles). Once this is achieved, the search space is reduced to
increase the accuracy of the parameters (magenta “+” and orange
“×”).

assuming a discretization of N points in each dimension of the
parameter set P, we minimize the absolute difference between
input band structure ε and the one obtained from the fit:

v =
∑

nk

eig[Ĥkp(Pi ) − ε]i=1..N −→ MIN! (1)

Let us assume that we have a band structure of nk =
150 sample points and that a single eigenvalue problem can
be solved within 50 μs of single-processor time. For an
eight-band model for zinc-blende crystals and taking N = 10
discretization points in each direction of the five-dimensional
parameter set P, this results in a computational effort of
about 12 min. The computational effort increases exponen-
tially in the numbers of parameters to be fitted. For example,
for the WZ structure the dimension of the parameter space
doubles and the computational effort would already exceed
two years of single processor time. Of course, this minimiza-
tion problem is perfectly suited for parallelization, but the
computational effort nevertheless remains extreme and more
sophisticated models than the eight-band formalism, such as
full-zone models for indirect band gap semiconductors that
require even larger parameter sets, are completely beyond the
reach of today’s computational capabilities.

This curse of dimensionality can be overcome by stochastic
optimization based on randomly chosen search points for
the global minimum. Low-discrepancy points are a natu-
ral substitute for random numbers. Such quasi-Monte Carlo
methods provide a higher accuracy with fewer evaluations of
the objective function in Eq. (1) [29]. Many practical studies
have shown that Sobol points [30,31] are superior to many
other choices of low-discrepancy point sets. For this reason,
we search the whole NP-dimensional parameter set P by
using properly scaled points from an NP-dimensional Sobol
sequence. In this manner, we can keep the number of search
points fixed along different dimensionalities of the parameter
space, still being able to obtain values close to the global
minimum. The respective fitting scheme is illustrated in Fig. 2
for a two-dimensional parameter space. In a first step, the
parameter space sampled by the Sobol sequence is spanned
by an initial estimate of each parameter together with a
respective search range. Some parameters may be known with

reasonable accuracy from literature or experience and will
have a small surrounding search range whereas this range will
be larger for those parameters of which no reference is known.
The NP-dimensional Sobol sequence is then mapped on the
search ranges of all parameters and the best fit is obtained
within all parameter sets defined in this manner (green squares
in Fig. 2). Without reducing the size of the search space
around all parameters, a new sequence of parameter sets is
then spanned around the best suited set obtained before, such
that the whole search space moves towards the best set (green
squares and blue triangles). Once the best suited parameter
set is found and remains unchanged when setting up a new
sequence of parameter sets, the search space is reduced by
a factor two in each parameter search range such that the
numerical accuracy of all parameters increases either to a
defined number of search space reductions or until any other
chosen convergence criterion is fulfilled (magenta plus and
orange crosses).

The objective function in Eq. (1) can furthermore be mod-
ified such that priorities of selected k points as well as those
of particular bands that are of pronounced importance, can be
increased via individual weights. In order to ensure a good fit
at specific high-symmetry points, one can thus easily increase
the importance of these points by assigning higher weights to
k values in their vicinity. Finally, we can evaluate parameter
sets within the search space with respect to the degree of
nonellipticity of a Hamiltonian operator employing them.

We demonstrate our fitting scheme for the example of a
sixteen-band k · p model that takes the top three valence and
bottom five conduction bands into account, each with their
respective spin-up and spin-down components. We have ex-
tracted these bands from the ab initio band structure computed
above in order to determine the k · p parameters for the model
as outlined in Appendix B. This particular model requires 24
parameters that are to be fitted to the ab initio band structure.
The k · p Hamiltonian is constructed in a basis consisting of
P- and S-like bands. Correspondingly, we first evaluate the
orbital character of the ab initio bands involved.

Figure 3 shows the character of the ab initio bands to
which the k · p band structure will be fitted. The valence
bands �7v+, �7v−, and �9v exhibit predominantly a P-like
character (red solid, dashed, and dash-dotted lines), �7v+
furthermore contains visible S-like contributions (black solid
lines). The two conduction bands closest to the band gap, �7c

and �8c, are mostly of S character but also with visible P-like
contributions. The following conduction band states are pre-
dominantly of P character with S-like contributions in �9c and
�7c+ around the high-symmetry A point. Moreover, nonzero
D-like character is seen in these conduction bands (green solid
lines), however the impact of D-like bands remains negligible.
The character analysis thus reveals that S- and P-like bands in
fact represent a reasonable basis for the sixteen band model.

Correspondingly, Fig. 4 shows the sixteen-band k · p band
structure for WZ GaAs crystals that was fitted to the above ab
initio band structure. Priority was given to the bands closest
to the band gap, namely the bottom two conduction bands
and the top two valence bands as they dominate the electronic
structure of WZ GaAs. The k · p band structure is in good
agreement with the ab initio one throughout wide parts of the
BZ for the bands of pronounced priority. This is particularly
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FIG. 3. Character of S (black), P (red), and D orbitals (green)
of the top six valence and bottom ten conduction bands of the ab
initio band structure that is used for the fitting procedure. As all bands
are pairwise almost degenerate, we evaluate here only one of each
pair of bands for the sake of readability. Note that the sum of all
contributions to a band is not necessarily one as the underlying atom-
centered spherical harmonics do not represent a complete basis.
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FIG. 4. Fit (black and gray solid) of a sixteen-band WZ GaAs
k · p band structure to the above ab initio band structure (red dash-
dotted). The blue dashed band structure was obtained from the
initial guess parameter set around which the initial Sobol-sequence
generated parameter sets were constructed. Priority was given to the
four valence and conduction bands closest to the band gap (black
solid).

TABLE IV. Fitting parameters and band splittings obtained for
WZ GaAs within the 16-band k · p model. The band splitting param-
eters �

(c)
1,2,3 can be extracted directly from the eigenenergies at �. The

splittings �cv
1,2,3 were found to be negligibly small and are therefore

not listed. Values are given without (ε = 0.0) and with ellipticity
conditions taken into account (ε = 0.2).

Parameter ε = 0.0 ε = 0.2 Parameter ε = 0.0 ε = 0.2

me
‖ (m0) 0.032 0.048 mc

‖ (m0) 1.117 1.443
me

⊥ (m0) 0.090 0.075 mc
⊥ (m0) −0.352 −0.648

A1 (h̄2/m0) −1.386 −1.484 Ac
1 (h̄2/m0) −0.951 0.354

A2 (h̄2/m0) −0.816 −0.870 Ac
2 (h̄2/m0) −0.375 −0.799

A3 (h̄2/m0) 0.003 0.508 Ac
3 (h̄2/m0) 4.772 10.110

A4 (h̄2/m0) 0.159 0.553 Ac
4 (h̄2/m0) 2.687 1.326

A5 (h̄2/m0) −1.241 −0.296 Ac
5 (h̄2/m0) −4.896 −1.084

A6 (h̄2/m0) 0.176 −0.115 Ac
6 (h̄2/m0) −0.549 −0.148

P1 (eV Å) 1.369 1.844 Pc
1 (eV Å) 0.062 0.369

P2 (eV Å) 2.409 1.316 Pc
2 (eV Å) 1.342 1.174

P′
1 (eV Å) 1.494 −1.859 P′′′

1 (eV Å) 13.939 12.967
P′

2 (eV Å) 8.033 5.697 P′′′
2 (eV Å) 6.132 7.271

�1 (eV) 0.180 0.180 �c
1 (eV) −0.409 −0.409

�2,3 (eV) 0.124 0.124 �c
2,3 (eV) −0.074 −0.074

remarkable as the k · p perturbation theory commonly allows
an accurate description of a band structure only in the close
vicinity of high-symmetry points and is not expected to keep
this accuracy throughout the BZ. In comparison, the band
structure obtained from the initial parameters is depicted in
Fig. 4 in blue dashed lines and exhibits very poor agreement
with the ab initio band structure. It is therefore not neces-
sary to start the minimization with initial parameters that
are already close to the final ones, however, the smaller the
search range for each parameter, the faster the minimization
will deliver a good fit. To quantify the quality of the fit, we
compute the improvement of v with respect to the initial
guess, I = 1 − v/vinit , as absolute values of v are unhelpful,
given their dependence on a number of factors such as the
number of k values or band and k prioritization. For the
current fit, we obtain I = 89.7%.

The band structure parameters obtained from the fit are
presented in Tab. IV and could, in principle, serve as input for
electronic-structure simulations of WZ GaAs heterostructures
using the more sophisticated sixteen-band k · p model. Details
of the initial parameters, search spaces, and priorities can be
found in Appendix C.

However, from the curvature of the bands around the BZ
boundaries, it can already be expected that spurious solutions
will arise if these parameters are employed in a single-particle
calculation of a heterostructure. For example, the conduction
band bending downwards at the L point will continue deep
into the band gap, resulting in energy minima that are a
consequence of the incorrect band structure.

This can also be seen in Fig. 5 where the density of states
(DOS) reproduced from the sixteen-band k · p band structure
above is shown, obtained from sampling throughout the whole
BZ. The band gap is indicated with two black solid lines.
It can be seen that non-negligible band contributions exist
inside the band gap (pg = 2.6% of all eigenvalues obtained by
sampling throughout the first BZ), which is an indicator for
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FIG. 5. Density of states of the k · p band structure of the
sixteen-band model shown in Fig. 4.

the above unphysical band bending somewhere inside the BZ
that can potentially induce spurious solutions when a 16-band
model with the corresponding material parameters obtained
from our fit is applied to study the electronic properties of a
nanostructure.

V. ELLIPTICITY CONSIDERATIONS

In the following, we include ellipticity conditions in our fit-
ting scheme in order to reduce the unphysical DOS inside the
band gap. The parameters �c and �v as defined in Eq. (A20) in
Appendix D quantify the degree of nonellipticity and are thus
a measure for the quality of the parameter set with respect
to robustness against spurious solutions (for more details see
Appendix D), where small values of �c and �v represent robust
parameter sets. The sum of both, � = �c + �v, is then multi-
plied with the cost function v from the initial guess and the
parameter ε that defines the priority to be given to ellipticity.
The respective value is then added to the cost function v for
each evaluated parameter set. Figure 6 shows the impact of
imposing ellipticity conditions on our band structure fit for
priority values of ε = 0.1, 0.2, and 0.3. It can be seen that an
increased priority ε of the ellipticity conditions in fact reduces
the DOS inside the band gap, however, at the cost of a reduced
quality of the band structure fit, in particular in the remote
areas of the BZ (see values for I provided in the plot). The
lowest percentage of eigenvalues inside the band gap obtained
from sampling throughout the whole BZ is obtained for ε =
0.2, with pg = 1.2 × 10−5. Correspondingly, this parameter
set is most suited to be applied in heterostructure modeling
to avoid the occurrence of spurious solutions. The respective
parameters are given in Table IV. For ε = 0.3, the percentage
of eigenvalues inside the band gap increases again, which can
be attributed to the fact that coupling linear in k is neglected
in the ellipticity considerations [cf. Eqs. (A17) and (A19) in
Appendix D]. This can also be observed when comparing the
respective band structures for ε = 0.2 (red dash-dotted) and
0.3 (blue dashed) where one of the conduction bands of the
latter one is clearly seen to drop into the band gap.
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L M Γ A
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pg=2.9×10−4
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FIG. 6. Left: band structures obtained from fitting for ε = 0.1
(black solid), 0.2 (red dash-dotted), and 0.3 (blue dashed line). The
DFT target band structure is shown in gray. Right: the respective
density of states for ε = 0.1, 0.2, 0.3 (top, middle, bottom). The
percentage of the band structure inside the band gap, pg, as well as the
improvement towards the initial guess band structure, I, are provided
with each plot.

If we compare the parameters resulting from the fit (cf.
Table IV) with literature values where available [32–34], we
see some significant deviations from existing parameters. In
particular, our electron effective masses are quite different
from established values, a fact that can also be seen when
looking at the band structure in the vicinity of �. However,
this is not surprising at this point as the intention of our fitting,
and thus the selection of priorities for specific bands and
high-symmetry points was to achieve a good fit throughout the
whole BZ rather than a good fit of the effective masses in the
close vicinity of the zone center �, where electronic-structure
parameters are commonly extracted.

We emphasize that for simulations of larger heterostruc-
tures or electron transport simulations in devices, it is reason-
able to extract electronic band structure parameters from the
closer vicinity of � only, which here is the dominant region of
the BZ. Within a full-zone fit, the agreement between the k · p
and the ab initio band structure at � naturally suffers from the
compromise of finding a reasonably good fit not only around
� but throughout the whole BZ.

VI. PARAMETERS FOR A TEN-BAND MODEL

As the application of a sixteen-band model for the calcula-
tion of the electronic properties of a heterostructure represents
a much larger computational effort than the well-established
eight-band model, we have furthermore extracted a parameter
set for a ten-band model required for WZ GaAs and given
in detail in Ref. [12] including the top three valence and the
bottom two conduction bands in the closer vicinity of the
center of the BZ, �. For this model, a total of 13 unknown
parameters was determined. The corresponding parameter set
is shown in Table V. Of course, the description of the band
structure is accurate only in the center of the BZ (cf. Fig. 7)
due to the limited basis of the ten-band model. Here, we
have also incorporated the ellipticity conditions outlined in
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TABLE V. Fitting parameters obtained for WZ GaAs within the
ten-band k · p model. The parameter Pcv

2 couples the �8 conduction
band to the top �9v valence band within the ten-band model em-
ployed (the Hamiltonian is given in Ref. [12], Pcv

2 here enters via:
R = i(∂x + i∂y)Pcv

2 ).

me
‖ (m0) 0.0582 A1 (h̄2/m0) −13.666

me
⊥ (m0) 0.0979 A2 (h̄2/m0) −7.088

mc
‖ (m0) 2.549 A3 (h̄2/m0) 6.972

mc
⊥ (m0) 0.1276 A4 (h̄2/m0) 2.727

P1 (eV Å) 2.270 A5 (h̄2/m0) 4.952
P2 (eV Å) 2.996 A6 (h̄2/m0) 2.641
Pcv

2 (eV Å) 1.301

Ref. [15] to the valence band part of the Hamiltonian [cf.
Eq. (A17) in Appendix D] to reduce the risk of spurious
solutions if our parameter set is applied to a heterostructure.
Ellipticity was here given a priority of ε = 0.5.

We note that our scheme still requires some knowledge
on realistic search ranges for each parameter and a fitted
parameter set will only be as good as the initial search range
chosen for it. In particular, for large search spaces with small
initial Sobol sequences, the algorithm can get trapped into
local minima and will not see other, global ones. It is thus
necessary to carefully evaluate the convergence of the band
structure with the number of parameter sets generated using
the Sobol sequence. Some of the parameters, e.g., effective
masses, can be estimated from the curvature at the � point,
but for others a respectively large search space is required.
Moreover, band- and k-point priorities can be adjusted to
achieve a good fit only for some of the bands employed,
leaving both a certain degree of arbitrariness in the fitting
process and large deviations from the ab initio band structure
for bands of low priority (cf. gray bands in Fig. 4).

2

2.5

3

3.5

4

4.5

5

5.5

6

M/10 Γ A/10

FIG. 7. Ab initio band structure (red dash-dotted lines, ‘×’ sym-
bols) and fit using a ten-band k · p model (black solid) in the vicinity
of �. The respective parameters are listed in Table V.

VII. SUMMARY

We have presented a numerically efficient fitting scheme
to obtain k · p electronic structure parameters for multiband
k · p models beyond the well-established eight-band approach
from up-to-date ab initio band structures. Our scheme em-
ploys low-discrepancy sequences to sample multidimensional
parameter spaces for more sophisticated k · p models. In
addition, it allows direct control of priorities of specific k
points and bands that are of pronounced importance for the
electronic structure to ensure a highly accurate fit within
selected regions. Furthermore, the likelihood to encounter
spurious solutions can be reduced by introducing nonelliptic-
ity conditions during the fitting process. We have presented
material parameters for both a 16-band k · p model that was
developed within this work as well as a ten-band model which
is better suited for computationally inexpensive simulations of
the electronic structure of heterostructures containing GaAs
in the WZ phase. While the focus of the present study was on
the material parameters of GaAs, we note that the influence
of additional conduction bands plays a significant role for
other III-V WZ semiconductors: The energetical difference
between the lowest conduction bands reported for GaSb and
InP are 87 and 353 meV, respectively, and the order of
the bottom two conduction bands in WZ AlP, AlAs, AlSb,
and GaP is even reversed [34]. Finally, we remark that our
scheme is not limited to semiconductors but can provide
parameters for all band structures that can be computed from
a Hamiltonian.
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APPENDIX

1. Density functional theory

In view of the scarcity of data available on WZ GaAs,
to accurately model its electronic structure we fitted the
screening parameter μ of the HSE hybrid functional [35]
to yield the experimental zero-temperature band gap for ZB
GaAs first, which is well established at 1.519 eV. This is
achieved in our calculations, in the absence of SO cou-
pling, for μ = 0.138 Å−1. However, SO coupling reduces
the size of the band gap, which means a lower value of
μ is required to reproduce the experimental gap with the
SO interaction enabled. Therefore we chose μ = 0.089 Å−1,
which yields a good agreement with the experimental value.
Compared to the μ = 0.3 Å−1 and μ = 0.2 Å−1 screening
parameters of HSE03 and HSE06, our customized functional
is less screened. We explored a combined optimization of
screening parameter and mixing parameter α, to try and
improve the simultaneous description of both band gap and
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lattice parameter. However, only marginal improvement was
achieved for reasonable values of α. Perfect agreement for
both quantities without SO coupling was obtained for the
tuple (μ, α) = (0.8 Å−1, 1.45). In view of the difficulty to
optimize both parameters and the fact that the choice of α =
0.25 is theoretically justified [36], we decided to settle for
(μ, α) = (0.089 Å−1, 0.25). The DFT code used was VASP
[37], which is based on projector-augmented wave (PAW)
potentials [38,39] and plane-wave basis sets. We chose a
cutoff energy for the plane waves of 350 eV. The grids
used for BZ integration were chosen differently for structural
and elastic properties (finer mesh) and electronic structure
(coarser mesh). For a GaAs ZB primitive unit cell (two atoms)
we found that a 10 × 10 × 10 mesh was enough to converge
the total energy below 0.1 meV. For the electronic structure

calculations, we used a 6 × 6 × 6 mesh. The motivation for
using a finer k mesh for structural properties is twofold. First,
band structures are less sensitive to the density of k points
used. Second, for SO calculations, the SO coupling breaks
the symmetry of the BZ, leading to a significantly larger
number of nonequivalent k points; using dense grids becomes
prohibitively expensive. For the evaluation of the Coulomb
kernel (for the exact-exchange calculation) we used a k-point
reduction scheme whereby the number of k points in the
grid was halved along each reciprocal lattice direction. This
is known as “downsampling” [40]. All the other simulations
were carried out maintaining a density of k points as close as
possible to those specified above. The semicore d electrons
of Ga were included explicitly in the calculation as valence
electrons.

2. Sixteen-band Hamiltonian

We start with the assumption that the relevant near-band gap states are spanned by the p-like valence bands Xv, Yv, Zv followed
by the s-like conduction band S (commonly the conduction band closest to the band gap), three p-like conduction bands Xc, Yc,
and Zc and another s-like band S′. We follow the procedure used in Ref. [24] with the basis set:

|S ↑〉, |Xv ↑〉, |Yv ↑〉, |Zv ↑〉, |S ↓〉, |Xv ↓〉, |Yv ↓〉, |Zv ↓〉 for the top p-like valence bands and the (commonly bottom) s-like
conduction band and |S′ ↑〉, |Xc ↑〉, |Yc ↑〉, |Zc ↑〉, |S′ ↓〉, |Xc ↓〉, |Yc ↓〉, |Zc ↓〉 for the respective following conduction bands.
The Hamiltonian then reads:

Ĥ =
(

Gc
1(k) + Gc

2(k) �

−�† G1(k) + G2(k)

)
(A1)

with:

Gc
1(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E c
1 iPc

2 kx iPc
2 ky iPc

1 kz 0 0 0 0
−iPc

2 kx E c
2 −i�c

2 0 0 0 0 �c
3−iPc

2 ky i�c
2 E c

2 0 0 0 0 −i�c
3−iPc

1 kz 0 0 E c
2 − �c

CF 0 −�c
3 i�c

3 0
0 0 0 0 E c

1 iPc
2 kx iPc

2 ky iPc
1 kz

0 0 0 −�c
3 −iPc

2 kx E c
2 i�c

2 0
0 0 0 −i�c

3 −iPc
2 ky −i�c

2 E c
2 0

0 �c
3 i�c

3 0 −iPc
1 kz 0 0 E c

2 − �c
CF

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Gc
2(k) =

(
G′c

2(k) 0
0 G′c†

2 (k)

)
with:

G′c
2(k) =

⎛
⎜⎜⎝

Ãc
2(k2

x + k2
y ) + Ãc

1k2
z Bc

xkykz Bc
xkxkz Bc

zkxky

Bc
xkykz Lc

1k2
x + Mc

1k2
y + Mc

2k2
z Nc

1 kxky Nc
2 kxkz − Nc

3 kx

Bc
xkxkz Nc

1 kxky Mc
1k2

x + Lc
1k2

y + Mc
2k2

z Nc
2 kykz + Nc

3 ky

Bc
zkxky Nc

2 kxkz + Nc
3 kx Nc

2 kykz − Nc
3 ky Mc

3 (k2
x + k2

y ) + Lc
2k2

z

⎞
⎟⎟⎠.

The elements Ãc
(1,2), Lc

(1,2), Mc
(1,2,3), and Nc

(1,2,3) are given by:

Ãc
1 = 1

2mc
‖

−
(
Pc

2

)2

E2 − E1
and Ãc

2 = 1

2mc
⊥

−
(
Pc

1

)2

E2 − E1
(A2)

Lc
1 = 1

2

(
Ac

2 + Ac
4 + Ac

5

) −
(
Pc

1

)2

E2 − E1
and Lc

2 = 1

2
Ac

1 +
(
Pc

2

)2

E2 − E1
(A3)

Mc
1 = 1

2

(
Ac

2 + Ac
4 − Ac

5

)
, Mc

2 = 1

2

(
Ac

1 + Ac
3

)
, and Mc

3 = 1

2
Ac

2 (A4)

Nc
1 = 1

2
Ac

5 +
(
Pc

2

)2

E2 − E1
, Nc

2 = 1√
2

Ac
6 + Pc

1 Pc
2

E2 − E1
and Nc

3 = i
√

2Ac
7 (A5)
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and similarly:

G1(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eg iP2kx iP2ky iP1kz 0 0 0 0
−iP2kx 0 −i�2 0 0 0 0 �3

−iP2ky i�2 0 0 0 0 0 −i�3

−iP1kz 0 0 −�CF 0 −�3 i�3 0
0 0 0 0 Eg iP2kx iP2ky iP1kz

0 0 0 −�3 −iP2kx 0 i�2 0
0 0 0 −i�3 −iP2ky −i�2 0 0
0 �3 i�3 0 −iP1kz 0 0 −�CF

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G2(k) =
(

G′
2(k) 0
0 G′†

2 (k)

)

with:

G′
2(k) =

⎛
⎜⎜⎝

Ã2(k2
x + k2

y ) + Ã1k2
z Bxkykz Bxkxkz Bzkxky

Bxkykz L1k2
x + M1k2

y + M2k2
z N1kxky N2kxkz − N3kx

Bxkxkz N1kxky M1k2
x + L1k2

y + M2k2
z N2kykz + N3ky

Bzkxky N2kxkz + N3kx N2kykz − N3ky M3(k2
x + k2

y ) + L2k2
z

⎞
⎟⎟⎠.

Again, Ã(1,2), L(1,2), M(1,2,3), and N(1,2,3) are given by:

Ã1 = 1

2m‖
− P2

2

Eg
and Ã2 = 1

2m⊥
− P2

1

Eg
(A6)

L1 = 1

2
(A2 + A4 + A5) − P2

1

Eg
and L2 = 1

2
A1 + P2

2

Eg
(A7)

M1 = 1

2
(A2 + A4 − A5), M2 = 1

2
(A1 + A3), and M3 = 1

2
A2 (A8)

N1 = 1

2
A5 + P2

2

Eg
, N2 = 1√

2
A6 + P1P2

Eg
and N3 = i

√
2A7. (A9)

From symmetry considerations the B terms are zero. The commonly small parameter A7 as well as its counterpart in the
upper conduction bands, Ac

7, were also set to zero. This follows from for Bx: 〈S|k · p|i〉〈i|k · p|X 〉 = kykz〈S|py|Y 〉〈Y |pz|X 〉 +
kykz〈S|pz|Z〉〈Z|py|X 〉, and that a reflection in the x-z plane: y → −y, x → x, z → z is a symmetry of WZ such that 〈Y |pz|X 〉 =
〈Z|py|X 〉 = 0. The coupling between the upper and the lower eight bands is realized via:

�(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 iP′
2kx iP′

2ky iP′
1kz 0 0 0 0

−iP′′′
2 kx 0 −i�cv

2 0 0 0 0 �cv
3,1

−iP′′′
2 ky i�cv

2 0 0 0 0 0 −i�cv
3,1

−iP′′′
1 kz 0 0 0 0 −�cv

3,2 i�cv
3,2 0

0 0 0 0 0 iP′′′
2 kx iP′′′

2 ky iP′′′
1 kz

0 0 0 �cv
3,1 −iP′

2kx 0′ i�cv
2 0

0 0 0 −i�cv
3,1 −iP′

2ky −i�cv
2 0 0

0 �cv
3,2 i�cv

3,2 0 −iP′
1kz 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A schematic view of basis functions and respective couplings is shown in Fig. 8. Note that the small but nonzero coupling of the
�8c and the �9v as well as the corresponding �7c and �9c is neglected.

3. Conditions and initial data for the parameter fitting

The parameter fitting algorithm has a number of param-
eters that can be adjusted to achieve a particularly good
representation of selected parts of the band structure. For the
band structure shown in Fig. 4, these were the following: First,
the priority of the top four valence bands has been set to
1000, and for the bottom four conduction bands to 2000, while
the default applied to the other bands is 1. In the respective
output of the fit in Fig. 4, black solid lines indicate those
with larger priority whereas the others are depicted in gray.
Furthermore, priority was given to the M, �, and A points
and another two points between M and � where a Gaussian
function was multiplied to Eq. (1) with a peak value of 1000.

The parameter space was mapped onto a Sobol sequence of
10 000 elements. With these data, the fitting of all parameters
for a band structure with 182 sampling points takes about
3300 s on a single CPU (Intel Xeon E5, 3.5 GHz).

4. Ellipticity conditions

A linear differential operator of second order as it occurs
structurally, e.g., as a component of a multiband k · p Hamil-
tonian, that acts on a scalar function u(x) defined as [15,17]:

⎛
⎝−

n∑
i, j=1

∂iai j (x)∂ j +
n∑

i=1

bi(x)∂i + c(x)

⎞
⎠u(x) (A10)
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Γ7v−
Γ7v+
Γ9v

Γ7c
Γ8c

Γ9c

Γ7c+
Γ7c−

P1

Pc
1 P′′′

1

P′
1P2

Pc
2

P′
2

P′′′
2

FIG. 8. Term scheme of basis bands and coupling elements.

is called elliptic if the second-order differential operator ma-
trix K(ai j (k)) is positive definite [15]. If one then assumes u
to be defined inside a region 
 and zero at its boundary ∂
,
left multiplying the second-order terms of Eq. (A10) with a
test function v� and integrating over the region yields

α(u, v) :=
∫




n∑
i, j=1

∂iv
�ai j (x)∂ jud
. (A11)

For an elliptic operator and a normed function space V , this
bilinear form is convex:

α(u, v) > C||u||V ∀ u ∈ V. (A12)

Rewriting Eq. (A11) in matrix form using the differential
operator matrix K we obtain:

α(u, v) =
∫




(∂xv
�∂yv

�∂zv
�)K

⎛
⎝∂xu

∂yu
∂zu

⎞
⎠d
. (A13)

If K is positive definite for all x, α(·, ·) will be convex. Within
a heterostructure, the coupled differential equation system is
defined within an envelope function vector f . The analogy to
Eq. (A11) here reads [15]:

α̂(f, v) =
∫




∑
i jkl

∂iv
�
k hkl

i j ∂ j fld
 (A14)

with hkl
i j = (H(2)

i j )kl where k and l are the indices of the m
Bloch bands involved and i and j = x, y, z. For a system
quantized in all three directions, the matrix form of Eq. (A14)
is given by:

α̂(u, v) =
∫




(∂xv
�
1∂yv

�
1...∂yv

�
m∂zv

�
m) (A15)

×

⎛
⎜⎜⎜⎜⎜⎝

h11
11 h11

12 · · · h1m
12 h1m

13
h11

21 h11
22 · · · h1m

22 h1m
23

...
...

. . .
...

...
hm1

21 hm1
22 · · · hmm

22 hmm
23

hm1
31 hm1

32 · · · hmm
32 hmm

33

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

∂xu1

∂yu1
...

∂yum

∂zum

⎞
⎟⎟⎟⎟⎠∂
 (A16)

and has strictly positive eigenvalues if the matrix defined by
hkl

i j is positive definite. For Hamiltonians related to the valence
band, the available energy spectrum ranges from −∞ to the

TABLE VI. Initial values, search space ranges, and final fitting
parameters obtained for WZ GaAs within the 16-band k · p model.

Parameter Initial Range Final, ε = 0 ε = 0.1

me
‖ (m0) 0.04 0.01 0.032 0.042

me
⊥ (m0) 0.1 0.01 0.090 0.101

A1 (h̄2/m0) −5 2 −1.386 −2.148
A2 (h̄2/m0) −0.5 0.4 −0.816 −0.855
A3 (h̄2/m0) 5 4 0.003 1.104
A4 (h̄2/m0) 0.5 0.4 0.159 0.007
A5 (h̄2/m0) −0.5 0.4 −1.241 −0.855
A6 (h̄2/m0) −0.5 0.2 0.176 −0.753
P1 (eV · Å) 1.44 0.288 1.369 0.229
P2 (eV · Å) 1.44 0.288 2.409 1.379
mc

‖ (m0) 1.0 0.2 1.117 1.378
mc

⊥ (m0) 0.1 0.3 −0.352 −0.561
Ac

1 (h̄2/m0) −5 2 −0.951 −1.361
Ac

2 (h̄2/m0) −0.5 0.2 −0.375 −0.466
Ac

3 (h̄2/m0) 5 2 4.772 2.374
Ac

4 (h̄2/m0) 5 2 2.687 1.234
Ac

5 (h̄2/m0) −5 2 −4.896 −1.539
Ac

6 (h̄2/m0) −0.5 0.2 −0.549 −0.559
Pc

1 (eV · Å) 1.44 3.60 0.062 0.704
Pc

2 (eV · Å) 1.44 3.60 1.342 −0.017
P′

1 (eV · Å) 7.2 2.88 1.494 2.570
P′

2 (eV · Å) 7.2 2.88 8.033 6.847
P′′′

1 (eV · Å) 7.2 2.88 13.939 9.421
P′′′

2 (eV · Å) 7.2 2.88 6.132 5.490

valence band maximum so that for these cases Eq. (A16) has
to be negative definite. For the eight-band model, however,
the range of accessible energies ranges from −∞ to +∞ so
that no upper or lower boundaries for the eigenvalues exist.
Here, the conduction band and valence band parts of the
Hamiltonian need to be decoupled so that energy spectra of
both band types can be evaluated separately [15].

We have modified the scheme from Ref. [15] to our 16-
band Hamiltonian as defined in Eq. (A1) above. Following
the considerations in Ref. [15], all contributions quadratic
in k enter the Hamiltonian in either the two 6 × 6 matrices
for the p-like valence and conduction band states or in the
2 × 2 matrices for the s-like conduction bands. The s-like
conduction band related matrices are furthermore not coupled
to each other whereas the two 6 × 6 matrices are in fact
each two 3 × 3 matrices that lack second-order coupling.
Correspondingly, the eigenvalues of the valence-band related
matrix

hkl
i j,v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1 0 0 0 N+
1 0 0 0 N+

2
0 M1 0 N−

1 0 0 0 0 0
0 0 M2 0 0 0 N−

2 0 0
0 N−

1 0 M1 0 0 0 0 0
N+

1 0 0 0 L1 0 0 0 N+
2

0 0 0 0 0 M2 0 N−
2 0

0 0 N−
2 0 0 0 M3 0 0

0 0 0 0 0 N−
2 0 M3 0

N+
2 0 0 0 N+

2 0 0 0 L2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A17)
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are preferably required to be negative such that

�v =
∣∣∣∣∣
∑

i,λi>0 λi∑
j,λ j<0 λ j

∣∣∣∣∣, (A18)

which is an estimate for the degree of nonconvexity, is as small as possible and ideally zero. For the five conduction bands in the
model, the related matrix reads:

hkl
i j,v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lc
1 0 0 0 Nc+

1 0 0 0 Nc+
2 0 0 0 0 0 0

0 Mc
1 0 Nc−

1 0 0 0 0 0 0 0 0 0 0 0
0 0 Mc

2 0 0 0 Nc−
2 0 0 0 0 0 0 0 0

0 Nc−
1 0 Mc

1 0 0 0 0 0 0 0 0 0 0 0
Nc+

1 0 0 0 Lc
1 0 0 0 Nc+

2 0 0 0 0 0 0
0 0 0 0 0 Mc

2 0 Nc−
2 0 0 0 0 0 0 0

0 0 Nc−
2 0 0 0 Mc

3 0 0 0 0 0 0 0 0
0 0 0 0 0 Nc−

2 0 Mc
3 0 0 0 0 0 0 0

Nc+
2 0 0 0 Nc+

2 0 0 0 Lc
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Ac
1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Ac
1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 Ac
2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 A1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 A1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 A2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A19)

with its eigenvalues being preferably positive such that

�c =
∣∣∣∣∣
∑

i,λi<0 λi∑
j,λ j>0 λ j

∣∣∣∣∣. (A20)

Finally, we sum up both conditions to � = �v + �c as a total estimate of the degree of nonconvexity. Note that N (c)±
(1,2) = N (c)

(1,2), as
a detailed discussion of asymmetric operator ordering as discussed in Refs. [15–17] or a spectral analysis of the Hamiltonian as
discussed in Ref. [41] is beyond the scope of the present work. However, our fitting scheme can be modified to identify the best
parameters for asymmetric operators as well in a straight-forward manner (Table VI).
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