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We consider a finite-size scaling function across a topological phase transition in one-dimensional models.
For models of noninteracting fermions it was shown to be universal for all topological symmetry classes and

markedly asymmetric between trivial and topological sides of the transition [T. Gulden, M. Janas, Y. Wang,
and A. Kamenev, Phys. Rev. Lett. 116, 026402 (2016)]. Here we verify its universality for the topological
transition between dimerized and Haldane phases in bilinear-biquadratic spin-1 chain. To this end we perform
high-accuracy variational matrix product state simulations. We show that the scaling function, expressed in
terms of L/&, where L is the chain length and £ is the correlation length, coincides with that of three species
of noninteracting massive Majorana fermions. The latter is known to be a proper description of the conformal
critical theory with central charge ¢ = 3/2. We have shown that it still holds away from the conformal point,
including the finite-size corrections. We have also observed peculiar differences between even- and odd-size
chains, which may be fully accounted for by residual interactions of the edge states.
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I. INTRODUCTION

Topological states of matter continue to attract ever in-
creasing attention of the community [1-4], vis-a-vis their
peculiar electric and thermal transport properties as well as
applications in quantum computing. Yet, surprisingly little
attention was paid to the most basic thermodynamical quan-
tities and their scaling properties close to topological phase
transitions. Though hard to measure, they exhibit a remarkable
universality and provide a conceptual framework to distin-
guish between different universality classes.

In this paper we discuss a finite-size scaling of a many-
body ground-state energy across topological phase transitions
in 1 4+ 1 dimensions. Critical points of such models are de-
scribed by conformal field theories (CFT) [5], characterized
by the central charge c. The finite-size, L, scaling of the
ground-state energy E (L, oo) for an open system at criticality
was shown to be [6,7]

_ c T 72
E(L,oo):Le(oo)+b(oo)—Zﬁ+0(L ), (D

where €(00) is the average bulk energy density, b(c0) is a size-
independent boundary term, and the argument (co) specifies
the exact critical point where the correlation length & — oo.
Here the velocity of excitations (“Fermi” velocity) is put to be
1. The 1/L term appears to be universal and depends only on
c—the central charge of the Virasoro algebra.

A relevant perturbation drives the system away from criti-
cality, creating a spectral gap A and a corresponding correla-
tion length £ = 1/A. One may generalize the CFT expansion,
Eq. (1), as

L
§

The first two terms on the right side are well defined for any
fixed A or £ by studying the asymptotic limit L > & [we will

E(L,§) = L&)+ bE)— %f( >+0(L2)- @
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see that in this limit f(L/&) is exponentially small]. Once
€(&) and b(£) are known one may study the double scaling
limit [8]: L — oo and & — oo, while w = L/& = const. The
scaling function f(w) is then defined as

cfw)= lim LILEE)+bE) —ELEH). ()

According to Eq. (1), f(0) = m /24. Universality of the scal-
ing function f(w) for w # 0 and its ability to distinguish
between topological sectors is the subject of this work.

The scaling function was studied [9] for the class of 1 + 1-
dimensional topological models of noninteracting fermions.
It was shown that it is universal for all symmetry classes,
admitting nontrivial topology in one dimension [10-12]: AIII,
DIII, and CII, where ¢ = 1; and BDI and D, where ¢ = 1/2
(see Fig. 1). Moreover, it was shown that the corresponding
f(w) may be derived from the Dirac Hamiltonian, e.g., in
the AIIl symmetry class (¢ = 1), H = mo| + id,0,, where the
Pauli matrices act in the sublattice A/B space. The model is
equivalent to two copies of ¢ = 1/2 Majorana fermions. As-
suming that outside of the interval 0 < x < L the gap is very
large and, e.g., negative, one derives the boundary conditions
W, (0) = Wp(L) = 0. The quantized values of momenta k > 0
are then given by

_w

As a result the spectrum is determined by the condition w =
Lm = k,Lcot(k,L) and the energies are given by e*(k,) =
+/m? + k2. At w = 1 two of its real solutions collide and
switch to purely imaginary ones for w > 1. Those correspond
to the topological edge states, decaying into the bulk of the
system.

The total ground-state energy is given by E(L,§) =
>, € (k,), which, using the argument principle, may be

cos[kL + 8(k)] =0, tan (k) = % @)
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FIG. 1. The solid line is the scaling function equation, Eq. (6).
Here w > 0 (<0) represents the topological nontrivial (trivial) side
of the transition. (The edge states exist for w > 1, see the main text.)
Symbols are numerical results for lattice models of noninteracting
fermions in five symmetry classes; after Ref. [9].

written as

E(L, &)= 1% d—k,e’(k) O In {cos[kL 4+ 5(k)]}, (5)
2 ) 2mi

where the contour runs in the complex k-plane encircling all
solutions of Eq. (4). The bulk and boundary terms are given
by Lé +b = f(dk/ZJT)E_(k)[L + 0;8(k)], where L + 9;6(k)
are bulk and boundary parts of the continuous density of
states. To find the scaling function f(w), one employs Eq. (3),
deforms the integration contour to run along the branch cut of
~/m? + k2, and rescales the integration variable as 7 = ikL. As
a result, one finds [9]

o0
d
Fw) = — / SV w4 0L ()
[w]|

where 8,,(z) = —arctanh(w/z). This expression is plotted as
a solid line in Fig. 1.

One may see that the scaling function is markedly asym-
metric between the topological nontrivial, w > 0, and the
topological trivial, w < 0, sides. This is a feature of an open
system. Indeed, similar calculation for periodic boundary
conditions results in a symmetric function [9]. On the other
hand, a specific shape of the boundary (e.g., a shape of the gap
m(x) near the boundary) does not change the scaling function.
This suggests that the asymmetry is due to the presence of the
edge states on the topological nontrivial side of the transition.
This is corroborated with the fact that the maximum of the
scaling function (i.e., maximum sensitivity to the finite-size
effects) occurs at w =1, i.e., £ = L, which is exactly the
point where the edge states (wave function e** with purely
imaginary wave number k,) appear. Glancing at the scaling
function, one would be hard-pressed to locate the point of the
bulk-phase transition. However, a more accurate look reveals
a nonanalytic behavior of the form f(w)~ 77 — = log [w]
close to w = 0, marking the bulk transition point.

Our goal here is to verify if the scaling function equa-
tion, Eq. (6), is applicable beyond the simple models of
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FIG. 2. Schematic representation of (a) the Haldane phase and
(b) the dimerized phase. Each spin-1 is represented as two spin-1/2
objects, red links indicate singlet bonds.

noninteracting fermions [9]. To this end we evaluate it for
bilinear-biquadratic spin-1 chain, using the variational matrix
product state (MPS) approach [13—15] and the variational uni-
form MPS (VUMPS) algorithm [16]. Unless explicitly stated
otherwise, we study the open chain with an even number of
sites case. The model undergoes a topological phase transition
between dimerized and Haldane phases [17]. The transition is
known [18] to be described by a CFT with ¢ = 3/2.

We conclude that, to the best of our numerical precision,
the scaling function of bilinear-biquadratic spin-1 chain is
indeed in agreement with the analytical result, Eq. (6). This
fully supports the theory [18-22] that the low-energy physics
of the model is equivalent to that of three species of massive
Majorana fermions. According to our results, this correspon-
dence goes beyond the bulk of the spectrum and encompasses
the finite-size physics, including the edge states. It is prob-
ably exact in the double scaling limit, Eq. (3). Though the
scaling function, expressed through L/&, coincides with the
free fermion one, the correlation length & exhibits a rather
nontrivial dependence on parameters of the model (due to the
presence of marginal operators).

The paper is organized as follows: In Sec. II we introduce
the model and discuss our numerical results for the scaling
function in the even-sites case. The odd-size chains are dis-
cussed in Sec. III. In Sec. IV we describe the variational MPS
approach and the VUMPS algorithm as well as details of our
numerical approach. Finally conclusions and open questions
are summarized in Sec. V.

II. THE MODEL AND SCALING FUNCTION

The model we study is the bilinear-biquadratic spin-1 chain
with the Hamiltonian

L
H =7 cosO(Si-Siv) +sinb(S; - Siw)’. (D)
i=1

where S; is the spin-1 operator at site i and 6 is a parameter
that controls the relative strength between the bilinear and
biquadratic interactions. This model exhibits a rich phase
diagram when 6 is varied between —m and m. In particular,
6 = 0 is the Heisenberg point [13], and 6 = arctan% is the
Affleck-Kennedy-Lieb-Tasaki model [23] with a known exact
ground state.

The quantum phase transition we concentrate on is be-
tween the Haldane phase, —7% < 6 < 7, and the dimerized
phase, —37” <6 < —7% (see Fig. 2). The system is gapped
in the Haldane phase with a unique ground state under the
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FIG. 3. (a) Numerical results for scaling function f(w) of the
bilinear-biquadratic spin-1 chain, Eq. (7), for three system sizes.
The black solid line is Eq. (6). Positive (negative) w represents the
Haldane (dimerized) phase. (b) Same data in a log f vs |w| plot. The
upper (lower) branch corresponds to the Haldane (dimerized) phase.
Notice that the scaling function f(w) decays as ¢! in the Haldane
phase and as e=?"! in the dimerized phase for |w| > 1.

periodic boundary condition (PBC) and fourfold degenerate
(in the thermodynamic limit) ground states under the open
boundary condition (OBC). The model undergoes the topo-
logical transition at § = —7 to a gapped dimerized phase
with doubly degenerate (in the thermodynamic limit) ground
states under the PBC and a single ground state under the OBC
for an even number of spins. At the critical point 6 = —7,
the model is integrable via the Bethe ansatz, and is known
as the Takhtajan-Babudjan model [24,25]. The critical model
is gapless and the spin-spin correlation function exhibits
power-law behavior. The low-energy physics is described by
the SU (2), Wess-Zumino-Witten (WZW) model [18], with a
central charge ¢ = 3/2.

We evaluate the ground-state energy and the correlation
length of the model with the help of the variational MPS
approach and the VUMPS algorithm. Details of the method
and the scaling function evaluation are described in the next
section. Our results are presented in Fig. 3. Even for our
largest systems there is still a slow size dependence of the
scaling function. It very much looks like it tends to converge to
the limiting form, given by noninteracting fermions, Eq. (6).

This result is not entirely surprising. Based on the Affleck-
Haldane realization [18-20] that the critical point is described

by ¢ =3/2 CFT, Tsvelik argued [21] that the vicinity of
the transition may be described by three species of massive
Majorana spinors, x4, where @ = 1, 2, and 3. This statement
is based on the analysis of relevant perturbations around
the SU(2), conformal point. For level-k WZW theory, the
primary fields are classified by their spin representation j and
have conformal dimensions 2j(j + 1)/(2 + k). For k = 2, the
spin-1/2 field has the dimension 3/8, while the dimension
of the spin-1 perturbation is 1. The former is nonlocal in
Majorana fields and odd upon translation by one lattice site.
As a result, it cannot be present in translationally invariant
models. The spin-1 perturbation, on the other hand, is even
under translations, local and quadratic in Majorana’s, x“x*.
There is also a composite marginal (dimension 2) operator
allowed by the symmetries of the form J/J/, where the chiral
currents are J¢ = ie®* "y, x“ and yy = o, and y; = ioy. As
a result, the low-energy Lagrangian close to the transition
acquires the form

L= i Vudux® —mg*x* — ML, ®)
where the mass m o« A0 =6 4+ /4 and A is a marginal
coupling. As shown in Ref. [22], the role of the
marginal four-fermion term is to renormalize the excitation
gap A as

A = m(1l + ralogm), ©)]

where a is of the order of the lattice spacing. We show in the
next section that the inverse correlation length, 1/ o< A, may
be indeed reasonably well fit with with this expression.

After the renormalization, Eq. (9), the low-energy spec-
trum of the model is given by the three species of Majoranas
(with the renormalized mass). Remarkably this statement goes
beyond the bulk of the spectrum, but also encompasses the
finite-size effects, including the energies of the edge states.
This illustrates a remarkable universality of 1 + 1 topological
transitions. This universality is not limited to the transition
point, but extends away from it as long as the correlation
length is large. The peculiarities of individual models are
packed into a number of Majoranas and a specific (nonuniver-
sal) dependence of their correlation length (inverse excitation
gap) on the parameters.

III. CHAINS WITH ODD NUMBER OF SPINS

The scaling function in odd-size chains appears to be
significantly different from that in even-sized ones (Fig. 4).
Below we explain that this difference may be accounted for in
a straightforward way, which is however distinct on the two
sides of the topological transition. The average bulk energy
per spin, €(£€), is, of course, the same for even and odd chains.
One should be more careful, though, regarding the boundary
term, b(£). In the Haldane phase, where each spin-1 may
be thought of as two spin-1/2 with bonding between two
spin-1/2 at neighboring sites [Fig. 2(a)], the boundary term
is insensitive to the parity of the chain. In the dimerized phase
[Fig. 2(b)], however, there is clearly a difference depending
on whether all spin-1’s can be dimerized (even) or one is left
“free” (odd) (Fig. 5).

An unpaired spin in the dimerized phase of the odd chain
is actually a magnon excitation with the dispersion relation

235145-3



YUTING WANG, HAO ZHANG, AND ALEX KAMENEV

PHYSICAL REVIEW B 101, 235145 (2020)

Jw)

FIG. 4. Scaling function f(w) of open odd chains with different
system sizes. The black solid line is the analytical result. Its w < 0
and w > O parts are given by Eqs. (10) and (12), respectively.

&r = /A2 + k2. For a finite-odd-size open chain the mo-
mentum quantization is given by the condition e?* = —1
leading to k, = (n + 1/2)m /L. The ground state corresponds
thus to kg = 57, resulting in the ground-state energies Eoqq =
Eeven + €k,, which leads to the scaling function for w < 0:

bl

L 2
Joda(w) — feven(w) = LILH;o E|:A — A2+ <27T_L) :|

2 . w

where we employ ¢ = % and w = LA. This gives for the
critical point f,qq(0) = —72—1, which agrees with the spin-1

Kondo model [26] and with our numerical result within 3%
error [27]. Equation (10) fairly well agrees with the variational
matrix product data, as can be seen on the w < 0 side of
Fig. 4.

On the Haldane side of the topological transition, w > 0,
the difference between odd and even cases may be understood

E(L,0) — Le(®)
1.8

- : 17
.1.6 LI A L=511
o e =512
15 .
14 .
13 .
12 .
0
—04 —03 ~02 ~0.1 00 7

FIG. 5. The difference E(L,0)/L — €(6) vs 0 for even and odd
sizes L. The two coincide in the Haldane phase, but are distinct on
the dimerized side. This illustrates that the boundary term b(§) is
sensitive to the chain parity in the dimerized phase.

in terms of the edge spin-1/2 degrees of freedom [28,29].
For a finite-size chain there is a residual exponentially weak
interaction between the edge spins given by [28,30]

Ei = (—1)L% P T (11)

where a is a numerical constant to be determined below
and 1/L = vp/L is the energy scale of the interactions. The
(—1)F factor tells that the ground state alternates between
the singlet and the degenerate triplet in even and odd cases,
correspondingly. From here one finds for the difference of the
ground-state energies EQ — ESven = 7 e~ L% This leads to
the scaling function difference for w > 0,

Fodd(W) = Foven(w) = —%e—“’/z, (12)

where we fixed a = 7 /2 to have the correct value foqq(0) =
—72—’1, established above [recall that feyen(0) = %]. This result
is plotted in Fig. 4 on the w > 0 side. It agrees well with the
variational matrix product simulations.

We conclude that Egs. (10) and (12) [where feyen(w) is
given by Eq. (6)] fully account for the difference between odd
and even scaling functions on the dimerized and Haldane sides

of the topological transition, correspondingly.

IV. ALGORITHMS
A. Variational MPS approach

Here we provide a brief recap of the variational MPS
approach [13-15]. Consider a one-dimensional chain of L
sites and d-dimensional local state space | o;) on site i. For
interacting systems, the Hilbert space of the chain grows
exponentially with the number of sites. A generic pure many-
body state is

W)= > CornylOr.... 0L), (13)

with d¥ coefficients Coy.....o,.- One can find a more local repre-
sentation of the state by using singular value decomposition
(SVD); for any arbitrary rectangular matrix M there exists
SVD: M = USV'. Suppose M is of dimension m x n, then
U is of dimension m x min(m, n) and is left normalized,
ie., UTU =1,V is of dimension n x min(m, n) and is right
normalized, i.e., VVT =1; and S is a diagonal matrix of
dimension min(m, n) with non-negative entries s,, called sin-
gular values.

By applying successive SVDs to the array of coefficients,
the quantum state in Eq. (13) can be represented as a product
of local tensors, or the so-called matrix product state:

W)= > MM MM o, ...

01, ,0L

o). (14)

The tensor M" . on site i has three indices. Here o; is a
physical index, which corresponds to the dimension of the
local state space d. While a;_;, a; are two auxiliary indices.
They count the left and right bonds through which the local
state is connected to the left and right neighboring sites.
The dimension of the bonds blows up exponentially with the
distance to the edges: dim(bond ;) = min(d‘, d*~'), which
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FIG. 6. Graphical representation of (a) a general matrix product
state and (b) a general matrix product operator. Solid circles and

squares represent local tensors. Vertical bonds represent physical
indices while horizontal bonds represent auxiliary indices.

means the decomposition itself does not reduce the com-
plexity of calculation. In order to avoid exponential growth,
it is demanded that the bond dimensions have a ceiling of
D. The auxiliary space can be truncated due to the fact that
the singular values of matrix M decay very fast. There-
fore the exact SVD can be replaced by an approximate
one: My, | a0 ~ Zf: . Ua,-_l,aSa,aV;ai- Note that the summation
index a runs over the largest D singular values instead of
min[dim(bond a,_;), dim(bond a;)]. With this approximation,
the bond dimension of the MPS representation is limited by
D. The fast decay of singular values is guaranteed by the area
law [31-35] for gapped systems; in critical systems, the decay
is slower and the choice of D depends on the system size.
Also one should keep in mind that, in general, tensor M are
different on each site.

In a similar way, an arbitrary operator O can be brought to
a matrix product operator (MPO) form (Fig. 6):

A

0= ZWUI»G{WUNE WO WLl oY (g],  (15)

0,0

where |0) = |0y, ...,01). The only difference is that the
tensor W;i’la"b_ on site i has two physical indices and two
auxiliary indices.

The search for the ground state of a Hamiltonian H is
equivalent to finding an optimal approximation of MPS | )

of dimension D that minimizes the energy:

g = WV (16)

(Vi)

An efficient algorithm to realize it is by doing variational
search in the MPS space. To be more specific, we keep all but
a tensor of small number of sites (usually one or two) constant,
then take the extreme of (y|H|v) — A{y|y) with respect to
the selected tensor, where X is a Lagrangian multiplier. This is
equivalent to solving an eigenvalue problem whose eigenvalue
A is the current ground-state energy and eigenvectors give the
updated tensor (Fig. 7). When the updates are done iteratively
through the entire chain from one end to the other end, it is
said a sweep is completed. One continues doing sweeps along
the chain until convergence of energy is reached.

Variational MPS calculations in this paper were performed
using the ITensor Library [36].

e Nes

FIG. 7. Graphical representation of the eigenvalue problem for
optimization of a single-site tensor. The unknown tensor is cir-
cled with red color. Usually two-site tensors are used in practical
calculations.

B. VUMPS algorithm

We now recap the VUMPS algorithm [16], which deals
with systems in the thermodynamic limit L — oo. In this case,
the ground-state approximation is constructed by a translation
invariant uniform MPS, i.e., the same single MPS tensor M°
(or a unit cell of several tensors) on all sites:

W) = Z( - M1 MO MO )|g> (17)

By local gauge transformation, the above state can
be brought into a left/right canonical representation with
left/right normalized tensors A/B that satisfy:

ZAJTAU =1, ZAUIOAAUT = pa,
o o

ZB“B” =1,
o

Here p4 and p, are the reduced density matrices of the
bipartited system.

With the help of left and right normalized tensors, we cast
the state into a mixed canonical representation (Fig. 8):

) = Z ( . .Ao'i—]MgiBai+l )|(T), (19)

o

D B osB  =pp. (18)

o

where the center site tensor M2 is related to the left/right
normalized tensor by a bond matrix C:

MZ = A°C =CB°. (20)

In fact, bond matrix C relates the left and right normalized
tensors A and B by a gauge transformation A° = CB°C~! and
allows the arbitrary shift of the center site tensor on the chain.
Furthermore, by applying the normalization condition and the

(a)ooo—‘—‘—é—‘—‘—ooo

A A M, B B
) O - @—0— = ——&-
M, A C C B

FIG. 8. (a) Graphical representation of the ground state in the
mixed canonical representation. (b) Relationship between the center
matrix M¢ and the bond matrix C.
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FIG. 9. Log-log plot of the variational ground-state energy of
uniform MPS as a function of inverse bond dimension. The blue “+4”
symbols represent the numerical data (at & = —m /4 + 0.3). The plot
follows the power-law fit e(D™') = & + a(D~")?, where a and b are
fitting parameters.

fixed point relation in Eq. (18), one can verify that py = CC*
and pg = C'C.

In order to find the ground state in the thermodynamic
limit, we again apply the Hamiltonian to the uniform MPS
we constructed in Eq. (19) and solve the effective eigenvalue
problem. But instead of sweeping through the entire chain
(which destroys the translational symmetry of the state), we
only solve for the center site tensor M¢ and the bond matrix
C. We then compute the left and right normalized tensors
by Eq. (20) and update the state globally. Convergence is
considered to be reached when the tensor M¢ no longer
changes.

C. Details of the simulations

The ground-state energy of the finite-size system is calcu-
lated by the regular variational MPS approach with truncation
error at order 10712, To obtain the average bulk energy density
€, we consider the ground-state energy of uniform MPS at
different bond dimensions D. By plotting the energy density
€ as a function of inverse bond dimension and fitting the
relationship using a power law, € is extrapolated by letting
bond dimension D — oo (see Fig. 9). The average ground-
state energy per spin, €, is plotted as a function of the tuning
parameter 6/ in Fig. 10 (a similar result was obtained in
Ref. [37]). At criticality, 6 /m = —1/4, the ground-state en-
ergy is known [24,25] from the Bethe ansatz to be € =
—2+/2 = —2.828427; our numerical result is —2.828 426.

The boundary term b is found by subtracting the total
bulk energy from the ground-state energy for some large
system size. Figure 11 shows that E(L, 0/m) — Le(6/m) gets
saturated as the system size increases. The limit size used in
this paper is L = 512.

The correlation length can be calculated through the eigen-
values of the transfer matrix of the uniform MPS state. The
transfer matrix is defined as

T=ZM“®M", 1)

€0) 0
~04 203 Z02 01 -
L ]
~20 .
[ ]
[ ]
_25
[ ]
[ ]

° b
e . e * 30

FIG. 10. The bulk energy per spin, €, vs parameter 6. The critical
point is at 8 /7 = —1/4. The left (right) side of the critical point is
the dimerized (Haldane) phase.

where M? is the repeated tensor on each site in Eq. (17). One
can prove that the eigenvalue of the transfer matrix is bounded
by 1 given that the wave function is normalized [15]. Suppose
that the eigenvalues of T are sorted in descending order A; >
Ay = A3 = ---, with A; = 1 being nondegenerate. Then the
correlation function between two operators O with distance
Jj—iis

. T[ifl]T[i]T[iJrl] . T[jfl]T[j]T[jJrl] o
= > (TN oA T kT ). (22)

k

(Y1010 y) =

Here |k) and (k| are the right and left eigenvectors of
transfer matrix 7 which corresponds to eigenvalue A;. Thus
the correlator is a superposition of exponentials with the decay
lengths & = —1/In ;. And the MPS two-point correlation

E(L,0) — L&(0)
et e, 1.7
- :1'61 L

° L=16 15 e ' .

L=32 ° .

L=48 14 . !

L=64 13 ‘e

* L=80 12 | .

o L=96 .

04 -03 02 -0.1 00

FIG. 11. The difference E(L,0) — L€(0) vs 6 plotted for dif-
ferent system sizes L. As the system size increases the subleading
term cf(L/&)/L is negligible. The difference thus saturates to the
boundary term b(6) [cf. Eq. (3)].
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x1072
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FIG. 12. Log-log plot of the inverse of the correlation length A as
a function of the inverse of log(D). The blue “+” symbols represent
the numerical data (at 6 = —z /4 + 0.3). The plot follows the power
law fit A(x) = A + ax?, where a and b are fitting parameters.

function have the following generic form:

(¥ |0[’10[f]|1/f)

w7 Zc 2y

where r = |j —i— 1] and ¢; = (1|T k)(k |} 1). The
correlation length is defined by the largest decay length & =
—1/1nX,. As the bond dimension D of tensor M increases,
the correlation length is saturated. To be more specific, the
inverse of the correlation length is related to the inverse of
log D by a power law [38]. If We denote A =&~ ! and x =
(logD)~ ! then A(x) = A + ay? as is shown in Fig. 12.

The calculated inverse correlation length £=' vs A@ is
shown in Fig. 13. In Fig. 14 we fit (£A6)~! with a; +
a log A, which is the expected dependence due to the renor-
malization by the marginal composite four-Majorana operator,
Eq. (9). The fit is rather satisfactory, though we do not know
how to independently verify the fitting parameters a; and a,
on the two sides of the transition.

g—l
°
0.15
L]
0.10
[ ]
[ ]
0.05
L]
[ ] [ ] [ ]
L] ° ° . . . ] Ae
-06 -04 -02 02 04 06 08

FIG. 13. Inverse correlation length £~! vs deviation from the
critical point A@ =6 + /4. Here A6 > 0 (<0) represents the
Haldane (dimerized) phase.

(A0~
0.10

0.05

04 Z02 02 04 A¢

FIG. 14. (€A0)! vs deviation from the critical point Af =
0 + /4. Here Af > 0 (<0) represents the Haldane (dimerized)
phase. The blue “+” symbols represent the numerical data. Data are
fitted with a; + a, log A6. As mentioned in the main text, the fitting
parameters a; and a, are different on two sides of the transition:
la;] = 0.056 and |a,| = 0.0083 on the left (dimerized phase) and
a; = 0.14 and a, = 0.043 on the right (Haldane phase).

Finally we show in Fig. 15 the convergence of the scaling
function, Eq. (3), towards the free Majorana result, Eq. (6), for
small system sizes [the larger sizes are shown in Fig. 3(a)].

V. CONCLUSION AND OUTLOOK

In this paper, we study the finite-size scaling function
across the topological phase transition in bilinear-biquadratic
spin-1 chain. The conformal transition point is known [21] to
be described by three copies of Majorana fermions. We have
performed high-precision variational matrix product calcula-
tions and found that this description still holds away from
the transition in the scaling regime, where the correlation
length is much larger than the microscopic scales. Moreover,
it correctly describes the finite-size effects, in particular, the
universal finite-size scaling function [9]. We have also ob-
served that there is a marked difference between even- and

-2 ! 2 4 6 8 10

FIG. 15. Scaling function f(w) is plotted, where w = L/&.
Points of different colors represent calculations for different system
sizes. The solid lines are guides for the eye. The black solid line is
the analytical result, Eq. (6).
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odd-size chains. This difference may be fully account for by
simple considerations, incorporating the essential physics of
the dimerized and the topological phases. In particular, in the
topological Haldane phase it may be entirely attributed to the
residual interactions of the edge spin-1/2 excitations.

In finite-size systems the fourfold degeneracy of the
Haldane phase for the OBC is lifted with the splitting
~exp(—L/2&). In even chains the ground state is a unique,
singlet state of the two edge spin-1/2 excitations, while in
odd chains it is the triple degenerate triplet. In the dimerized
phase the ground state is again unique (spin zero) in even
chains and is again the triplet in odd chains. Thus, for the
finite-size case the exact degeneracy of the ground state is
not changed at the transition, as it should be. Away from
the transition, extra states may become exponentially close to
the ground state. The scaling function probes the restoration of
the thermodynamic limit degeneracy away from the transition.

For the PBC, the Haldane phase is gapped with a unique
ground state. In the dimerized phase the ground state, while
unique for the finite-size case (and an even number of spins),
becomes twofold degenerate in the thermodynamic limit. This
may indicate a nonsymmetric scaling function under the PBC.
On the other hand, the critical theory of the three Majorana
fermions exhibits a perfectly symmetric scaling function for
both even- and odd-sized cases [9]. It would be interesting to
simulate a large enough PBC model to resolve this issue.

It would be also instructive to check the scaling function in
other interacting systems, where the low-energy field theory
may not be described by free fermions. Examples include the
spin-1 XXZ chain with the uniaxial single-ion-type anisotropy
[39—41] and the bond-alternating spin-1/2 Heisenberg
chain [42].
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APPENDIX: DETAILS OF THE VARIATIONAL
MPS APPROACH

The MPO representation of Hamiltonian (7) is shown
below:

X :W[l]WD].,,W[L], (A1)

where matrix WU, i € [2, L — 1], has zero entries except the

first column WA%] and the last row Wllﬂ ALl

cosf ., cos . sinf ,
wil = [0 S8t =28 s Ts+2
sinf ., A sinf ., .. sinf . . sinf . »
StS- S+§e S-S+ S
4 2 4 4
sinf ,_ .. sinf ._ . Sinf . PP
§-§: 8§t 288 sin08? T|.
2 2
The matrices on two ends are as follows: W!!l = Wf‘;[;]l,l is

a pure row matrix and W!*! = W/ is a column matrix.
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