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Enhancement of magnetization plateaus in low-dimensional spin systems
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We study the low-energy properties and, in particular, the magnetization process of a spin-1/2 Heisenberg
J1 − J2 sawtooth and frustrated chain (also known as a zigzag ladder) with a spatially modulated g factor.
We treat the problem both analytically and numerically while keeping the J2/J1 ratio generic. Numerically,
we use complete and Lanczos diagonalization as well as the infinite time-evolving block decimation method.
Analytically, we employ (non-)Abelian bosonization. Additionally, for the sawtooth chain, we provide an
analytical description in terms of flat bands and localized magnons. By considering a specific pattern for the
g-factor modulation for both models, we show that a small inhomogeneity significantly enhances a magnetization
plateau at half saturation. For the magnetization of the frustrated chain, we show the destruction of one-third
of the full saturation plateau in favor of the creation of a plateau at half saturation. For large values of the
inhomogeneity parameter, the existence of an additional plateau at zero magnetization is possible. Here and at
higher magnetic fields, the system is locked in the half-saturation plateau, never reaching full saturation.
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I. INTRODUCTION

Frustrating interactions in quantum magnets have revealed
a plethora of exotic phenomena with no classical analog
[1,2]. One such example is the appearance of magnetiza-
tion plateaus, i.e., regions in the magnetization process of a
paramagnetic system at which the magnetization stays put
at some fractional value Mp of the saturation magnetization
Ms despite the increase of the magnetic field. Magnetization
plateaus have been observed in several systems independent
of their dimensionality, described by very different geome-
tries, e.g., in Shastry-Sutherland-type models [3–5], triangular
[6–9], square [10,11], checkerboard [12,13], and Kagome
geometries [14–17], down to one-dimensional (1D) frustrated
systems [18–20] and many more (see also Refs. [21–25]
for comparative studies). While significant knowledge may
have been gathered on the ground state of these systems,
the situation often becomes more challenging at the mag-
netization plateau, where a prerequisite for the existence of
a plateau is the opening of a gap in some parts of the
spectrum.

Here we use the sawtooth as well as the frustrated chain
(see Fig. 1) as prototypical models to investigate the effect of
a spatially modulated g factor in systems that exhibit magne-
tization plateaus. Not only are these models the cornerstones
of 1D quantum magnetism but they have also been used to
understand physics in higher dimensions. According to the
Oshikawa-Yamanaka-Affleck theorem [26,27], a 1D spin-S
system with a p-periodic ground state could exhibit magne-
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tization plateaus for values of the magnetization M which
satisfy the condition pS(1 − M/Ms) ∈ Z. The sawtooth chain
exhibits a magnetization plateau at half saturation Mp = Ms/2
for a wide range of the ratio J2/J1 [28], while the frustrated
chain exhibits a magnetization plateau at Ms/3 [29].

In this paper, we primarily focus on the sawtooth chain, but
we keep the analysis as general as possible to simultaneously
treat the frustrated chain and discuss the similarities as well
as the differences between the two models. Although the
sawtooth chain, as well as variants of it, have been studied the-
oretically early on [30–44], they remain of great interest today
[45–53]. From an experimental point of view, the situation re-
mains challenging, with only a limited number of compounds
being reported up to today to materialize dominant magnetic
interactions in a sawtooth pattern. Prominent examples are
the delafossite YCuO2.5 [54–57], the double spin chain sys-
tems KCuCl3 and TlCuCl3 [19], the multiferroic Mn2GeO4

[58–60], the olivines ZnL2S4 (L = Er, Tm, Yb) [61], and
the Fe chains Rb2Fe2O(AsO4)2 and Fe2O(SeO3)2 [62,63].
Remarkably, and despite great efforts, a magnetization
plateau has not been reported for any of these systems. Very
recently, a study on the magnetic structure of the natural min-
eral atacamite showed that its magnetic structure is that of the
sawtooth type with aniferromagnetic couplings between the
spin-1/2 moments, with, however, a puzzling magnetization
plateau [64].

Our paper is organized as follows. First, in Sec. II, we
present the model and its basic properties. In the first part of
our results, we present analytical calculations (Sec. III), first
in terms of field theory, Secs. III A and III B, and then in terms
of localized magnons in Sec. III C. In the second part of our
analysis, we present numerical results (Sec. IV) for a uniform
or modulated g factor and for both the sawtooth as well as the
frustrated chain. We conclude in Sec. V.
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FIG. 1. A generalized 1D chain with anisotropic next-nearest-
neighbor interactions. The upper base-base coupling is parametrized
as J ′

2 = (1 − α)J2, with α = 0, 1. For α = 0 (J ′
2 = J2), the frustrated

chain with NNN interactions, or zigzag ladder, is recovered while
for α = 1 (J ′

2 = 0) the sawtooth chain is recovered. The g factor is
considered to be either uniform g′ = g or to vary on every other site
of the lower chain with g′ = g − δg and δg > 0, indicated by black
and blue colors. For the upper chain, we consider a uniform g value.

II. MODEL

Our starting point is the generalized 1D Heisenberg chain
with nearest J1 neighbor (NN) and anisotropic next-nearest-
neighbor (NNN) interactions J2 and J ′

2 = (1 − α)J2, Fig. 1.
The Hamiltonian that describes this system in the presence of
a uniform magnetic field along the z-axis B = Bẑ reads

H = −
∑

j

g jμBBSz
j + J1

∑
j

S j · S j+1

+ J2

1 + α

∑
j

[1 + (−1) jα]S j · S j+2, (1)

where S j are spin- 1
2 operators residing on the lattice sites,

μB is the Bohr magneton, and we set h̄ = 1. We consider
only two values for the parameter α = 0, or 1. The sawtooth
chain is recovered for α = 1 (J ′

2 = 0) and the frustrated chain
(or zigzag ladder) for α = 0 (J ′

2 = J2), respectively. Although
we are mainly interested in the case of the sawtooth chain,
we keep α as a parameter in our analysis to draw analogies
between the two models. The ratio of the two couplings f =
J2/J1 can also be perceived as the degree of frustration. A
central point of this paper is our consideration of a particular
spatial variation of the g factor. Namely, g j exhibits two
patterns: a uniform one g j = g and a modulated one, where the
value of the g factor on every second site of the lower chain
has a different value g′, with g′ = g − δg and δg > 0. Note
that the sawtooth chain has no leg inversion symmetry and
therefore such a modulation only on one part of the system is
not unlikely to happen in material realizations, albeit it would
probably be relatively weak. On the other hand, tuning the g
factor might be an option for, e.g., electric field manipulation
on the nanoscale in molecular quantum magnets [65]. Since
our focus is the fundamental properties of the model, we
consider δg to be a free parameter, allowing for values as high
as g, to provide a complete picture of our theoretical findings
(for δg > g, the g factor exhibits a staggering sign).

The two models, the frustrated chain and the sawtooth
chain, share some common properties. They both exhibit
either a unique gapless spin fluid [Tomonaga Luttinger liquid
(TLL)] ground state or a gapped dimerized one when the
degree of frustration is in the range fc1 < f < fc2 , with fc1 ≈
0.48 and fc2 ≈ 1.53 for the sawtooth chain and fc1 ≈ 0.24 and
fc2 = ∞ for the frustrated chain (note that the upper critical
points fc2 are rather challenging due to the exponentially small

gaps) [40,66–68]. Both models allow for analytical solutions
of their ground states at special values of the frustration ratio
( f = 1 for the sawtooth chain and f = 1/2 for the frustrated
chain) with double degenerate ground states [32,69–71]. The
low-lying excitations are kinks and antikinks in the form
of domain walls spatially separating regions of one type of
ground state. Their dispersion, however, differs with the kink
excitations being gapped in the sawtooth and gapless in the
frustrated chain [36]. Another difference between the two
models appears in the magnetization process of each system.
While the sawtooth chain exhibits a plateau at Mp = Ms/2,
the frustrated chain exhibits one at Mp = Ms/3. For complete-
ness, we mention that the value of the plateau Mp depends
on the geometrical properties of the model and therefore is
independent of the coupling ratio f in contrast to the plateau’s
width, which depends on the size of the gap in the presence
of the magnetic field, and therefore depends on the degree of
frustration.

III. ANALYTICAL RESULTS

First, we treat the problem analytically by employ-
ing Abelian and non-Abelian bosonization focusing on the
J1 � J2, J ′

2 regime.

A. Non-Abelian bosonization

Let us first detour by revisiting the field theory of the saw-
tooth chain in the absence of a magnetic field in the context
of non-Abelian bosonization [72–76]. Within non-Abelian
bosonization, both the U(1) and the SU(2) symmetries of
the underlying Hubbard model are considered in terms of the
bosonic field ϕc and the matrix field g. The charge sector is
gapped out and the spin operators can be written in terms of
chiral SU(2) currents JL/R and the staggered magnetization
n = Tr(σg), with σ Pauli matrices, as

S(x) ≈ JL(x) + JR(x) + (−1)x � n(x) , (2)

where the bosonization constant � is of the order of one and
it is related to the mass of the charge sector. The field theory
is completed by considering one more additional operator,
the dimerization ε, given by the nonoscillating part of ε(x) ∼
(−1)xS(x) · S(x + a) ∼ Tr(g) [74,77].

In the J1 � J2, J ′
2 regime, the system can be considered as

a Heisenberg chain with a coupling constant J1 perturbed by
the couplings J2, J ′

2, where each one of the latter couples NNN
sites that belong only to one of the two sublattices (the upper
or the lower chain). In the continuum, the perturbation of the
fixed point Hamiltonian H0(J1) reads

δH = 1

1 + α

∫
dx[λJJL · JR(x) + λ∂ε∂ε(x)]. (3)

The bare couplings λ depend on the microscopic couplings
J1, J2, J ′

2 and the bosonization constant �,

λJ ∼ Jc − J2, λ∂ε ∼ α
3�2

2π
J2,

with Jc the critical coupling for each model to enter the dimer
phase. The current operator is generated by the interaction
term of the NN Hamiltonian as well, ∼ ∑

Sz
jS

z
j+1, and the

NNN couplings modify its bare value. For the frustrated chain
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(α = 0), translation symmetry by one site is restored and the
Luttinger liquid fixed point is solely disturbed by the current
operator, which is known to open a gap at Jc

zz/J1 ≈ 0.241 167
and drive the system in a dimerized phase [67]. On the other
hand, for the sawtooth chain (α = 1), the strength of the
current operator due to the NNN interactions is reduced by a
factor of 1/2 while the ∂ε operator appears. The effect of this
operator, which is a total derivative, has triggered a big dispute
in the literature [39,78–81]. Leaving aside for a moment the
∂ε operator, the operator contents of the two models are
identical and the only difference arises in the bare coupling
λJ . This means that the sawtooth chain would undergo a phase
transition to a gapped dimerized phase at Jc

st = 2Jc
zz ≈ 0.48,

which coincides remarkably with the value predicted from
numerical simulations [40]. In retrospect, one can argue that
the ∂ε operator has no effect on the deformation of the critical
lines and can, therefore, safely be ignored.

B. Abelian bosonization

Next, we move to the case of interest, i.e., the sawtooth
chain in the presence of a magnetic field with a nonuniform g
factor. Here we assume a spatially modulated g factor, which
exhibits an alternating pattern taking values g or g′ = g − δg
on the lower chain, as described in Fig. 1. This leads to an
effective site dependent magnetic field, given by

h(x) = h − δh

4

[
1 + 2 cos

( π

2a
x
)

+ cos
(π

a
x
)]

, (4)

with h = gμBB and δh = δgμBB. Therefore, it becomes ap-
parent that the effective magnetic field has a finite over-
lap not only at momentum q = 0, but at q = ± π

2a and ± π
a

as well, with the corresponding Fourier components hq =
h − δh

4 , δh
4 , and δh

8 .
Because of the presence of the magnetic field, SU(2)

symmetry is broken, and we turn to Abelian bosonization
[75,76,82]. The low-energy properties of these systems in the
presence of a uniform magnetic field have been described
extensively in the literature [39,44,78,79,83,84]. Here, we
include only what is essential for our work.

In the field theory representation, the spin system is written
in terms of chiral fermionic operators which in turn are
bosonized in terms of the field φ and its dual field θ with
[φ(x), θ (x′)] = −iϑ (x − x′) and ϑ the Heaviside step func-
tion. This procedure for Hamiltonian Eq. (1) yields the famous
TLL Hamiltonian H0, perturbed by several operators,

H = H0 +
∑

j

∫
dxλ jO j (x), with (5)

H0 = v

2

∫
dx

[
K[∂θ (x)]2 + 1

K
[∂φ(x)]2

]
,

and v = v(m, J1, J2), K = K (m, J1, J2) the Tomonaga-
Luttinger parameters [78,84]. The perturbative part of the
Hamiltonian reads

O1 = ∂φ, Oq
2 = cos[βφ(x) − (2kF − q)x], (6a)

O3 = cos [2βφ(x) − (4kF − G)x − 2kF a], (6b)

O4 = cos [2βφ(x) − (4kF − G)x − 4kF a], (6c)

O5 = cos [2βφ(x) − (4kF − π/a)x − 4kF a], (6d)

with

λ1 ∼ − h0√
π

, λ
q
2 = − hq

πa
, (7a)

λ3 = J1

2π2a
, λ4 ∼ J2

2π2a(1 + α)
, λ5 = αλ4. (7b)

Several comments are in order regarding this rich operator
content. (i) In Eqs. (6), β is a numerical constant, here β =√

4π , G is the reciprocal lattice vector, which for a system
with a unit cell involving ν � 1 sites reads G = 2π

νa , and the
Fermi wave vector kF = π

2a (1 − m) is given in terms of the
magnetization m = M

Ms
, with Ms = L/2 . (ii) The operators in

Eq. (6a) arise due to the magnetic field whereas the rest from
the Heisenberg interactions. (iii) The Oq

2 operator depends on
q due to the two Fourier components at q = π

2a and π
a of the

effective magnetic field. Furthermore, there are two different
λ

q
2 for each q component. (iv) Not all of these operators

survive at every magnetization and/or for any G. The rapidly
oscillating factors in the arguments of the cosines make them
vanish under integration, unless the terms in the parentheses
multiplying x vanish. (v) Four-fermion operators yielding in
the continuum operators that oscillate with a momentum q =
2kF [39,85] oscillate at the plateau and we drop them here for
simplicity. (vi) At finite magnetization, there are additional
contributions to λ1 due to the finite chemical potential in the
fermionic representation, which, however, play no role in the
discussion of the magentic field dependence.

To determine the behavior of the cosine operators, one
needs to consider its behavior under the renormalization
group (RG) where the momentum cutoff � is decreased
according to δ�(l ) = −�(l )δl . Assuming the sine-Gordon
Hamiltonian H = H0 + g

∫
dx cos[γφ(x)], the coupling g of

the operator cos γφ changes in first order according to δ ln g
δ ln �

=
dγ − 2, with dγ = Kγ 2

4π
the scaling dimension of this operator.

This means that the cosine operator is relevant for dγ < 2,
marginal for dγ = 2, and irrelevant for dγ > 2 [75,85]. For
example, for vanishing J2 = 0 where K = 1/2, the coeffi-
cient in the umklapp term in Eq. (6b) is γ = 2β = 2

√
4π ,

i.e., d2β = 2, namely, the operator is marginal, which agrees
with the literature [82].

Let us now discuss the effect of the magnetic field com-
bined with the site modulation of the g factor. The magnetic
field contribution is described in Eq. (6a). From there, we
see that the strength of the ∂φ operator is reduced from its
uniform value h by δh/4. This operator tends to make the
field fluctuate, preventing its pinning to some constant value,
which in turn would open a gap, and the formation of a
magnetization plateau would become possible. In other words,
∂φ is responsible for destroying magnetization plateaus, and
in the presence of the modulation is weakened. The second
contribution of the magnetic field comes in the form of
the cosine operator in the same equation where the spatial
modulation of the g factor yields the cos βφ term, which is
always relevant since K < 2 [83]. Therefore, since this oper-
ator is more relevant than the rest of the operators, it is highly
probable to prevail under renormalization and drive the system
in a gapped phase, when it is not oscillating. From the above, it
becomes apparent that the g-factor modulation has a twofold
effect on the interaction of the sawtooth with the magnetic
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field. First, it reduces the strength of the operator destabilizing
magnetization plateaus and, second, it yields new relevant
operators that can stabilize magnetization plateaus.

1. Sawtooth chain

We now apply the above to the sawtooth chain (α = 1). For
a uniform magnetic field (δh = 0), the lattice periodicity is
determined by the two-site unit cell of the microscopic model
and, therefore, G = π/a. The physics at zero magnetization
has been described in terms of non-Abelian bosonization in
Sec. III. As the uniform magnetic field increases, the ∂φ

operator, which can be absorbed by the substitution φ →
φ + λ1K

v
x, drives the system to an incommensurate phase still

described by a TLL fixed point. At some point, a gap opens
due to the operators in Eqs. (6b)–(6d) and the system enters
the plateau phase. This happens at m = 1/2 where 4kF = G =
π
a and the oscillating factors in the argument of the cosines
vanish [78,83].

By introducing the g-factor modulation, the reciprocal
lattice vector becomes G = π

2a and the operators O3 and O4

do not contribute. Hence, there is a competition between the
O5 and the more relevant Oπ/2

2 (dβ < d2β), which is expected
under RG to first reach the strong coupling limit. The gap of
the system scales as � ∼ e−�, where � is the point where the
perturbative RG breaks down, and the system is no longer
conformally invariant [82]. Therefore, since more relevant
operators reach the strong coupling limit faster, one could
expect a larger gap, meaning a broader magnetization plateau
at m = 1/2. This can also be understood from the sine-Gordon
model, where the soliton mass relates directly to the plateau
width [84] and the soliton mass scales inversely proportionally
to the argument of the cosine, at least to leading order in γ .
As a side remark, we mention that the operator Oπ

2 survives
at kF = π

2a , albeit with a reduced bare coupling as compared

to the coupling of Oπ/2
2 , and therefore with fine-tuning of

the microscopic parameters a magnetization plateau at m = 0
may, in principle, arise.

2. Frustrated chain

The frustrated chain (α = 0) at a uniform field is known
to exhibit a magnetization plateau at m = 1/3 due to an even
less relevant umklapp operator [18,29,86]. However, when the
site modulation dependence of the g factor is switched on, the
periodicity of the model changes, now G = π

2a , and the more

relevant operator Oπ/2
2 will be present and easily prevail. In

fact, the rest of the operators in Eqs. (6) vanish due to the
oscillating factors in the argument of the cosine, and it can be
safely assumed that the TLL fixed point is solely perturbed
by the Oπ/2

2 operator. Therefore, a wide plateau is expected at
m = 1/2 instead of m = 1/3.

C. Localized magnons

We now discuss how the magnetization plateau of the saw-
tooth chain can be explained in terms of localized magnons
that emerge from the frustrated Hamiltonian of Eq. (1) due
to a flat energy dispersion relation. Flat dispersions exist for
several strongly frustrated spin lattices [24,87], including the

FIG. 2. Localized magnon states realized in the Heisenberg saw-
tooth chain. The magnon lives on the restricted area indicated by the
green ellipses. State |1〉a

lm with energy εa
1 = h − 4J2 − (2/3)δh is the

lowest eigenstate in the sector M = L/2 − 1, while state |1〉b
lm is a

state with higher energy εb
1 = h − 4J2.

2D Kagomé lattice [25] and 3D pyrochlore lattice [41], and
frustrated electronic systems [88,89].

We first note that in the subspace M = Ms = L/2, with L
being the total number of spins, the fully polarized state |FM〉
becomes the ground state for sufficiently large magnetic fields
exceeding the saturation field hsat, and plays the role of the
vacuum state, |0〉 = |FM〉, for the magnon excitations. For
δg = 0, the one-magnon state reads

|1〉k =
1∑

i=0

1

Ni

L/2∑
j=1

ei2k jS−
2 j+i|0〉 , (8)

where S− = Sx − iSy, Ni normalization constants, and k =
4π l

L , with l ∈ Z in the range [0, L
2 ). For f = 1/2, it corre-

sponds to a completely flat magnon band ε1 = h − 4J2 [28].
A complete flat dispersion suggests that one can construct a
localized magnon state in a finite region of the lattice of the
form

|1〉lm = l†
2 j |0〉 = 1√

6
(S−

2 j−1 − 2S−
2 j + S−

2 j+1)|0〉, (9)

where the magnon is trapped in a valley indicated by the
green ellipses in Fig. 2. Under general assumptions, one can
demonstrate that |1〉lm is the lowest eigenstate in the sector
M = Ms − 1, and becomes the ground state in an appropriate
magnetic field [90,91].

Due to the localized nature of state |1〉lm, we proceed to
fill the remainder of the lattice with n localized magnons
|n〉lm = l†

2 j . . . l†
2 j′ |0〉, states of lowest energy in the sector

M = Ms − n, with energy εn = nε1 = n(h − 4J2) above the
energy of the ferromagnetic state. To avoid magnon-magnon
interactions, magnons are constructed with sufficiently large
space separation between them, and n cannot exceed nmax =
L/4. We now allow for a finite but small δg > 0. Although
states |n〉lm are no longer eigenstates of the Hamiltonian,
we can consider δg � g, and calculate their energy within
first-order perturbation theory. Two types of localized states
can be realized, depending on whether the valley area is
centered around a site with g′ (black) or with g (blue) (see
Fig. 2). After a straightforward calculation, we find that states
|n〉a

lm, centered around a site with g′, have the lowest energy
with εa

n = n(h − 4J2 − (2/3)δh), while states |n〉b
lm, centered

235143-4



ENHANCEMENT OF MAGNETIZATION PLATEAUS IN … PHYSICAL REVIEW B 101, 235143 (2020)

around a site with g, remain unaffected by δg and have energy
equal to εb

n = n(h − 4J1). Thus, states |n〉a
lm are the lowest

energy states in the corresponding sector of magnetization M.
Under the assumptions specified above, at the saturation

field,

hsat = 12g

3g − 2δg
J2 , (10)

there is a complete degeneracy of all localized-magnon states
with energy εn = 0. As a result, m jumps between the sat-
uration value m = 1 and the value m = 1 − nmax/Ms = 1/2,
with nmax = L/4. This is a macroscopic quantum effect and
the value of the jump vanishes if the spins become classical.
The result above shows that a finite δg shifts the saturation
field toward larger values, corroborating the field theory pre-
diction for a larger plateau if δg �= 0. For higher values of the
inhomogeneity parameter δg, first-order perturbation theory is
expected to fail. The full treatment of the problem is involved
and is done by means of second-order perturbation theory,
taking into consideration the overlap of localized states and
propagating states with energy higher than εn. However, this
is beyond the scope of this paper, and we leave it as motivation
for future studies.

IV. NUMERICAL RESULTS

To test the previous theoretical findings, we resort to
numerics. We employ two numerical methods, exact diago-
nalization (ED), namely, full and Lanczos diagonalization, as
well as the infinite time-evolving block decimation (iTEBD)
method [92,93]. For ED, we use symmetries, total Sz con-
servation, translation by two sites, spin flip for Sz = 0, and
parity combined with translation by one site, to reduce the
computational effort. In the presence of a uniform magnetic
field, the energy levels of the system change according to
En(h) = En(0) ± hM, where En(0) is an eigenvalue of the
Hamiltonian in the absence of the magnetic field. High-energy
states belonging to higher Sz sectors will lower their energy
in the presence of the magnetic field and will become the
ground state as the magnetic field reaches a certain value.
This process for a finite system yields finite steps in the
magnetization curve, which are not true plateaus but merely
finite-size effects. In turn, one needs to discriminate between
real magnetization plateaus and finite-size effects.

For a modulated g factor, the situation becomes numeri-
cally more demanding. First, the unit cell is enlarged, which
creates problems for both methods. Regarding ED, the num-
ber of k points is reduced, meaning larger Hilbert spaces
for each subsector, creating a memory threshold at smaller
system sizes. An additional issue is that the energy levels in
the presence of the magnetic field can no longer be evaluated
parametrically from the levels without the magnetic field due
to the site dependence of gj . This means that each value of the
magnetic field needs to be evaluated separately, leading to a
dramatic increase of the computational time for the larger sys-
tem sizes. Regarding iTEBD, the g-factor modulation causes
convergence problems due to the larger unit cell. To avoid this,
we rely solely on ED for δg > 0.

A. Sawtooth chain, uniform g factor

To correctly interpret the ED results, we first contrast the
magnetization under a uniform magnetic field of a sawtooth
chain for f = 0.5, 1, 2 obtained via ED for L = 28 spins to
that obtained via iTEBD for an infinite system, Fig. 3(a).
For all numerical simulations, we assume h = B. For the ED
results, we plot M(h) as dashed lines, exhibiting finite steps.
It has been argued that connecting the middle point of these
magnetization steps reproduces the magnetization curve in the
thermodynamic limit. In Fig. 3(a), we also show the middle
points of the magnetization steps, except at Ms/2 where the
plateau is expected, and we mark its limiting values. From
the agreement of the points to the iTEBD data, one can
safely argue that ED gives an excellent qualitative estimate
of M(L → ∞). The only exception to that is the size of
the plateau for f = 2, which ED tends to overestimate while
from the iTEBD it seems rather small. To make this visible,
we plot as an inset in panel Fig. 3(a) the magnetization for
f = 2 only in the highlighted region of the main panel. The
disagreement between the two methods is attributed to the
finite-size behavior of the gap at elevated magnetic fields,
which is rather small at this region of the parameter space.

Let us now describe the distinct features of the magnetiza-
tion curve of the sawtooth chain for each value of frustration
f . First, for the strongest frustration f = 2 (weak J1), we
observe a very steep increase of M at low magnetic fields. This
reflects the two decoupled-chain limit J1 → 0 where the upper
spins, being loosely coupled with the rest of the system, can
be very easily polarized. One additional point characteristic
of the energy scales is that M(h) is a concave function of
the magnetic field before the plateau and a convex function
after it. A similar behavior is observed for f = 1, with a
much wider plateau also apparent from the ED data [28]. As
the frustration value is further decreased f = 0.5 (strong J1),
the plateau still extends to a wide range of magnetic field
range but the magnetization now displays a convex behav-
ior for M(h) < Ms/2, and a concave one for M(h) > Ms/2.
Hence, the sign of the second derivative of the magnetization
sgn[M ′′(h)] provides a very useful criterion for the relative
strength of the exchange couplings in the system. Decreasing
further the degree of frustration (very strong J1), it would lead
to a decrease in the size of the plateau, since the system comes
closer to the nonfrustrated Heisenberg chain [94].

In terms of localized magnons for f = 0.5 (Sec. III C), and
using Eq. (10), we find the saturation field to be hsat/J =
4J2/J = 2.4, for J = (2J1 + J2)/3, which is exactly the nu-
merical value obtained from both methods. We also note
that at the saturation field, there is a complete degeneracy of
all localized-magnon states with energy εn = 0. As a result,
m = M/Ms jumps between the saturation value m = 1 and the
value m = 1 − nmax/Ms = 1/2, with nmax = N/4.

B. Sawtooth chain, modulated g factor

Now that the ED has been tested and its results can be
correctly interpreted, we will use it to study the magnetization
process in the presence of a spatially varying g factor. In
Figs. 3(b) and 3(c), we present results for the magnetization
in the presence of a modulated factor for different deviations
δg and for two values of the frustration ratio f = 0.5, 2,
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FIG. 3. Magnetization of the sawtooth (a)–(c) and the frustrated (d) chain versus the magnetic field. The magnetic field axis is rescaled by
J = (2J1 + J2)/3 for the sawtooth and by J = (J1 + J2)/2 for the frustrated chain. (a) Comparison of the sawtooth magnetization obtained via
ED for L = 28 sites (thin dashed lines and points) to that obtained via iTEBD (thick solid lines) for three values of the frustration parameter
f = 0.5, 1, 2 and a uniform g factor, δg = 0. The inset zooms in the highlighted region for f = 2. (b) Sawtooth magnetization via ED for
L = 24 and f = 0.5 for three different values of the g-factor modulation, δg = 0, 0.2g, 0.5g. (c) Sawtooth chain’s magnetization via
ED for L = 24 and f = 2 for four different values of the g-factor modulation, δg = 0, 0.2g, 0.5g, g. (d) Frustrated chain’s magnetization
via ED for L = 24 and f = 0.8 for two different values of the g-factor modulation, δg = 0, 0.5g. The points in each panel and for each curve
mark the middle of each magnetization step, except when a plateau is expected, where these points mark the beginning and the end of this step.

respectively. We observe that in both cases, a relatively
small deviation of δg/g = 0.2 already significantly extends
the plateau region. As δg is further increased, the plateau
grows even more while in the extreme case where δg � g,
i.e., a g factor with a staggering sign, the system is locked in
the half-saturation plateau and never reaches full saturation.
Classically thinking, this behavior is to be expected because
the spins on the sites which have a g factor of strength g
will polarize faster. However, to satisfy the antiferromagnetic
interactions of the system, the spins which experience a
weaker magnetic field will order antiparallel to the magnetic
field to reduce the energy, and therefore the Ms/2 plateau is
favored. Lastly, we also observe that the g-factor modulation
introduced here does not affect the sign of M ′′(h), which
seems to depend solely on the exchange couplings.

From Sec. III C and Eq. (10), the prediction for the values
depicted in Fig. 3(b) is that hsat/J = 2.8 for δg = 0.2, which is
in remarkably good agreement with the numerical results. For
δg = 0.5, the theoretical prediction is hsat/J = 3.6, which de-
viates from the numerical value hsat/J = 4.1, suggesting that
first-order perturbation theory employed here is insufficient.
From Fig. 3(b), it also becomes apparent that for high values
of δg, the degeneracy in n is lifted, and there is a number of
critical fields hcr (n) for which the magnetization M = Ms − n
changes subsector, with 1 � n � nmax. For the value of f
chosen in Fig. 3(c), the picture of localized magnons holds
no longer and, therefore, no comparison to the theoretical
predictions of Sec. III C can be made.

As far as the prediction of the field theory for a possible
plateau at M = 0 is concerned, if a plateau was to occur
at M = 0, this would happen for weak J2 couplings and
relatively strong δg. Comparing Figs. 3(b) and 3(c), we see
that the steep increase of M for strong frustration, Fig. 3(c),
leaves no room for a possible plateau at M = 0. In contrast,
for weaker values of f , e.g., f = 0.5 [Fig. 3(c)], M develops a
smoother onset and with that a finite step at M = 0. Additional
data (not shown here) indicate that for decreasing f and
increasing δg, this first step becomes wider, however, whether

or not this could lead to an additional plateau at M = 0
remains inconclusive.

C. Zigzag ladder

Lastly, in the fourth panel of the magnetization data,
Fig. 3(d), we apply the same idea but to the zigzag ladder
(J2 = J ′

2), which is known to exhibit a plateau at Ms/3 for a
uniform magnetic field [18,23]. Although the zigzag ladder is
invariant under chain inversion, the g-factor modulation con-
sidered here breaks chain reflection symmetry, enlarging the
unit cell of the otherwise translationally by-one-site invariant
model to four. As one can see in Fig. 3(d), the plateau at Ms/3
is destroyed in favor of creating a large plateau at Ms/2, as
predicted by the field theory calculation.

V. CONCLUSION

In conclusion, we presented a comprehensive theoretical
study of the J1 − J2 sawtooth as well as the frustrated chain,
focusing on their magnetization process. A unified field theory
for both models was developed, and we demonstrated that by
introducing a site dependence to the g factor, the magneti-
zation plateau of the sawtooth chain at Ms/2 grows for any
J2/J1 ratio while the Ms/3 plateau of the frustrated chain is
destroyed in favor of a Ms/2 plateau. For a modulation where
the g factor vanishes or becomes staggered, we found that
the system is locked in the Ms/2 plateau, never reaching full
saturation. We also emphasized the role of the curvature of
M for acquiring an estimate of the microscopic couplings.
We anticipate our results will provide guidelines for future
theoretical and experimental studies, aiming on new ways
to manipulate and extend the plateau region in frustrated
magnets, including regimes where the plateau is expected to
be small or even nonexisting.
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