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Dynamical spin susceptibility of a spin-valley half-metal
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A few years ago we predicted theoretically that in systems with nesting of the Fermi surface the spin-valley
half-metal has lower energy than the spin density wave state. In this paper we suggest a possible way to
distinguish these phases experimentally. We calculate the dynamical spin susceptibility tensor for both states
in the framework of the Kubo formalism. Discussed phases have different numbers of bands: four bands in the
spin-valley half-metal and only two bands in the spin density wave. Therefore, their susceptibilities, as functions
of frequency, have different numbers of peaks. Besides, the spin-valley half-metal does not have rotational
symmetry, thus, in general the off-diagonal components of the susceptibility tensor are nonzero. The spin density
wave obeys robust rotational symmetry and off-diagonal components of the susceptibility tensor are zero. These
characteristic features can be observed in experiments with inelastic neutron scattering.
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I. INTRODUCTION

The concept of Fermi surface nesting plays an important
role in the studies of systems with more than one electronic
band [1–24]. In the presence of nesting electronic liquid
becomes unstable and an ordered state emerges. The ordered
phases associated with the nesting are commensurate and
incommensurate spin density wave [1] (SDW), charge density
wave [25], inhomogeneous antiferromagnetism [2], as well
as others. Recently we argued that a half-metallic and the
so-called spin-valley half-metal (SVHM) may be stabilized
in a system with nesting [9,11]. Half-metals [26–28] are well
known for several decades. This class of metals is character-
ized by perfect spin polarization of the charge carriers on the
Fermi surface. Consequently, electric current in a half-metal
carries not only charge but spin as well. The latter property is
of interest for applications in spintronics. By the same token,
the electronic states at the Fermi surface of the spin-valley
half-metal are perfectly polarized with respect to the so-called
spin-valley index. Thus, the SVHM can conduct a spin-valley
polarized current. The spin-valley polarized currents are of
interest for applications [29]. In addition, the SVHM state
does not require strong electron-electron interaction for its
stability. Consequently, the SVHM can be realized without
transition metals in its chemical composition, which makes
such materials applicable in biocompatible devices.

Theoretically, the SVHM state was identified in a model
with perfect nesting and weak electron-electron interaction.
When the perfect nesting is partially destroyed by doping,
parental insulating SDW is replaced by the SVHM phase
[3]: Calculations within the framework of such a minimal
model show that the SVHM phase has lower free energy
than the SDW and the paramagnetic phase, at least, for low

temperatures [3]. Depending on details, the SVHM may be
either commensurate or incommensurate [3,9]. It competes
against several related phases, such as (i) commensurate SDW,
(ii) incommensurate SDW, (iii) inhomogeneous SDW.

As shown in Refs. [3,9], the SVHM has a number of
distinctive features which separate it from phases (i)–(iii). For
example, magnetic structure of the SVHM state possesses
a magnetic helical component, which superimposes on the
purely collinear SDW order. Besides this, the symmetry be-
tween single-electron states with different spin-valley index
is preserved in the ordered states (i)–(iii) but is lifted in the
SVHM. As a result, the number of nondegenerate single-
electron bands in the SVHM is two times bigger than in the
SDW.

It follows from our previous studies that the search for
materials realizing the SVHM state should be limited to the
electronic systems that demonstrate the nesting-driven SDW
sensitive to doping. There are several classes of materials
satisfying this requirement: chromium and its alloys [30–33],
some topological insulators [34], iron-based materials [35], as
well as other systems [36–38].

However, the SVHM has not been observed experimentally
yet. In this paper, we discuss a possibility of detecting the
SVHM phase using inelastic neutron scattering. For many
materials, neutron scattering has been successfully applied
to investigate their magnetic and superconducting properties.
Comparing observed spectrum with a theoretical prediction,
useful pieces of information can be obtained [25,39–48]. It is
natural to expect that such an experimental tool can play an
important role in search for the SVHM order.

Below we propose a method to discriminate between the
SVHM and the SDW phases. It relies on the fact that the
SVHM has at least four nondegenerate bands close to the
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Fermi level, whereas the SDW has two doubly degenerate
bands. Consequently, in these thermodynamic phases, the
electronic contributions to the neutron cross section are non-
identical, and phase-specific features in the neutron spectrum
can be used for identification of an ordered state in a candidate
material.

Technically, the electronic contribution to the neutron cross
section is described by the dynamical spin susceptibility
tensor. Using Kubo formalism within the framework of the
minimal model of Refs. [3,9] we determine this tensor for
the commensurate SVHM and SDW phases. Our calcula-
tions demonstrate that the neutron scattering spectrum of
the SVHM has three high-intensity peaks, in contrast to the
SDW, whose spectrum has only one pronounced peak. We
also discuss other features of the spin susceptibility tensor.
The presented derivation does not aim at a specific material,
instead, the obtained results demonstrate general features and
peculiarities of the neutron scattering on an SVHM material,
which may be used to identify the SVHM phase.

This paper is organized as follows. In Sec. II we briefly
describe the two band model used in calculations. In Secs.
III and IV we calculate the susceptibility tensor for the SDW
and the SVHM, respectively. Summary and conclusions are in
Sec. V.

II. MODEL

A. SVHM and SDW phases

We start with the outline of the basic structure of the min-
imal model [3] which hosts the SVHM as one of its possible
ground states. The model Hamiltonian has two single-electron
bands, or valleys, which are referred to as a and b. If we
neglect the electron-electron repulsion, their band dispersions
are assumed to be parabolic [Fig. 1(a)]

εa(k) = k2 − k2
F

2ma
− μ = ξ a

k − μ,

εb(k + Q0) = −k2 + k2
F

2mb
− μ = −ξ b

k − μ. (1)

We use a system of units, where h̄ = 1. Here μ is the chemical
potential. When μ = 0, the Fermi surface of the valley a,
after translation by the nesting vector Q0, exactly matches the
Fermi surface of the valley b. Such a property of the band
structure is called a perfect nesting. It is convenient to measure
doping relative to the μ = 0 state treating the latter state as
undoped. Momentum kF = √

2mεF is a radius of the Fermi
sphere for both the a and b valleys at the perfect nesting. In
addition, we introduce the Fermi velocity vF = kF /m. Unless
the opposite is stated, we assume that effective masses ma and
mb are equal to each other. In such a case, the subscript may be
dropped, both masses can be denoted by symbol m, and ξ a

k =
ξ b

k = ξk . Each band has a density of states NF = mkF /(2π2)
at the Fermi level.

Next, we take into account a weak electron-electron re-
pulsion, which we assume to be short range. The part of the
interaction which is responsible for the magnetic ordering is:

Hint = g

V

∑
kk′σ

a†
σka

σkb†
σk′bσk′ , (2)

where operator aσk (operator bσk) represents annihilation
operator of an electron with the spin σ in the valley a (valley b)
at the wave vector k. For the operators aσk and bσk, the wave
vector k is measured from the center of the corresponding
valley. Notation σ means −σ . The interaction constant g is
assumed to be small: gNF � 1. We simplify the Hamiltonian
via mean field approach. There are two order parameters
labeled by σ = ±1

�σ = g

V

∑
k

〈a†
σkbσk〉, (3)

where V is the volume of the system.
Now we can write down the full mean field Hamiltonian

H =
∑
kσ

[
(ξk − μ)a†

σka
σk + (−ξk − μ)b†

σkb
σk

−�σ b†
σka

σk − �σ a†
σkb

σk

] + V

g

(
�2

↑ + �2
↓
)
. (4)

To diagonalize the Hamiltonian (4) we perform the Bo-
golyubov transformation. The obtained quasiparticle spec-
trum consists of four bands:

E (s)
σk = ±

√
ξ 2

k + �2
σ , (5)

where each band is labeled by two indexes: σ and s = 1, 2.
Here s = 1 corresponds to sign “−” and s = 2 to sign “+.”

To obtain �σ we should minimize the total energy of the
system. After the minimization at zero doping one may see
that the order parameters does not depend on the index σ , thus,
the quasiparticle bands are double degenerate. Consequently,
μ = 0 state possesses SDW order with static spin polarization

〈Sx(r)〉 = �σ + �σ

g
cos(rQ0), 〈Sy(r)〉 = 〈Sz(r)〉 = 0. (6)

Band structure of the SDW is schematically shown in
Fig. 1(b).

Now let us study the effect of the doping on the SDW
state. In many papers [1,2,12] the energy minimization was
performed under the following constraint

�σ = �σ = �. (7)

Minimizing the total energy under the condition (7) we find
� as a function of doping. The resultant state is the SDW
metal [1,2]. Quasiparticle bands at nonzero doping are shown
in Fig. 1(c). They remain doubly degenerate, since we employ
restriction (7).

However, in a more general case the condition (7) can be
discarded. Instead, the total energy is minimized as a function
of two variables �σ and �σ . The latter minimization is simpli-
fied by the fact that the mean field Hamiltonian (4) split into
a sum of two decoupled terms, each describing a particular
sector of single-particle states. The first term represents (i)
electrons from the valley a with the spin σ and (ii) electrons
from the valley b with the spin σ . These quasiparticle states
form sector σ . The order in sector σ is characterized by �σ .
The second term of the mean field Hamiltonian represents
electrons from the valley a with spin σ and from the valley
b with spin σ . Such states constitute sector σ . Parameter �σ

describes order in sector σ .
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FIG. 1. The energy of single-electron and quasiparticle bands (vertical axis) versus momentum (horizontal axis) for different order
parameters and doping values. (a) Bare single-particle bands. The (blue) solid line represents the electron dispersion (band a); the (red)
solid line is the hole dispersion (band b). The translated hole band is shown by dashed line. Arrow Q0 corresponds to the nesting vector. The
dashed-dotted horizontal line is the Fermi energy of the undoped state, when the nesting is perfect. (b)–(d) Band structure when the effects
of weak electron-electron repulsion are taken into account. (b) The band structure of the undoped SDW state. The chemical potential level
(dash-dotted line) lies in the spectral gap separating filled band E (1) and empty band E (2). Both bands are doubly degenerate. (c) The band
structure of the doped SDW state. The bands are shown by solid lines. The chemical potential crosses the upper band E (2) which becomes
partially filled. The vertical arrow in the insets indicates quasiparticle interband transition at the threshold frequency ωsdw

2 , see Eq. (29). (d) The
quasiparticle band structure of the SVHM phase. Double degeneracy present in the SDW state is lifted, and all four bands are distinct. The
Fermi surface is polarized with respect to the spin-valley index. Up and down bold arrows illustrate this polarization. Up arrows (blue) show
spin-up electrons from the valley a, down arrows (red) show spin-down electrons from the valley b. The vertical arrows in the inset illustrate
minimum energies which are required to open a specific interband scattering channel. The frequencies ω1, . . ., ω5 are defined by Eq. (32).

Doping is not required to distribute equally between the
sectors [3,12]. To demonstrate this, let us write the following
expression for the grand potential �

� = �σ + �σ = V

g

(
�2

σ + �2
σ

)

−
∑
kσ

[
μ − E (1)

σk + (
μ − E (2)

σk

)
θ
(
μ − E (2)

σk

)]
, (8)

where θ (·) is the Heaviside step function which replaces
Fermi distribution function at zero temperature. In this equa-
tion the grand potential � is expressed as a sum of partial
grand potentials �σ , each representing a specific sector.

It is convenient to introduce partial doping concentrations
xσ = −(1/V )∂�σ/∂μ. The sum of two partial concentrations
equals to total doping concentration

x = xσ + xσ . (9)
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Minimization of � produces two equations for each σ

∂�σ

∂�σ

= 0,
∂�σ

∂μ
= −xσV. (10)

They must be solved under constraint (9). The system of
equations (10) has two types of formal solutions. First type
can be found at finite partial doping xσ > 0:

�σ = �0

√
1 − xσ

NF �0
, (11)

μ = �0 − xσ

2NF
, (12)

where �0 is the order parameter at zero doping in the SDW
phase. Similar expressions are derived for negative xσ . The
second solution is, in some sense, “trivial:” if

−�0 < μ < �0, (13)

then

�σ = �0, xσ ≡ 0. (14)

That is, for any μ within the gap, sector σ remains undoped,
with the order parameter equal to �0.

If solution (14) is overlooked, the only possibility to sat-
isfy Eq. (12) and the constraint (9) is to demand that xσ =
xσ̄ = x/2. In such a case, Eq. (7) is recovered, with � =
�0

√
1 − x/(2NF �0). The mean field ground state described

by these relations possesses obvious symmetry between the
sectors.

However, a many-electron state violating the latter symme-
try also exists: One can apply Eqs. (11) and (12) to sector σ

and Eq. (14) to sector σ̄ . For this to be consistent with Eq. (9),
we need to assign xσ = x, xσ̄ = 0. Consequently

�σ = �0

√
1 − x

NF �0
, �σ = �0 (15)

for not too strong doping. Using Eq. (12), one further derives
μ = �0 − x/(2NF ), which also satisfies the inequality (13).

The symmetric state, Eq. (7), corresponds to the doped
SDW case. It was discussed in the theoretical literature for
several decades. Yet, it is straightforward to demonstrate (for
details, consult Refs. [3,9]) that the SVHM phase represented
by Eq. (15) has lower free energy. In other words, within the
framework of the chosen model the SVHM state is more stable
than the SDW.

In contrast with the SDW phase, where �σ = �σ , the
SVHM has two nonzero spin projections:

〈Sx(r)〉 = �σ + �σ

g
cos(rQ0),

〈Sy(r)〉 = �σ − �σ

g
sin(rQ0). (16)

Since order parameters (15) are unequal to each other, four
bands which are defined in Eq. (5) are no longer degenerate,
and the Fermi surface appears. We may define [3] the spin-
valley index Sv as follows

Sv = 1 ↔ electronic states from sector σ,

Sv = −1 ↔ electronic states from sector σ . (17)

The Fermi surface states are polarized in the spin-valley space,
see Fig. 1(d). This fact can be trivially verified since the
partially filled band is composed entirely from the electronic
states belonging to sector σ . Following Ref. [3], we call this
phase the spin-valley half-metal.

B. The dynamical spin susceptibility tensor

Here we discuss the dynamical spin susceptibility tensor
in the context of our problem. The Fourier components of the
spin projection on the β axis is:

Ss
β (q, t ) =

∑
kμν

σ β
μν

[
a†

μk+q(t ) a
νk(t ) + b†

μk+q(t ) b
νk(t )

]
,

Sf
β (q + Q0, t ) =

∑
kμν

σ β
μνa†

μk+q(t )b
νk(t ) ,

Sf
β (q − Q0, t ) =

∑
kμν

σ β
μνb†

μk+q(t )a
νk(t ) . (18)

Here σβ
μν is (μ, ν) matrix element of a Pauli matrix and

β = x, y or z. The superscript ‘s’ (superscript ‘f’) stands for
‘slow’ (‘fast’). The slow term Ss

β (q, t ) oscillates in the real
space with the wave vector q, which we restrict to be in
the range of q � �0/vF � kF ∼ |Q0|, where q = |q|. This
term contains only products of operators from one valley. In
other words, it is diagonal in valley index. The fast terms
Sf

β (q ± Q0, t ) oscillate in the real space with the wave vectors
q ± Q0. Unlike Ss, operators Sf mix states from different
valleys. Indeed, as one can see from their definition, each
Sf is a sum of terms that themselves are products of two
single-electron operators, one single-electron operator is from
valley a and another one is from valley b.

The susceptibility is defined in the Kubo formalism [49]

χ
s(f)
αβ (Q, ω) = i

∫ ∞

0

〈[
Ss(f)

α (Q, t ); Ss(f)
β (−Q, 0)

]〉
eiωt dt, (19)

where [A; B] = AB − BA. Symbol 〈...〉 denotes averaging with
respect to a ground state of a studied phase. We assume that
Q = q for the slow term and Q = q ± Q0 for the fast terms.
Besides χ

s(f)
αβ defined by Eq. (19), it is possible to introduce

the cross terms, describing correlation functions between slow
and fast spin densities χ sf ∼ 〈SsSf〉. However, these quantities
do not contribute to the neutron cross section, and we do not
consider them.

Further, as we want to describe neutron scattering, we
focus only on the part of the tensor which corresponds to the
energy conservation law

χ̃
s(f)
αβ (Q, ω) = i

∫ ∞

−∞

〈[
Ss(f)

α (Q, t ); Ss(f)
β (−Q, 0)

]〉
eiωt dt . (20)

Here integration over all real t gives Dirac δ function which
ensures energy conservation in the scattering processes. Re-
lated result in a less general case was discussed in Ref. [50]
[see Eq. (2.46) in section 2.6 for more details]. In our nu-
merical calculation, the Dirac δ function is approximated by
a rectangular function. This function equals to 103�−1

0 over
finite support, whose width is 10−3�0 (as required by the
definition of the Dirac function, the area under our rectangular
function is equal to unity).
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Direct calculations show that all diagonal components χ̃ f,s
αα

and off-diagonal components χ̃ f,s
xy,yx may be nonzero. All other

components of the dynamical susceptibility vanish within the
framework of the discussed model. To calculate χ̃ f,s

αβ (Q, ω)
we substitute Eq. (18) into formula (20) and apply the Wick
theorem with respect to the studied state. The results of these
calculations are presented below.

III. SPIN SUSCEPTIBILITY OF THE SDW PHASE

A. Structure of the susceptibility tensor in the SDW phase

We would like to start with several general statements
about the susceptibility tensor of the SDW phase. In the
commensurate SDW state the slow term χ̃ s

αβ (Q, ω) of the
susceptibility tensor does not depend on direction of the wave
vector Q = q, and the fast term χ̃ f

αβ (Q, ω) of the tensor
does not depend on the direction of the vector Q − Q0 = q.
The same property holds true in the commensurate SVHM
phase discussed in Sec. IV. Obviously, this circumstance
significantly simplifies the presentation and analysis of our
results.

Since the average local spin in the SDW is directed along
the x axis, the magnetic structure of the phase possesses a
rotational symmetry around the x axis. Therefore, we obtain

χ̃ s
⊥(q, ω) = χ̃ s

yy(q, ω) = χ̃ s
zz(q, ω) �= χ̃ s

xx(q, ω), (21)

where symbol χ̃ s
⊥ is defined as χ̃ s

⊥ = χ̃ s
zz,yy. Susceptibility χ̃ f

⊥
is defined similarly.

As for the off-diagonal components, χ̃ s,f
xz and χ̃ s,f

yz vanish,
as discussed in Sec. II B. The presence of the rotational
symmetry with respect to the x axis implies nullification of
other off-diagonal components as well. Indeed, any rotation
around the x axis preserves the susceptibility tensor. At the
same time, after rotation on angle equal to π , components
χ̃ s,f

xy,yx(Q, ω) must change sign. Therefore, we conclude that

χ̃ s,f
xy (Q, ω) = χ̃ s,f

yx (Q, ω) = 0. (22)

Since relations (21) and (22) are conditioned by the rotational
symmetry of the SDW order parameter, they remain valid
even when ma �= mb. In other words, asymmetry between the
electrons and holes does not destroy (21) and (22) in the SDW
phase.

Diagonal components of the fast part of the susceptibility
tensor obey yet another relation

χ̃ f
⊥(q ± Q0, ω) = χ̃ f

xx(q ± Q0, ω). (23)

It can be derived by substituting Eq. (18) into Eq. (20). [Let
us remark that Eqs. (21) and (22) can be derived by the same
substitution as well, without use of symmetry.]

B. Evaluation of the susceptibility tensor

The above analysis demonstrates that, to characterize the
neutron scattering by electronic subsystem in the SDW state,
one needs to know χ̃ s,f

⊥ (Q, ω) and χ̃ s,f
xx (Q, ω). We determine

these quantities numerically using Eq. (20). To be specific, our
calculation in the SDW and SVHM phases are performed at

x = 0.75NF �0. (24)

For such a doping level, parameters � and �σ deviate sig-
nificantly from �0. Specifically, in the SDW phase, the order
parameter and the chemical potential are [2]

� ≈ 0.79�0, μ ≈ 0.81�0. (25)

We plot χ̃ s,f (Q, ω) as a function of the energy ω at the fixed
wave vector Q, see Fig. 2. Features that are of interest to us
are most discernible when q � �0/vF . We present χ̃⊥(Q, ω)
and χ̃xx(Q, ω) for q = 0.1�0/vF in Figs. 2(a) and 2(b) and
for q = 0.75�0/vF in Figs. 2(c) and 2(d), respectively.

Each component of the susceptibility tensor in Fig. 2 has
a peak at low frequency. It corresponds to electron-hole pairs
in the conduction band which are excited by neutrons. These
peaks are localized between ω = 0 and a threshold frequency
ωsdw

1 . To derive ωsdw
1 we write the energy conservation law for

the intraband transitions

E (2)
k+q − E (2)

k = ω. (26)

This must be solved together with

θ
(
μ − E (2)

k

)
θ
(
E (2)

k+q − μ
) = 1, (27)

which is a consequence of Fermi-Dirac statistics. System
of equations (26) and (27) for the unknown variable k has
solutions only when 0 < ω < ωsdw

1 , where

ωsdw
1 =

√
(
√

μ2 − �2 + q)2 + �2 − μ. (28)

Substituting specific values of q, one finds that ωsdw
1 ≈

0.4�0 when q = 0.75�0/vF , and ωsdw
1 ≈ 0.03�0 when q =

0.1�0/vF . Both values for ωsdw
1 are perfectly consistent with

the numerical curves shown in Fig. 2.
Another characteristic frequency ωsdw

2 in Fig. 2 is the
threshold energy for the inelastic interband electron scatter-
ing, see inset in Fig. 1(c). When ω exceeds ωsdw

2 , a new scat-
tering channel opens, and the susceptibility becomes finite.
This is clearly visible on all panels of Fig. 2.

To evaluate ωsdw
2 , similar to our derivation of Eq. (28),

we use energy and momentum conservation laws and Fermi-
Dirac statistics of electrons to obtain

ωsdw
2 = � + μ ≈ 1.6�0. (29)

This equation has simple interpretation: It is exactly the
energy necessary to promote a quasiparticle from a state at
the maximum of the completely filled valence band to an
empty state at the chemical potential level in the partially
filled conductance band. For chosen values of �, μ, and q,
such a transition is indeed consistent with both energy and
momentum conservation laws.

One can notice that for ω > ωsdw
2 the susceptibility tensor

components pass through a maximum near ωsdw
2 . Locations

of these peaks are slightly shifted to higher frequencies with
respect to ωsdw

2 . This ‘blueshift,’ as well as a nonmonotonic
behavior of susceptibility, occurs due to the structure of the
joint density of states

ρss′
σσ ′ (q, ω) =

∫
δ(E (s)

σk − E (s′ )
σ ′k+q − ω)

d3k
(2π )3

. (30)

We see in Fig. 2(d) that χ̃ s
xx(Q, ω), as a function of (ω −

ωsdw
2 ), demonstrates slower (linear) growth than χ̃ f

xx(Q, ω).
This is a consequence of nullification of the matrix element for
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FIG. 2. The diagonal components of the susceptibility tensor χ̃ s,f
αβ (Q, ω) at fixed momentum Q versus frequency ω in the SDW phase.

Dot curves show the slow part of the susceptibility calculated for Q = q; solid curves show the fast part of the susceptibility calculated
for Q = q ± Q0. Panels (a) and (c) present χ̃⊥(Q, ω), panels (b) and (d) present χ̃xx (Q, ω). The data in panels (a) and (b) is plotted for
q = 0.1�0/vF . The data in panels (c) and (d) is plotted for q = 0.75�0/vF . Peaks at low frequency exist due to intraband electron transitions
in the conduction band. They start from ω = 0 and disappear beyond ωsdw

1 [the latter frequency is defined in Eq. (28)]. Peaks close to ωsdw
2 arise

due to electron transitions from the valence band to the conduction band shown in the inset in Fig. 1(c). The frequency ωsdw
2 is the threshold

frequency for this process. This energy is defined in Eq. (29).

the corresponding interband electron transition exactly at ω =
ωsdw

2 . The matrix element becomes nonzero when ω > ωsdw
2 ,

however, its value remains small for small q. Thus, χ̃ s
xx(Q, ω)

in Fig. 2(b) is very close to zero in contrast with χ̃ s
xx(Q, ω) in

Fig. 2(d).

IV. SPIN SUSCEPTIBILITY OF THE SPIN-VALLEY
HALF-METALLIC PHASE

According to Eq. (16), in the SVHM state both 〈Sx(r)〉
and 〈Sy(r)〉 are nonzero. Therefore, the rotational symmetry
around the x axis is broken, and all diagonal components
of the susceptibility tensor may differ from each other. As
for off-diagonal components, they remain zero. This is a
consequence of the electron-hole symmetry of the bands (1).
If the electron and hole valleys are asymmetrical, the off-
diagonal elements acquire finite values. Specifically, we cal-

culate separately all diagonal components of the susceptibility
tensor, assuming ma = mb in band structure (1). Then we
introduce an asymmetry between the electron and hole bands
(1) through the difference in effective masses ma �= mb and
estimate components χ̃xy(Q, ω) and χ̃yx(Q, ω).

For numerical calculations we take the doping value, de-
fined in Eq. (24). We obtain the order parameter �σ = 0.5�0

from Eq. (11) and the chemical potential μ = 0.625�0 using
Eq. (11) of Ref. [3].

A. Diagonal components of the susceptibility tensor

The dependence of the diagonal components on frequency
ω is presented in Fig. 3. As we already mentioned in
Sec. III A, within our model, the tensor components are in-
sensitive to the direction of q, only the absolute value of the
transferred momentum q matters. To illustrate the dependence
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FIG. 3. The diagonal components of the susceptibility tensor χ̃ s,f (Q, ω) at fixed momentum Q versus frequency ω in the SVHM phase.
Dot curves show the slow part of the susceptibility calculated for Q = q; solid curves show the fast part of the susceptibility calculated for Q =
q ± Q0. Panels (a) and (b) present χ̃xx (Q, ω), panels (c) and (d) present χ̃yy(Q, ω), and panels (e) and (f) present χ̃zz(Q, ω) correspondingly.
The data in panels (a), (c), and (e) is plotted for q = 0.1�0/vF . The data in panels (b), (d), and (f) is plotted for q = 0.75�0/vF . The (weak)
peaks at the lowest frequency are due to intraband transitions within the conduction band. All other peaks are caused by transitions between
bands. These transitions are marked by arrows in the inset of Fig. 1(d). Each threshold frequency ω1, . . ., ω5 represents the opening of a new
interband scattering channel. They are determined by Eq. (32).
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on q, the curves in panels 3(a), 3(c) and 3(e) are plotted
for q = 0.1�0/vF ; the other three panels show the diagonal
components at q = 0.75�0/vF .

The peaks that start from zero frequency are due to the
intraband scattering processes. They are similar to the low-
energy peaks discussed in Sec. III in the context of the SDW.

In Fig. 3, finite-frequency spectral features (peaks or steps),
marked by ω1, . . . , ω5, arise due to the interband electron
transitions. These transitions are illustrated in the inset in
Fig. 1(d). Frequencies ωn may be found in the same manner
as ωsdw

2 . One needs to find minimum frequency at which a
solution of the equation

ωn = E f − Ei (31)

still exists. In Eq. (31) E f and Ei are final and initial energies
of the excited electron. State at E f must be empty and state at
Ei must be occupied in the ground state to allow excitation
process. For five excitations channels shown in Fig. 3, we
derive five threshold frequencies. For doping level given by
Eq. (24) these frequencies are

ω1 =
√

max
(√

μ2 − �2
σ − vF q, 0

)2 + �2
0 − μ,

ω2 = μ +
√

max
(√

μ2 − �2
σ − vF q, 0

)2 + �2
σ ,

ω3 = �0 + �σ ,

ω4 = 2�0,

ω5 = μ +
√

max
(√

μ2 − �2
σ − vF q, 0

)2 + �2
0. (32)

Numerical value of the above frequencies is in the perfect
agreement with the threshold frequencies in Fig. 3. As a
result of a more complex band structure, the SVHM neutron
scattering spectrum has richer structure than the spectrum
of the SDW. In Figs. 3(a), 3(c) and 3(e), which represent
the spectra for q = 0.1�0/vF, one can discern three spectral
peaks (at ω1, ω3, and ω4) and two steplike features (at ω2

and ω5). The intensities of these spectral components demon-
strate nontrivial dependence on spin polarization. At higher
q, the peaks broaden and merge. However, the characteristic
frequencies remain discernible even in such a regime.

B. Off-diagonal components of the susceptibility tensor

Besides the structure of the diagonal components of the
susceptibility tensor, the SVHM has yet another distinction
that separates it from the SDW. As we already pointed out
above, the SVHM phase may have finite values of the off-
diagonal components χ̃xy and χ̃yx when the perfect electron-
hole symmetry is broken. (For the SDW, these components
vanish due to the rotation symmetry).

To study the off-diagonal components, we break the
electron-hole symmetry in our model by introducing the dif-
ference between the effective masses of electrons and holes

mb − ma

mb + ma
= 0.1. (33)

In such a regime, we evaluate the off-diagonal components
numerically.

FIG. 4. The off-diagonal component of the susceptibility tensor
χ̃ s,f

xy (Q, ω) at fixed momentum Q versus frequency ω in the SVHM
phase. Dot curves show the slow part of the susceptibility calculated
for Q = q; solid curves show the fast part of the susceptibility
calculated for Q = q ± Q0. The data in panel (a) is plotted for
q = 0.1�0/vF . The data in panel (b) is plotted for q = 0.75�0/vF .
Each threshold frequency ω1, . . . , ω5 represents the opening of a new
interband scattering channel. They are determined by Eq. (32).

Figure 4 shows the dependence χ̃xy on frequency ω. Panel
4(a) is plotted for q = 0.1�0/vF , and panel 4(b) is plotted for
q = 0.75�0/vF . As for χ̃yx, it can be determined using the
relation:

χ̃xy(Q, ω) = −χ̃yx(Q, ω). (34)

This equality can be derived by substitution of Eq. (18) into
Eq. (20), and it follows from the anticommutation rule for
Pauli matrices σxσy = −σyσx. Note also that, unlike χ̃ s,f

αα ,
which cannot be negative, the off-diagonal components of the
tensor are not constrained by such a requirement, and χ̃ s,f

xy can
be of either sign, as indeed seen in Fig. 4.

The same five scattering channels depicted in the inset of
Fig. 1(d) control the structure of the off-diagonal components.
We see peaks at frequencies ω1, ω3, ω4, and ω5, as well as
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a steplike feature at ω2. The intensities of the peaks at ω3

and ω5 are particularly sensitive to q in the chosen range of
parameters. One can also notice that the peak at ω1 acquires
‘a shadow’ peak with the opposite sign at somewhat higher ω.

V. DISCUSSION AND CONCLUSIONS

Our study is motivated by the question if the neutron
scattering can be used to distinguish the SDW and the SVHM
phases. With this aim in mind, we calculated the dynamical
spin susceptibility tensor of both phases as a function of
frequency at fixed momentum. It is demonstrated that the sus-
ceptibilities of the SDW and SVHM have two well-noticeable
qualitative distinctions.

The first appreciable difference is a number of high peaks
in the diagonal components of the tensor. The SDW phase has
only one large peak. At the same time the SVHM has three
high and two weaker and broader features. Since each peak
represents an interband transition of electrons, the distinction
in the number of peaks can be traced to the number of
quasiparticle bands in these phases: four bands in the SVHM
phase versus only two bands in the SDW phase.

The second difference occurs if electron-hole symmetry
is broken (we model such an asymmetry by introducing
nonidentical effective masses of electrons and holes). In this
case, the SVHM has finite off-diagonal components of the
susceptibility tensor. In the SDW phase these components
remain zero (in the SDW phase this property is robust since it
is protected by the rotation symmetry around order parameter
polarization axis).

The intensity of a specific peak depends on the joint density
of states and on a corresponding matrix element. Obviously,
both these quantities are functions of ω and q. In addition,
matrix elements depend also on axis labels [for example, the
matrix element for χyy is not necessary equal to the matrix
element for χzz]. Consequently, the intensity of a peak rep-
resenting a specific inelastic scattering channel is sensitive to
polarization. For example, the peak at ω = ω1 in χ s

xx is much
weaker than the same peak in χ s

yy, see Figs. 3(a) and 3(c). As
for χ s

zz, it demonstrates no peak at ω = ω1, see Fig. 3(e).
In our model, the joint density of states (30) diverges when

the Pauli principle allows for transition between the edges of
the bands. This is the case for the transitions at ω = ω1,3,4.
If the large joint density of states is accompanied by a finite
matrix element, the peak intensity is particularly strong. For
example, matrix elements at ω1 and ω4 in Fig. 3(e) are large,
while the matrix element at ω3 in the same panel is low.

Our calculations were performed for commensurate ho-
mogeneous phases only. However, we expect that qualitative
behavior of the dynamical spin susceptibility survives in the
incommensurate phases as well. Indeed, the most pronounced
qualitative differences between the spectra of the commensu-
rate phases are associated either with equality (22) or with
the fact that the SDW state has two single-electron bands
while the SVHM state hosts four such bands. Both these
properties survive in the incommensurate phases. Specifically,
the relation (22) is a consequence of the uniaxial spin-rotation
invariance of the SDW phase, which holds regardless of the
commensurability of the order parameter. As for the band
structure of the incommensurate SVHM phase, the expres-

sions for its four bands were derived in Ref. [9], see Eq. (56)
there. Thus, we expect that the inelastic neutron scattering can
be used to detect the SVHM state even for the incommensu-
rate order parameter.

Naturally, the model used in this paper is insufficient to
describe the properties of a specific system quantitatively.
Rather, the presented analysis is the first necessary step toward
possible identification of the SVHM phase in real materi-
als. The elementary Hamiltonian discussed above should be
considered as a minimal model sufficiently complex as to
retain the studied phenomena, yet simple enough to allow for
semianalytical treatment.

Our model neglects numerous details, like disorder, nesting
imperfections, non-SDW electronic bands, which complicate
the theoretical study of a real material. Although a thorough
research into these issues is required, some preliminary ar-
guments can be formulated even at this stage. For example,
imperfect nesting was briefly discussed in Refs. [3,9]. It was
concluded that the SVHM state remains stable even in the
presence of the imperfect nesting. As for the neutron spec-
trum, nesting imperfections, as well as other band structure
features unaccounted for by our simple model, likely affect
quantitative properties of the spectrum (for example, the peaks
intensities). However, the total number of interband transi-
tions in the SVHM phase is a consequence of the SVHM-
specific violation of the symmetry between the sectors. This
violation is insensitive to the underlying band structure. Thus,
we expect the qualitative stability of the neutron spectrum
relative to a wide class of modifications of the single-electron
bands.

Another ever-present factor influencing electronic proper-
ties of a condensed matter system is disorder. In a sample with
chemical doping, disorder is virtually unavoidable: Dopant
atoms introduce randomly placed irregularities to the host
lattice. While in some cases the disorder may cause drastic
modifications to material’s properties (for example, localize
electronic wave functions), in other situations its effects are
perturbatively weak [51]. To stabilize our SVHM phase, the
dopant atoms concentration does not have to be large. Indeed,
one can notice analyzing Eq. (15) that characteristic doping
level in the theory of the SVHM is x0 = NF �0. Within the
weak-coupling framework, this scale is small since �0 is
much smaller than the characteristic single-electron energies,
like the bandwidth. Consequently, we expect relatively mild
disorder effects.

Let us finally discuss the candidate materials classes.
We hypothesize that several families of materials can host
the SVHM phase: chromium and its alloys [30–33], some
topological insulators [34], iron-based materials [35], as well
as other systems [36–38]. Consider, for example, CoCr2O4.
Recent ab initio study demonstrates [52] that CoCr2O4 has a
multisheet Fermi surface with nesting, unstable with respect
to spin ordering. Doping with iron atoms drives the material
toward a half-metallic state. Our previous results [3,9] allow
us to speculate that in such a situation the energies of the
SVHM and the usual half-metallic state can be close to each
other. Yet, since the spin-valley polarization of the Fermi
surface is not evaluated in a typical first-principle study,
should the SVHM state become a ground state of the studied
system, such a situation may pass completely undetected.
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Another family of materials worth considering for the
SVHM phase is the Bechgaard salts [53,54]. It is believed that
in this class of materials the SDW instability is triggered by
nesting of the Fermi surface [55]. In experiment, the nesting
quality in the Bechgaard salts is weakened by the external
pressure. It is conceivable that, as a response to the pressure-
induced nesting deterioration, redistribution of the electrons
between different sectors may start to improve the nesting in
at least one sector. As we explained in Sec. II A, the uneven
distribution of the electrons between the sectors implies the
spin-valley polarization of the Fermi surface and the SVHM
state.

In conclusion, we calculated the dynamical spin suscep-
tibility for the doped spin-density wave state and the doped

spin-valley half-metallic state at different momenta. Due to
more complex band structure, the SVHM spin susceptibility
tensor demonstrates richer frequency dependence and may
have finite off-diagonal components. Our analysis shows that
the inelastic neutron scattering may be used to distinguish the
SDW and the SVHM phases in experiment.
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