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We present an exact treatment of layered many-body electronic systems in the presence of interlayer coupling
within the Schwinger functional derivative approach on the Keldysh contour. Our transparent approach allows
us to clarify the definition of interlayer coupling by showing the independent roles hybridization and interactions
play in generating new electronic and magnetic excitations. We find interlayer coupling to induce a variety of
plasmons, magnons, and excitons, residing within a layer, traversing between layers, or propagating along the
interface. Moreover, we predict interfacial excitations, including an electron-hole pairing pathway, facilitated by
previously ignored layer nonconserving interactions. Finally, we briefly explore the consequence of interlayer
coupling on a bilayer square lattice system.
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I. INTRODUCTION

Atomically thin 2D materials have proven to be one of the
most exciting platforms exhibiting an extensive range of novel
electronic [1], excitonic [2], valley [3], topological [4], and
correlated physics [5]. By combining the 2D building blocks
into vertical or lateral heterostructures one may rationally
engineer complex multilayer systems and artificial solids with
new emergent properties giving way to direct applications in
quantum information technologies [6,7], spin optoelectronic
devices [7,8], and energy storage [9,10]. To design and ma-
nipulate these novel layered materials a detailed theoretical
description of the charge, spin, orbital, and layer degrees of
freedom is crucial. However, despite vigorous experimental
efforts, the development of theoretical techniques going be-
yond the Hohenberg-Kohn-Sham density functional theory to
capture interactions in a layer dependent manner has been
slow. In particular, one of the most important first-principles
many-body methods used in theoretical spectroscopy for de-
scribing excitations involved in radiation-matter interaction is
the so-called GW and Bethe-Salpeter equation (BSE), is still
awaiting an extension to layer dependent interactions.

The strength of interlayer coupling plays a key role in shap-
ing the emergent properties of heterostructures composed of
2D thin films. For example, when layers are weakly coupled,
the absorption profiles of the individual layers is modified
[11], along with the Raman vibrational modes [12]. In the in-
termediate regime, the generation of new excitons (interlayer
and moiré) [13–15] is facilitated along with the stabilization
of superconducting phases [16]. Lastly, in the limit of strong
interlayer coupling, robust charge redistribution is induced
[17–20] and the electronic structure of the heterostructure
differs considerably from its constituent layers [18,21,22].
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The influence of interlayer coupling extends beyond
atomically-thin 2D materials, playing a significant part in lay-
ered transition-metal oxides. In the Ruddlesden-Popper per-
ovskite crystal structure, which includes the cuprate and iri-
date material families, the two-dimensional perovskite planes
are interwoven with layers of alkaline earth, or rare earth
metals, and are believed to behave electronically independent
[23,24]. However, a diversity of optimal transition tempera-
tures is observed in the high-temperature cuprate supercon-
ductors which appears to be driven at least in part by the
choice of rock-salt layer separating the CuO2 planes. For
example, the highest Tc obtained in La2−xSrxCuO4 is 40 K,
whereas in the single layer Hg cuprate, HgBa2CuO4 the
optimal Tc is almost 100 K [25], suggesting that the interlayer
interactions between the CuO2 planes and the HgO2 charge
reservoir help to enhance Tc.

Previous studies using many-body perturbation theory on
layered electron gas systems [26–31] found the electron effec-
tive mass and quasiparticle lifetime gave qualitatively differ-
ent results compared to isolated two- and three-dimensional
systems. These models consist of a many-electron Hamilto-
nian with a Coulomb interaction only, where the electron-
electron interaction were restricted to be within a single layer.
Therefore, there is currently no theory that addressees the
many-body dynamics arising from the full spin and layer
dependent interactions.

In this paper we present an exact treatment of layered
many-body electronic systems within the Schwinger
functional derivative technique on the Keldysh contour.
An advantage to working within the Schwinger Green’s
function approach is to enable direct access to spectroscopic
relevant quantities and therefore, enabling direct comparison
and interpretation of experimental spectra. Our results
clarify the definition of interlayer coupling by showing
the independent roles hybridization and interactions play
in generating new electronic and magnetic excitations. By
examining the charge and magnetic response functions, along
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with the Bethe-Salpeter equation for the two-particle Green’s
function, we predict interfacial plasmons, magnons, and
excitons facilitated by layer nonconserving interactions. We
briefly explore the consequence of interlayer coupling on a
bilayer square lattice system.

II. THEORY

A. Hamiltonian and basic notations

The Hamiltonian for a layered system with spin and layer
dependent interactions is given by

Ĥ =
∑
αl
βl ′

∫
d3rψ̂†

αl (r)h0
αl,βl ′ (r)ψ̂βl ′ (r) + 1

2

∑
αβγ δ

i jkl

∫∫
d3rd3r′ψ̂†

αi(r)ψ̂†
β j (r

′)vlk;i j
δγ ;αβ (r, r′)ψ̂γ k (r′)ψ̂δl (r), (1)

where the Greek and Latin letters denote the spin and layer
degrees of freedom, respectively. Our interaction index notion
follows an inr inr′ ;outroutr′ scheme inline with the diagram-
matic representation. For an N layer system the Hamiltonian
of the lth layer is given by h0

αl,βl (r). If the layers are close
enough for the wave functions of adjacent layers to overlap,
electrons can hop from one layer to another. The amplitude of
hopping from layer l ′ to layer l is h0

αl,βl ′ (r). Here, r is defined
over R3 and the field operators acting on a specific layer l can
be written as ψ̂l (r) ≡ ψ̂ (r + Rl ), where Rl is perpendicular
to the interface between the layers and is the distance of the
lth layer from the origin layer, R0 = 0.

The generalized two-particle interaction takes both the spin
and layer configuration into account and can be broken down

FIG. 1. A schematic representation of the Coulomb, spin-spin,
and spin-orbit interactions in real space within and between layer l
and l ′, along with each layer’s internal electronic structure h0

αl,βl (r)
and hybridization h0

αl,βl ′ (r). The red dashed line denotes the bound-
ary between layer l and l ′.

into three contributions:

v
lk;i j
δγ ;αβ (r, r′) =

⎧⎪⎨
⎪⎩

σ 0
αδv

lk;i j (r, r′)σ 0
βγ

σ I
αδJlk;i j

IJ (r, r′)σ J
βγ

σ I
αδμ

lk;i j
I (r, r′)σ 0

βγ

.

The first is the usual Coulomb interaction, the second a spin-
spin interaction, and the third a spin-orbit interaction. The
layer degrees of freedom can be classified based on their
vertex. In analogy to spin, the vertex may be layer num-
ber conserving or nonconserving, giving way to interactions
originating within the same layer, between layers, or at the
interface, as schematically illustrated in Fig. 1. Table I gives
the various classes of interactions. The existence of interfacial
interactions is a direct consequence of the boundary between
the various layers, where the boundary acts as an impurity by
flipping the conserved layer quantum numbers. In previous
works on layered electron gases the role of these interfacial
interactions has been ignored [26–31].

Later on it will be helpful to expand the spin degrees of
freedom in the Pauli and identity matrices as

v
lk;i j
δγ ;αβ (r, r′) = σ I

αδv
lk;i j
IJ (r, r′)σ J

βγ , (2)

where I, J ∈ {0, x, y, z}. In strongly spin-orbit coupled sys-
tems, e.g., heavy fermion systems, the two-particle interaction
can be modified to consider J · J coupling rather than the
Russell-Saunders L · S coupling [32,33]. Additionally, the
layer degrees of freedom may be expanded into the identity
plus the generators of SU(N), where N is the number of
layers. For example, in a bilayer system the layer indices can
be reorganized using the Pauli matrices while for a trilayer
system the Gell-Mann matrices are used.

To keep the results and the discussion general we define all
operators in the contour Heisenberg picture,

O(z) = U (z0, z)OU (z, z0), (3)

TABLE I. Classification of the various electron-electron interac-
tions by layer and charge-spin degrees of freedom. The first two rows
present layer-number conserving interactions, while the last row is
layer nonconserving.

Coulomb Spin Spin-Orbit

Intralayer vll;ll
00 vll;ll

IJ vll;ll
0J

Interlayer vlk;lk
00 vlk;lk

IJ vlk;lk
0J

Interfacial vlk;l ′k′
00 vlk;l ′k′

IJ vlk;l ′k′
0J
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with the time arguments, z and z0, running along the Keldysh
contour (z ∈ C), where z0 is an arbitrary initial time and the
time evolution operator, U (z0, z), evolves an operator O from
z0 to z along the contour. In this picture the operators are
explicitly time dependent whereas the wave functions are
not. This allows us to introduce the time ordering on the
contour and Wick’s theorem, connecting our results to many-
body perturbation theory [34]. In order to treat the electronic
many-body dynamics at finite temperature, we define the
time-dependent ensemble average of operator O(z) as

〈O(z)〉 = Tr{T exp [−i
∫
C dz̄H (z̄)]O(z)}

Tr{T exp [−i
∫
C dz̄H (z̄)]} , (4)

where 〈O(z)〉 is the overlap between the initial state in ther-
modynamical equilibrium (for temperature β) at z0 with the
time evolved state at z [37].

To obtain the exact expression for the self-energy, the
vertex, and various other quantities we will use the Schwinger
functional derivative approach [35–37]. To do so, we couple
our Hamiltonian to a time dependent auxiliary electromag-
netic field that probes the charge, spin, and layer degrees
of freedom. The electric and magnetic fields are given in a
compact form by

π̂ (z1) =
∫

d2rπ I
ll ′ (1)ψ̂†

αl (1)σ I
αβψ̂βl ′ (1). (5)

Now if we wish to find the infinitesimal change in a generic,
contour-ordered product of operators 	iOi(zi ) with respect to
field π I

ll ′ (1), we arrive at the following identity,

i
δ

δπ I
ll ′ (1)

〈T {	iOi(zi)}〉

= 〈
T {	iOi(zi)ψ̂

†
αl (1)σ I

αβψ̂βl ′ (1)}〉
− 〈T {	iOi(zi )}〉 〈T {ψ̂†

αl (1)σ I
αβψ̂βl ′ (1)}〉 , (6)

where T is the contour-ordering operator. In general this
identity is valid for same time and mixed operators, including
electronic and bosonic; for more details see Ref. [34].

B. Generalized Hedin’s equations for a multilayered spin
dependent system

The derivation closely follows Hedin’s original work [38],
along with other more recent generalizations [39–41], us-
ing Schwinger’s functional derivative technique. Since the
fermionic field operator satisfies the Heisenberg equation of
motion

d

dz1
ψ̂αn(1) = i[H, ψ̂αn(1)], (7)

we can straightforwardly derive the equation of motion of the
Green’s function,(

i
d

dz1
δl ′nδαβ − h0

αn,βl ′ (1)

)
Gβl ′,σm(1, 2)

= δ(1, 2)δασ δnm − ivlk;in
δγ ;ξα (3, 1)G(2)

γ k,δl,ξ i,σm(1, 3, 3+, 2),

(8)

where the single- and two-particle Green’s functions are
given by

Gβl ′,σm(1, 2) = 1

i
〈ψ̂βl ′ (1)ψ̂†

σm(2)〉 , (9)

G(2)
γ k,δl,ξ i,σm(1, 3, 3+, 2) = 1

i2
〈ψ̂γ k (1)ψ̂δl (3)ψ̂†

ξ i(3
+)ψ̂†

σm(2)〉 ,

(10)

where (+) in ψ̂
†
η j (3

+) denotes this operator should be placed

infinitesimally after ψ̂γ k (3) when the time ordering operator is
applied. The electron creation and annihilation operators were
also taken to obey the canonical anticommutation relations on
the contour

{ψ̂αl (1), ψ̂†
βl ′ (2)} = δαβδll ′δ(1 − 2), (11)

{ψ̂αl (1), ψ̂βl ′ (2)} = 0 = {ψ̂†
αl (1), ψ̂†

βl ′ (2)}, (12)

where we have introduced the shorthand ψ̂
†
βl ′ (2) ≡

ψ̂
†
βl ′ (x2, z2). For convenience we use the convention where a

repeated index or variable implies a summation or integration,
provided the repeated indices are on the same side of the
equation.

Originally, Hedin just considered an external electric field
which was used to relate the two-particle Green’s function to
the functional derivative of the single particle Green’s function
with respect to the probing electric field. Here, we have
coupled our Hamiltonian to a layer dependent electromagnetic
field allowing us to capture the intertwined charge, spin, and
layer excitations of the system. Therefore, by Eq. (6), the
two-particle Green’s function can be written as

G(2)
γ k,δl,ξ i,σm(1, 3, 3+, 2)σ I

ξδ

= Gγ k,σm(1, 2)Gδl,ξ i(3, 3+)σ I
ξδ − δGγ k,σm(1, 2)

δπ I
il (3)

. (13)

From this relation we recover the mass operator,

Mαn,νt (1, 3)Gνt,σm(3, 2)

= −iσ I
ξδv

lk;in
IJ (3, 1)σ J

αγ G(2)
γ k,δl,ξ i,σm(1, 3, 3+, 2)

= V J
H k;n(1)σ J

αγ Gγ k,σm(1, 2) + αn,νt (1, 5)Gνt,σm(5, 2).

(14)

Two contributions can be readily identified, the generalized
Hartree potential

V J
H k;n(1) = ρI

il (3)vlk;in
IJ (3, 1), (15)

and the exact self-energy

αn,νt (1, 5) = −ivlk;in
IJ (3, 1)σ J

αγ Gγ k,μs(1, 4)
δG−1

μs,νt (4, 5)

δπ I
il (3)

,

(16)

where we have used the identity,

δ(G−1G)

δπ
= 0 ⇒ δG

δπ
= −G

δG−1

δπ
G, (17)

to pull out a factor of G along with the definition of the charge
and spin density,

ρI
il (3) = −iGδl,ξ i(3, 3+)σ I

ξδ. (18)
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To uncover the richness of the self-energy, we expand [42]
the functional derivative in the self-energy in terms of the
total field

�J
nk (1) = π J

nk (1) + V J
H k;n(1). (19)

We find, just as Hedin, that the self-energy is made up of three
interwoven components: the single-particle Green’s function,
the screened interaction, and the vertex,

αn,νt (1, 5) = iσ J
αγ Gγ k,μs(1, 4)�L ab

μs,νt (4, 5; 6)W LJ
ak;bn(6, 1).

(20)

The vertex is

�L ab
μs,νt (4, 5; 6) = −δG−1

μs,νt (4, 5)

δ�L
ab(6)

(21)

and the screened interaction is

W LJ
ak;bn(6, 1) = δ�L

ba(6)

δπ I
il (3)

vlk;in
IJ (3, 1), (22a)

= ε−1 LI
al;bi (6, 3)vlk;in

IJ (3, 1). (22b)

To find the self-consistent equations governing W and �,
we use the equation of motion of G and employ the chain rule,

W LJ
ak;bn(6, 1) = ε−1 LI

al;bi (6, 3)vlk;in
IJ (3, 1) =

(
δ(6, 3)δLIδbiδal + δV L

H a;b(6)

δρM
cd (7)

ρM
dc(7)

δ�N
f g(8)

δ�N
gf (8)

δπ I
il (3)

)
vlk;in

IJ (3, 1)

= vak;bn
LJ (6, 1) + vad;bc

LM (6, 7)χMN
0 c f ;dg(7, 8)W NJ

f k;gn(8, 1), (23)

where we have used the indistinguishability of particles, vda;cb
ML (7, 6) = vad;bc

LM (6, 7). The vertex expends as

�L ab
αn,ηy(1, 4; 6) = δ(1, 6)δ(1, 4)σ L

αηδanδby + δαn,ηy(1, 4)

δ�L
ab(6)

= δ(1, 6)δ(1, 4)σ L
αηδanδby + δαn,ηy(1, 4)

δGμs,νt (9, 10)
Gνt,εg(9, 11)�L ab

εg,δ f (11, 12; 6)Gδ f ,μs(12, 10). (24)

Additionally, we define the polarization as

χMN
0 c f ;dg(7, 8) = ρM

dc(7)

δ�N
f g(8)

= −iGδc,μs(7, 9)�N f g
μs,νt (9, 10; 8)Gνt,ξd (10, 7+)σ M

ξδ . (25)

The complete set of self-consistent layer and spin dependent Hedin’s equations relating the electronic self-energy  to the
Green’s function G and the screened interaction W , using the vertex � and polarization function χ0 are:

αn,νt (1, 5) = iσ J
αγ Gγ k,μs(1, 4)�L ab

μs,νt (4, 5; 6)W LJ
ak;bn(6, 1), (26a)

W LJ
ak;bn(6, 1) = vak;bn

LJ (6, 1) + vad;bc
LM (6, 7)χMN

0 c f ;dg(7, 8)W NJ
f k;gn(8, 1), (26b)

χMN
0 c f ;dg(7, 8) = −iGδc,μs(7, 9)�N f g

μs,νt (9, 10; 8)Gνt,ξd (10, 7+)σ M
ξδ , (26c)

�L ab
αn,ηy(1, 4; 6) = δ(1, 6)δ(1, 4)σ L

αηδanδby + δαn,ηy(1, 4)

δGμs,νt (9, 10)
Gνt,εg(9, 11)�L ab

εg,δ f (11, 12; 6)Gδ f ,μs(12, 10). (26d)

To close the set of equations, Dyson’s equation

Gαn,βm(1, 2) = G0 αn,βm(1, 2) + G0 αn,ηs(1, 3)ηs,δl (3, 4)Gδl,βm(4, 2) (27)

links the fully interacting system to the bare noninteracting
propagator,

G−1
0 αn,ηy(1, 4)

=
(

i
d

dz1
δαηδyn − h0

αn,ηy(1) − �N
ny(1)σ N

αη

)
δ(1, 4). (28)

A diagrammatic representation of these equations is shown
in Fig. 2.

Before moving forward, let use interpret the meaning of the
resulting self-energy and screened interaction. For simplicity
and clarity, we will take

�L ab
αn,ηy(1, 4; 6) = δ(1, 6)δ(1, 4)σ L

αηδanδby, (29)

which yields the commonly employed GW approximation
[43], where

αn,νt (1, 5) = iσ J
αγ Gγ k,μa(1, 5)σ L

μνW LJ
ak;tn(5, 1), (30)

and

χMN
0 dg;c f (7, 8) = −iGδc,μ f (7, 8)σ N

μνGνg,ξd (8, 7+)σ M
ξδ . (31)

If the hybridization between layer l and l ′ is assumed to be
small, as is the case for vertical heterostructures composed of
2D transition metal dichalcogenides [44,45], the self-energy
can be partitioned into two classes involving layer conserving
and layer nonconserving interactions. We illustrate the physi-
cal meaning of each case in the following.
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FIG. 2. Diagrammatic representation of the self-energy (a), the
vertex (b), and the screened interaction (c) functions. The spin
indices have been suppressed for clarity.

1. Layer conserving

If a particle, G↑l,↑l , of up-spin and layer l enters the self
energy ↑l,↑l , the particle exchanges energy and momentum
with plasmons, W 00. If the same particle on layer l has its spin
flipped upon entering the self-energy by a spin operator σ I

↑↓, a
magnon given by W IJ is emitted. Then upon exiting the self-
energy the magnon is reabsorbed, thereby flipping the spin
by σ J

↓↑, and recovering its original spin state. We call these
intra layer plasmons (magnons). This process is illustrated in
Figs. 3(a) and 3(b).

2. Layer nonconserving

If a particle, G↑l,↑l , of up-spin and layer l enters the self
energy ↑l,↑l , the screened interaction W can ‘flip’ the layer
on which the particle is propagating, as seen in Figs. 3(c) and
3(d). As the particle changes layer, it can also emit a plasmon
(magnon). On exiting the self energy, the particle is sent back
to its layer of origin and reabsorbs the formally emitted plas-
mon (magnon). We call these interfacial plasmons (magnons),
since these bosonic excitations run along the interface.

FIG. 3. Diagrammatic representation of the self-energy in the
GW approximation for layer conserving (a),(b) and layer noncon-
serving (c),(d) interactions. The right hand (left hand) diagrams
show an electron exchanging energy and momentum with plasmons
(magnons) represented by W 00 (W IJ ). The boundary between layers
l and l ′ is indicated by the red dashed line.

Since G is assumed to be nearly diagonal in layer in
the weak hybridization limit, the screened interaction only
permits two types of polarization bubbles,

χMN
0 ll;ll (7, 8) and χMN

0 kl;lk (7, 8). (32)

The first bubble completely resides within a single layer and is
only able to connect to layer conserving vertices. In contrast,
the second polarization bubble is composed of an electron and
hole residing on different layers and can only be stimulated by
layer nonconserving vertices.

For intermediate strength layer hybridizations, such as
those in the high-temperature superconducting cuprates
[46–49] and the perovskite iridates [50,51], an additional
interlayer polarization bubble is possible,

χMN
0 lk;lk (7, 8). (33)

For this bubble, its vertices reside on different layers, allowing
connections to layer conserving interactions only. Recently,
this interlayer polarization has been found to contribute to the
effective screening of the Ni 3d orbitals from the Nd layer in
the newly discovered nickelate superconductor NdNiO2 [52].
In the strong hybridization limit all remaining polarization
bubble configurations are found and play a role in the full
screened interaction. These three bubbles are sketched in
Fig. 4 (left panel).

As elucidated by Perdew et al. [53], the exchange-
correlation energy may only account for a small fraction of
the total energy of a system, but it includes three key physical
ingredients: The exchange energy corrects spurious effects
of self-interaction and also maintains the Pauli exclusion
principle, while the correlation energy accounts for Coulomb
correlation effects in the many-electron environment. How-
ever, most importantly, the exchange-correlation energy plays
an extremely vital role in the ‘glue’ that binds atoms together
to form molecules and solids. Here, the same principle ex-
tents to layered systems. The self-energy in Eq. (26a) [or
Eq. (30) in the GW approximation] provides the exchange
and correlation corrections to the bare noninteracting system.
Due to the explicit layer dependence, ll ′ = ll ′

x + ll ′
c , one

finds two types of ‘glue,’ one sticking atoms together within
the same layer (l = l ′) and the other adhering the layers
together (l 
= l ′).

C. Charge and magnetic response

Interlayer coupling has been shown to play a pivotal role
in stabilizing various magnetic orders in a layer dependent
manner [54] and enhancing interlayer-exchange coupling [55]
between 2D atomically thin films. To analyze the instability
of the ground state to various ordered phases and investigate
the emergent excitations harbored in layered systems, we
must observe its response to an infinitesimal time-dependent
external probe π I

i j (1). The response of the system due to an
infinitesimal change in the external field is

χ IJ
m j;ni(1, 2) = δρI

nm(1)

δπ J
i j (2)

. (34)
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FIG. 4. Various polarization bubbles and collective modes induced by interlayer coupling. (Left panel) Polarization bubbles present in the
weak and intermediate hybridization limit connecting to layer conserving or layer nonconserving interactions, indicated by the green and blue
vertices, respectively. (Right panel) The various bosonic modes predicted as poles of Eq. (36). Intra- and interlayer plasmons (magnons) are
facilitated by layer conserving interactions, while the interfacial modes are generated by layer nonconserving interactions. Mixed modes are
generated in the presences of spin-orbit coupling or noncollinear magnetic ordering. The boundary between layers is indicated by the red
dashed line.

Using the chain rule we arrive at a recursive relationship for
density response due to the perturbation,

χ IJ
m j;ni(1, 2) = δρI

nm(1)

δ�M
ab(3)

δ�M
ba(3)

δπ J
i j (2)

= χ IJ
0 m j;ni(1, 2) + χ IM

0 ma;nb(1, 3)vat ;bs
ML (3, 4)χLJ

t j;si(4, 2). (35)

To dissect the meaning and structure of this response function
we start with its tensoral structure. Due to the generalized
nature of the density and external electromagnetic field, the
response χ IJ

m j;ni not only contains the charge (I, J = 0) and
spin (I, J ∈ {x, y, z}) responses but also their mixture (I =
0, J ∈ {x, y, z}). Moreover, each of these responses is indexed
by layer (m j; ni) in which the electrons and holes reside or
transition between. This fine grained, transparent indexing
structure gives us a comprehensive picture of the various
responses found in interacting layered systems.

If we expand the recursive relation in Eq. (35) to a few
orders in v, one can convince themselves that χ IJ

m j;ni(1, 2) is
composed of all combinations of polarization bubbles con-
nected by all the various types of interactions in our system.
This is a generalized version of the ring diagram type sum
[56–58]. Since the recursive relation for χ is of the form of
a geometric series, we can solve for the response function
outright in terms of v and χ IJ

0 m j;ni(1, 2),

χ IJ
m j;ni(1, 2)

= [
1 − χ IM

0 ma;nb(1, 3)vat ;bs
ML (3, 4)

]−1 IK

mg;n f χ
KJ
0 gj; f i(4, 2). (36)

In this form we gain some insight into the analytic
structure of χ IJ

m j;ni. In the process of solving for χ IJ
m j;ni, we

have introduced the matrix inverse of 1 − F [where F =
χ IM

0 ma;nb(1, 3)vat ;bs
ML (3, 4)]. This forces the response function

to be valid if and only if 1 − F is nonsingular. Due to this

singularity condition we can draw a few physical implications.
In the static limit (z2 − z1 → ∞) if 1 − F becomes singular
for specific periodic arrangement of r1 and r2, then there is an
instability towards a broken symmetry phase. Physically, this
means that a vanishingly small external field π J

i j (2) can pro-
duce an ordered state since χ IJ

m j;ni  1, implying the system
can (wants to) lower its energy by ordering. This is a gener-
alized Stoner criteria where charge, spin, and layer degrees of
freedom mix to generate new exotic phases of matter.

Equation (36) also predicts bosonic quasiparticles as poles.
Depending on the index combination of χ IJ

m j;ni, these bosons
can be interlayer, intralayer, or interfacial plasmons, magnons,
or coupled plasmon-magnons for noncollinear magnetic sys-
tems. The dispersion of these collective excitations can be
found by tracing energy vs momentum when the eigenvalues
of 1 − F equal zero [59]. A summary of the various bosonic
modes is given in Fig. 4 (right panel).

Now that we have explored the structure and types of exci-
tons harbored in G and χ we can say a few words on the exper-
imental implications. The myriad of spectroscopic probes can
be classified broadly by the underlying spectral function they
measure: single-particle or two-particle. The single-particle
spectral function, − 1

π
Im G, contains all the information re-

lated to the response of a system to the removal (addition)
of a single electron. This is most readily measured by angle
resolved photoemission spectroscopy (ARPES) [60,61]. Since
the screened interaction (W ) can be explicitly written in terms
of the response function [Eq. (35)] the resonant coupling
between electrons and intralayer (interfacial) magnons and
plasmons will appear in the ARPES spectra as waterfalls
[62,63] and kinks [64,65] in the electronic dispersion.

In contract, the two particle spectral function is found
by perturbing the ground state without changing the elec-
tron count. Here, the dynamical structure factor [66] of the
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FIG. 5. Diagrammatic representation of the recursive relation for the two-particle propagator L. The spin indices have been suppressed
for clarity.

physical system is measured by scattering photons [67,68],
neutrons [69], and electrons [66] off the sample and measuring
their change in momentum and energy. Using the fluctuation
dissipation theorem the dynamical structure factor is propor-
tional to the imaginary part of the dynamical susceptibility,

S(q, ω) = h̄

π

1

(e−β h̄ω − 1)
Im χ (q, ω) (37)

or the dielectric function,

S(q, ω) = h̄q2

4π2e2

1

(e−β h̄ω − 1)
Im ε−1(q, ω), (38)

where the charge, spin, and layer degrees of freedom have
been integrated out. Therefore, intralayer, interlayer, and in-
terfacial plasmon and magnon peaks should be present in the
observed spectra.

D. Two-particle excitations and excitons

An important feature in the optical spectra of most semi-
conductors and 2D materials is the presence of electron-hole
bound pairs or excitons. The importance of excitons in 2D
materials stems from their strong binding energies as a result
of the highly anisotropic screening environment, leading to
many novel devices and applications [70,71]. If we wish
to characterize the various types of excitons that can form
within a layered system, we need to examine the excitation
spectrum of the two-particle Green’s function. Our set of exact
coupled equations given in Eqs. (26a)–(26) does not provide
a direct means to two-particle Green’s function, but rather
it is recovered by judiciously combining Eqs. (24) and (25).
To directly obtain the two-particle Green’s functions we first
extend π I

ll ′ (1) to a two point function, π I
ll ′ (1, 2), and consider

the infinitesimal change in the single particle Green’s function
with respect to the two-point external field. Formally,

δGμa,νb(1, 2)

δπ J
i j (3, 4)

= −Gμa,ηs(1, 5)
δG−1

ηs,ξ t (5, 6)

δπ J
i j (3, 4)

Gξ t,νb(6, 2) = −Gμa,ηs(1, 5)Gξ t,νb(6, 2)

[
δG−1

0 ηs,ξ t (5, 6)

δπ J
i j (3, 4)

− δηs,ξ t (5, 6)

δπ J
i j (3, 4)

]
(39a)

= Gμa,ηs(1, 5)Gξ t,νb(6, 2)

[
−iσ N

ηξv
f t ;es
LN (8, 5)σ L

βαδ(5, 6)δ(8, 9)
δGβ f ,αe(8, 9)

δπ J
i j (3, 4)

+ σ J
ηξ δ(5, 3)δ(6, 4)δsiδt j + δηs,ξ t (5, 6)

δπ J
i j (3, 4)

]
(39b)

−i
δGμa,νb(1, 2)

δπ J
i j (3, 4)

σ I
μν = −iGμa,ηi(1, 3)σ J

ηξ Gξ j,νb(4, 2)σ I
μν (39c)

− iGμa,ηs(1, 5)σ N
ηξ Gξ t,νb(6, 2)σ I

μν

[
v

f t ;es
LN (8, 5)δ(5, 6)δ(8, 9) + iσ N

ξη

δηs,ξ t (5, 6)

δGαe,β f (8, 9)
σ L

αβ

]
(−i)

δGβ f ,αe(8, 9)

δπ J
i j (3, 4)

σ L
βα

LIJ
a j;bi(1, 2; 3, 4) = LIJ

0 a j;bi(1, 2; 3, 4) + Lin
0 at ;bs(1, 2; 5, 6)

[
v

f t ;es
LN (8, 5)δ(5, 6)δ(8, 9) + iσ N

ξη

δηs,ξ t (5, 6)

δGαe,β f (8, 9)
σ L

αβ

]
LLJ

f j;ei(8, 9; 3, 4),

(39d)

where L0 and L are the bare and dressed two-particle prop-
agators, respectively. We should note that L is a generaliza-
tion of χ where the response function can be recovered by
setting

LIJ
a j;bi(1, 1; 2, 2) = χ IJ

a j;bi(1, 2). (40)

A diagrammatic representation of the self-consistent equation
for the two-particle propagator is shown in Fig. 5.

Firstly, let us comment on the structure of Eq. (40). The
recursion relation for L takes the form of a Dyson’s equation

analogous to that for the dressed single-particle Green’s func-
tion where the self-energy is represented by the kernel,

�NL
f t ;es(5, 6; 8, 9)

= v
f t ;es
LN (8, 5)δ(5, 6)δ(8, 9) + iσ N

ξη

δηs,ξ t (5, 6)

δGαe,β f (8, 9)
σ L

αβ. (41)

Similar to the single-particle Green’s function, we can solve
for the dressed two-particle propagator L in terms of L0 and
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FIG. 6. Schematic of the various species of excitons induced by interlayer coupling, along with the diagrammatic representation of � for
the various layer configurations. For simplicity, we have used the GW approximation to evaluate δ

δG .

the ‘self-energy’ � to reveal its analytic structure. Formally,

LIJ
a j;bi(1, 2; 3, 4) = [

L−1
0 − �

]−1 IJ

a j;bi (1, 2; 3, 4), (42)

where L−1
0 provides the bare two-particle excitation spectrum,

and the real and imaginary part of � shifts the election-
hole excitations and accounts for their lifetime, respectively.
In particular, the poles of L, occurring when L−1

0 − � = 0,
describe the pairing between electrons and holes.

Since we wish to characterize spin and layer dependent
excitons, as seen in optical spectroscopy, we will work within
the GW approximation to better examine the physical content
of Eq. (42) and rationalize its indexing structure. This means
the kernal [Eq. (41)] reduces to the difference between the
bare and screened interactions,

v
f t ;es
LN (8, 5)δ(5, 6)δ(8, 9) − W NL

f t ;es(6, 5)δ(5, 8)δ(6, 9). (43)

The screened interaction is direct and provides an attractive
coupling between electrons and holes, while the bare ex-
change interaction is repulsive. The balance between these to
opposing forces guides the creation of bound states.

The spin structure has been analyzed by previous works
[72], so we will focus on the layer degrees of freedom.
Similar to the charge and magnetic response, we find three
unique cases. For the case of intralayer excitons [Fig. 6 (left
panel)], an electron and hole propagating within the same
layer l interact by the screened interaction and bare exchange
interaction as follows

W ll;ll and vll;ll . (44)

Here, the components of � are very similar to the usual form
employed in standard BSE calculations on bulk solids and thin
films, except ε−1 in W contains the spin and charge fluctuation
contributions from the surrounding layers. If the electron and
hole exist on different layers [Fig. 6 (center panel)], � takes a
different form with

W ll;kk and vlk;kl . (45)

Now the exchange interaction is strictly of the layer noncon-
serving type, while W is of the conserving type due to its
direct nature. Therefore the generation of interlayer excitons

is directly mediated by the competition of layer conserving
and nonconserving interactions.

Finally, we predict the existence of a type of exciton
that is restricted to the interface. If electrons and holes are
exchanged about the interface they can form a bound state at
the boundary between the two materials [Fig. 6 (right panel)].
In this case the exchange interaction is layer conserving, while
the attractive screened interaction is layer nonconserving, as
given by

W lk;kl and vlk;lk . (46)

Interestingly, various optical spectroscopy studies have al-
ready identified interlayer excitons [73,74], justifying the im-
portance of nonlayer conserving interactions in real materials.

III. INTERLAYER COUPLING IN A BILAYER SYSTEM

As we have shown in the preceding sections, interlayer
coupling, through either hybridization or electron interactions,
can shape and induce various plasmonic, magnonic, and ex-
citonic excitations. In this section we will focus on a few
aspects of our findings within a concrete model. Specifically,
we will explore the consequence of interlayer coupling on the
magnetic ordering instabilities and spin excitations in a simple
Hamiltonian for a bilayer square lattice system.

A. Nonmagnetic Hamiltonian

The Hamiltonian for a square lattice bilayer system without
electron-electron interactions is explicitly written as

H =
∑
lss′σ

t l
ss′c†

lsσ cls′σ +
∑
ll ′s

t ll ′
ss′ (c†

lsσ cl ′s′σ + H.c.), (47)

where c†
ls(cls) create (destroy) fermions on site s of layer l

with spin eigenvalues σ = ±. The first term describes the
hopping of electrons on each individual layer and the second
term allows for hopping between the layers. Since the atomic
sites within a given layer are organized over a square lattice,
with full translation symmetry, we can Fourier transform the
Hamiltonian of each layer. The Hamiltonian of each layer can
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TABLE II. Tight-binding hopping parameters (in meV) for
Bi2Sr2CaCu2O8 reproduced from Ref. [75].

t t ′ t ′′ t ′′′ tbi a0

360 −100 35 10 110 400

then be expressed as

Hl
k =

∑
σ

⎛
⎝∑

〈ss′〉
t l
ss′ exp(−ik · Rss′ )

⎞
⎠c†

lkσ
clkσ (48)

with 〈ss′〉 denoting that the sum is taken over successive rings
of neighboring lattice sites surrounding site s, and Rss′ is the
displacement between lattice sites s and s′. Taking the sum out
to the fourth nearest neighbor, we find the dispersion of each
layer is given by

Hl
k = −2t (cos(kxa) + cos(kya))

− 4t ′(cos(kxa) cos(kya))

− 2t ′′(cos(2kxa) + cos(2kya))

− 4t ′′′(cos(2kxa) cos(kya) + cos(2kya) cos(kxa)),(49)

where a is the lattice spacing and successive primes (′) denote
nearest neighbors, next-nearest neighbors, and so on. Finally,
the full Hamiltonian including interlayer hybridization, or
bilayer splitting, is given by

Hkσ =
[

Hkσ t k
⊥

t k
⊥ Hkσ

]
, (50)

where we have assumed layer one and two have the same
hopping amplitudes and the interlayer hopping t ll ′

ss′ can be cast
as a momentum dependent bilayer splitting t k

⊥.
Here, we will use the tight-binding parametrization for the

bilayer bismuth-based cuprates Bi2Sr2CaCu2O8 (BSCCO) as
given in Ref. [75], where the momentum dependent bilayer
splitting is defined as

t k
⊥ = −tbi

(
[cos(kxa) − cos(kya)]2

4
+ a0

)
. (51)

BSCCO, first discovered in 1988 [76–78], is one of the
most studied cuprate compounds, owing to the weak van
der Waals-like coupling between the rock-salt SrO-BiOδ-SrO

FIG. 7. Single particle spectral function in the absence (a) and
presence (b) of bilayer splitting. The insets show the Fermi surface.

charge reservoir layer and the two CuO2-Ca-CuO2 layers
that facilitate cleaving for accurate surface studies with an-
gle resolved photoemission spectroscopy [79–84] and with
scanning tunneling spectroscopy [85–89], therefore making it
an interesting compound to examine the effects of interlayer
coupling. The hopping parameters used are given in Table II.

Figure 7 (left panel) shows the single particle spectral func-
tion in the absence of interlayer hybridization. The band dis-
persion of each layer is degenerate forming a single holelike
cylinder Fermi surface centered at the corners of the Brillouin
zone. For finite interlayer hybridization [Fig. 7 (right panel)],
the layer basis is reorganized into bonding and antibonding
pairs, splitting the degenerate energy levels. This produces
two cylindrical Fermi surfaces of slightly different doping.

B. The RPA susceptibilities and magnetic ordering instabilities

To calculate the magnetic instabilities we consider the
density-density response

χ
IJ l j
0 ki (q,−q′, τ ) = 〈

T
{
σ̂ J

i j (q, τ )σ̂ I
kl (−q′, 0)

}〉
(52)

of the generalized density operator

σ̂ I (q, τ )ll ′ =
∑

k

(ψ̂†
k+q↑l ψ̂

†
k+q↓l )σ

I

(
ψ̂k↑l ′

ψ̂k↓l ′

)
, (53)

where τ is the imaginary time, q(q′) is the momentum transfer,
i jkl index the layer, and I = 0 gives the charge density
and I = x, y, z gives the spin density along each Cartesian
direction. If we assume a noninteracting ground state, we can
write the noninteracting susceptibilities as

χ IJ
0

∣∣l ′i
i′l (q, iωn) = −

∑
k

∑
αβ

α′β ′

σ J
αβσ I

α′β ′
1

β

∑
j

Gi′α′iβ
0 (k, iωn + iq j )G

l ′β ′lα
0 (k+q, iq j ) (54a)

= −
∑

k

∑
αβ

α′β ′

σ J
αβσ I

α′β ′
∑

st

V k
(iβ )sV

∗k
(i′α′ )sV

k+q
(l ′β ′ )tV

∗k+q
(lα)t

f
(
εt

k+q

)− f
(
εs

k

)
w + εt

k+q − εs
k + iδ

, (54b)

where β = 1/T and

G0 αl,βk (k, iωn) =
∑

i

Vlα,iV ∗
kβ,i

iωn − εi
. (55)

In the definition of the noninteracting Green’s function
[Eq. (55)] iωn is the Matsubara frequency and Vlα,i = 〈lα|i〉
are the matrix elements connecting the layer-spin and the band
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TABLE III. Layer components of the interaction in the Pauli
basis (l 
= k).

v00 vxx vyy vzz

vll;ll U
2 −U

2 −U
2 −U

2

vlk;lk V − I
2 − I

2 − I
2 − I

2

vkl;lk I − V
2 −V

2 −V
2 −V

2

vkk;ll I ′
2 − I ′

2 − I ′
2 − I ′

2

spaces found by diagonalizing the Hamiltonian. The retarded
susceptibility in Eq. (54b) is found by performing the Mat-
subara frequency summation and by analytically continuing
iωn → ω + iδ, for δ → 0+.

To calculate the charge and magnetic response functions,
we consider Coulomb interactions of the electrons on the
same site and between layers in an RPA framework. We
distinguish between the layer conserving intralayer interaction
U of electrons on the same atomic site and an interlayer
interaction V . We also take the interfacial layer nonconserving
interaction into account in two different configurations, I and
I ′, where I mimics a Hund’s coupling and I ′ describes pair
hopping between the layers. Then, by including all crossed
diagrams we arrive at the set of layer-dependent interactions,

U = vll;ll
σ σ̄ ;σ σ̄ = −vll;ll

σ σ̄ ;σ̄ σ I = vlk;kl
σσ ;σσ = −vlk;lk

σσ ;σσ (56a)

V = vlk;lk
σσ ;σσ = −vlk;kl

σσ ;σσ I = vlk;kl
σ σ̄ ;σ σ̄ = −vlk;lk

σ σ̄ ;σ̄ σ (56b)

V = vlk;lk
σ σ̄ ;σ σ̄ = −vlk;kl

σ σ̄ ;σ̄ σ I ′ = vll;kk
σ σ̄ ;σ σ̄ = −vll;kk

σ σ̄ ;σ̄ σ . (56c)

Finally, in Table III we expand the interactions in the Pauli
basis. Since the interactions do not contain any spin flips, only
the v00, vxx, vyy, and vzz terms are nonzero. Consequently, the
interactions are rotationally invariant for each layer dependent
configuration.

Using the noninteracting single-particle propagator
[Eq. (55)] in the polarization χ0 along with taking the
bare vertex [Eq. (29)] in the layer-dependent electromagnetic
response function χ IJ

l ′k;k′l we recover the generalized RPA
susceptibilities,

χ IJ
l ′k;k′l (q, ω)

= χ IJ
0 l ′k;k′l (q, ω) + χ IK

0 l ′m;k′n(q, ω)vmm′;nn′
KL χLJ

m′k;n′l (q, ω),

(57)

where repeated indices are summed over. For a single-band
susceptibility the inclusion of interactions within the RPA
approach enhances existing features in the noninteracting
susceptibility as the Stoner denominator 1 − Uχ (q, ω) ap-
proaches zero. In the case of a multilayer susceptibility, much
like the multiorbital case [90], it is not obvious how the differ-
ent structures in the spin and in the charge susceptibility are
changed by the varying U , V , I , and I ′. To present a simplified
and transparent discussion, we varied each parameter while
tracking various spin correlation functions.

Figure 8 shows the RPA spin correlations along the high-
symmetry line in the square Brillouin zone for intralayer
〈S11S11〉, interlayer 〈S00S11〉, and interfacial 〈S01S01〉 and
〈S01S10〉 spin configurations with (dotted lines) and without

FIG. 8. The generalized RPA spin susceptibilities calculated with
(dotted lines) and without interlayer hybridization (solid lines).

(solid lines) interlayer hybridization. For U = 0.7 eV there is
a dramatic enhancement in the spin susceptibilities near M in
the intralayer channel. This enhancement signals an instability
toward (π, π ) AFM order, which is in agreement with other
RPA studies of cuprates [91] and the experimentally observed
AFM order in the BSCCO parent compound [24]. Upon
introducing V , there is an increase in the spin fluctuations
at (π, π ) in the 〈S00S11〉 channel, similar to the effect of U .
Physically, this interlayer interaction gives rise to the various
AFM orderings along the c axis, e.g., G- and C-type AFM
orders. Finally, for finite I and I ′, spin correlations appear in
the 〈S01S01〉 and 〈S01S10〉 sectors. This suggests the existence
of instabilities towards interfacial magnetic ordering in the
BSCCO bilayer system. Following the dotted lines, we find
that a finite interlayer hybridization tends to round-out non-
analytic cusps and plateaus near M, eliminating competition
between various AFM orders, as expected for systems in more
than two dimensions [91,92].

C. Antiferromagnetic Hamiltonian and induced magnetic order

Proximity effects play a significant role in designing new
functional heterostructures with strategically induced phases
such as superconductivity [93,94], spin-orbit coupling ef-
fects [95,96], and magnetism [97–99]. Specifically, in the
layered cuprate high-temperature superconductors extensive
NMR studies on multilayer cuprates have observed an in-
homogeneous hole doping of the various CuO2 layers, re-
sulting in the coexistence of nearly pristine and optimally
doped CuO2 planes [100,101]. In the case of single-layered
cuprates the relative hole doping between layers can be ma-
nipulated through the so-called δ-doping scheme [102]. This
presents a natural platform to explore the role hybridization
and layer-dependent interactions independently play in these
proximity effects.

To explore this, we introduce a Q = (π, π ) AFM order
into one of the layers in our Hamiltonian for bilayer BSCCO
[Eq. (50)] mimicking the inhomogeneous hole doping

235138-10



INTERLAYER COUPLING INDUCED QUASIPARTICLES PHYSICAL REVIEW B 101, 235138 (2020)

FIG. 9. The self-consistent magnetic moment Ssc f and the in-
duced magnetic moment Sinduced as a function of interlayer hybridiza-
tion for three different onsite correlation strengths U .

observed experimentally. After taking the Umklapp processes
into account and factoring the electron-electron interactions
through an auxiliary field, we arrive at the Hamiltonian in
terms of the self-consistent field m and occupation nσ ,

Hkσ =

⎡
⎢⎢⎢⎣

Hkσ sign(σ̄ )� t k
⊥ 0

sign(σ̄ )� Hk+Qσ 0 t k+Q
⊥

t k
⊥ 0 Hkσ 0

0 t k+Q
⊥ 0 Hk+Qσ

⎤
⎥⎥⎥⎦, (58)

where our wave functions take the Nambu form �† =
(c†

1kσ
, c†

1k+Qσ
, c†

2kσ
, c†

2k+Qσ
), � is defined as U

2 (m + m†) =
URe(m), and the constant shift Unσ̄ is added to the chemical
potential. See the Appendix for a detailed derivation of the
mean-field Hamiltonian.

Figure 9 shows the self-consistent spin magnetic moment
Ssc f on layer 1 and the induced magnetic moment Sinduced in
layer 2 as a function of bilayer splitting for three different
onsite correlation strengths U . For a U of 2.0 eV, Ssc f has
a maximum of 0.203 μB with no bilayer splitting. For finite
tbi, three distinct regions are observed. (I) For 0 � tbi �
0.9 eV a positive Sinduced is produced, reaching a maximum
of 0.006 μB. (II) When 0.9 � tbi � 1.3 eV, Sinduced is negative
with a minimum of −0.008 μB. (III) For 1.3 � tbi eV both
Ssc f and Sinduced are quenched. Ssc f decreases for increasing
values of tbi, with a visible kink in the line shape concomitant
with the change in sign of Sinduced. For larger onsite potentials,
the region and moment of negative Sinduced is increased and
enhanced, respectably.

Physically, the increase in tbi can be facilitated by uniaxial
compressive strain where the two CuO2 layers are brought
into closer proximity, allowing greater wave function overlap.
The change in sign of Sinduced suggests a change from C-type
to G-type AFM order purely due to hybridization. A similar
type of behavior is observed in the bilayer CrI3 where different
layer stacking configurations induce AFM or FM coupling
between the layers [103]. Furthermore, the delicate interlayer
hopping between IrO6 planes in Sr2IrO4 can be disrupted by
an external laser pulse, changing the magnetic symmetry of
the system [51,104–106].

FIG. 10. The single-particle spectral function of a bilayer AFM-
metallic system with and without interlayer hybridization. (Top)
Shows the spectral weight for layer 1 with (π, π ) AFM order and an
uncorrelated metallic layer 2. (bottom) Shows the effect of interlayer
hybridization on the spectra of each layer.

Figure 10 (top) shows the single-particle spectral function
without bilayer splitting. Layer 1 exhibits a 1 eV AFM band
gap at the X point and along the M-� direction in the square
Brillouin zone. Since correlations were turned off in layer
2, it is a metal. The bottom panels of Fig. 10 display the
effect of interlayer hybridization on the single particle states.
Firstly, the spectra of both layers is present in the projected
spectral weight of each layer. This is produced by tbi forming
bonding (antibonding) pairs between various layer quantum
numbers. Moreover, the wide AFM gap of layer 1 is clearly
seen, along with a very slight induced gap produced in the
originally metallic band of layer 2.

D. Spin waves in the presence of interlayer coupling

To mark the effect of the various layer dependent interac-
tions and bilayer splitting on the spin wave dispersion in layer
1 and metallic character of layer 2, we calculate the imagi-
nary part of the transverse spin susceptibility �χ+−(q, ω) in
the random phase approximation [Eq. (57)]. The results are
presented in Fig. 11 and are organized as follows. The right
and left panels show �χ+−(q, ω) with and without bilayer
splitting, respectively. The rows in each panel present the data
for the various layer-dependent interaction combinations used
in the RPA. The specific interactions used are noted on the
left. The values of U , V , I , and I ′ employed are 1.5 eV, 1.0 eV,
1.0 eV, and 1.0 eV, respectively. For brevity, only the relevant
nonzero tensor components are given.

Figure 11 (left panel, row one) shows the nonzero compo-
nents of �χ+−(q, ω) along high symmetry lines in the Bril-
louin zone for just an onsite potential U . In layer 1 (channel
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FIG. 11. The relevant nonzero tensor components of �χ+−(q, ω) for various layer-dependent interactions in the absence (left panel) and
presence (right panel) of bilayer splitting. The layer-dependent interactions used in each row are noted on the left.

00; 00), a clear gapless spin wave dispersion is observed, with
its energy minimum at (π, π − δ). The spin excitation is clear
throughout the Brillouin zone, never entering the continuum
and damping out. In contrast, layer 2 (channel 22; 22) exhibits
a gapless particle-hole continuum, consistent with its metallic
band structure. Furthermore, the interfacial channel 20; 02
is nonzero exhibiting a faint gapped spin excitation band
at 0.35 eV on top of the particle-hole continuum. When
interlayer and interfacial interactions V (row two) and I ′
(row four) are introduced, the spectra is relatively unchanged
except for an enhancement in the gapped interfacial spin mode
in channel 20; 02. Lastly, I ′ generates a nonzero interfacial
matrix element (channel 22; 00) with a similar structure to that
of channel 20; 02.

Interestingly, a finite layer nonconserving interaction I
(row three) dramatically damps the magnon dispersion in
layer 1 by mixing in the metallic particle-hole continuum of
layer 2. Moreover, the zero of the dispersion is shifted to
surrounding � and X . Since I mixes the excitation spectrum
of layer 1 and 2, a magnon dispersion is now induced in layer
2, similar to layer 1. Additionally, a new interfacial nonzero
channel 02; 02 is found, displaying characteristic features of
layer 1 and 2.

If a finite bilayer splitting is included (right panel), the
spectrum of �χ+−(q, ω) is very similar to that of the isolated
case, except for a few key aspects. The magnon dispersion
in layer 1 [seen in row one, two, and four] now has its
minimum at the M point in the Brillouin zone. Moreover,
along X -� an avoided crossing appears and the magnon mode
becomes incoherent near �, due to the admixture of metallic
features from layer 2. In the interfacial channel 20; 02, the
spin wave band from layer one is clearly seen extending into
the continuum. Figure 12 shows a schematic summary of
the various spin waves induced by the different combinations
layer dependent interactions.

Lastly, through the dynamical structure factor S(q, ω)
[Eq. (37)] many of the key features of layer dependent interac-
tions appearing in the magnetic instabilities and modifications
to the spin wave spectrum shown in Figs. 8 and 11 are directly
accessible to neutron and x-ray scattering. Therefore, the pre-
diction of layer nonconserving induced interfacial magnetic
order and propagating spin waves can be readily confirmed.

In summary, layer-dependent interactions are able to mod-
ify magnetic ordering tendencies and magnon dispersions and
induce collective modes in neighboring layers all without

FIG. 12. Schematic of the various spin waves induced by differ-
ent combinations of intralayer, interlayer, and interfacial interactions.
The red dashed line denotes the boundary between the nonmagnetic
(NM) and antiferromagnetic (AFM) layers. The cloud surrounding
the magnetic moments indicates if the spin wave is damped.
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interlayer hybridization. This illustrates the key role these in-
teractions play in designing and manipulating various charge
and magnetic phases and excitations in 2D atomically-thin
film heterostructures and layered correlated compounds, such
as the perovskite transition-metal oxides.

IV. CONCLUDING REMARKS

We have derived a generalization of Hedin’s equations for
a layered system with arbitrarily strong interlayer coupling.
Our approach was made sufficiently general to accommodate
nonlocal interactions and nonequilibrium quantum phases
through the Keldysh and Schwinger techniques. We have thus
opened a pathway for examining the interplay of charge, spin,
orbital, and layer degrees of freedom in layered heterostruc-
tures and their phase diagrams including relativistic magnetic
interactions, along with the evolution of electronic spectra
with pressure and doping.
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APPENDIX: MEAN-FIELD INTERACTIONS
AND AFM ORDER

In order to include staggered AFM order on the atomic
sites, we include an onsite Hubbard interaction term to the
Hamiltonian of Eq. (50). Specifically, the double-occupancy
energy penalty U is placed on the single effective band cross-
ing the Fermi level. The Hubbard interaction can be written in
momentum space as

U

2

∑
σ

∑
kk′Q

c†
kσ

ckσ c†
k′σ̄ ck′σ̄ + c†

k+Qσ
ckσ c†

k′σ̄ ck′+Qσ̄ , (A1)

where σ̄ denotes −σ . Due to momentum conservation, the
interaction depends on both the crystal momentum k(k′) of
the electrons and the momentum transferred Q during the
interaction. The momentum transfer gives rise to Umklapp
processes where electrons can scatter to neighboring Brillouin
zones, which are the key for describing various density-wave
instabilities. Here we take Q = (π, π ) following the exper-
imentally observed AFM order. Thus, the full single-band
Hamiltonian is

H =
∑

σ

∑
k

(Hkσ c†
kσ

ckσ + Hk+Qσ c†
k+Qσ

ck+Qσ )

−μ
∑

σ

∑
k

(n̂kσ + n̂k+Qσ )

+ U

2

∑
σ

∑
kk′

c†
kσ

ckσ c†
k′σ̄ ck′σ̄ + c†

k+Qσ
ckσ c†

k′σ̄ ck′+Qσ̄ ,

(A2)

where Hk is written in terms of Q explicitly by restricting
k(k′) to the smaller AFM Brillouin zone. We now rewrite the
interaction in terms of the mean field and expand the number
operator in terms of fluctuations away from the mean electron
count per state, 〈nkσ 〉:

nkσ = 〈nkσ 〉 + (nkσ − 〈nkσ 〉) = 〈nkσ 〉 + δσ , (A3)

where δσ is the fluctuation away from 〈nkσ 〉. We substitute into
the interaction of Eq. (A2) assuming fluctuations are small,
δσ δσ̄ ≈ 0, giving

U

2

∑
σ

∑
kk′

〈c†
kσ

ckσ 〉 c†
k′σ̄ ck′σ̄ + 〈c†

k′σ̄ ck′σ̄ 〉 c†
kσ

ckσ

+ 〈c†
k+Qσ

ckσ 〉 c†
k′σ̄ ck′+Qσ̄ + 〈c†

k′σ̄ ck′+Qσ̄ 〉 c†
k+Qσ

ckσ . (A4)

In order to treat the various matrix elements in Eq. (A4), we
consider the average charge and spin densities as a function of
momentum transfer q,

〈ρ(q)〉 =
∑

k

〈
(c†

k+q↑c†
k+q↓)I

(
ck↑
ck↓

)〉

=
∑

k

〈c†
k+q↑ck↑〉 + 〈c†

k+q↓ck↓〉 = Neδq,0 (A5a)

〈Sz(q)〉 = 1

2

∑
k

〈
(c†

k+q↑c†
k+q↓)σ z

(
ck↑
ck↓

)〉

= 1

2

∑
k

〈c†
k+q↑ck↑〉 − 〈c†

k+q↓ck↓〉 . (A5b)

Therefore, for q = Q = (π, π ),

〈ρ(Q)〉 =
∑

k

〈c†
k+Q↑ck↑〉 + 〈c†

k+Q↓ck↓〉 (A6)

= 0

which implies,

〈c†
k+Q↑ck↑〉 = − 〈c†

k+Q↓ck↓〉 . (A7)

Also, by hermiticity we have the equivalence,

〈c†
k+Qσ

ckσ 〉† = 〈c†
kσ

ck+Qσ 〉 . (A8)

Using the relation in Eq. (A7) we find 〈Sz(Q)〉,

〈Sz(Q)〉 = 1

2

∑
k

〈c†
k+Q↑ck↑〉 − 〈c†

k+Q↓ck↓〉

=
∑

k

〈c†
k+Q↑ck↑〉 . (A9)

The preceding relations allow us to cast staggered magnetiza-
tion and electron density as

m =
∑

k

〈c†
k+Q↑ck↑〉 = −

∑
k

〈c†
k+Q↓ck↓〉 , (A10a)

nσ =
∑

k

〈c†
kσ

ckσ 〉 . (A10b)

Inserting these definitions and simplifying we arrive at
the Hamiltonian in terms of the self-consistent field m and
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occupation nσ ,

Hkσ =
[

Hkσ + Unσ̄ sign(σ̄ )�
sign(σ̄ )� Hk+Qσ + Unσ̄

]
, (A11)

where our wave functions take the Nambu form � =
(c†

kσ
, c†

k+Qσ
) and � is defined as U

2 (m + m†) = URe(m).
To self consist m and n, their expectation value can be

written in terms of the diagonalized system. Let the quasi-
particle creation (γ †

ki ) and annihilation (γki ) operators in the
diagonalized system be defined as

ckσ =
∑

i

V k
σ,iγki and c†

kσ
=
∑

i

γ
†
ki

(
V k

σ,i

)†
, (A12)

where i indexes the bands. Therefore m and n are given by

nσ =
∑

i

∑
k

((
V k

σ i

)†
V k

σ i + (
V k+Q

σ i

)†
V k+Q

σ i

)
f (εkσ i ), (A13a)

m =
∑

i

∑
k

((
V k+Q

σ i

)†
V k

σ i + (
V k+Q

σ i

)†
V k+Q

σ i

)
f (εkσ i) (A13b)

for k in the AFM Brillouin zone and f being the Fermi func-
tion. The self-consistently obtained values of the expectation
value of m and nσ are calculated within a tolerance of 10−5 at
a temperature of 0.001 K.
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