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We present a comprehensive study of the two-dimensional one-band Hubbard model applying the spin-
rotation-invariant slave-boson method. We utilize a spiral magnetic mean field and fluctuations around a
paramagnetic mean field to determine the magnetic phase diagram and find the two approaches to be in good
agreement. Apart from the commensurate phases characterized by ordering wave vectors Q = (π, π ), (0, π ), and
(0,0) we find incommensurate phases where the ordering wave vectors Q = (Q, Q) and (Q, π ) vary continuously
with filling, interaction strength, or temperature. The mean-field quantities magnetization and effective mass are
found to change discontinuously at the phase boundaries separating the (Q, Q) and (Q, π ) phases, indicating a
first-order transition. The band structure and Fermi surface is shown in selected cases. The dynamic spin and
charge susceptibilities as well as the structure factors are calculated and discussed, including the emergence
of collective modes of the zero sound and Mott insulator type. The dynamical conductivity is calculated in
dependence of doping, interaction strength, and temperature. Finally, a temperature-interaction strength phase
diagram is established.
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I. INTRODUCTION

Strongly correlated electrons on a lattice have proven
to be one of the most interesting and challenging topics
of contemporary physics, following the discovery of heavy
electron systems and of the high-Tc superconductors. These
systems show a plethora of interesting properties such as
metal-insulator transitions, the emergence of long-range or-
der, such as magnetic, charge, or nematic order, and possible
non-Fermi liquid behavior of the quasiparticles, in particular
near a quantum phase transition, not to mention the until-
now still not fully understood electronic pairing mechanism
of the high-Tc superconductors. Most electronic systems in
the metallic phase form a Landau Fermi liquid [1,2], a state
adiabatically connected to the weakly coupled limit, which at
low energies in slowly varying external fields is characterized
by only a few parameters—effective mass and Landau inter-
action functions. The phenomenological Fermi liquid theory
appears to work in extreme strong coupling situations as
represented, e.g., by the heavy-quasiparticle system found in
heavy-fermion compounds. These successes of Fermi liquid
theory notwithstanding, a microscopic theory of the renormal-
izations expressed by the Fermi liquid functions is still largely
missing, despite decades of research efforts.

The archetypical model of a correlated Fermi system is
given by the Hubbard model [3,4]—a one-band model of
electrons on a lattice subject to on-site interaction U . For
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large U the model captures the competition between kinetic
energy favoring mobility and local interaction forcing local-
ization, giving rise to a Mott metal-insulator transition [5]. In
order to treat strong correlations, nonperturbative methods are
required. A first successful approach, capable of treating the
Mott-Hubbard transition, is the so-called Gutzwiller approxi-
mation [6–8]. Initially formulated as a variational problem for
the approximate calculation of the energy expectation value
of a correlated wave function, it has later been rederived in a
slave-boson mean-field approximation [9]. A further widely
used approach starts from the limit of infinite coordination
number [10,11], the dynamical mean-field theory (DMFT).
DMFT successfully captures local correlations and has been
widely applied, with remarkable success. The treatment of
longer-range correlations such as present with incommen-
surate magnetic order or superconductivity is more difficult
within the DMFT framework. Among the many other methods
that have been proposed to deal with strongly correlated
systems we like to mention a diagrammatic approximation
scheme proposed by Bünemann et al. [12] for evaluating
Gutzwiller projected states. The method has been applied,
e.g., to study superconductivity within the two-dimensional
(2D) Hubbard model [13].

The difficulty in treating models of strongly correlated
electrons on the lattice is that the dynamics of an electron
depends on the occupation of the site it is residing on, which
can be empty (|0〉), singly occupied (|↑〉, |↓〉), or doubly occu-
pied (|2〉). For the Hubbard model with large repulsive on-site
interaction U , the doubly occupied states will be pushed far up
in energy, and will not contribute to the low energy physics.
This leads effectively to a projection of Hilbert space onto
a subspace without doubly occupied sites. It turns out to be
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difficult to achieve this projection within conventional many-
body theory. A powerful technique for describing the pro-
jection in Hilbert space is the method of auxiliary particles
[14]: One assigns an auxiliary field or particle to each of the
four states |0〉, |↑〉, |↓〉, |2〉 at a given lattice site (considering
one strongly correlated orbital per site). The fermionic nature
of the electrons requires that two of the auxiliary particles
are fermions, e.g., the ones representing |↑〉, |↓〉, and the
remaining two are bosons. There are various ways of defining
auxiliary particles for a given problem. This freedom may be
used to choose the one which is best adapted to the physical
properties of the system. A more complex representation of
electron operators in terms of auxiliary particle operators,
incorporating the result of the Gutzwiller approximation [6]
on the slave-boson mean-field level, has been developed by
Kotliar and Ruckenstein (KRSB) [9]. Further extensions to
multiband Hubbard models have been introduced as well
[15,16]. A generalization of the KRSB method to manifestly
spin-rotation-invariant form [17,18] (SRIKR) has been de-
veloped, allowing one to address noncollinear spin config-
urations and transverse spin fluctuations. In particular, the
method has been used to describe antiferromagnetic [19],
spiral [20–24], and striped [25–31] phases. Furthermore, the
competition between spiral and striped phases has been stud-
ied [32]. In the limit of large U > 60t , it has been found that
the spiral order continuously evolves toward ferromagnetic
order.

In this paper we present a detailed and systematic deriva-
tion of the SRIKR slave-boson formalism as a basis for
future applications of this method (Sec. II and Appendices
A–F). In particular we demonstrate that the SRIKR repre-
sentation recovers the exact result in the atomic limit within
the path-integral formulation. In Sec. III we apply it to
calculate slave-boson mean-field solutions and two-particle
response functions for the one-band Hubbard model on a
two-dimensional square lattice at zero temperature. The mag-
netic phase diagram in the interaction-density plane within
the manifold of spiral magnetic states is obtained from the
mean-field analysis, extending and complementing known
results [21,23]. We find a surprisingly rich manifold of phases
separated by continuous or first-order transitions, providing
a rather complete picture of the emergent magnetic order as
a function of doping and interaction. We do not detect any
charge-density instability of the paramagnetic state. In the
magnetically ordered state we observe indications of charge
ordering, in the form regions of the phase diagram with neg-
ative compressibility. A more accurate analysis requiring the
calculation of the charge susceptibility at finite wave vector in
the magnetically ordered domain is deferred to future work.
We discuss the energy spectrum and the mass enhancement
of quasiparticles at the Fermi level, as well as the Fermi
surfaces. The static spin susceptibility is parametrized in terms
of a Landau interaction function [33]. The dynamic spin
susceptibility is calculated and parametrized in terms of a
Landau damping function in dependence of the wave vector q
of the applied external field. At the phase transition, the spin
susceptibility at the ordering wave vector is found to diverge
as χ (Q, 0) ∝ (nc − n)−α , where nc is the critical doping. We
determine the phase boundaries to the paramagnetic phase (i)
from the mean-field equations and (ii) from the divergence

of the paramagnetic spin susceptibility at finite wave vector
Q. The two methods provide consistent results, where in the
case of second-order transitions, method (ii) is more efficient,
whereas first-order transitions can only be found with method
(i). The ordering wave vector Q is found to vary continuously
over large parts of the phase diagram, but suffers from occa-
sional jumps signaling first order phase transitions. The charge
response function is employed to calculate the dynamical
conductivity.

In Sec. IV we present results at finite temperature. We
determine the magnetic phase diagram in the temperature
T -doping n plane at fixed interaction U and show a phase
diagram in the T -U plane at half filling. The phase boundaries,
separating the magnetically ordered phases from the paramag-
netic phase and also separating different ordered states, are
obtained accordingly. A continuous change of the ordering
wave vector as the temperature and doping are varied is ob-
served. The static spin susceptibility at fixed U and n is found
to diverge at the transition as χ (Q, 0) ∝ (T − Tc)−1, where
Tc is the critical temperature. The temperature-dependent
conductivity is determined from the charge-density response
function.

We compare our results with available benchmark results,
in particular a recent study of the two-dimensional Hubbard
model using density matrix embedded theory (DMET) [34],
finding remarkably good agreement.

II. MODEL AND METHOD

This section defines the Hamiltonian and summarizes the
most important aspects of spin-rotation-invariant slave-boson
formalism, while a detailed derivation of the method can be
found in the Appendices A–F. We investigate the one-band
Hubbard model in two spatial dimensions,

H =−
∑
i, j,σ

ti, jc
†
i,σ c j,σ − μ0

∑
i,σ

c†i,σ ci,σ +U
∑

i

c†i,↑ci,↑c†i,↓ci,↓,

(1)

where the operator c†i,σ creates a fermion on site i with
spin σ = {↑,↓}. We allow hopping terms between nearest-
neighboring sites denoted by t and next-nearest-neighboring
sites by t ′. Further, we employ an on-site Hubbard interaction
U . All energy scales are given in units of t .

A. Slave-boson representation

We apply the SRIKR slave-boson representation, following
Ref. [18], where the original fermionic operator c(†)

i,σ is ex-

pressed as a combination of the pseudofermion operator f (†)
i,σ

and bosonic operators ei, di, pi,μ with μ ∈ {0, 1, 2, 3}, label-
ing empty, doubly, and singly occupied states, respectively,
as

c†i,σ :=
∑
σ ′

z†i,σσ ′ f †i,σ ′ , (2)

where we define for each site i

z = (e†LMR p + p̃†LMRd ), (3a)
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with

L = [(1 − d†d )τ 0 − 2p†p]−1/2, (3b)

M =
(

1 + d†d + e†e +
∑

μ

p†μ pμ

)1/2

, (3c)

R = [(1 − e†e)τ 0 − 2 p̃† p̃]−1/2. (3d)

The underbar denotes 2 × 2 spin matrices, specifically

p = 1

2

3∑
μ=0

pμτμ, (4)

where τμ are the Pauli matrices including the unit matrix τ 0

and p̃ is the time-reversed operator of p. This form ensures
spin rotation invariance (compare Appendix A) and the cor-
rect noninteracting limit within the mean-field approximation
(compare Appendix C).

The slave-boson representation is complemented by the
local constraints

1 = e†i ei + d†
i di +

3∑
μ=0

p†i,μ pi,μ, (5a)

∑
σ

f †i,σ fi,σ =
3∑

μ=0

p†μ,i pμ,i + 2d†
i di, (5b)

∑
σσ ′

τσσ ′ f †i,σ ′ fi,σ = p†0,ipi + p†
i p0,i − ip†

i × pi, (5c)

where τ is the vector of Pauli matrices. Enforcement of these
constraints on each lattice site i, using the Lagrange multi-
pliers αi, β0,i, and βi within the path-integral formulation,
projects to the physical subspace (compare Appendix B). In
Appendix B 4 we show that the SRIKR slave-boson represen-
tation exactly recovers the atomic limit by integrating out all
fields.

B. Mean-field approximation

In the slave-boson representation, the interaction term of
the Hamiltonian becomes quadratic in bosonic operators at
the cost of a nonquadratic bosonic contribution in the hop-
ping matrix. Therefore we employ a (para-) magnetic mean
field. In this approximation, the space- and time-dependent
slave-boson fields are replaced by their static expectation
value ψ → 〈ψ〉 with ∂τ 〈ψ〉 = 0. A suitable mean-field
ansatz incorporating a spin spiral with ordering vector q is
given by [35],

ei → 〈e〉 ∈ R+
0 ,

p0,i → 〈p0〉 ∈ R+
0 ,

di → 〈d〉 ∈ R+
0 , ∂τ 〈d〉 = 0,

iβ0,i → 〈β0〉 ∈ R,

iαi → 〈α〉 ∈ R, (6)

pi → 〈p〉
[

cos(φi)
sin(φi)

0

]
, 〈p〉 ∈ R+

0 ,

iβi → 〈β〉
[

cos(φi )
sin(φi )

0

]
, 〈β〉 ∈ R, φi := qri.

To keep the notation short we drop the brackets 〈〉 in the
following. Within this mean-field ansatz the Lagrangian is
given by

Lq =
∑

k

f†k (Hk[q, ψ] + ∂τ )fk + N
[
Ud2 − 2βp0 p

− β0
(
p2

0 + p2 + 2d2
)+ α

(
e2 + p2

0 + d2 − 1 + p2
)]

,

(7a)

with

fk =
[

f↑,k
f↓,k−q

]
, (7b)

where Hk[q, ψ] is the noninteracting Hamiltonian of the
pseudofermions in dependence of the slave-boson mean fields
ψ and N is the total number of lattice sites. Due to the
form of the constraints, the free energy per lattice site Fq/N
only depends on two independent bosonic fields, which we
choose to be p0, and p without loss of generality, and the
two Lagrange multiplier fields β and μeff = μ0 − β0. After
integrating out the pseudofermionic degrees of freedom, it is
given by (compare Appendix F)

Fq

N
= − T

N

∑
k,±

ln
[
1 + e−εk,±/T

]

− U

2

(
p2

0 + p2 − n
)+ μeffn − 2βp0 p, (8)

where εk,± are the eigenvalues of the matrix Hk[q, ψ], n is
the electron filling per lattice site, and T is the temperature.

The saddle-point solution for the ground state is deter-
mined by minimizing the free energy with respect to p0, p
and ordering vector q while maximizing with respect to β and
μeff. The according mean-field values of the bosonic fields are
denoted by ψ̄ and can be characterized by p̄ = 0 describing a
paramagnet (PM) and p̄ 
= 0 yielding magnetic order.

C. Fluctuations around the paramagnetic saddle point

In order to calculate response functions, we consider
Gaussian fluctuations around the paramagnetic saddle point
[36–38], i.e., we expand the action to the second order in
bosonic fields ψμ around the mean-field solution

δS (2) =
∑
q,n

δψμ(−q,−iωn)Mμν (q)δψν (q, iωn), (9a)

with the fluctuation matrix

Mμν (q, iωn) := δ2S (ψ )

δψμ(−q,−iωn)δψν (q, iωn)
, (9b)

where q = (q, iωn)T and ωn = 2πnT (n ∈ Z) is a bosonic
Matsubara frequency. The phases of the e, p0, and p fields
can be removed by a gauge transformation (compare Ap-
pendix B 2), such that only the d field remains complex valued
in position space d := d1 + id2.

Since the fluctuations are calculated by means of functional
derivatives, they violate the constraints which are exactly
enforced only at the saddle point. Such violations are actu-
ally necessary in order to resolve correlations and evaluate
whether the system will relax back to the paramagnetic mean-
field solution or whether it features an instability. Since the
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Lagrange multipliers are part of the effective field theory,
one needs to consider the fluctuation of β0 and β as well.
However, fluctuations in α would yield bosonic occupations
per lattice site unequal to one, which can be associated with
a violation of the Pauli principle. This needs to be avoided
by replacing an arbitrary slave-boson field (we choose p0

without loss of generality) via Eq. (5a), i.e., fluctuating on the
subspace where the α constraint is exactly fulfilled (compare
Appendix D). We apply the following convention for the 10
bosonic fields: ψ1 = e, ψ2 = d1, ψ3 = d2, ψ4 = β0, ψ5,6,7 =
p1,2,3, and ψ8,9,10 = β1,2,3.

Dynamical response functions can be calculated using the
path integral (compare Appendix E)

〈δψ∗
μ(q)δψν (q)〉 = 1

Z (2)

∫
D[ψ∗, ψ]δψ∗

μ(q)δψν (q)e−δS (2)

= M−1
μν (q) (10)

with Z (2) =
∫

D[ψ∗, ψ]e−δS (2)
.

To evaluate these quantities, we apply a Wick rotation iωn →
ω + iη, where η → 0+ regularizes diverging terms and needs
to be kept finite for most numerical calculations.

1. Spin susceptibility

The spin susceptibility is defined by

χαβ
s (q) = 〈

δSα
−qδSβ

q

〉
, (11a)

where S is the spin density, which can be written in terms of
slave bosons (compare Appendix E)

S = p̌p0 with p̌ = [p1,−p2, p3]T . (11b)

In the one-band Hubbard model, the fluctuation matrix is
block diagonal in (βα, pα ) and (e, d1, d2, β0) since spin and
charge sector are decoupled. Hence, the spin susceptibility
takes the simple diagonal form

χαβ
s (q) = p̄2

0
M10,10(q)

M7,7(q)M10,10(q) − M7,10(q)M10,7(q)
δαβ.

(11c)

2. Bare susceptibility and charge susceptibility

The bare susceptibility can be determined analogously and
is defined by

χ0(q) := 1

Z (0)

∫
D[ f ∗, f ]n−qnqe−S (0) = −2M4,4(q)

with Z (0) =
∫

D[ f ∗, f ]e−S (0)
, (12a)

where nq = ∑
k f ∗

k+q fk is the pseudofermion density and S (0)

is the mean-field action.
The charge susceptibility is defined by

χc(q) = 〈δn−qδnq〉, (12b)

where n is the charge density, which can be written in terms
of slave bosons

n = 1 + d2 − e2. (12c)

Hence, we find

χc(q) = 2d̄2
1M−1

2,2(q) + 2ē2M−1
1,1(q) − 2d̄1ē

× [
M−1

1,2(q) + M−1
2,1(q)

]
. (12d)

3. Structure factors

We define the structure factor, which is given by the real
quantity [39]

Sα (q) = −
∫ ∞

−∞

dω

π

Im χα (q, ω + iη)

1 − e−ω/T
, (13)

where α = s is called spin structure factor and α = c charge
structure factor.

D. Dynamical conductivity

With our results for the charge susceptibility χc, we can
calculate the dynamical conductivity as

σ (ω + iη) = lim
q→0

−iω + η

q2
χc(q, ω + iη), (14a)

where we have performed the analytical continuation iωn →
ω + iη. The convergence parameter η can be identified with
an inverse scattering time τ = 1/η of a Drude conductivity

σD(ω, τ ) = σ0

1 + ω2τ 2
+ i

σ0ωτ

1 + ω2τ 2
. (14b)

where σ0 ∝ τ . By data fitting, we can determine the dc
conductivity σ0 and assign sensible results for η 
= 0, whereas
σ0 → ∞ for η → 0.

III. RESULTS AT ZERO TEMPERATURE

This section discusses the slave-boson mean-field and
fluctuation results applied to the 2D Hubbard model at zero
temperature.

A. Mean-field approximation

We have solved the slave-boson mean-field equations,
presented in Sec. II B and described in more detail in Ap-
pendix F, for the paramagnetic and spiral magnetic phases.
The minimum of the corresponding free energy determines
the ground state. In this way we established a phase diagram,
presented in the next subsection. An important property of
the mean-field solution is the renormalization of the fermionic
excitation spectrum, given by the factors z0 for the paramagnet
and Z+,− for the spiral magnet. Results on the z factors and
on several other mean-field parameters are presented in the
subsequent part. We also show examples of the electronic
band structure and the Fermi surface. In addition to magnetic
order, charge-density wave order may appear. In this work
we do not address the case of several types of order being
present simultaneously. We do, however, identify signals for
the probable appearance of charge order in the presence of
magnetic order by studying the compressibility, which is
found to turn negative in a certain portion of the magnetically
ordered phases.

1. Magnetic mean-field phase diagram

The phase diagram shown in Fig. 1 has been calculated by
means of the magnetic mean-field theory defined in Sec. II B,
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FIG. 1. Magnetic mean-field phase diagram for the 2D Hubbard
model as function of the interaction U and the filling n with only
nearest-neighbor hopping (t ′ = 0) at zero temperature (T = 0). We
only show n � 1 since the phase diagram for n > 1 is mirrored due to
particle-hole symmetry (n ↔ 2 − n). It features three distinct phases,
namely the PM (gray), a (π, Q) phase denoted by black circles
filled with coloring from red to yellow and a (Q, Q) phase denoted
by gray circles filled with coloring from red to blue. The ordering
vector within one phase regime changes continuously with U and n
visualized by the color scheme in the plot legend, indicating second-
order phase transitions. The two magnetic regimes are separated by
a first-order phase transition, yielding a jump in the magnetization.
The phase diagram features three commensurate magnetic orderings
which are special cases of the above described phases, namely the
antiferromagnet (red circle), the ferromagnet (blue circle), and stripe
magnetism (yellow circle).

putting t ′ = 0. It complements phase diagrams shown in the
literature [21,23] which have only been calculated for smaller
U . At the phase boundary to the paramagnet, the order pa-
rameters p and β vanish continuously, i.e., the paramagnetic
solution is recovered via a continuous phase transition. At

half filling, the ordering is antiferromagnetic for every finite
interaction U > 0. Away from half filling, within the ordered
phase regime, the ordering vector Q evolves continuously as
function of the filling n and interaction U . The transitions
observed between (π, Q) and (Q, Q) phases are of first order
since the order parameter p is found to be discontinuous at
the phase boundaries. Furthermore, the phase diagram fea-
tures three different commensurate magnetic phases, namely
the antiferromagnet [Q = (π, π )], ferromagnet [Q = (0, 0)],
and stripe magnetism [Q = (0, π )]. The ferromagnet features
a vanishing double occupancy d = 0 and p = p0 = √

n/2
which yields the maximum possible magnetization per lattice
site m = pp0 = n/2 (in units of the Bohr magneton) for a
given filling. The contribution of fluctuations is expected to
lead to d 
= 0 and to m < n/2. Every nonferromagnetic state
has a finite double occupancy d 
= 0 even on the mean-field
level.

Figure 2 shows the magnetic phase diagram for t ′ =
−0.2, in the extended density regime 0.3 < n < 1.3 and is
in very good agreement with a previous slave-boson study
[21]. At half filling, the tendency toward the antiferromagnet
is reduced, because finite t ′ prevents the perfect nesting of
the Fermi surface, yielding a paramagnetic regime at weak
interaction. On the other hand, at U � 2, the tendency toward
magnetic order is generally increased for larger |n − 1|, due
to the increased hopping range. The next-nearest-neighbor
hopping t ′ = −0.2 moves the van Hove singularity, giving rise
to an enhanced tendency for magnetic order at n ≈ 0.825.

2. Fermionic z factors

The factor z0 renormalizes the fermionic band structure in
the paramagnetic phase as

εk = z2
0ξk − μeff, (15a)

where for nearest-neighbor hopping ξk =
−2[cos(k1) + cos(k2)]. The factor z0 governs the bandwidth
W = 8z2

0 and the effective mass at the Fermi level, e.g., along
the x axis m∗(k1F ) = [2z2

0 cos(k1F )]−1 = [2z2
0 + μeff]−1,

where k1F is the Fermi wave number.
In the magnetically ordered phase the fermionic dispersion

is given by

εk,± = 1
4

[
ζ+ξk,+±

√
(ζ 2+ − ζ 2−)ξ 2

k,− + (ζ−ξk,+ + 4β )2
]−μeff,

(15b)

where ζ± = z2
+ ± z2

− and ξk,± = ξk ± ξk+Q.

Figure 3 shows the quasiparticle renormalization factors z0

for the paramagnet and Z± = (z+ ± z−)/2 for magnetic state
as a function of n for fixed U = 13.5 for t ′ = −0.2. Also
shown are the quantities magnetization m = pp0, β/U, and
the condensation energy �F = Fmag − Fpara of the magnetic
phases. The various ordered phases are indicated and their
respective incommensurate wave-vector components Q are
also shown as functions of density n. The interaction is
chosen to be greater than the critical value Uc separating
the metallic and the Mott insulating phase in a hypothetical
paramagnetic phase at half filling (we determine the critical
value of U as Uc = 128/π2 ≈ 12.97 for t ′ = 0 and Uc ≈
13.1 for t ′ = −0.2). Therefore z0 is found to vanish for

235137-5



DAVID RIEGLER et al. PHYSICAL REVIEW B 101, 235137 (2020)

FIG. 2. Magnetic mean-field phase diagram for the 2D Hubbard model as function of the interaction U and the filling n with next-nearest-
neighbor hopping (t ′ = −0.2) at zero temperature (T = 0). It features three distinct phases, namely the paramagnet (gray), a (π, Q) phase
denoted by black circles filled with coloring from red to yellow, and a (Q, Q) phase denoted by gray circles filled with coloring from
red to blue. The ordering vector within one phase regime changes continuously with U and n visualized by the color scheme in the plot
legend, indicating second-order phase transitions. The magnetic regimes are separated by a first-order phase transition, yielding a jump in the
magnetization. The phase diagram features three commensurate magnetic orderings which are special cases of the above-described phases,
namely the antiferromagnet (red circle), the ferromagnet (blue circle), and stripe magnetism (yellow circle).

n → 1, z2
0 ∝ |n − 1|, causing the effective mass to diverge,

m∗ ∝ 1/|n − 1|. By contrast, in the magnetically ordered
phase z± stays finite, but z+ − z− → 0, as n → 1. Conse-
quently, the two dispersions take the limiting values εk,± =
1
4

(
ζ+ξk,+ ±

√
ζ 2+ξ 2

k,− + 4β2
)

− μeff as n → 1, indicating a

FIG. 3. Mean-field parameters z0, Z± = (z+ ± z−)/2, magneti-
zation m = pp0, β/U , ordering vector component Q, and the relative
difference between the corresponding magnetic and nonmagnetic
free energy �F versus filling n at U = 13.5 and at t ′ = −0.2. The
vertical grid lines indicate a phase transition and the respective
phases are denoted in the upper part of the plot.

band insulator with excitation gap 2|β|. However, as shown
next, in the limit of large U one finds 2|β| → U , which is the
signature of a Mott insulator.

To supplement the discussion of the energy bands at half
filling, we show in Fig. 4(a) the parameters Z+, p0, p, d as a
function of U . In the limit of large U these quantities approach
the values Z+ → 1, p0 → p → 1/

√
2, d → 0. At small U

the behavior in the neighborhood of the magnetic transition
indicates a first-order transition at U ≈ 2.63. This is clearly
seen in the behavior of the free energy as a function of the
magnetic order parameter p shown in Fig. 4(b). Analogously
close to half filling, the transition from the (π, π ) state to
the adjacent (Q, Q) state is also first order, since the ordering
wave vector is found to jump from Q = π to Q = 0.844π at
n = 1.105 (see Fig. 3).

3. Electronic band structure

The dependence of the electronic dispersion on interaction
strength and filling is demonstrated in Fig. 4(c) and Fig. 5. In
Fig. 4(c) we consider the case of half filling, taking t ′ = −0.2.
For U = 2.25, 3.00, and 13.5 one observes the splitting of the
bands by the onset of magnetic order and the smooth transition
of the spectrum as U moves beyond U = Uc.

To demonstrate the character of the electronic bands in
various magnetically ordered phases in Fig. 5(a), we fix the
density at n = 0.675, take t ′ = −0.2 and plot εk,± along �-X-
M-�-Y-M. We choose the interaction such that three different
orderings are realized: At U = 13.50 we have Q = (π/2, π ),
at U = 14.25 we have Q = (π/4, π/4), and at U = 16.50
the ferromagnetic phase is reached, with Q = (0, 0). The
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FIG. 4. (a) Magnetic mean-field parameters Z+, p0, p, and d at
half filling n = 1 versus U at t ′ = −0.2. The vertical grid lines
indicate phase transitions and the respective phases are denoted in
the upper part of the plot. (b) Free energy as a function of order
parameter p at n = 1 for various U at t ′ = −0.2. The coexistence of
two different minima of equal energy at U = 2.63 indicates a phase
transition of first order. (c) Band structure at n = 1 for various U at
t ′ = −0.2 on the high-symmetry path �-X-M-� of the nonmagnetic
Brillouin zone. We show only one spin-degenerate band for the
paramagnetic case (gray), whereas the magnetic spectrum (red) splits
due to translation- and spin rotation symmetry breaking.

corresponding Fermi surfaces are shown in Fig. 5(b) (U =
13.5) and Fig. 5(c) (U = 14.25 and U = 16).

4. Compressibility

The mean-field results allow the calculation of the isother-
mal compressibility κT , or equivalently ∂n/∂μeff = n2κT , as
obtained from

∂n

∂μeff
= ∂

(
2d2 + p2

0 + p2
)

∂μeff
. (15c)

In Fig. 6, ∂n/∂μeff is plotted versus n for the nearest-neighbor
hopping model (t ′ = 0) and for U = 10. Interestingly, the

FIG. 5. (a) Band structure at filling n = 0.675 for the mag-
netic ordering vectors (π/2, π ) for U = 13.50, (π/4, π/4) for U =
14.25, and (0,0) for U = 16.50 with t ′ = −0.2 on the high-symmetry
path �-X-M-�-Y-M [X = (π, 0), Y = (0, π ), M = (π, π )] of
the nonmagnetic Brillouin zone. Notice that the ordering vectors
(π/2, π ) and (π/4, π/4) break the C4v symmetry of the nonmag-
netic phase. (b) Fermi surface to the corresponding band structure
shown in (a) for U = 13.50. The gray lines indicate the backfolded
Brillouin zone of the magnetic unit cell for the ordering vector
(π, π/2). (c) Fermi surface to the corresponding band structures
shown in (a) for U = 14.25 and U = 16.50. The gray lines indicate
the backfolded Brillouin zone of the magnetic unit cell for the
ordering vector (π/4, π/4).

compressibility changes sign in the magnetically ordered
phase [21,23] where μeff has a maximum. With increasing
density n toward half filling, |β| becomes larger and decreases
the energy of the occupied band (compare Fig. 3). This has to
be counteracted by also reducing μeff to ensure the correct
electron filling, causing the compressibility to turn negative.
We indicated the portion of the phase diagram where negative
compressibility occurs by adding a dot into the colored circles
marking the ordering wave vector in Fig. 1 and Fig. 2. A
negative compressibility signals a transition to a spatially
modulated density distribution or phase separation. The si-
multaneous presence of two ordering fields, one magnetic,
the other nonmagnetic, at generally different ordering vectors,
requires a numerical effort beyond the scope of the present
work.

B. Fluctuations around the paramagnetic mean field

We have calculated the spin and charge susceptibilities in
the paramagnetic phase from the fluctuations of the slave-
boson fields around the saddle point as described in Ap-
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FIG. 6. ∂n/∂μeff, chemical potential μeff and β versus filling n
at U = 10 and t ′ = 0. The compressibility κT ∝ ∂n/∂μeff diverges
at the maximum of μeff. The vertical gray grid lines indicate phase
transitions where the respective phases are denoted in the upper part
of the plot and the vertical blue grid line indicates the divergence of
the compressibility.

pendix D and Appendix E to provide a general stability analy-
sis. The divergence of the static spin (charge) susceptibility
at some wave vector indicates the appearance of magnetic
(charge) order with a spatial period given by this wave vector.
This will be used to determine the magnetic phase boundary
of the paramagnet, which turns out to be a numerically more
efficient way to identify the appearance of magnetic order
compared to the magnetic mean-field analysis presented in the
previous subsection. It is reassuring that both methods provide
consistent results.

Notice that first-order phase transitions cannot be identified
via Gaussian fluctuations around a paramagnetic saddle point.
This is because a local minimum of the paramagnetic free
energy (p = 0) like, e.g., shown in Fig. 4 is metastable and
the global minimum is out of reach of the quadratic expansion
of the action.

1. Spin susceptibility

a. Phenomenological form of susceptibility. The functional
behavior of the dynamical spin susceptibility at low frequen-
cies can be represented in terms of auxiliary functions Fa(q)
and �(q, ω) which are adopted from Ref. [33]. In the static
limit we define

χs(q, ω = 0) = χ0(q, ω = 0)

1 + Fa(q)
, (16a)

where Fa(q) is a generalization of the well-known Lan-
dau parameter to finite wave vectors and χ0(q, ω = 0)
is the “noninteracting” quasiparticle susceptibility (see
Appendix E), which carries a hidden influence of the inter-
action through its dependence on the mean-field parameters.
At small but finite frequency the leading dynamical addition
is given by the Landau damping term in the denominator,
parametrized by a function �(q, ω),

χs(q, ω) = χ0(q, ω = 0)

1 + Fa(q) − iω/�(q, ω)
. (16b)

FIG. 7. Spin susceptibility and Landau factors at filling n = 0.6,
t ′ = 0, T = 0, and η = 0.001 for U = 8 (PM) and U = 12 [phase
boundary from PM to (π, Q) magnetic order] shown on the high-
symmetry path �-X-M-�. We show an excerpt of the phase diagram
(compare Fig. 1) in the inset of (c), where the two chosen interaction
values are highlighted. (a) Landau interaction function −Fa(q). The
phase transition is indicated by Fa(Q) = −1. (b) Landau damping
function plotted as |q|/�(q, ω = 0). Its magnitude is overall drasti-
cally reduced for momenta larger than the diameter of the Fermi sur-
face [compare inset (b)]. (c) Imaginary part of the spin-susceptibility
in the zero frequency limit plotted as limω→0 Im χs(q, ω)/ω. Its
magnitude is overall drastically reduced for momenta larger than the
diameter of the Fermi surface [compare inset (b)]. (d) Inverse real
part of the spin susceptibility. A root of 1/ Re χs(q, ω = 0) indicates
a magnetic instability.

These quantities are shown in Fig. 7(a) and Fig. 7(b) at
n = 0.6, t ′ = 0 for interactions U = 8 and U = 12 on the
high-symmetry path �-X-M-� in the Brillouin zone. The
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corresponding susceptibility will be discussed below. The
imaginary part Im � = O(ω) is negligible at small ω. Around
the M point, the wave vector q ≈ (π, π ) is larger than the di-
ameter of the Fermi surface, as shown in the inset of Fig. 7(b)
and therefore the imaginary part of χs and consequently of
1/� is zero [compare Fig. 7(b)]. Rather than plotting �,
we therefore show |q|/�(q, ω = 0). The limiting behavior
of |q|/�(q, ω = 0) → const as q → 0 is demonstrated. The
upper panel shows Fa(q) along �-X-M-�. The curve for U =
12 is seen to reach Fa(q) = −1, signaling a phase transition
into a magnetically ordered state characterized by the wave
vector Q, which is discussed below.

b. Magnetic instability. In Fig. 7 the imaginary [Fig. 7(c)]
and real [Fig. 7(d)] parts of the spin susceptibility at n = 0.6
and t ′ = 0 are shown for two different interactions. For U =
8 we find a stable paramagnet for any wave vector and for
U = 12 a magnetic instability appears at the incommensurate
ordering vector Q ≈ (0.625π, π ).

A magnetic phase transition is indicated if χs(q, ω = 0)
diverges at some ordering vector q = Q. It is numerically
more viable to investigate 1/ Re χs(q, ω = 0), a sign change
of 1/ Re χs indicates a divergence of Re χs. This represents
the most precise criterion to define a magnetic instability. The
imaginary part can be evaluated numerically only at finite
η and ω, since Im χs(q, ω + iη) ∝ ω in the limit η → 0. In
Fig. 7(c) we show limω→0[Im χs(q, ω + iη)/ω] as a function
of q exhibiting a diverging peak at q = Q, as U increases
toward the critical value of Uc ≈ 12. The growth of peaks at
other ordering vectors can be explained by the enhancement
of the density of states at the Fermi level and do not indicate a
magnetic instability.

To determine the paramagnetic phase boundary from the
divergence of the static spin susceptibility, we steadily in-
crease the interaction U and look for the first appearance of
a zero of 1/χs(Q, ω = 0) as shown in Fig. 7(d) by example.
Following this procedure, the phase boundaries to the param-
agnet obtained by the magnetic mean-field analysis shown in
Fig. 1 and Fig. 2 are reproduced consistently.

Identifying the onset of magnetic instabilities from a study
of the spin susceptibility as compared to solving the saddle-
point equations of the spiral magnetic mean-field ansatz is
more general. In contrast to the latter, which is restricted to
the assumed form of the order (spin spiral), the divergence
of the susceptibility signals the emergence of magnetic order
of any kind with spatial periodicity described by the wave
vector Q. The fluctuation approach is, however, not suited to
determine the type of magnetic order beyond the boundary of
the paramagnetic regime.

c. Critical exponent. We determine the critical exponent
α at magnetic instabilities of the paramagnet where the spin
susceptibility diverges as

χs(Q, 0) ∝ (nc − n)−α, n < nc, (17)

when n → nc. We find a critical exponent of α = 1 for
phase transitions toward the commensurate antiferromagnet
Q = (π, π ) which occupies an extended domain in the phase
diagram for t ′ 
= 0 as shown in Fig. 2. For incommensurate
magnetic instabilities, the critical exponent is found as α ≈
1/2, as demonstrated in Fig. 8 for t ′ = 0 and U = 12, which

FIG. 8. Inverse static spin susceptibility (blue plot markers) at
wave vector (π, 0.625π ) versus n at U = 12 in the paramagnetic
regime. The gray dashed line shows a fit of 1/χs(Q, ω = 0) to
the square root

√
nc − n, indicating a critical exponent of α = 1/2.

The vertical line marks the magnetic phase transition at the critical
doping nc.

shows the inverse spin susceptibility at Q ≈ (0.625π, π ) as
function of the filling n.

2. Charge susceptibility

We also considered the possibility of charge order in the
Hubbard model as indicated by a divergence of χc(Q, 0).
In the paramagnetic regime, we did not find any charge
instabilities for U � 0, which confirms the magnetic phase
diagrams shown in Fig. 1 and Fig. 2. However, we can-
not exclude a combination of spin and charge order in the
magnetically ordered regime, because the investigation would
require fluctuations around a magnetic saddle point, which is
outside the scope of our present work. Such an analysis would
certainly be of interest, especially in the regime of negative
compressibility.

In Fig. 9(a) we present in the left column the “bare”
susceptibility χ0 (corresponding to the bubble diagram in
mean-field approximation, and therefore dependent on inter-
action) as function of momentum q and frequency ω and
compare it with the the charge susceptibility χc [right column
of Fig. 9(a)]. The chosen set of parameters (n = 0.6, t ′ =
0, U = 0, 2, 10) lies within the paramagnetic regime of the
phase diagram Fig. 1. The bare susceptibility is determined
by the paramagnetic mean-field band structure, given by the
spin-degenerate eigenvalue εk = −2z2

0[cos(k1) + cos(k2)] −
μeff (compare Appendix C). The slave-boson renormalization
z0(U ) depends on the interaction and is normalized to z0(0) =
1, the resulting bandwidth is given by W (U ) = 8z2

0(U ).
Hence, for vanishing interaction, we have W = 8 and accord-
ingly the width of the excitation spectrum is equal to the band-
width, as can be seen in the top panel of Fig. 9(a), moreover
it is χc = χ0 for U = 0. Increasing the interaction has two
effects. First, the excitation width of χ0 is reduced, matching
the renormalized bandwidths W (2) ≈ 7.8 and W (10) ≈ 6.5.
Second, χc exhibits the emergence of two excitation gaps,
splitting the charge susceptibility into three regimes [40].
There is a particle-hole excitation continuum for ω < W ,
where χc resembles χ0 and also scales with the bandwidth.
The second regime, which may be identified with the upper
Hubbard band, features a sharp energy momentum relation
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FIG. 9. (a) Imaginary part (color coded) of the bare susceptibility
χ0 (left column) and charge susceptibility χc (right column) in the
frequency ω wave-vector q plane at n = 0.6 and t ′ = 0 for various
interaction strengths. For U > 0, the χs features a collective mode
and the upper Hubbard band in addition to the particle-hole excitation
spectrum. (b) Imaginary part of the charge susceptibility χc versus
frequency ω at wave vector q = (π, 0) at n = 0.6, U = 10, and U =
0 and at t ′ = 0.

and is separated from the first regime by a gap, which ap-
proaches U in the limit of large interactions (upper excitation
band). This is due to the fact that χc as a fluctuation quantity
goes beyond the band structure picture of the mean field and
allows excitations which result in the creation of new doubly
occupied sites at the cost of the interaction U . The feature
we identify with excitations into the the upper Hubbard band
is seen to vanish for q → 0. Third, a collective mode feature
situated between the continuum and the upper Hubbard band
emerges, which may be identified as a collective density mode
as appears in a Fermi liquid for sufficiently large repulsive
interaction. At half filling only one collective mode is visible.
This is different for the longer-range hopping model (t ′ =
−0.2) for which both excitation features are present even at
half filling as shown in Fig. 10. The structure of the charge
excitation spectrum as a function of frequency at q = (π, 0)
(X point) is shown in more detail at doping n = 0.6, t ′ = 0 and
for U = 10 and U = 0 in Fig. 9(b). The comparison shows
how the interaction (i) shifts spectral weight from the lower
to the upper Hubbard band and (ii) generates a collective
mode at the upper edge of the lower Hubbard band. The
reason for the appearance of two excitation bands lies in the

FIG. 10. Imaginary part (color coded) of the charge susceptibil-
ity χc in the frequency ω wave vector q plane for U = 10 and various
dopings n at t ′ = 0 (left column) and t ′ = −0.2 (right column).
With increasing n toward half filling, the spectral weight of the
particle-hole continuum is shifted toward the collective mode. The
upper Hubbard band vanishes at half filling for t ′ = 0 and is kept for
the long-range hopping model t ′ = −0.2.

different dynamics of the fermionic and bosonic degrees of
freedom. As shown in Appendix E the charge susceptibility
is determined by inverse matrix elements of the 4 × 4 charge
block of the fluctuation matrix Mμν (q, ω) = MB

μν (q, ω) +
MF

μν (q, ω), μ, ν ∈ (e, d1, d2, β0). In opposite to the spin sec-
tor, MB

μν (q, ω) explicitly depends on the frequency because
the slave-boson field d = d1 + id2 is complex valued. Our
results are in full agreement with the detailed analysis of
collective charge modes in the Hubbard model presented in
Ref. [40].

C. Dynamical conductivity

We studied the dynamical conductivity σ (ω + iη) accord-
ing to Sec. II D. Figure 11(a) shows results for the real and
Fig. 11(b) for the imaginary part of the dynamical concuctivity
for the nearest-neighbor hopping model (t ′ = 0) at quarter
filling n = 0.5 and for two values of interaction, U = 0 and
U = 35. The parameter η = 1/τ = 0.1 is kept finite and is
identified with the inverse scattering time of the Drude model,
which fits our data. For η → 0, the dc conductivity goes to
infinity, because our model does not include a momentum
dissipation mechanism (no umklapp scattering, no phonons).
One may interpret η as an effective scattering parameter
accounting for impurity scattering, while the limit η → 0
corresponds to a perfect, impurity-free crystal.

Figure 11(c) shows the DC resistivity ρ0 = 1/σ0 as func-
tion of the interaction U at filling n = 0.5. The inset demon-
strates that z2

0ρ0 is nearly independent of U , reflecting the
scaling of ρ0 with the effective mass ρ0 ∝ m∗/m, which is
given by m∗/m = 1/z2

0 in the one-band Hubbard model. The
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FIG. 11. [(a) and (b)] Real and imaginary parts of the dynam-
ical conductivity for η = 0.1, T = 0, quarter filling n = 0.5 for
the two interactions U = 0 and U = 35 at t ′ = 0. In both cases
we see a Drude-like behavior according to Eq. (14b) as indicated
by the dashed gray lines. (c) The DC resistivity ρ0 versus inter-
action U for filling n = 0.5. The inset shows the scaling of ρ0

with 1/z2
0. The vertical grid lines indicate phase transitions, the

respective phases are denoted in the upper part of the plot and
the color of the plot makers display the value of the ordering
vector (compare Fig. 1). (d) The dc resistivity ρ0 versus filling n
for U = 10. The inset shows the approximate scaling of ρ0 with
1/(z2

0n). The vertical grid lines indicate phase transitions, the re-
spective phases are denoted in the upper part of the plot and the
color of the plot makers display the value of the ordering vector
(compare Fig. 1).

FIG. 12. Spin structure factor Ss (a) and charge structure factor Sc

(b) for n = 0.6, t ′ = 0, T = 0, broadening η = 0.01 for interaction
U = 8 on the high-symmetry path �-X-M-�.

density dependence of ρ0 at t ′ = 0 and U = 10 is shown in
Fig. 11(d). The inset shows the scaling of ρ0 with density
and effective mass according to Drude’s formula, requiring
z2

0nρ0 to be nearly independent of density, which happens to
be satisfied only approximately.

D. Spin and charge structure factors

The spin and charge structure factors at T = 0 are obtained
as

Ss,c(q) = −
∫ ∞

0

dω

π
Im χs,c(q, ω + iη). (18)

The structure factors at n = 0.6, t ′ = 0, and U = 8 are shown
along the path �-X-M-� in the Brillouin zone in Fig. 12.

Similarly to Im χs(q, ω → 0) the spin structure factor is
enhanced at q = (π, 0.625π ), reflecting the upcoming mag-
netic instability at larger U . Due to the integration over ω

the structure factors do not necessarily have to resemble the
corresponding susceptibilities in one distinct frequency range.

E. Comparison with DMET results

Zheng et al. computed the ground state of the Hubbard
model on the square lattice in 2D [34] by employing DMET
using clusters of up to 16 sites. They report competition
between inhomogeneous charge, spin, and pairing states at
low doping. In the following, we compare their results with
our results from slave-boson theory.

1. Results at half filling

Figure 13(a) and 13(b) compare the energy per site, double
occupancy and staggered magnetization of the AFM obtained
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FIG. 13. Energy per site (a), double occupancy d2 and magne-
tization (b) for half filling, t ′ = 0 and different U . We compare the
results obtained from AFQMC and DMET by Zheng et al. [34] with
our SRIKR slave-boson results; (c) local magnetization as a function
of the lattice site [assuming (π, Q) order on a 2 × 8 cluster] for
n = 0.8, t ′ = −0.2, and U = 6 within DMET [34]. SRIKR yields
Q ≈ (π, 0.71π ), implying a spin profile of m ∝ cos(Qr), which fits
very well to the DMET data.

by auxiliary-field quantum Monte Carlo (AFQMC), DMET,
and SRIKR for t ′ = 0 and different U at half filling. While
we find very good agreement for the double occupancy, the
magnetization deviates considerably for increasing interac-
tion. For U → ∞ we find the fully magnetized Neel state
with mSRIKR = 1/2 within the SRIKR slave-boson analysis,
whereas the magnetization saturates at mDMET ≈ 0.33 within
DMET, close to the exact Heisenberg value in 2D which is
given by 0.307 according to quantum Monte Carlo (QMC)
calculations [41]. This overestimation of the magnetization
coincides with an increased energy per site in SRIKR com-
pared to the other methods for large U . We expect the mag-
netization to be decreased by fluctuation corrections to the
magnetic mean field, which are, however, beyond the scope
of the present work.

2. Results for finite doping

The domain of the n-U SRIKR phase diagram exhibiting
(π, Q) magnetic order is in good agreement with the DMET
data given in Ref. [34]. This is exemplary shown in Fig. 13,
where the spin spiral with ordering vector Q ≈ (π, 0.71π )
found by SRIKR is fitted to the spin profile according to
DMET on a 2 × 8 cluster. However, in the (Q, Q) domain, the

ordering cannot be matched. Coincidingly, there are increas-
ing inconsistencies between DMET clusters of size 2 × 8 and
4 × 4 which could be due to more severe finite-size effects in
the case of (Q, Q) order compared to (π, Q) order.

Moreover, we find the general trend, that points in param-
eter space which feature a negative compressibility within
SRIKR, show highly inhomogeneous charge and/or super-
conducting orders according to DMET, while points with a
positive compressibility are approximately homogeneous in
that regard.

IV. RESULTS AT FINITE TEMPERATURE

The slave-boson mean-field theory may be extended to
finite temperature, provided T is not too high. Although in
the limit of infinite temperature the free energy is found to
approach the correct limit of F = −NT ln 4, the equipartition
of slave bosons expected in this limit is not obtained. Rather,
one finds, e.g., at half filling and for particle-hole symmetric
spectrum, that d = e = 0, for any U > 0 with T → ∞. We
expect the slave-boson mean-field theory to be applicable up
to temperatures of the order of the bandwidth W . In this
section, we discuss the temperature dependence of the slave-
boson mean-field and fluctuation results.

A. Magnetic mean-field phase diagram

Figure 14(b) shows the temperature-dependent slave-boson
mean-field phase diagram at U = 4.5 and t ′ = −0.2. In the
presented temperature range we have T � W (U ), the renor-
malized bandwidth. The paramagnetic second-order phase
boundary coincides with results obtained from a temperature-
dependent fluctuation analysis of magnetic instabilities. At
stronger interaction the transition into the (π, π ) state be-
comes a first-order transition, which is presumably an artifact
of the mean-field approximation. We determined the transi-
tion temperature signaling the instability of the paramagnetic
phase by first finding the root of the inverse susceptibility
1/χs(Q, 0) as a function of temperature defined by Tc(Q)
and then determining the maximum Tc = maxQ{Tc(Q)}. The
transition temperatures into the ordered phase so determined
as a function of doping are shown in Fig. 14(a), for t ′ = −0.2
and U = 2.5, 3.5, 4.5. Our results also show that a change in
temperature leads to a continuous variation of the ordering
vector Q and can induce a first-order phase transition between
a (Q, Q) and (π, Q) ordering as illustrated in Fig. 15, for n =
0.8, t ′ = −0.2, and U = 10, where also the magnetization
and the free energy are shown. For not too small U � 3 the
Neel temperature has its maximum around half filling and
decreases with (hole or electron) doping.

B. Critical exponent

Furthermore, we present the critical exponent γ at the
phase transition defined as

χs(Q, 0) ∝ (T − Tc)−γ , (19)

where Q is the ordering vector determined at Tc featuring the
lowest free energy in mean-field approximation. Figure 16
shows χs(Q, 0)−1 around the phase transition, which is sit-
uated at the sign change of the reciprocal susceptibility for
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FIG. 14. (a) Transition temperature into the magnetically ordered
phase versus filling n for U = 2.5, 3.5, 4.5 and t ′ = −0.2. The or-
dering vectors on the line of the phase transition are indicated by the
color of the plot markers. All presented transitions from the magnetic
to the nonmagnetic phase are of second order; (b) temperature-
dependent magnetic phase diagram for the Hubbard model for U =
4.5 and t ′ = −0.2. It features two distinct phases, namely the PM
(gray) and the (π, Q) phase denoted by black circles filled with
coloring from red to yellow. The ordering vector within one phase
regime changes continuously with U and n visualized by the color
scheme as indicated in the plot legend. The AFM is denoted by a red
circle.

q = Q and two neighboring ordering vectors. Note that
q = Q features the highest Tc. The reciprocal susceptibility
χs(Q, 0)−1 scales linearly in T as shown by the comparison
with the straight line in the inset, resulting in a critical
exponent of γ = 1.

C. Dynamical conductivity

The temperature dependence of the dc resistivity ρ(T ) =
1/σ (T ) at n = 0.5, two values of interaction U = (0, 35), and
t ′ = 0 is shown in Fig. 17(a). For T � W , ρ(T ) follows the
behavior

ρ(T ) = ρ0 + AT 2, (20)

where ρ0 and A are temperature-independent functions of
filling, interaction, and hopping parameters (for ρ0 see the dis-
cussion given above). For large U , we find that the coefficient
A of the quadratic term is proportional to (m∗/m0)2 ∝ 1/(z0)4,

FIG. 15. Ordering wave vector component Q, magnetization
m = p0 p and relative difference of the magnetic free energy at
ordering vector Q and paramagnetic free energy versus temperature
T for U = 10, filling n = 0.8, and t ′ = −0.2. The vertical grid lines
indicate phase transitions, the respective phases are denoted in the
upper part of the plot. Near T = 0.155 occurs a first-order phase
transition from (Q, Q) to (π, Q), indicated by the discontinuity in
the magnetization m.

reminiscent of what is observed in heavy-fermion compounds
(Kadowaki-Woods relation), as shown in Fig. 17(b) at n =
0.5 and t ′ = 0. The density dependence of A is weak, see
Fig. 17(c).

D. T-U phase diagram at half filling

The phase diagram in the temperature-interaction plane
at half filling is shown in Fig. 18, at t ′ = 1/

√
3. For given

lower temperature, T � 0.38 and increasing U the metallic
paramagnet is entering an insulating antiferromagnetic phase
and eventually a paramagnetic Mott insulator. both transitions
are of first order. At low temperatures T � 0.13 a narrow
region of metallic magnetic (Q, Q) phase, Q ≈ 0.57π is found
between the paramagnet and the antiferromagnetic insulator,
which features no negative compressibility. The phase tran-
sition from the paramagnet to the metallic magnetic (Q, Q)
phase is of second order. At high temperature, T � 0.38,

FIG. 16. Inverse static spin susceptibility for U = 12, t ′ = 0,
filling n = 0.6 for different q as function of temperature in the
zero frequency limit. The inset shows the vicinity of 1/χs(q, ω = 0)
around the critical temperature Tc = 0.165. The vertical grid line
indicates the magnetic phase transition.
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FIG. 17. (a) Temperature dependence of the resistivity [ρ(T ) −
ρ(T = 0)] versus T 2 at filling n = 0.5, t ′ = 0 for U = 0 (blue plot
marker) and U = 35 (orange plot marker). (b) Coefficient A versus
interaction U for filling n = 0.5 and t ′ = 0. The Inset shows the
normalized coefficient Az4

0, for large interactions the Kadowaki-
Woods ratio A ∝ (m/m∗)2 is fulfilled. The vertical grid line indicates
the magnetic phase transition. The color of the plot makers display
the value of the ordering vector (compare Fig. 1). (c) Coefficient A
versus doping n for U = 10, t ′ = 0. The vertical grid line indicates
the magnetic phase transition. The color of the plot makers display
the value of the ordering vector (compare Fig. 1).

the paramagnetic metal crosses over directly into the Mott
insulator phase by way of a first-order transition. A compari-
son with the results obtained for the two sublattice frustrated
model (t ′ = 1/

√
3) of Rozenberg, Kotliar, and Zhang using

DMFT [42] (see Fig. 43 in Ref. [11]) shows remarkable
similarity at not-too-high temperatures even quantitatively.
Note that instead of an AFM metal featured in Ref. [11]
wedged in between the AFM Insulator and the PM Metal at
small temperatures, we find the metallic (Q, Q) phase. Only
the behavior at very high temperature is not captured correctly
in the slave boson MFA, in that the first-order phase separation
line between metal and Mott insulator does not terminate at a
critical point at about Tcrit ≈ 1.5, as it should, but continues up

FIG. 18. Phasediagram in the T -U plane at half filling for t ′ =
1/

√
3. It features four distinct phases: a metallic PM (gray), a Mott

insulator (dark gray), a metallic magnetic phase with incommensu-
rate ordering vector Q ≈ 0.57π (purple), and the antiferromagnetic
insulating phase (red). The ordering vector is nearly constant for
all parameter points in the incommensurate magnetic phase. The
solid (dashed) lines indicate a phase transition of second (first) order.
The SRIKR mean-field yields no critical point at high T , which
terminates the transition line of the Mott and paramagnetic metallic
phases, as predicted by DMFT.

to infinite temperature. This is a consequence of the fact that
in MFA the slave-boson occupation numbers do not assume
equilibrated values for T → ∞.

V. SUMMARY

In this paper we presented a detailed derivation of the
SRIKR slave-boson formalism (Sec. II and Appendix). It is
shown within a path-integral representation that the atomic
limit is exactly recovered. The mean-field theory of spiral
magnetic states is derived. The spin and charge correlation
functions in the paramagnetic state are expressed in terms of
the fluctuation amplitudes. We showed that the α constraint
which fixes the number of bosons per lattice site can be
enforced exactly not only on MF level but also within the
fluctuation calculation. This reduces the dimension of the fluc-
tuation matrix Mμν by two and simplifies the calculation of
the charge susceptibility compared to the formalism presented
in the previous literature.

In Sec. III, results for zero temperature are presented.
The solution of the mean-field equations of spiral magnetic
states are used to construct a phase diagram in the interaction
U -density n plane. A number of different phases are found,
characterized by the ordering wave vector Q, classified in
two types (Q, Q) and (π, Q), with Q varying continuously
within a given phase. The two types of phases are separated
by first-order transitions. We considered two hopping models:
nearest-neighbor hopping only (t ′ = 0) and additional next
nearest neighbor hopping (t ′ = −0.2). The z factors renormal-
izing the hopping have been calculated and discussed in their
dependence on density and interaction. The magnetization,
the free-energy gain of the ordered state and the ordering wave
vector component Q have also been evaluated. We presented
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the renormalized band structures in the paramagnetic and
the various magnetically ordered phases. At half filling the
Mott-Hubbard transition in the paramagnetic phase, signaled
by a vanishing of the z factor, is preempted by the formation
of magnetic antiferromagnetic order for which the z factor
stays finite. Examples of the Fermi surfaces in the various
phases were presented as well. The compressibility is found to
become negative in a region of the phase diagram around n =
1, signaling an instability toward phase separation or charge
order in the magnetically ordered phase. The calculation of
the charge susceptibility in the magnetically ordered phase is
beyond the scope of our present work.

We calculated the spin susceptibility in the paramagnetic
phase. The static spin susceptibility is parametrized in terms
of a Landau interaction function F a(q), found to vary in the
interval [−1, 0], with F a(Q) = −1 signaling the transition
to a magnetic state with ordering vector Q. We determined
the phase boundary to the magnetically ordered phase by
finding the zeros of minq{1/χ (q, 0)}, the results being fully
consistent with what was found from the magnetic mean-field
study. The dynamic spin susceptibility is parametrized in
terms of a Landau damping function �(q, 0), found to vary
as � ∝ |q| in the limit |q| → 0. At the phase transition the
static spin susceptibility at the ordering wave vector is found
to diverge as χ (Q, 0) ∝ (nc − n)−α , where nc is the critical
doping. Surprisingly, the exponent α turned out to depend on
whether the magnetic state was commensurate, where α ≈ 1,
or incommensurate, for which α ≈ 1/2.

We calculated the charge excitation spectrum finding an
interesting structure to be interpreted as two collective modes
induced by interaction on top of the particle-hole continuum.
The higher frequency mode has the character of an excitation
into the upper Hubbard band. The mode in between the
continuum and the latter mode resembles the zero sound mode
of a Fermi liquid. These modes show a considerable depen-
dence on density, interaction and on the range of hopping.
The charge response function is employed to calculate the
dynamical conductivity. We employed a finite imaginary part
of the frequency, η, to be interpreted as an impurity scattering
induced relaxation rate. The real and imaginary parts of the
conductivity are found to assume Drude form, renormalized
by interaction. The dc resistivity as a function of U is shown
to be proportional to the inverse effective mass in good ap-
proximation ρ0 ∝ z−2

0 . As a function of density n the relation
ρ0 ∝ 1/(z2

0n), expected to hold for the Drude conductivity
is obeyed only approximately. The spin and charge structure
factors were also calculated.

In Sec. IV we presented results at finite temperature.
Stable solutions of the mean-field equations have been found
for temperatures less than the renormalized bandwidth. We
determined the magnetic phase diagram in the temperature
T -doping n plane at fixed interaction U . We found the phase
boundaries separating the magnetically ordered phases from
the paramagnetic phase and also separating different ordered
states. A continuous change of the ordering wave vector
as the temperature and doping are varied is presented. The
static spin susceptibility at fixed U and n and at the ordering
vector Q is found to diverge at the transition as χ (Q, 0) ∝
(T − Tc)−γ , where Tc is the critical temperature and γ ≈ 1.
The temperature-dependent dc resistivity is shown to follow

a quadratic dependence ρ(T ) = ρ0 + AT 2. The coefficient A
is found to be proportional to (m∗/m)2 ∝ z−4

0 , reminiscent
of the Kadowaki-Woods relation found for heavy-fermion
compounds. Finally, we established a phase diagram in the
temperature T -interaction U plane at half filling and choosing
a next-nearest-neighbor hopping parameter t ′ = 1/

√
3. The

general features of the phase diagram agree very well with
results obtained by other methods. The only exception is
the behavior at higher temperatures, where the slave-boson
mean-field approximation shows a first-order metal-insulator
transition instead of a phase boundary ending at a critical
point.

The results presented above show that the SRIKR slave-
boson method is a powerful alternative to other approximate
methods in the interacting fermion problem, such as DMFT,
functional renormalization group method (FRG), and purely
numerical methods such as QMC, density matrix renormal-
ization group (DMRG), or DMET, to name a few prominent
examples. Our method is not limited to local quantum fluc-
tuations (like DMFT), but can describe long-range ordered
phenomena. It is not limited to low to intermediate interaction
(like FRG), but works for arbitrarily strong interaction, it does
not suffer from a “sign problem” limiting its application to
sufficiently high temperatures (like QMC), but works at low
temperatures up to the bandwidth limit, it is not restricted
to small systems (like DMRG and DMET), but works in the
thermodynamic limit. The detailed comparison of our results
with those of a recent DMET study presented in Sec. III E
demonstrates an impressive degree of compatibility as far as
the fine-structure of the phasediagram at T = 0 is concerned.
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APPENDIX A: SLAVE-BOSON FORMALISM
ON OPERATOR LEVEL

The slave-boson formalism was originally introduced by
Kotliar and Ruckenstein [9] (KRSB) as a strong-coupling
mean-field theory for a unified treatment of magnetism, metal-
to-insulator transitions, and Kondo physics. The method was
later generalized to be manifestly spin rotation invariant
[17,18] (SRIKR) and applied to charge and spin structure
factors in the Hubbard model by means of bosonic fluctuations
around the saddle-point solution [36,37,43]. This manuscript
provides a detailed summary of spin-rotation-invariant slave-
boson mean-field formalism with fluctuations in a general

235137-15



DAVID RIEGLER et al. PHYSICAL REVIEW B 101, 235137 (2020)

notation for the Hubbard model, which can be generalized
to models with one interacting and an arbitrary number of
noninteracting orbitals [38,44]. We include a guide how to
numerically implement the mean-field equations and show the
derivation of correlation functions from the fluctuation matrix.
Moreover, we present the exact evaluation of the atomic limit
in the path-integral representation.

The general idea of slave-boson formalism is to define
a set of bosonic operators ei, p0,i, pi = (p1,i, p2,i, p3,i ) and
di, labeling empty, singly, and doubly occupied lattice sites
i, respectively, for the interacting orbital. Spin rotation in-
variance requires the introduction of four bosonic fields to
represent a singly occupied site in comparison to two fields
in the original Kotliar-Ruckenstein description. Furthermore,
one needs to introduce two auxiliary fermionic fields fi,↓, fi,↑,
referred to as pseudofermions, which correspond to the quasi-
particle degrees of freedom. The addition of a set of lo-
cal constraints allows an exact mapping from the original
fermionic creation and annihilation operators (c†, c ) to the
slave-boson and pseudofermion operators, where the Hubbard
interaction becomes quadratic, whereas hopping terms adapt
a nonquadratic form in bosonic operators. Within a bosonic
mean-field approximation, the pseudofermionic degrees of
freedom can be integrated out and allow to investigate the
problem from a strong-coupling perspective compared to con-
ventional fermionic mean-field theory.

The empty, singly, and doubly occupied states are created
by

|0〉i := e†i |vac〉, (A1a)

|σ 〉i :=
∑
σ ′

p†i,σσ ′ f †i,σ ′ |vac〉, (A1b)

|2〉i := d†
i f †

i,+ 1
2

f †
i,− 1

2

|vac〉 = d†
i f †i,↑ f †i,↓|vac〉, (A1c)

at each lattice site i, where σ ∈ ± 1
2 corresponds to the spin

of the fermionic operators. The matrix operator p†i,σσ ′ will be
defined in the following section. The occurring fermionic fi,σ

and bosonic bα,i ∈ {ei, p0i, pi, di} fields fulfill the usual (anti-
)commutation relations

{ fi,σ , f †j,σ ′ } = δσσ ′ δi j, (A2a)

{ fi,σ , f j,σ ′ } = { f †i,σ , f †j,σ ′ } = 0, (A2b)

[bα,i, b†β, j] = δαβ δi j, (A2c)

[bα,i, bβ, j] = [b†α,i, b†β, j] = 0. (A2d)

The site index i will be dropped for readability in the follow-
ing, it is implied that the all equations without an additional
index i hold for every lattice site.

1. Construction of the p matrix

While the empty and doubly occupied states transform like
scalars, the singly occupied state |σ 〉 needs to transform like
a spinor under spin rotation. Consequently, p†i,σσ ′ represents
an element of a 2 × 2 matrix as established in Ref. [18]. The
total spin of the singly occupied state is S = 1

2 and consists
of a pseudofermionic (S f = 1

2 ) and a bosonic component. The

possible bosonic spins are Sb = 0 and Sb = 1 yielding a scalar
bosonic field p0 and a vector bosonic field p = (px, py, pz ),
where x, y, z are the Cartesian components. The spin operator
for Sb = 1 is given by

Ŝ =
⎡
⎣Sx

Sy

Sz

⎤
⎦, (A3)

where

Sx = 1√
2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, (A4a)

Sy = 1√
2

⎡
⎣0 −i 0

i 0 −i
0 i 0

⎤
⎦, (A4b)

Sz =
⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦. (A4c)

For a spin-rotational-invariant representation, we choose the
p† operator to create a bosonic state (Sb = 1) which is po-
larized in the x, y, and z directions, respectively, with the
magnetic quantum number m = 0,

Si|χi〉 = 0, χx = 1√
2

⎡
⎣−1

0
1

⎤
⎦,

χy = 1√
2

⎡
⎣ i

0
i

⎤
⎦, χz =

⎡
⎣0

1
0

⎤
⎦. (A5)

This basis is orthonormal on the spin Hilbert space 〈χi|χ j〉 =
δi j . The relative phases of χi are not arbitrary because they are
related by spin rotation e−iφŜ and chosen such that

χy = e−i π
2 Sz

χx, (A6a)

χz = e−i π
2 Sx

χy, (A6b)

χx = e−i π
2 Sy

χz. (A6c)

In order to add the spin of the boson and the pseudofermion, it
is convenient to use the basis of eigenstates of the Sz operator,
which can be found as superposition of the spinors χx, χy,
and χz yielding the ladder operators

p1,1 := − 1√
2

(px + ipy), (A7a)

p1,0 := pz, (A7b)

p1,−1 := 1√
2

(px − ipy). (A7c)

Consequently, a state with total spin of S = 1
2 composed of a

S f = 1
2 pseudofermion fσ ′ and a Sb = 1 slave boson p1,m1 is

235137-16



SLAVE-BOSON ANALYSIS OF THE TWO-DIMENSIONAL … PHYSICAL REVIEW B 101, 235137 (2020)

given by [18]

|σ 〉S= 1
2

=
∑

σ ′=± 1
2

C

(
Sb = 1, S f = 1

2
; mb = σ

− σ ′, m f = σ ′
∣∣∣S = 1

2
; σ

)
p†1,mb

f †σ ′ |vac〉

=
∑

σ ′=± 1
2

(p†S=1)σσ ′ f †σ ′ |vac〉 (A8)

with σ = ± 1
2 and the Clebsch-Gordon coefficients

C

(
1,

1

2
; σ ∓ 1

2
,±1

2

∣∣∣1
2
, σ

)
= ∓

√
3 ∓ 2σ

6
. (A9)

As Eq. (A8) implies, we can write the bosons in a convenient
matrix notation p

S=1
, which reads

p†
S=1

=
⎡
⎣ −

√
1
3 p†1,0

√
2
3 p†1,1

−
√

2
3 p†1,−1

√
1
3 p†1,0

⎤
⎦, (A10)

using the basis

f †σ ′ =
[

f †↑
f †↓

]
(A11)

for the pseudofermions. To obtain the full matrix, one has
to take contributions of the scalar field p0 as a superposition
into account, which only acts diagonal on the spin subspace.
Inserting Eq. (A7), one finds for the full matrix

p† =
[

ap†0 + bp†z b(p†x − ip†y )
b(p†x + ip†y ) ap†0 − bp†z

]
. (A12)

The coefficients a and b are not arbitrary but have to be chosen
such that the normalization∑

σ ′σ ′′
〈vac| fσ ′′ pσ ′′σ p†σσ ′ f †σ ′ |vac〉 = 1 (A13)

is fulfilled for σ = ± 1
2 which implies 3b2 + a2 = 1. The ratio

a/b is a free parameter. It can be chosen to be a = b = 1/2,
which finally yields

p† = 1

2

3∑
μ=0

p†μτμ = 1

2

[
p†0 + p†z p†x − ip†y
p†x + ip†y p†0 − p†z

]
, (A14a)

p = 1

2

3∑
μ=0

pμτμ = 1

2

[
p0 + pz px − ipy

px + ipy p0 − pz

]
, (A14b)

where τμ is the vector of the Pauli matrices, including the
identity matrix τ 0 ≡ 12. The commutator of these matrix
operators is given by

[pσ1σ2
, p†σ3σ4

] = 1
2δσ1σ4δσ2σ3 . (A15)

2. Slave-boson representation and time-reversal properties

The original, fermionic operators c†σ , cσ , are mapped to the
slave-boson operators by

c†σ :=
∑
σ ′

z†σσ ′ f †σ ′ , (A16a)

cσ :=
∑
σ ′

fσ ′zσ ′σ , (A16b)

following Ref. [18], with

zσσ ′ = e†pσσ ′ + p̃†σσ ′d, (A17a)

z†σσ ′ = p†σσ ′e + d† p̃σσ ′ , (A17b)

and

p̃σσ ′ = 1

2

⎛
⎝p0τ

0
σσ ′ −

3∑
μ=1

pμ

σσ ′

⎞
⎠ (A18a)

or, equivalently,

p̃σσ ′ = 4σσ ′ p−σ ′−σ σ ∈
{

1

2
,−1

2

}
. (A18b)

Note that in this notation −σ corresponds to a spin flip.
Equation (A16a) is easy to verify when acting on an empty
or doubly occupied state. In the singly occupied case, the
definition of the time-reversed operator p̃σσ ′ is necessary to
account for the two spin species. The validity of the mapping
can be confirmed with the calculation

c†σ |σ ′〉 =
∑
σ1σ2

z†σσ1
f †σ1

p†σ ′σ2
f †σ2

|vac〉

= 2σδ−σσ ′d† f †↑ f †↓ |vac〉 = 2σδ−σσ ′ |2〉,
(A19)

which works analogously in the case of annihilation operators.
Fermionic operators carrying spin σ ∈ ± 1

2 transform under
time reversal as

T̂ c↑T̂ −1 = c↓, (A20a)

T̂ c↓T̂ −1 = −c↑, (A20b)

where T̂ is the time-reversal operator. The time-reversal prop-
erties of the pseudofermionic and bosonic fields within the
slave-boson representation can be inferred by comparing to
Eq. (A16). Since p0 annihilates a spin singlet and p a spin
triplet, we demand p0 to be even, T̂ p0T̂ −1 = p0, and p to be
odd, T̂ pT̂ −1 = −p, under time reversal. Moreover, the opera-
tor T̂ is antiunitary T̂ iT̂ −1 = −i. The expected transformation
properties given by

T̂ p0T̂ −1 = p0, (A21a)

T̂ pT̂ −1 = −p, (A21b)

T̂ eT̂ −1 = e, (A21c)

T̂ dT̂ −1 = d, (A21d)

T̂ f↑T̂ −1 = f↓, (A21e)

T̂ f↓T̂ −1 = − f↑ (A21f)

are recovered for the slave-boson representation which is
consistent with Ref. [18].

3. Constraints in slave-boson formalism

In order to have an exact mapping of original fermionic
operators to the slave-boson operators, one needs to enforce a
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set of local constraints, introduced in Ref. [18], to recover the
physical Hilbert space from the extended Fock space

1 = e†e + d†d +
3∑

μ=0

p†μ pμ, (A22a)

f †σ ′ f
σ

= 2
∑
σ1

p†σ1σ
pσ ′σ1

+ δσσ ′d†d. (A22b)

Equation (A22b) can be rewritten in terms of pμ’s to four
scalar equations by expanding in Pauli matrices including the
identity matrix, i.e., applying

∑
σσ ′ τ

μ

σσ ′ on both sides of the
equation,

∑
σ

f †σ fσ =
3∑

μ=0

p†μ pμ + 2d†d, (A22c)

∑
σσ ′

τσσ ′ f †σ ′ f
σ

= p†0p + p†p0 − ip† × p. (A22d)

These constraints are enforced on each lattice site. The first
constraint Eq. (A22a) makes sure that every site is occupied
by exactly one slave boson. The second constraint Eq. (A22c)
matches the number of pseudofermions and slave bosons
according to Eq. (A1). The third constraint Eq. (A22d) relates
the spin of the pseudofermions and slave bosons which are
not independent as Eq. (A8) indicates. It states that a spin
flip in pseudofermions can be recast as a spin flip in the
slave bosons. Since such a recast spin flip has to obey the
previous assignment of p bosons and pseudofermions, one has
to employ the third constraint.

The necessity of the constraints can be seen mathemat-
ically by calculating the anticommutator {c

σ
, c†σ ′ } = δσσ ′ in

slave-boson formalism, which is only recovered correctly
when applying all of the constraints. It is sufficient to verify
the commutator on the physical subspace. This way, one
can exploit that two bosonic annihilation operators to the
very right side of an equation annihilate any state because
of Eq. (A22a). Such an ordering can be achieved by using
Eq. (A18b) and the commutator given by Eq. (A15). More-
over, the pseudofermions can be replaced by slave-boson
operators by means of the second constraint in Eq. (A22b).
It turns out that only terms which are quadratic in bosonic
operators remain

{c
σ

, c†σ ′ } =
∑
σ1σ2

( fσ1
zσ1σ

z†σ ′σ2
f †σ2

+ z†σ ′σ2
f †σ2

fσ1
zσ1σ

)

= δσσ ′ (e†e + d†d )

+ 2
∑
σ1

(4σσ ′ p†−σσ1
pσ1−σ ′ + p†σ ′σ1

pσ1σ
).

(A23a)

The second term in Eq. (A23a) can be further decomposed,

∑
σ1

p†σ ′σ1
pσ1σ

= 1

4

3∑
μ=0

p†μ pμδσσ ′ + 1

4

3∑
μ=1

τ
μ

σ ′σ (p†μ p0 + p†0 pμ)

+ i

4

3∑
μμ′ν=1

ε μμ′ντ ν
σσ ′ p†μ pμ′ . (A23b)

Now, making use of

τ
μ

σ ′σ = −4σσ ′τμ

−σ−σ ′ , μ ∈ {1, 2, 3}, (A23c)

all terms containing Pauli matrices vanish in Eq. (A23a),
which yields

{c
σ

, c†σ ′ } = δσσ ′

⎛
⎝e†e + d†d +

3∑
μ=0

p†μ pμ

⎞
⎠ = δσσ ′ (A23d)

and leads to the expected result by once more using the first
constraint. Consequently, the fermionic character of the fields
is preserved in slave-boson formalism.

Note that pseudofermions can be replaced by slave bosons
every time they appear quadratic with Eq. (A22b). However,
a combination of pseudofermions on different sites cannot be
replaced.

To account for the constraints, we define

A := e†e + d†d +
3∑

μ=0

p†μ pμ − 1, (A24a)

B0 :=
∑

σ

f †σ fσ −
⎛
⎝ 3∑

μ=0

p†μ pμ + 2d†d

⎞
⎠, (A24b)

B :=
∑
σσ ′

τσσ ′ f †σ ′ fσ − (p†0p + p†p0 − ip† × p), (A24c)

and need to enforce A = B0 = B = 0, which can be achieved
by adequate projection operators

Pα = 1

2πT

∫ πT

−πT
eiαA/T dα = δA,0, (A25a)

Pβ0 = 1

2πT

∫ πT

−πT
eiB0Y/T dβ0 = δB0,0, (A25b)

Pβ = lim
N→∞

1

(2πNT )3

∫∫∫ πNT

−πNT

3∏
μ=1

eiβμBμ/T dβμ = δB,0,

(A25c)

P := PαPβ0Pβ. (A25d)

Note that since Z contains operators which are not number
operators, its eigenvalues may have noninteger values. There-
fore the integral has to be extended to infinity to project out
all unphysical states. The partition function of the physical
subspace for a Hamiltonian H is then given by

Zeff = tr[e−H/TP], (A26)

where T is the temperature. The constraints commute with
the slave-boson representation of fermionic creation (annihi-
lation) operators[∑

σ ′
z†σσ ′ f †σ ′ , A

]
=
[∑

σ ′
z†σσ ′ f †σ ′, B0

]

=
[∑

σ ′
z†σσ ′ f †σ ′, B

]
= 0, (A27a)
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[∑
σ ′

fσ ′zσ ′σ , A

]
=
[∑

σ ′
fσ ′zσ ′σ , B0

]

=
[∑

σ ′
fσ ′zσ ′σ , B

]
= 0. (A27b)

and thus also with any fermionic Hamiltonian in second
quantization,

[H, A] = [H, B0] = [H, B] = 0. (A28)

Consequently, the constraints commute with the time evolu-
tion operator exp(−iHt ), which implicates that a state on the
physical subspace cannot propagate into an unphysical one.

4. Operators in slave-boson formalism

Following Ref. [18], this section summarizes important
fermionic operators and their representation in slave-boson
formalism.

a. Spin-density operator

The spin-density operator in fermionic description is given
by

Ŝ = 1

2

∑
σσ ′

c†στσσ ′cσ ′ . (A29a)

Within slave-boson formalism, one finds

Ŝ = 1

2

∑
σσ ′σ1σ2

z†σσ1
f †σ1

τσσ ′zσ2σ ′ fσ2

=
∑
σσ ′σ1

p†σσ1
τσσ ′ pσ1σ ′

= 1

4

3∑
μμ′=0

p†μ′ pμ

∑
σσ ′σ1

τ
μ

σ1σ ′τσσ ′τ
μ′
σσ1

= 1

2
(p†0p̌ + p̌†p0 − ip̌† × p̌) (A29b)

with

p̌ = [p1,−p2, p3]T . (A29c)

It is easy to verify that this representation fulfills the spin
algebra [Ŝi, Ŝ j] = iεi jk Ŝk . On operator level, a solely pseud-
ofermionic representation of the spin operator does not exist.

b. Density operator

The fermionic density operator defined by

n̂ =
∑

σ

c†σ cσ . (A30a)

By applying Eq. (A16) and the constraints, the density oper-
ator can be expressed in a solely pseudofermionic or solely
bosonic form within the slave-boson representation

n̂ =
∑

σ

f †σ fσ , (A30b)

n̂ = 1 + d†d − e†e, (A30c)

which are equivalent on the constrained subspace.

c. Hubbard interaction operator

The Hubbard interaction is defined by

Û = Uc†↑c↑c†↓c↓. (A31a)

Its slave-boson equivalent in pseudofermionic and bosonic
form can be derived by squaring the different representations
of the density operator given by Eq. (A30) and comparing
terms while exploiting the usual (anti-)commutation relations

Û = U f †σ fσ f †−σ f−σ = Ud†d. (A31b)

As expected, it becomes quadratic in the bosonic form, which
is why a consecutive mean-field treatment is well adapted for
the strong-coupling regime.

APPENDIX B: PATH-INTEGRAL FORMULATION OF SLAVE-BOSON FORMALISM

Our goal is to derive the partition function which will be used to calculate thermodynamic quantities on mean-field level and
correlation functions by means of fluctuations around the mean-field solution. It is given by the path integral over coherent states
with imaginary time propagation [45]

Z =
∫

D[ f ∗, f ]D[ψ∗, ψ]e−S[( f ∗, f ),(ψ∗,ψ )], (B1a)

where

S[( f ∗, f ), (ψ∗, ψ )] =
∫ 1

T

0
L[( f ∗

τ , fτ ), (ψ∗
τ , ψτ )] dτ (B1b)

is the action and L the Lagrangian. In the path integral, operators are replaced by their coherent state eigenvalues, which are
complex (Grassmann) numbers for the slave-bosons (pseudofermions) represented by ψτ ( fτ ) at imaginary time τ . Moreover, T
is the temperature and D[ψ∗, ψ] (D[ f ∗, f ]) represents the integration over all field configurations.

The constraints can be enforced by means of the projectors defined in Eq. (A25). Since the they commute with the Hamiltonian
on operator level, the physical subspace is recovered with the following effective Lagrangian, featuring time-independent
Lagrange multipliers

Zeff = lim
N→∞

1

(2πT )2

1

(2πNT )3

∫ πT

−πT
dα

∫ πT

−πT
dβ0

∫∫∫ πNT

−πNT
d3β

∫
D[ f ∗, f ]D[ψ∗, ψ]e−Seff[( f ∗, f ),(ψ∗,ψ ),α,β0,β], (B2a)
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with

Leff = L + i(αA + β0B0 + βB). (B2b)

1. Effective Lagrangian in momentum space

The Hamiltonian of the one-band Hubbard model is given by

H =
∑

i j

∑
σσ ′

c†i,σ ti j c j,σ − μ0

∑
i

n̂i + U
∑

i

c†i,↑ci,↑c†i,↓ci,↓, (B3a)

=
∑

k

c†kHkck − μ0

∑
i

n̂i + U
∑

i

c†i,↑ci,↑c†i,↓ci,↓. (B3b)

The tensor ti j may contain arbitrary hopping amplitudes. Moreover, we define the density operator n̂i = ∑
σ c†i,σ ci,σ , μ0 is the

chemical potential and U is the on-site Hubbard interaction strength. By Fourier transformation, the Hamiltonian can be rewritten
as in Eq. (B3b) where ck ≡ (c1,k,↑, c1,k,↓)T is to be understood as a two-dimensional spinor and Hk is the bare 2 × 2 hopping
matrix.

The Hamiltonian can be expressed in the slave-boson description by using Eq. (A16) and the representation of the operators
given by Eq. (A30b) and Eq. (A31b). The effective Lagrangian within path-integral formulation after Fourier transformation of
z†i , f ∗

i , z j , and f j is found to be

Leff[ f , ψ] = LF [ f , ψ] + LB[ψ] =
∑
k1,k2

f†k1
(∂τ + Hk1,k2

[ψ])fk2

+
∑

i

[d∗
i (∂τ + U )di + e∗

i ∂τ ei + p∗
i ∂τ pi + iαi(e

∗
i ei + p∗

0,i p0,i + p∗
i · pi + d∗

i di − 1)

− iβ0,i(p∗
0,i p0,i + p∗

i · pi + 2d∗
i di ) − iβi · (p∗

0,ipi + p∗
i p0,i − ip∗

i × pi )]. (B4)

Above, f†k ≡ ( f ∗
k,↑, f ∗

k,↓) represents the collection of pseudofermionic fields and Hk1,k2
[ψ] is defined as a slave-boson-dependent

hopping matrix,

Hk1,k2
[ψ] := −μ012δk1,k2

+ i

√
1

N
(β )T

k1−k2
+ 1

N

∑
k

(z†)T
k−k1

Hk(z )T
k−k2

, (B5)

where Hk is the bare hopping matrix of the Hamiltonian excluding the chemical potential μ0 as defined in Eq. (B3). Further, N
denotes the number of lattice sites and zT indicates the transposed matrix. Moreover, we define

β :=
3∑

μ=0

βμτμ (B6)

to enforce the pseudofermionic part of the constraints. Equation (B5) shows that every matrix element which is multiplied with
a pseudofermion is renormalized with a respective matrix element of z compared to the bare hopping matrix H; however, the
chemical potential μ0 is not renormalized. Moreover, the slave-boson-dependent hopping matrix is complemented with Lagrange
multiplier terms to enforce the fermionic parts of the constraints.

2. Gauge fixing

In this section, it will be shown that by the SU(2) ⊗ U(1) ⊗ U(1) gauge transformation introduced in Ref. [18], the phases
of the e, p0, and p fields can be removed. By this gauge fixing, the static Lagrange multipliers are promoted to time-dependent
fields.

The effective Lagrangian for the one-band Hubbard model is given by

Lint =
∑

i j

∑
σσ ′σ1σ2

(z†i )σσ1 f ∗
i,σ1

ti j f j,σ2
z j,σ2σ

− μ0

∑
i

∑
σ

f ∗
i,σ fi,σ (B7a)

+ i
∑

i

[
αi

(
e∗

i ei + 2
∑
σ1σ

(p†i )σ1σ pi,σσ1
+ d∗

i di − 1

)

−i
3∑

μ=0

βμ,i

∑
σσ ′

(
2
∑
σ1

(p†i )σ1σ ′τ
μ

σ ′σ pi,σσ1
+ d∗τμ

σ ′σ δσσ ′d − f ∗
σ τ

μ

σ ′σ fσ ′

)⎤⎦ (B7b)

+
∑

i

[
d∗

i (∂τ + U )di + e∗
i ∂τ ei + 2

∑
σ1σ

(p†i )σ1σ ∂τ pi,σσ1
+
∑

σ

f ∗
σ ∂τ fσ

]
. (B7c)
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Now we express all fields in the radial description by means of their absolute value and phase and apply the following
transformations independently on each lattice site:

e = eiθ |e|, (B8a)

e∗ = e−iθ |e|, (B8b)

d = ei�|d|, (B8c)

d∗ = e−i�|d|, (B8d)

pσσ ′ :=
∑
σ1

eiχ0Uσσ1 qσ1σ ′, (B8e)

(p†)σσ ′ :=
∑
σ1

e−iχ0 qσσ1 (U †)σ1σ ′ , (B8f)

Uσσ ′ := e
i

3∑
α=1

χατα
σσ ′

. (B8g)

We define qσσ ′ as the phaseless p matrix

qσσ ′ := 1

2

3∑
μ=0

qμτ
μ

σσ ′ , qμ ∈ R (B9)

and further drop the site index i for readability. With these definitions and Eq. (A18b) which also holds for the qσσ ′ matrix, we
further find

p̃σσ ′ = eiχ0 q̃σσ ′′ (U †)σ ′′σ ′, (B10a)

( p̃†)σσ ′ = e−iχ0Uσσ ′′ q̃σ ′′σ ′, (B10b)

which can be shown, using the identity

Uσσ ′ = δσσ ′ cos χ + i
3∑

μ=1

τ
μ

σσ ′nμ sin χwith χ :=
√

χ2
1 + χ2

2 + χ2
3 nμ := χμ

χ
. (B11)

Now we apply the following SU(2) ⊗ U(1) gauge transformation for the pseudofermions and U(1) gauge transformation for
the d and p bosons,

fσ → e−iχ0 fσ ′ (U †)σ ′σ , (B12a)

f ∗
σ → eiχ0Uσσ ′ f ∗

σ ′, (B12b)

d → ei(θ+2χ0 )d, (B12c)

pσσ ′ → eiθ pσσ ′, (B12d)

p̃σσ ′ → eiθ p̃σσ ′ . (B12e)

Since the Jacobi determinant of this unitary transformation is equal to 1, the fields in the effective Lagrangian can simply be
replaced by the gauge fields, leaving the partition function invariant.

In the following, we investigate the transformation properties of the Lagrangian term by term, beginning with Eq. (B7a). For
the hopping term, all phases, except for the phase of the d field are gauged away

(z†)σσ ′ f ∗
σ ′ → qσσ ′ |e| f ∗

σ ′ + d∗q̃σσ ′ f ∗
σ ′ , (B13a)

fσ ′zσ ′σ → fσ ′ |e|qσ ′σ + fσ ′ q̃σ ′σ d, (B13b)

and the pseudofermionic on-site terms remain invariant.
Next, we examine the constraint terms given by Eq. (B7b). For the first constraint, all fields except for the d field simply lose

their phase information

iα

(
e∗e + 2

∑
σ1σ

p†σ1σ
pσσ1

+ d∗d − 1

)
→ iα

(
|e2| + 2

∑
σ1σ

qσ1σ
qσσ1

+ d∗d − 1

)
. (B14)

The second constraint [Eq. (A22b)] in the new variables reads∑
σ2σ3

eiχ0Uσσ2
f ∗
σ2

e−iχ0 fσ3
(U †)σ3σ ′ = 2

∑
σ1σ2σ3

qσ1σ2 (U †)σ2σ ′Uσσ3
qσ3σ1

+ δσσ ′ |d|2. (B15)
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It needs to be expanded in the unitary rotated basis of Pauli matrices in order to obtain four scalar equations which simplify
the Lagrangian in the new gauge. Applying

∑
σσ ′ Uσ ′σ4

τμ
σ4σ5

(U )†σ5σ
with μ ∈ {0, 1, 2, 3} on both sides of Eq. (B15) yields the

transformation properties of the second constraint. After tracing out the Pauli matrices associated with the slave bosons in the
new gauge, one finds

− i
3∑

μ=0

βμ

∑
σσ ′

[
2
∑
σ1

(p†)σ1σ ′τ
μ

σ ′σ pσσ1
+ d∗τμ

σ ′σ δσσ ′d − f ∗
σ τ

μ

σ ′σ fσ ′

]

→
∑
σσ ′

f ∗
σ

⎛
⎝iβ0 +

3∑
μ=1

iβμτ
μ

σ ′σ

⎞
⎠ fσ ′ − iβ0

⎛
⎝ 3∑

μ=0

q2
μ + 2d∗d

⎞
⎠−

3∑
μ=1

iβμ2qμq0. (B16)

The p fields again lose their phase information while the rest remains invariant. The cross product p† × p which occurred in the
vector constraint given by Eq. (A22d) vanishes as the phases are removed.

Now we investigate the time-derivative terms of the Lagrangian in Eq. (B7c). Note that total derivatives like |e|∂τ |e| vanish
because of the periodic boundary conditions of the path integral,

d∗(∂τ + U )d + e∗∂τ e + 2
∑
σ1σ

(p†)i,σ1σ ∂τ pσσ1
+
∑

σ

f ∗
σ ∂τ fσ

→ i(θ̇ + 2χ̇0 + U )d∗d + iθ̇ |e2| +
∑

σσ1σ2σ3

[−2i(χ̇ + θ̇ )qσ1σ
qσσ1

+ U̇σ3σ1
(U †)σ1σ2 qσ2σ

qσσ3

]

+
∑
σσ1σ2

[
f ∗
σ ∂τ fσ − iχ̇0 f ∗

σ fσ + f ∗
σ1

(U̇ †)σ2σUσσ1
fσ2

]
. (B17)

The time derivative of the unitary matrix can be evaluated with Eq. (B11) and yields

∑
σσ1σ2σ3

U̇σ3σ1
(U †)σ1σ2 qσ2σ

qσσ3
= iq0

3∑
μ=1

qμ

⎛
⎝nμχ̇ + ṅμ sin χ cos χ −

∑
i j

εμi j ṅin j sin2 χ

⎞
⎠ (B18a)

∑
σ

(U̇ †)σ2σUσσ1
= −i

3∑
μ=1

⎛
⎝nμχ̇ + ṅμ sin χ cos χ −

∑
i j

εμi j ṅin j sin2 χ

⎞
⎠τμ

σ2σ1
. (B18b)

Using all previous results, terms containing the phase factors χ0, χ, and θ can be absorbed in the Lagrange multipliers by

(iα + iθ̇ ) → iα, (B19a)

(iβ0 + iχ̇0) → iβ0, (B19b)⎡
⎣iβμ − i

⎛
⎝nμχ̇ + ṅμ sin χ cos χ −

∑
i j

εμi j ṅin j sin2 χ

⎞
⎠
⎤
⎦ → iβμ. (B19c)

Equation (B19c) does not match its counterpart in Ref. [18]; however, this does not impact the final form of the Lagrangian. The
Lagrange multipliers are now time dependent and are considered as Lagrange multiplier fields. The resulting Lagrangian in the
new gauge is much simplified, since all bosonic fields except for the d field are real valued

L →
∑

i j

∑
σσ ′σ1σ2

(z†i )σσ1 f ∗
i,σ1

ti j f j,σ2
z j,σ2σ ′ +

∑
i

∑
σ,σ ′

f ∗
i,σ

⎡
⎣δσσ ′ (−μ0 + iβ0,i ) +

3∑
μ=1

iβμ,iτ
μ

σ ′σ

⎤
⎦ fi,σ ′

+
∑

i

⎡
⎣d∗

i (∂τ + U )di + iαi

⎛
⎝∣∣e2

i

∣∣+ 3∑
q=0

q2
μ,i + d∗

i di − 1

⎞
⎠− iβ0,i

⎛
⎝ 3∑

μ=0

q2
μ,i + 2d∗

i di

⎞
⎠−

3∑
μ=0

iβμ,i2qμ,iq0,i

⎤
⎦. (B20)

In the following notation, we will go back to the p-field notation rather than q and it is implied that these fields are phaseless but
identically to their original definition in terms of physical interpretation since only redundant information has been removed
by the gauge transformation. After Fourier transformation of the hopping and on-site terms in Eq. (B20), including the
noninteracting part of the Lagrangian one finds

Leff[ f , ψ] = LF [ f , ψ] + LB[ψ] →
∑
k1,k2

f†k1
(∂τ + Hk1,k2

[ψ])fk2

+
∑

i

[
d∗

i (∂τ + U )di + iαi
(∣∣e2

i

∣∣+ p2
0,i + p2

i + d∗
i di − 1

)− iβ0,i
(
p2

0,i + p2
i + 2d∗

i di

)− iβi · 2p0,ipi

]
. (B21)
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Note that when calculating the partition function in this gauge, one needs to replace the integration measure dψ∗dψ by the
radial expression dψ2 for the real valued fields. It turns out that the removal of the phase variables is necessary in order to have
a well-defined path integral which will be discussed for the atomic limit later. Whenever a physical field, e.g., a fermion field, is
represented by a product of two (complex valued) slave-boson fields, an additional degree of freedom is necessarily introduced,
namely the relative phase of the two fields. The final result should not depend on the choice of this phase; consequently, these
spurious phases have to be removed by fixing the gauge to avoid double counting in the path integral.

3. Spin interaction

In the new gauge, the spin-density vector takes a much simpler form since p0 and p are fields. Applying Eq. (A29b), one finds

Ŝ → p̌p0 (B22a)

with

p̌ = (p1,−p2, p3)T . (B22b)

Therefore, it is very convenient to add spin interaction terms to the Lagrangian. Note that since the cross product has been gauged
away within the path-integral formalism, the spin-density vector represented by pseudofermionic fields is now equivalent to the
spin-density vector in original fermions

Ŝ → 1
2 c∗

στσσ ′cσ ′ = 1
2 f ∗

σ τσσ ′ fσ ′ (B23)

on the constrained subspace, where Eq. (A22d) holds.

a. External magnetic field

An external magnetic field, coupling to the spin-density vector be can expressed as purely bosonic term

B̂ := B
∑

i

Ŝi → B
∑

i

p̌i p0,i (B24)

or alternatively represented with pseudofermions by means of Eq. (B23).

b. Spin-spin interaction

A spin-spin interaction

Ĵ := J
∑
〈i j〉

ŜiŜ j → J
∑
〈i j〉

∑
μ

p̌μ,i p0,i p̌μ, j p0, j (B25)

also adapts a convenient bosonic form within slave-boson formalism.

4. Atomic limit

In the following, we will calculate the exact partition function for the slave-boson Lagrangian in the atomic limit within
path-integral formulation. Thermodynamics dictates the result to be

Z = 1 + e−U/T +2μ0/T + 2eμ0/T (B26)

since we consider only one interacting orbital at one site in the atomic limit. We apply the Lagrangian after the gauge
transformation given by Eq. (B20) and rewrite it in terms of matrices

L = iα|e2| + d∗(U + ∂τ + iα − 2iβ0)d − iα + pTB p + f†Ff (B27a)

with

p :=

⎡
⎢⎣

p0

p1

p2

p3

⎤
⎥⎦, B :=

⎡
⎢⎣

i(α − β0) −iβ1 −iβ2 −iβ3

−iβ1 i(α − β0) 0 0
−iβ2 0 i(α − β0) 0
−iβ3 0 0 i(α − β0)

⎤
⎥⎦,

f :=
[

f↑
f↓

]
, F :=

[
∂τ − μ0 + i(β0 + β3) iβ1 + β2

iβ1 − β2 ∂τ − μ0 + i(β0 − β3)

]
.

(B27b)

The effective Lagrangian in the atomic limit is quadratic; consequently, the fields can be integrated out analytically. With the
knowledge of generalized Gaussian (Grassmann) integrals, one finds the partition function

Z0 = (1 − ζe−ε/T )−ζ

{
bosonic fields, ζ = 1
fermionic fields, ζ = −1 (B28a)
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for a quadratic Lagrangian of the form

L0 = a∗∂τ a + ε a∗a. (B28b)

Equation (B28a) also holds for real fields, where the time derivative vanishes because of the periodic boundary conditions of
the path integral. Even though the Lagrange multipliers are formally time dependent in the fixed gauge, it is sufficient to enforce
the constraints only at one time slice, since physical states cannot propagate out of the physical subspace, i.e., they can be
chosen to be time independent. To integrate out the fields, one needs to diagonalize the matrices B and F , whose eigenvalues are
given by

B1 = iα − iβ0

B2 = iα − iβ0

B3 = iα − iβ0 + iβ

B4 = iα − iβ0 − iβ

F1 = ∂τ + iβ0 − μ0 + iβ

F2 = ∂τ + iβ0 − μ0 − iβ,

(B29)

where β :=
√

β2
1 + β2

2 + β2
3 . Integrating out the fermionic Grassmann fields f and the bosonic fields e, d, p with Eq. (B28a),

one finds

Z = lim
N→∞

1

(2πT )2

1

(2πNT )3

∫ πT

−πT
dα

∫ πT

−πT
dβ0

∫∫∫ πNT

−πNT
d3β eiα/T (1 − e−iα/T )−1[1 − e−(iα−2iβ0+U )/T ]−1

× [1 − e−(iα−iβ0 )/T ]−2[1 − e−(iα−iβ0+iβ )/T ]−1[1 − e−(iα−iβ0−iβ )/T ]−1[1 + e−(iβ0+iβ−μ0 )/T ][1 + e−(iβ0−iβ−μ0 )/T ] (B30)

and is left with the integrals over the Lagrange multipliers. The α integral can be mapped on a complex contour integral by
making use of the fact that the projectors defined in Eq. (A24) are invariant under the addition of an imaginary part to the
Lagrange multiplier α → α + iα̃. The substitution

ξ := e−iα/T
∫

dα → T
∮

i

ξ
dξ (B31)

leads to a contour integral around the origin with radius eα̃ . Since α̃ can be chosen arbitrary small, the integral is determined by
the residuum at the origin ξ = 0 which can be found by expanding the integrand as a geometric series. The β0 integral can be
carried out in the same way, which finally yields

Z = 1 + e−(U−2μ0 )/T + 2eμ0/T + eμ0/T lim
N→∞

1

(2πN )3

∫∫∫ πN

−πN
d3β̃[2 cos(2β̃ ) + 4 cos(β̃ )], (B32)

where β̃ = β/T . The remaining integral is equal to zero in the limit, since it is of the order O(β̃2), while being suppressed by
1/N3 by the normalization. Consequently, the path-integral description yields the expected result

Z = 1 + e−(U−2μ0 )/T + 2eμ0/T . (B33)

Note that if the atomic limit is calculated before the gauge transformation discussed in Appendix B 2, one finds the false result
1 + e−(U−2μ0 )/T + 4eμ0/T for the partition function. This is because of over counting introduced by the cross product p∗ × p due
to spurious fields if the gauge is not fixed.

APPENDIX C: PARAMAGNETIC MEAN FIELD

We now investigate the paramagnetic mean-field solution
of the Lagrangian given by Eq. (B21). As approximation, the
spacial and time-dependent slave-boson fields are replaced by
static, uniform expectation values ψi → 〈ψ〉 with ∂τ 〈ψ〉 :=
0. Since the Hamiltonian is hermitian, the eigenvalues of
the pseudofermionic part of the Lagrangian only depend on
〈ψ〉〈ψ∗〉 which is also true for the bosonic part. Consequently,
〈ψ〉 and 〈ψ∗〉 have the same saddle-point equations which
means that 〈ψ〉 is real, as we would expect.

Since the Lagrange multipliers cannot be integrated out an-
alytically, they will also be included as mean fields. As argued
earlier, the Lagrange multipliers can be chosen complex since
the projectors are invariant under α → α + iα̃. In order to
find a real valued Free energy, we assign them to be purely
imaginary and uniform, such that the constraints are enforced
exactly at saddle point of the mean-field equations.

The paramagnetic mean field is further defined with a
vanishing expectation value of the spin-density vector given
by Eq. (B22a), which is found by 〈p〉 := 0. Consequently, it
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is also 〈β〉 = 0, because otherwise the bands would not be
spin degenerate and the pseudofermionic representation of the
spin-density vector would not yield a vanishing expectation
value.

All paramagnetic mean-field assumptions are summarized
by

pi → 〈p〉 := 0,

βi → 〈β〉 := 0,

di → 〈d〉 ∈ R+
0 , ∂τ 〈d〉 := 0,

p0,i → 〈p0〉 ∈ R+
0 ,

ei → 〈e〉 ∈ R+
0 ,

iαi → 〈α〉 ∈ R,

iβ0,i → 〈β0〉 ∈ R.

(C1)

In the following, the brackets 〈〉 will be dropped for readabil-
ity.

1. Noninteracting limit

Because of the constraints, there is a considerable freedom
in choice of the slave-boson representation, leaving the exact
solution unchanged, but having an immense impact on the
mean-field solution. We choose the following renormalization
[46]:

z → (e†LMR p + p̃†LMRd ), (C2a)

with

L = [(1 − d†d )τ 0 − 2p†p]−1/2, (C2b)

M =
(

1 + d†d + e†e +
∑

μ

p†μ pμ

)1/2

, (C2c)

R = [(1 − e†e)τ 0 − 2 p̃† p̃]−1/2. (C2d)

Equation (C2) can be expanded in a power series and
it appears that all additional terms compared to the bare
definition of the slave-boson representation in Eq. (A17)
exhibit two annihilators to the very right of the equation. Con-
sequently, these terms annihilate every state on the physical
subspace enforced by the constraints and the exact solution
remains unchanged.

For the paramagnetic mean field, we find

z0 = p0(e + d )√
2
(
1 − d2 − p2

0

/
2
)(

1 − e2 − p2
0

/
2
)τ 0 := z0τ

0.

(C3)

One can infer from Eq. (B5) that hopping terms between
different sites of the interacting orbital are renormalized by
t → z2

0t . In the limit of no interaction, there should not be a
renormalization effect on the band structure; consequently, we
demand z0 = 1 for U = 0, which is true for any occupation
e, p0, d because of the following statistical argument.

Without interaction, orbitals are occupied randomly by a
probability 0 � x � 1. Consequently the probability that a
site is doubly occupied is given by d2 = x2. The probability
that a site is singly occupied is p2

0 = 2x(1 − x), taking spin

degeneracy into account. It follows e2 = 1 − p2
0 − d2 = (1 −

x)2. Inserting these results into Eq. (C3) yields z0 = 1 as
demanded.

2. Free energy

The free energy is given by

F = −T ln Z + μ0N , (C4)

where N is the total number of electrons in the system.
The Lagrangian in the paramagnetic mean field given by

L0 =
∑

k

f†k [∂τ + Hk[ψ]]fk

+ N
[
Ud2 + α

(
e2 + p2

0 + d2 − 1
)− β0

(
p2

0 + 2d2
)]

,

(C5a)

with the mean-field renormalized hopping matrix

Hk[ψ] := z0Hkz0 + (β0 − μ0)12. (C5b)

The pseudofermions in the mean-field Lagrangian can be
integrated out with Eq. (B28a). The slave-boson-dependent
spin-degenerate eigenvalues of the matrix Hk[ψ] are labeled
by εk in the following. The mean-field free energy per lattice
site is then, in accordance with Ref. [18], found to be

f0 := F0

N
= −T

2

N

∑
k

ln(1 + e−εk/T ) + Ud2 + α
(
e2 + p2

0

+ d2 − 1
)− β0

(
p2

0 + 2d2
)+ μ0n, (C6)

where n = N /N is the total electron filling and N is the
number of lattice sites. Note that this paramagnetic mean-field
free energy is formally equivalent to its Gutzwiller counterpart
[47]. Spin interactions like Eq. (B24) or Eq. (B25) do not
change the paramagnetic mean field but do impact the fluc-
tuations around the saddle point.

3. Saddle-point equations

In order to find the mean-field solution for the ground
state, we need to minimize the free energy with respect to
the fields e, p0, d , while enforcing the constraints, which can
be recovered by taking the derivative of the free energy by
the respective Lagrange parameter. The resulting saddle-point
equations are given by

∂ f0

∂e
= 2

N

∑
k

nF (εk )
∂εk

∂e
+ 2αe = 0, (C7a)

∂ f0

∂ p0
= 2

N

∑
k

nF (εk )
∂εk

∂ p0
+ 2p0(α − β0) = 0, (C7b)

∂ f0

∂d
= 2

N

∑
k

nF (εk )
∂εk

∂d
+ 2d (U + α − 2β0) = 0, (C7c)

∂ f0

∂α
= e2 + p2

0 + d2 − 1 = 0, (C7d)

∂ f0

∂β0
= 2

N

∑
k

nF (εk )
∂εk

∂β0
− 2d2 − p2

0 = 0, (C7e)
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∂ f0

∂μ0
= − 2

N

∑
k

nF (εk ) + n = 0, (C7f)

where nF (εk ) = [1 + exp(εk/T )]−1 is the Fermi-Dirac dis-
tribution. The last equation has to be enforced additionally
to ensure the correct electron filling, instead of fixing the
chemical potential.

4. Reduction of mean-field equations

These six saddle-point equations are not independent and
can be reduced to a single equation at T = 0, as shown in
prior works [18,47]. For finite temperature, the saddle point
is determined by only two equations. To do so, we substitute
β0 = −μeff + μ0 and find

f0 = −T
2

N

∑
k

ln(1 + e−εk/T ) + Ud2 + μeff
(
p2

0 + 2d2)
+α

(
e2 + p2

0 + d2 − 1
)+ μ0

(
n − p2

0 − 2d2
)
, (C8)

which means effectively that we fix the filling by a purely
bosonic constraint with Lagrange parameter μ0, since the
eigenvalues εk now only depend on μeff rather than β0

and μ0.
We then exploit the two constraints, which only couple to

bosonic degrees of freedom, i.e., the constraint which ensures,
that there is only one boson per site associated with α and the
constraint which fixes the total number of particles associated
with μ0 by setting

1 = e2 + p2
0 + d2, (C9a)

n = p2
0 + 2d2, (C9b)

μeff = μ0 − β0. (C9c)

This way, the redundant degrees of freedom α, μ0 and two
arbitrary slave-boson fields (we choose p0, and e without loss
of generality) are removed from the mean-field equations. The
mean-field solution is given by the saddle point of the free
energy

f0|(C9) = −T
2

N

∑
k

ln(1 + e−εk/T ) + Ud2 + nμeff,

(C10a)

z2
0|(C9) = 2(

√
d2 − n + 1 + d )2(2d2 − n)

n(n − 2)
. (C10b)

We are left to determine

∂ f0

∂d

∣∣∣∣
(C9)

= ∂ f0

∂μeff

∣∣∣∣
(C9)

= 0, (C11)

which we do by minimizing f0 with respect to d and maxi-
mizing it with respect to μeff between each minimization step.
To do so, we used gsl_multimin.h in our numerical evaluation,
which is available in the GNU Scientific Library.

On mean-field level, μeff employs the role of the chemical
potential on the constrained subspace. The original chemical
potential is recovered by evaluating

μ0 = 1

2p0

2

N

∑
k

nF (εk )
∂εk

∂ p0

∣∣∣∣
ψ,(C9a)

+ μeff, (C12)

where ψ represents the slave bosons at the saddle-point solu-
tion. Note that the previous equation is to be understood such
that only Eq. (C9a) is applied to reduce the degrees of freedom
to eliminate the e field.

There is an ambiguity whether to define the electronic
compressibility via μ0 or μeff. We choose the definition

n2κT = ∂n/∂μeff, (C13)

because in this description, redundant fields have been re-
moved, and not only f0 but also δ f0 satisfies the constraints
exactly at the saddle-point solution. However, μ0 plays an
important role for Gaussian fluctuations around the saddle
point, which infinitesimally violate the constraints, i.e., δ f0

must not satisfy the constraints in that case.
Analogously, one can formally calculate

α = − 1

2e

2

N

∑
k

nF (εk )
∂εk

∂e

∣∣∣∣
ψ

, (C14)

albeit α has no physical relevance.

5. Solution at half filling

For a half-filled system the set of mean-field equations read

0 = 2

N

∑
k

nF (εk ) − 1, (C15a)

0 = (16d − 64d3)
2

N

∑
k

nF (εk )
∂εk

∂z2
0

+ 2Ud. (C15b)

At zero temperature on a square lattice with only nearest-
neighbor hopping, these equations can be solved analytically
by following Ref. [9]

d =
{

0 for U > 128t
π2 = Uc

1
16

√
64 − π2U

2t else
, (C16)

where t is the hopping amplitude between the neighboring
sites and U > 0. At Uc, there is a phase transition of the
metallic state to an insulating Mott sate, which features a jump
in the chemical potential in the vicinity of half filling. The
corresponding mean-field solutions are discussed in detail in
Ref. [18] and yield

lim
δ→0

μ0(δ) =
⎧⎨
⎩

0 for n = 1 − δ

U/2 for n = 1
U for n = 1 + δ

, (C17)

for large U .

APPENDIX D: FLUCTUATIONS AROUND THE SADDLE POINT

Now, we consider Gaussian fluctuations around the saddle-point solution, allowing for the calculation of correlation functions
such as the spin or charge susceptibility and a stability analysis. Similar approaches were featured in prior works [36,37,43];
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however, we present a derivation which can easily be generalized to models with one interacting and an arbitrary number of
noninteracting orbitals [38,44]. Moreover, the dimension of the resulting fluctuation matrix Mμν is reduced by two in comparison
to the existing literature, which is established by exploiting the constraints.

Since the first-order variation of the action vanishes at the saddle point, the fluctuations are determined by the variation of the
action to the second order. To calculate it, we apply the following Fourier transformation in space and time:

ψμ(xi, τ ) =
√

T

N

∑
q

∑
ωn

eiqxi e−iωnτψμ(q, iωn), (D1a)

ψ∗
μ(xi, τ ) =

√
T

N

∑
q

∑
ωn

e−iqxi eiωnτ [ψμ(q, iωn)]∗, (D1b)

ωn = 2πnT n ∈ Z, (D1c)

where ωn is a bosonic Matsubara frequency and μ, ν label the fields which are subject to fluctuations. In Appendix B 2 it has
been shown that all slave-boson fields except for the d field are real valued. We decompose it into its real and imaginary part
d = d1 + id2, where d1 and d2 are independent fields. Using Eq. (D1), we see that

[ψμ(q, iωn)]∗ = ψμ(−q,−iωn) (D2)

holds for the fields in momentum space. The second variation of the action is given by

δS (2) =
∑

q

∑
μν

δψμ(−q,−iωn)Mμν (q)δψν (q, iωn), (D3a)

with
∑

q := ∑
q

∑
n and q := (q, iωn)T , where

Mμν (q, iωn) := 1

2

δ2S (ψ )

δψμ(−q,−iωn)δψν (q, iωn)
(D3b)

defines the fluctuation matrix which satisfies Mμν (q, iωn) = Mνμ(−q,−iωn).
Since the fluctuations are calculated by means of functional derivatives, they violate the constraints which are exactly enforced

only at the saddle point. Such a violation is actually necessary in order to resolve correlations and evaluate whether the system
will relax back to the paramagnetic mean-field solution or whether it features an instability. Since the Lagrange multipliers are
part of the effective field theory, one needs to consider the fluctuation of β0 which couples to the charge density (i.e., necessary
to calculate charge fluctuations) and β which couples to the spin-density vector (i.e., necessary to calculate spin fluctuations) as
well. However, α does not couple to any physical degree of freedom and its fluctuations would yield bosonic occupations per
lattice site unequal to 1, which can be associated with a violation of the Pauli principle. This needs to be avoided by replacing
an arbitrary slave-boson field (we choose p0 without loss of generality) via Eq. (A22a),

p0 =
√

1 − p2 − |d|2 − e2, (D4)

i.e., fluctuating on the subspace where the α constraint is exactly fulfilled. Thereby, we reduce the number of independent fields
by two and guarantee that the derivatives are evaluated in the physical subspace. Moreover, since the Lagrangian only depends
on β0 and β, but not on β∗

0 or β∗, it is sufficient to fluctuate the real part of the Lagrange multiplier fields.
We choose the following basis of real fields for the fluctuations: ψ1 = e, ψ2 = d1, ψ3 = d2, ψ4 = β0, ψ5,6,7 = p1,2,3, and

ψ8,9,10 = β1,2,3. Notice that we actually fluctuate with respect to β0 = μ0 − μeff rather than μeff because fluctuations in β0 are
induced by the interaction while fluctuations in μ0 are due to the external particle bath and are not featured in the expansion of
Lagrangian.

We numerically confirmed that it does not matter which slave-boson field is eliminated via the α-constraint. The results
for the charge and spin susceptibility remain invariant, while single matrix elements of Mμν are of course subject to change,
depending on the substitution. Moreover, as elaborated in Appendix III, we find consistent magnetic phase boundaries comparing
the divergence of the paramagnetic spin susceptibility and the results of a spiral magnetic mean field defined in Appendix F.

Despite fluctuations in α erroneously have been considered in the slave-boson literature so far, our results are mostly in good
agreement with previous slave-boson studies, as the term M = (1 + d†d + e†e +∑

μ p†μ pμ)
1/2

in Eq. (C2), which causes the

largest deviation, has been correctly set to
√

2 in earlier works.

1. Integration of the pseudofermions

We consider the partition function

Z =
∫

D[ f ∗, f ]D[ψ∗, ψ]e−Seff[( f ∗, f ),(ψ∗,ψ )] (D5)
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with the action according to the Lagrangian given in Eq. (B21). Note that the Lagrange multipliers are included in the integration
measure, since they and act as effective bosonic fields ψ in the field theory. The fermionic fields appear quadratic, and hence
they can be integrated out analytically with the generalized Gaussian integral over Grassmann numbers,∫

D[ f , f ∗] exp

(
−
∑
μν

f ∗
μAμν fν

)
= det A. (D6)

The integration is performed in momentum space where the matrix A is diagonal. By applying the identity

det A = exp(Tr lnA), (D7a)

where the trace is to be understood as a sum over all momenta, Matsubara frequencies, and spins

Tr(A) :=
∑

q

tr(Aq), (D7b)

the partition function in Eq. (D5) can be rewritten as a purely bosonic functional integral by means of an an effective action SF

which yields from the integration of the fermionic degrees of freedom. Accordingly, the partition function is given by

Z =
∫

D[ψ∗, ψ]e−SF [ψ]e−SB[ψ], (D8a)

with

SF = − Tr ln
(−i�n + H [ψ]k1,k2

)
(D8b)

and

SB =
∫ 1/T

0
dτ

∑
i

[
d∗

i (∂τ + U )di − β0,i
(
1 + |di|2 − e2

i

)− βi · 2pi

√
1 − e2

i − p2
i − |di|2

]
. (D8c)

The slave-boson-dependent hopping matrix Hk1,k2
[ψ] is the Fourier transformation of Hk1,k2

[ψ], defined in Eq. (B5), with
respect to time. It is labeled by the the multi-index k = (k, i�n) where �n = 2πT (n + 1

2 ), with n ∈ Z, is a fermionic Matsubara
frequency.

2. Bosonic part of the fluctuation matrix

The bosonic part of the fluctuation matrix, corresponding to SB, is calculated by the Fourier transformation of Eq. (D8c)
and subsequently taking the derivative with respect to the corresponding bosonic field as exemplary done for the MB

1,1(q, iωn)
element:

MB
1,1(q, iωn) = 1

2

√
T

N

∑
q1,q2

∂2eq1 eq2β0,−q1−q2

∂e−q∂eq
=
√

T

N

∑
q1,q2

δq,q1δq,−q2β0,−q1−q2 =
√

T

N
β0,0 = β0, (D9)

where β0 refers to the uniform mean-field solution in real space, whereas β0,0 represents the Fourier transform of β0 at
momentum q = 0. The results coincide with directly differentiating the mean-field Lagrangian by the respective fields in real
space, except for one additional contribution resulting from the dynamics of the d field. In Appendix B 2, it has been shown that
the d field remains complex which yields the frequency-dependent contribution

MB
2,3(q, iωn) = ωn, (D10a)

MB
3,2(q, iωn) = −ωn, (D10b)

following from its time derivative in the Lagrangian.
For completeness, we consider additional spin interaction terms, defined in Appendix B 3 with the according Lagrangian,

LS ≡
∑
〈i j〉

∑
α

Jα p̌α,i

√
1 − e2

i − p2
i − |di|2 p̌α, j

√
1 − e2

j − p2
j − |d j |2 +

∑
i

Bα p̌α,i

√
1 − e2

i − p2
i − |di|2. (D11a)

The nonvanishing contributions to the fluctuation matrix are given by

MB
αβ = 1

2

ψβ

p0
Bα α ∈ {5, 6, 7}, β ∈ {1, 2, 3}, (D11b)

MB
αα = p2

0Jα
∑
�

eiq� α ∈ {5, 6, 7}, (D11c)

where � ≡ xi − x j are the vectors connecting i and j and ψ represents the slave bosons at the saddle-point solution.
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3. Pseudofermionic part of the fluctuation matrix

Now we focus on the pseudofermionic part of the Fluctuation matrix given by Eq. (D8b). We the Green’s function

Gk1,k2
[ψ] = δ�n,�m (i�n − Hk1,k2

[ψ])−1 (D12)

to expand the pseudofermionic part of the action around the saddle point,

SF [ψ] + δSF [δψ] = − Tr ln[−i�n + H [ψ] + δH [δψ]] = − Tr ln[(−i�n + H [ψ])(1 − G[ψ]δH [δψ])]

= − Tr ln[(−i�n + H [ψ])] + Tr
∞∑

l=1

1

l
(G[ψ]δH [δψ])l , (D13a)

where the fluctuations δH [ψ] are defined as

δH [δψ] =
∑

q

∑
μ

∂H [ψ]

∂ψq,μ

∣∣∣∣
ψ

δψq,μ + 1

2

∑
qq′

∑
μν

∂2H [ψ]

∂ψq,μ∂ψq′,ν

∣∣∣∣
ψ

δψq,μδψq′,ν + O(δψ3). (D13b)

Now we expand Eq. (D13a) up to the second order in l and collect all terms which are of second order in δψμ,

δS (2)
F [δψ] = 1

2

∑
qq′k

∑
μν

δψq,μδψq′,ν tr

{
Gk[ψ]

[
∂2H [ψ]

∂ψq,μ∂ψq′,ν

∣∣∣∣
ψ

]
k,k

+
∑

qq′k1k2

∑
μν

Gk[ψ]

[
∂H[ψ]

∂ψq,μ

∣∣∣∣
ψ

]
k1,k2

Gk2
[ψ]

[
∂H [ψ]

∂ψq′,ν

∣∣∣∣
ψ

]
k2,k1

}
.

(D14)

The Green’s function at the saddle point is given by

Gk[ψ] = [i�n − Hk[ψ]−1, (D15)

where Hk[ψ] is the mean-field Hamiltonian defined in Eq. (C5b) at the saddle point.
In order to evaluate Eq. (D14), we need to calculate derivatives of the z matrix in momentum space. It holds

δzq =
√

T

N

∑
x

∑
μ

∫ 1
T

0
dτ e−iqx−iωnτ

∂zx

∂ψx,μ

∣∣∣∣
ψ

δψx,μ =
∑

μ

∂z

∂ψμ

δψq,μ (D16a)

and

δ2zq =
√

T

N

∑
k

∑
μν

∂2z

∂ψμ∂ψν

∣∣∣∣
ψ

δψk,μδψq−k,ν , (D16b)

since we evaluate the derivatives at the uniform static mean-field solution, which does not depend on x := (x, τ )T . Consequently,
we find

∂zq

∂ψq′,μ

∣∣∣∣
ψ

= δq,q′
∂z

∂ψμ

∣∣∣∣
ψ

, (D17a)

∂z†q
∂ψq′,μ

∣∣∣∣
ψ

= δq,−q′
∂z†

∂ψμ

∣∣∣∣
ψ

, (D17b)

∂2zq

∂ψq1,μ∂ψq2,ν

∣∣∣∣
ψ

=
√

T

N
δq,q1+q2

∂2z

∂ψμ∂ψν

∣∣∣∣
ψ

, (D17c)

∂2z†q
∂ψq1,μ∂ψq2,ν

∣∣∣∣
ψ

=
√

T

N
δq,−q1−q2

∂2z†

∂ψμ∂ψν

∣∣∣∣
ψ

. (D17d)

Within path-integral formalism, the z matrix defined in Eq. (C2) is given by

z = [(e + d1 + id2)
√

1 − e2 − p2 − |d|2τ 0 + (e − d1 − id2)(p · τ )]√
2
[ 1−|d|2+e2

2 τ 0 −
√

1 − e2 − p2 − |d|2(p · τ)
][ 1+|d|2−e2

2 τ 0 +
√

1 − e2 − p2 − |d|2(p · τ)
] . (D18)

To evaluate the derivatives, we make use of the fact that every Hermitian 2 × 2 matrix can be diagonalized as

U †
â (a0τ

0 + a · τ )Uâ = a0τ
0 + |a|τ 3, (D19)
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where U †
â is a unitary matrix which only depends on â = a/|a|. With Eq. (D19), one can diagonalize the three matrices in

Eq. (D18) and find

U †
p̂ z Up̂ =

[
z+ 0
0 z−

]
= z+ + z−

2
τ 0 + z+ − z−

2
τ 3 (D20)

with

z± = [
√

1 − e2 − p2 − |d|2(e + d1 + id2) ± |p|(e − d1 − id2)]√
2
[
1 − |d|2 − (

√
1 − e2 − p2 − |d|2 ± |p|)2/2

]
[1 − e2 − (

√
1 − e2 − p2 − |d|2 ∓ |p|)2/2]

(D21)

where |p| :=
√

p2
1 + p2

2 + p2
3 and |d| :=

√
d2

1 + d2
2 . Rotating back with Eq. (D19) yields

z = z+ + z−
2

τ 0 + z+ − z−
2

3∑
μ=1

pμ

|p| τμ. (D22)

We define

Z = zT , (D23a)

z0 = Z |ψ = z0|ψτ 0, (D23b)

Zμ = ∂Z

∂ψμ

∣∣∣∣
ψ

, (D23c)

Zμν = ∂2Z

∂ψμ∂ψν

∣∣∣∣
ψ

, (D23d)

Bμ = ∂βT

∂ψμ

∣∣∣∣
ψ

, (D23e)

where β has been defined in Eq. (B6). Note that z0 is the unity matrix, defined in Eq. (C3). Now we can evaluate the derivatives
of the slave-boson-dependent hopping matrix at the saddle point. The first derivative yields[

∂H [ψ]

∂ψq,μ

∣∣∣∣
ψ

]
k1,k2

=
√

T

N

(
δq,0 Bμ + δq,k1−k2 z0

[
Z†

μHk2
+ Hk1

Zμ

])
. (D24)

For the second derivative, one finds[
∂2H [ψ]

∂ψq,μ∂ψq′,ν

∣∣∣∣
ψ

]
k1,k2

= T

N
δk2,k1−q−q′

[
Z†

μνHk2
z0 + z0Hk1

Zμν + Z†
μHk2+q′Zν + Z†

νHk1−q′Zμ

]
. (D25)

Note that the matrix Hk as defined in Eq. (B3) contains only the k-dependent hopping elements of the bare system and is
independent of the slave bosons. This matrix has to be diagonal and spin degenerate in order to get a paramagnetic solution for
the mean field,

[Hk]s,s′ = ξkδs,s′ . (D26)

Combining all previous results, we find

δS (2)
F [δψ] = T

2N

∑
qq′

∑
μν

δψq′,μδψq,ν δq,−q′
∑

k

tr
{

Gk[ψ](Z†
μνξkz0 + z0ξkZμν + Z†

μξk+qZν + Z†
νξk−qZμ)

+Gk[ψ](Z†
μξk+qz0 + z0ξkZμ + Bμ)Gk+q[ψ](Z†

νξkz0 + z0ξk+qZμ + Bμ)
}
. (D27)

Then the pseudofermionic part of the fluctuation matrix Mμν defined in Eq. (D3) is given by

MF
μν (q) = T

2N

∑
k

tr
{

Gk[ψ](Z†
μνξkz0 + z0ξkZμν + Z†

μξk+qZν + Z†
νξk−qZμ)

+Gk[ψ](Z†
μξk+qz0 + z0ξkZμ + Bμ)Gk+q[ψ](Z†

νξkz0 + z0ξk+qZμ + Bμ)
}
. (D28)

Equation (D28) can be recast as Feynman diagrams, which are shown in Fig. 19.
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FIG. 19. Equation (D28) recast in Feynman diagrams. Each loop contains a trace over the spin indices of the matrices and a sum over
k = (k, iωn). The diagrams are read in the arrow direction of the propagators with an arbitrary starting point due to the invariance of the trace
under cyclic permutations. The first four terms originate from the first four terms of Eq. (D28) and the following nine from the rest.

The occurring fermionic Matsubara summations can be carried out analytically. The Green’s matrix on mean-field level is
diagonal and degenerate,

[Gk[ψ]]ss′ = (i�n − εk )−1δs,s′ , (D29a)

where s is the spin index. Note that in contrast to ξk, the spin-degenerate eigenvalues εk,s = εk = εk[ψ] depend on the mean-field
values of the slave bosons. The summations yield[

T
∑

n

G(iωn,k)[ψ]

]
ss′

= nF (εk )δs,s′ (D29b)

and [
T
∑

n

G(i�n,k)[ψ]Mk,qG(i�n+iωm,k+q)[ψ]

]
ss′

=
∑
ss′

nF (εk,s) − nF (εk+q,s′ )

iωm + εk,s − εk+q,s′
[Mk,q]ss′ , (D29c)

where

Mk,q := [Z†
μξk+qz0 + z0ξkZμ + Bμ]. (D29d)
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4. Result for the fluctuation matrix

Using all previous results, we obtain the final result for the fluctuation matrix,

Mμν (q, iωn) = MB
μν (iωn) + MF

μν (q, iωn) (D30a)

MB
μν (iωn) = ∂2

∂ψμ∂ψν

1

2

[
U
(
d2

1 + d2
2

)− β0
(
1 + d2

1 + d2
2 − e2

)− 2βp
√

1 − d2
1 − d2

2 − e2 − p2

]∣∣∣∣
ψ

+ωn(δμ,2δν,3 − δμ,3δν,2), (D30b)

MF
μν (q, iωn) = 1

2N

∑
k

{∑
s

nF (εk,s)[Z†
μνξkz0 + z0ξkZμν + Z†

μξk+qZν + Z†
νξk−qZμ]s,s

+
∑
ss′

nF (εk,s) − nF (εk+q,s′ )

iωn + εk,s − εk+q,s′
[Z†

μξk+qz0 + z0ξkZμ + Bμ]ss′ [Z†
νξkz0 + z0ξk+qZν + Bν]s′s

}
. (D30c)

In order to numerically evaluate the fluctuation matrix at finite ω, we Wick rotate to the real axis by analytic continuation and
introduce a broadening η > 0 such that we replace

iωn → ω + iη (D31)

with η → 0+. For numerical calculations at ωn = 0, a finite broadening η > 0 or the analytical limit

lim
q→0

nF (εk ) − nF (εk+q)

εk − εk+q
= − 1

4T cosh2(εk/2T )
(D32)

can be necessary for better convergence.
Remember that all slave-boson fields except for the d = d1 + id2 field are real valued since their phase has been gauged away

in Appendix B 2. Due to that, there is an ωn-dependent term in the bosonic part of the fluctuation matrix which couples d1 and
d2. Moreover, in the pseudofermionic part, it is Z† 
= Z , but the only difference is that id2 → −id2 in the Z matrix, which is only
relevant if μ = 3 and/or ν = 3 which corresponds to the d2 field in our basis. Consequently, the matrix employs the symmetry

Mνμ(q) = −Mμν (q) (μ = 3, ν 
= 3) ∪ (μ 
= 3, ν = 3)

Mνμ(q) = Mμν (q) otherwise.
(D33)

APPENDIX E: CORRELATION FUNCTIONS

In this section, it will be shown how to obtain correlation functions from the fluctuation matrix Mμν following Ref. [36].
Correlation functions can be written as a functional integral

〈δψμ(−q)δψν (q)〉 = 1

Z (2)

∫
D[δψ∗, δψ]δψμ(−q)δψν (q)e−δS (2)

with Z (2) =
∫

D[δψ∗, δψ]e−δS (2)
,

(E1)

which can be integrated with the generalized Gaussian integral

∫
D[ψ∗, ψ ] exp

⎛
⎝−

∑
αβ

ψ∗
αAαβψβ + J∗

αψα + ψ∗
αJα

⎞
⎠ = exp

(
J∗
αA−1

αβ Jβ

)
det(A)

(E2)

and the fluctuation matrix Mμν :

〈δψ∗
μ(q)δψν (q)〉 = lim

J→0

1

Z (2)

∫
D[δψ∗, δψ] ∂J∗

ν (q)∂Jμ(q)

× exp

⎧⎨
⎩
∑
q̃,μ̃,ν̃

[−δψ∗
μ̃(q̃)Mμ̃ν̃ (q̃)δψν̃ (q̃) + J∗

μ̃(q̃)δψν̃ (q̃) + δψ∗
μ̃(q̃)Jν̃ (q̃)]

⎫⎬
⎭

= M−1
μν (q). (E3)

Note that 〈δψ∗
μ(q)δψν (q)〉 = 〈δψμ(−q)δψν (q)〉.

235137-32



SLAVE-BOSON ANALYSIS OF THE TWO-DIMENSIONAL … PHYSICAL REVIEW B 101, 235137 (2020)

1. Bare susceptibility

The bare susceptibility is defined as

χ0(q) := 1

Z (0)

∫
D[ f ∗, f ]n−qnqe−S (0)

(E4)

with Z (0) = ∫
D[ f ∗, f ]e−S (0)

and the mean-field action

S (0) =
∑
k,ωn

f†k [−iωn + H [ψ]k]fk = −
∑
k,ωn

f†k G−1
k [ψ]fk, (E5)

where Hk[ψ] is the mean-field renormalized Hamiltonian defined in Eq. (C5b), f represents the pseudofermionic fields, and nq

is the pseudofermion density defined in Eq. (A30b) in Fourier space. Consequently, it is

χ0(q) = 1

Z (0)

∫
D[ f ∗, f ] f ∗

k1+q fk1
f ∗
k2−q fk2

exp

(∑
k

f†k G−1
k [ψ]fk

)
= −T

N

∑
k

tr(Gk+q[ψ]Gk[ψ]). (E6)

Comparing this result with Eq. (D28), one finds that the bare susceptibility can be associated with the fluctuation matrix

− 1
2χ0(q) = M4,4(q). (E7)

If the system is spin rotation invariant, then we moreover find

− 1
2χ0(q) = M8,8(q) = M9,9(q) = M10,10(q). (E8)

The bare susceptibility carries a “hidden” dependence of the interaction via the mean-field Greens function G[ψ].

2. Charge susceptibility

The charge susceptibility is defined by

χc(q) := 〈δn−qδnq〉, (E9)

where nq is the charge density given by Eq. (A30c) in Fourier space,

nq =
√

N

T
δq,0 +

√
T

N

∑
k

(d1,q+kd1,−k + d2,q+kd2,−k − eq+ke−k ). (E10)

Note that terms like 〈d2
1,q〉 and 〈d1,qeq〉 vanish, which can be seen with Eq. (E3). Thus, we find

χc(q) = 2d̄2
1M−1

2,2(q) + 2ē2M−1
1,1(q) − 2d̄1ē

[
M−1

1,2(q) + M−1
2,1(q)

]
. (E11)

3. Spin susceptibility

The spin susceptibility tensor is defined by

χαβ
s (q) := 〈

δSα
−qδSβ

q

〉
, (E12)

where Sα
q is the αth component of the spin density in three dimensions and δSα is the respective fluctuation around the mean-field

solution. With the slave-boson spin-density vector in real space given in Eq. (B22a), one finds

Sα
q =

√
T

N

∑
k

p̌α,k+q p0,−k, (E13)

which yields

χαβ
s (q) = p̄2

0〈δ p̌α,−qδ p̌β,q〉, (E14)

where p̄2
0 denotes the mean-field value. With Eq. (E3), we find

χμν
s (q) = p̄2

0M−1
μν (q), where μ, ν ∈ [5, 6, 7]. (E15)
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For spin-rotation-invariant models, the off-diagonal elements of the susceptibility vanish, while the diagonal elements are
identical. Moreover, due to the paramagnetic mean field, one finds for models without spin orbit coupling

∂z

∂ψc

∣∣∣∣
ψ

∝ 12, (E16a)

∂z

∂ pμ

∣∣∣∣
ψ

∝ τμ, (E16b)

∂2z

∂ pμ∂ pν

∣∣∣∣
ψ

= 0 for μ 
= ν, (E16c)

∂2z

∂ pμ∂ψc

∣∣∣∣
ψ

∝ τμ, (E16d)

for the derivatives. Inserting these results into Eq. (D28) and calculating the trace, one finds that only matrix elements which
couple charge fields ψc = (e, d1, d2, β0) to charge fields or p fields to their respective β fields (e.g., p1 and β1) are nonzero.
Consequently, fluctuations between spin fields ψs = (p,β) and charge fields ψc = (e, d1, d2, β0) vanish, and therefore Mμν is
block diagonal. The resulting scalar susceptibility is found by the simple formula

χs(q) = p̄2
0

M10,10(q)

M7,7(q)M10,10(q) − M7,10(q)M10,7(q)
. (E17)

APPENDIX F: SPIRAL MAGNETIC MEAN FIELD IN SLAVE-BOSON FORMALISM

On the basis of the paramagnetic mean field discussed in Appendix C, we want to expand the ansatz to incorporate a spin
spiral with ordering vector q. Following Ref. [35], we define a new static mean field for the bosonic fields:

ei → 〈e〉 ∈ R+
0 , (F1a)

p0,i → 〈p0〉 ∈ R+
0 , (F1b)

di → 〈d〉 ∈ R+
0 , ∂τ 〈d〉 := 0, (F1c)

iβ0,i → 〈β0〉 ∈ R, (F1d)

iαi → 〈α〉 ∈ R, (F1e)

pi → 〈p〉
⎡
⎣cos(φi )

sin(φi)
0

⎤
⎦, 〈p〉 ∈ R+

0 , (F1f)

iβi → 〈β〉
⎡
⎣cos(φi)

sin(φi)
0

⎤
⎦, 〈β〉 ∈ R, (F1g)

φi ≡ qxi. (F1h)

Again, we drop the brackets 〈〉 in the following equations to keep the notation short. Further we reemploy Eq. (D22) and find by
applying Eq. (F1)

zi =
(

Z+ Z−eiφi

Z−e−iφi Z+

)
with Z± = z+ ± z−

2
(F2a)

and

z± = p0(e + d ) ± p(e − d )√
2[1 − d2 − (p0 ± p)2/2][1 − e2 − (p0 ∓ p)2/2]

. (F2b)

Note that in contrast to the paramagnetic mean field, zi is now not proportional to the unity matrix and not uniform. As stated
before in Appendix C, the normalization fixes the noninteracting limit and does not change zi on operator level before inserting
the mean-field ansatz.

1. Free energy

Analogously to Appendix C, the free energy F given by

F = −T ln Z + μ0N , (F3)

where N is the total number of electrons in the system.

235137-34



SLAVE-BOSON ANALYSIS OF THE TWO-DIMENSIONAL … PHYSICAL REVIEW B 101, 235137 (2020)

The Lagrangian in the magnetic mean field reads

Lq =
∑

k

f†k (Hk[q, ψ] + ∂τ )fk + J
∑
〈i j〉

SiS j + N
[
Ud2 − β0

(
p2

0 + p2 + 2d2
)− 2βp0 p + α

(
e2 + p2

0 + d2 − 1 + p2
)]

, (F4a)

with

fk :=
[

f↑,k
f↓,k−q

]
. (F4b)

The mean-field renormalized hopping matrix Hk[q, ψ] is found by Fourier transformation of the Hamiltonian introduced in
Eq. (B3) under consideration of Eq. (F2a) and reads

Hk[q, ψ] :=
[
Z2

+ξk + Z2
−ξk−q + β0 − μ0 Z+Z−(ξk−q + ξk ) + β

Z+Z−(ξk−q + ξk ) + β Z2
+ξk−q + Z2

−ξk + β0 − μ0

]
with [Hk]s,s′ = ξkδs,s′ , (F4c)

where Hk is the bare hopping Hamiltonian with the spin-degenerate eigenvalues ξk. In contrast to the paramagnetic mean field,
we can involve a uniform spin-spin-interaction term proportional to J , which takes a purely bosonic form. The pseudofermions
in the mean-field Lagrangian can be integrated out with Eq. (B28a). The slave-boson-dependent eigenvalues of the matrix Hk[ψ]
are labeled by εk,±.

The mean-field free energy per lattice site is then found to be

fq := Fq

N
= −T

1

N

∑
k,±

ln(1 + e−εk,±/T )

+ J p2
0 p2

∑
�

cos(q�) + Ud2 − β0
(
p2

0 + p2 + 2d2
)− 2βp0 p + α

(
e2 + p2

0 + d2 − 1 + p2
)− μ0n, (F5)

where n = N /N is the total electron filling, N is the number of lattice sites and � = xi − x j denotes all vectors connecting the
sites i and j. Note that for p = β = 0, the mean-field ansatz is reduces to the paramagnetic mean field discussed in Appendix C.

2. Saddle-point equations

In order to find the mean-field solution for the ground state, we need to minimize the free energy with respect to the fields
e, p0, p, and d , while enforcing the constraints, which can be recovered by taking the derivative of the free energy by the
respective Lagrange parameter. The resulting saddle-point equations are given by

∂ fq

∂e
= 1

N

∑
k,±

nF (εk,±)
∂εk,±
∂e

+ 2αe = 0, (F6a)

∂ fq

∂ p0
= 1

N

∑
k,±

nF (εk,±)
∂εk,±
∂ p0

+ 2p0(α − β0) − 2βp + 2J p0 p2
∑
�

cos(q�) = 0, (F6b)

∂ fq

∂ p
= 1

N

∑
k,±

nF (εk,±)
∂εk,±
∂ p

+ 2p(α − β0) − 2βp0 + 2J p2
0 p

∑
�

cos(q�) = 0, (F6c)

∂ fq

∂d
= 1

N

∑
k,±

nF (ε,±)
∂εk,±
∂d

+ 2d (U + α − 2β0) = 0, (F6d)

∂ fq

∂α
= e2 + p2

0 + p2 + d2 − 1 = 0, (F6e)

∂ fq

∂β0
= 1

N

∑
k,±

nF (εk,±)
∂εk,±
∂β0

− 2d2 − p2
0 − p2 = 0, (F6f)

∂ fq

∂β
= 1

N

∑
k,±

nF (εk,±)
∂εk,±
∂β

− 2p0 p = 0, (F6g)

∂ fq

∂μ0
= − 1

N

∑
k,±

nF (εk,±) + n = 0, (F6h)

∂ fq

∂q
= 0, (F6i)

where nF (εk,±) = [1 + exp(εk,±/T )]−1 is the Fermi-Dirac distribution. The second-to-last equation has to be enforced
additionally to ensure the correct electron filling, instead of fixing the chemical potential and the last equation fixes the ordering
vector q.
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3. Reduction of mean-field equations

Analogously to the paramagnetic mean field, one can reduce the degrees of freedom, yielding only five independent mean-field
variables by substituting β0 = −μeff + μ0. We then exploit the two constraints which only couple to bosonic degrees of freedom,
i.e., the constraint which ensures that there is only one boson per site associated with α and the constraint which fixes the total
number of particles associated with β0 by setting

1 = e2 + d2 + p2
0 + p2, (F7a)

n = 2d2 + p2
0 + p2, (F7b)

μeff = μ0 − β0. (F7c)

This way, the redundant degrees of freedom α, β0 and two arbitrary slave-boson fields (we choose d and e without loss of
generality) are removed from the mean-field equations. The mean-field solution is defined by the saddle point of the free energy,
which is given by

fq|(F7) = −T

N

∑
k,±

ln
[
1 + e−εk,±/T

]− U

2

(
p2

0 + p2 − n
)+ μeffn − 2βp0 p, (F8)

with the energy eigenvalues

εk,± = 1

4

[
ζ+ξk,+ ±

√
(ζ 2+ − ζ 2−)ξ 2

k,− + (ζ−ξk,+ + 4β )2
]− μeff, (F9a)

where ζ± = z2
+ ± z2

−, ξk,± = ξk ± ξk−q, and

z± |(F7) =
(p0 ± p)

√
2 − n − p2 − p2

0 + (p0 ∓ p)
√

n − p2 − p2
0√(

2 − (p0 ∓ p)2 − (
2 − n − p2 − p2

0

))(
(p0 ∓ p)2 + (

2 − n − p2 − p2
0

)) . (F9b)

Notice that the spin-degenerate paramagnetic energy eigenvalues are recovered if p = β = 0 since in that case Z+ = z0 and
Z− = 0. We are left to determine

∂ fq

∂ p

∣∣∣∣
(F7)

= ∂ fq

∂ p0

∣∣∣∣
(F7)

= ∂ fq

∂β

∣∣∣∣
(F7)

= ∂ fq

∂μeff

∣∣∣∣
(F7)

= ∂ fq

∂q

∣∣∣∣
(F7)

= 0, (F10)

which we achieve by minimizing fq with respect to p, p0, and q and maximizing with respect to β and μeff between each
minimization step.

The original chemical potential is recovered by evaluating

μ0 = 1

4d̄

1

N

∑
k,±

nF (εk,±)
∂εk,±
∂d

∣∣∣∣
ψ,(F7a)

+ μeff + U

2
. (F11)

Note that the previous equation is to be understood such that only Eq. (F7a) is applied to reduce the degrees of freedom to
eliminate the e field. Consequently, to assign a unique value to μ0, one has to leave the constrained subspace of the mean field,
which is only relevant for a subsequent fluctuation calculation.
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