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Decoherence of charge density waves in beam splitters for interacting quantum wires
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Simple intersections between one-dimensional channels can act as coherent beam splitters for noninteracting
electrons. Here we examine how coherent splitting at such intersections is affected by interparticle interactions,
in the special case of an intersection of topological edge states. We derive an effective impurity model which
represents the edge-state intersection within Luttinger liquid theory at low energy. For Luttinger K = 1/2, we
compute the exact time-dependent expectation values of the charge density as well as the density-density
correlation functions. In general, a single incoming charge density wave packet will split into four outgoing
wave packets with transmission and reflection coefficients depending on the strengths of the tunneling processes
between the wires at the junction. We find that when multiple charge density wave packets from different
directions pass through the intersection at the same time, reflection and splitting of the packets depend on the
relative phases of the waves. Active use of this phase-dependent splitting of wave packets may make Luttinger
interferometry possible. We also find that coherent incident packets generally suffer partial decoherence from the
intersection, with some of their initially coherent signal being transferred into correlated quantum noise. In an
extreme case, four incident coherent wave packets can be transformed entirely into density-density correlations,

with the charge density itself having a zero expectation value everywhere in the final state.

DOLI: 10.1103/PhysRevB.101.235136

I. INTRODUCTION

Interacting electrons within nanoscopic one-dimensional
metals are well described by Haldane’s Luttinger liquid the-
ory in terms of bosonic excitations of charge density waves
[1-4]. The bosonic collective modes—Luttinger plasmons—
are noninteracting at low energies and propagate linearly with-
out dispersion. In this sense they behave much like photons.
Just as photons may be generated by time-dependent charge
distributions and detected by the charge movements that they
induce when they are absorbed, Luttinger plasmons may be
generated and detected via external electromagnetic fields.
Quasimonochromatic coherent wave packets of plasmons can
be transmitted through quantum wires in much the same way
that coherent laser pulses of photons can be through optical
fibers [5,6].

Among the most powerful technological applications of
lasers is interferometry, which is enabled by the coherent split-
ting and recombining of light beams in linear beam splitters.
Single-electron wave packets can similarly split and combine
coherently if they propagate in one-dimensional channels
which intersect. While in general electrons encountering a
junction of two quantum wires may be transmitted in all three
outgoing directions and possibly also reflected back along
their incident wire, it has recently been shown that intersec-
tions of topologically protected edge state channels can act
just like optical beam splitters for noninteracting electrons,
splitting incoming packets into exactly two outgoing pack-
ets with zero reflection [7,8]. Whether for this conveniently
lightlike splitting or for more general multi-way splitting,
however, the question of signal coherence through quantum
wire junctions depends for real electrons on the effects of
Coulomb interactions.
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Research on transport in inhomogeneous interacting quan-
tum wires has a long history. It was established early on
that even the smallest impurity potential in an effectively
one-dimensional wire with repulsive interactions can intro-
duce dramatic effects due to backward scattering which can
block electric [9-13] or magnetic [14,15] conductance at low
temperatures. For the interpretation of transport in general, the
coupling of the wire to the leads becomes important where the
leads themselves play the role of inhomogeneities. It has been
shown that for perfect adiabatic contacts the conductance of
the wire is controlled by the parameters of the lead rather than
of the wire [16-21]. However, additional backscattering or
relaxation processes which become renormalized by the inter-
actions may occur at any nonadiabatic boundary. Remarkably,
for sharp junctions of two wire regions with different effective
bandwidths, chemical potentials and interaction strengths, a
line of perfectly conducting fixed points exists where the
backscattering at the junction vanishes despite the inhomo-
geneity of the system [22-24]. Furthermore, correlation func-
tions and the local density of states near inhomogeneities and
boundaries are now understood well enough to establish that
inhomogeneities induce wave-like modulations in the local
density of states, and that there is a sharp reduction of the
density of states near boundaries [25-30].

Investigations of the real-time dynamics of charge trans-
port in one-dimensional wires and the partitioning and recom-
bining of coherently propagating wave-packets have opened
the field of electron quantum optics. Of particular interest cur-
rently are on-demand single electron sources [31-34], which
have been experimentally realized using periodically driven
mesoscopic capacitors [35,36] or time-dependent voltages
[37]. The interference of two such single charges has been
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probed when the two excitations collide at an intersection in a
Hong-Ou-Mandel setup [38—40].

The development of experimental control and observation
techniques for real-time charge transport in one-dimensional
wires also opens fresh theoretical questions, because when
excitations propagate in finite-sized wave packets of finite
wavelength, over finite times and distances, the limit of infi-
nite wavelength can no longer be assumed—and this converts
some trivial questions into nontrivial ones. Coupling constants
for tunneling processes at a junction between two wires, for
example, may run at very long wavelengths either toward zero
or to strong coupling, but if the running is slow enough, then
there may easily be a wide range of experimentally accessi-
ble and even practically useful length and time scales over
which the relevant constants have not yet run to their long-
wavelength limits. The question of how finite-wavelength
excitations pass through intersections in finite time thus be-
comes more difficult to answer in general than more familiar
questions about DC current transport, so that solvable special
cases thereby become more valuable—and such special cases
may even become practically realizable.

In all such problems of excitations passing through inter-
sections, the interaction-induced relaxation and decoherence
mechanisms after the initial creation of the excitation are
important to understand. Generally speaking, a sufficiently
narrow intersection of quantum wires may behave as a lin-
ear element for electrons, but the evolution of interacting
electrons along the length of a quantum wire is extremely
nonlinear. For the quasiparticles whose propagation in quan-
tum wires is conveniently linear, the Luttinger plasmons, an
intersection of two wires is on the other hand a highly non-
linear impurity. When interacting electrons pass through an
intersection impurity, therefore, nonlinear effects are generic.
Their influence on the propagation and decoherence of charge
density wave packets will be the subject of this paper.

We will find that the intersection can mix and redirect
multiple incident charge density wave packets of matching
frequency in a manner that depends on the relative phases
among the incident packets. The effect of the relative incident
phases on the outgoing signals is not simply to redistribute
their intensities in different emission directions, however, as
in an optical beam splitter, but also to make the transmitted
signals more or less coherent: the coherent incident charge
density waves are partially converted into correlated quantum
noise. This effect may be a limitation on Luttinger interferom-
eters that would operate exactly like optical ones, but it may
also offer a new way to measure relative phases, with a new
kind of interferometer based on Luttinger liquids.

Our paper is organized as follows. We begin in Sec. II with
our basic model of two one-dimensional fermionic channels
that effectively intersect at a point. Motivated by a recent
analytical result for noninteracting fermions in intersecting
topological edge states [8], we will adopt a simple but real-
izable model in which the intersection lets fermions tunnel
between channels but no in-wire backscattering is induced.

In Sec. I, we then introduce short-ranged screened
Coulomb interactions among our fermions and use the one-
loop renormalization group to derive an effective low-energy
theory for the interacting system. Because of the particu-
lar kind of single-particle tunneling which our intersection

allows, we will find that in the low-energy limit of the interact-
ing system the intersection is described by just one particular
two-body term.

In Sec. IV, we will then focus on one informative case of
our low-energy theory, namely the special symmetry point of
Luttinger parameter K = 1/2, which can be solved exactly
by refermionization. We will compute the time- and space-
dependent expectation values of the charge density, as well as
its two-point correlation functions, for initial quantum states
with charge density wave packets incident on the intersection.
These will be the main results of our paper, showing how
the intersection’s nonlinear action on Luttinger plasmons pro-
duces both phase-sensitive transmission and decoherence.

In Sec. V, we will prove that passage of excitations through
the intersection can create long-range quantum entanglement
between fermionic degrees of freedom, by applying the Peres-
Horodecki nonseparability criterion in a two-qubit subspace
of the many-body Hilbert space. In Sec. VI, we will con-
clude with a brief discussion of how our intersection may be
considered as a nonlinear beam splitter. Two appendices will
then review technical details that may be unfamiliar to some
readers.

II. INTERSECTION OF TWO QUANTUM WIRES

We consider two quantum wires (j = 1,2) occupied by
spinless one-dimensional fermions. We assume that in each
wire the fermions’ dispersion relation can be taken, within the
entire range of frequencies that is relevant to our discussion,
to consist of two mirror-symmetrical linear regions around
the Fermi level k = +kr, so that with our two wires we
effectively have two species of right-moving fermions, of
which the associated operators will be labeled with R indices,
and two species of left-moving fermions, whose operators are
distinguished with L indices.

As 1is typical in one-dimensional many-body theory, all
of our analysis will depend crucially on the linearity of our
fermionic dispersion relation. Implicitly, therefore, whenever
we write any quantum field operator 4/ (s) with spatial position
argument s, we really mean that s is sufficiently smeared
to project this field operator into the space of many-body
quantum states whose excited particles are all of sufficiently
long wavelength to have linear dispersion. This is a basic issue
in one-dimensional many-body physics, discussed in standard
works [4,41]. Its important implications for our representation
of charge density waves are explained in Appendix B.

We consider our two wires to be far apart from each
other everywhere except within a small region in which they
approach each other closely enough for particles to tunnel
from one wire to the other; see Fig. 1. The region of close
proximity is to be small enough compared to all excitation
wavelengths that it can be regarded as effectively pointlike;
we assign this effective point the same coordinate s = 0 along
both wires, and refer to the point s = 0 as “the intersection,”
even though our wires may not literally cross. Our convention
within each wire is that the right-moving particles are those
that move in the direction of increasing s.

To avoid writing too many separate equations for L and
R fields, we define F, to be —1 fora = R and 1 for « = L.
The Hamiltonian representing the single-particle dynamics of
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FIG. 1. Schematic representation of the intersection. Two one-
dimensional quantum wires effectively intersect at a common point
(left), although microscopically (right) the “intersection” may really
only be a close approach which allows particles to tunnel between the
wires within a small region. The continuous wires labeled 1 and 2 are
therefore the “northwest-to-northeast” and “southwest-to-southeast”
angled lines, as indicated. The coordinate s within each wire is
chosen to run in the directions indicated by the bent dashed lines with
arrowheads. Fermions within each wire can move in both positive
and negative s directions. Those moving in the positive s direction
in each wire will be denoted as right movers with ‘‘R” subscripts,
while left movers going in the negative s directions will have ‘‘L”
subscripts.

the system (i.e., without interactions among the fermions) can
then be written as

Hp = Z Z /‘ds{&;j(:FaivFas)&aj}

a=L,R j=1,2
+ grir + gaip
fr = Up OVra(0) + ¥}, (0012(0) + Hee,, (1)
fy = Y (0)Y12(0) + ¥}, (01z2(0) + Hec.,

where gr p are tunneling strength coefficients. There are two
distinct coefficients gpp because if either a right- or left-
moving fermion should tunnel from one wire into the other
wire, then it may thereafter move in either direction along
the second wire—and the rates of tunneling may not be the
same for these two directional cases. We designate tunneling
which keeps the particle moving in the same s direction in the
new wire as “forward” (F), while the process is “backward”
(B) if the direction of motion in s is reversed after tunneling.
Note that we assume that the wires have sufficient microscopic
left-right symmetry in the intersection region that we may
consider gr p to be the same for right and left movers.

In this paper we will initially allow both gr and gp to be
nonzero, but we will have in mind gg > g, and our explicit
results will effectively be for gr = 0. This simplification
is motivated by the concrete example of one-dimensional
channels that are a particular kind of topological edge state,
namely, the quantum valley Hall (QVH) zero-line modes
(ZLM) in a right-angled topological intersection in graphene,
for which the two tunneling coefficients (as here defined) turn
out for topological reasons to be gg = vpm /4 and gp = 0 ex-
actly [8]. This is indeed somewhat counter-intuitive: fermions
that encounter the four-way ZLM intersection can turn to both
left and right, but cannot proceed directly ahead. With our
convention for the direction of s in the two wires, it is thus the

“backward” processes which are favored while the “forward”
processes are suppressed. The reasons for this are topological.

A more important simplification that occurs in the QVH
ZIM case [8], also for topological reasons, is that the in-
tersection produces no reflection within the same wire. Both
tunneling terms #r p that are included in H,p move fermions
from one wire to the other. Generalizations to include in-wire
reflection from the intersection, or to allow gr ~ gg, are con-
sidered in Appendix B. There we show that although in-wire
reflection will effectively ‘cut’ the two wires for sufficiently
long wavelength excitations, for small enough microscopic
in-wire reflection there will be a wide range of long wave-
lengths within which the effects of in-wire reflection remain
negligible.

We also consider two-particle interactions: short-ranged
screened Coulomb repulsion between fermions along the
length of each wire, as well as localized two-particle tun-
neling processes at the intersection. We therefore take the
total Hamiltonian to be H = H,p + Hiy, for (following the
standard g-ology notation [4])

A 84 . 4 ~ A A
Hiy = Z /dS{E(PRjPRj+/)LjPLj)+82PijLJ'}
j=1.2

+GrTr + GpTp

Tr = Y (009, (002 (0)911(0) + Hec.,
Tp = V(005 (0)1 (0)R2(0) + Hec., )

where pr; = 1},:].1/}1; jand pp; = 1}2_].1/}” denote the densities
of right and left movers, respectively. All operators are normal
ordered with respect to the noninteracting Dirac sea. The
two new T p terms at the intersection provide simultaneous
tunneling between the wires by two particles at once. Several
other two-body impurity terms at the intersection can exist
besides these particular two, but we will see below that these
are the only ones which are relevant in the renormalization
group sense. As the sketch Fig. 2 indicates, both these relevant
terms effectively involve two particles passing through each
other as they tunnel between wires in opposite directions.
The tunneling strengths Gz and G apply respectively to
processes where the particles pass each other while “turning,”
as in Figs. 2(a) and 2(b), or instead pass each other going
straight through the intersection, as in Figs. 2(c) and 2(d).
Our renormalization group analysis in the next section will
show that when the microscopic single-fermion tunneling
is sufficiently suppressed in the forward direction, then at
long wavelengths the forward-type two-fermion tunneling
will have Gp negligible as well, allowing us to consider simple
cases with only T3 terms in the effective long-wavelength
Hamiltonian.

For a sufficiently small intersection region, both Gr and
Gp can be small. This does not mean that the effect of
interparticle interactions on propagation through the inter-
section is small, however, because the bulk interactions are
always important for long-wavelength excitations. For bulk
two-body interaction strength V > 0, the excitations which
propagate freely down the wires are not individual fermions,
but collective Luttinger plasmons. Even if the microscopic
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FIG. 2. Relevant two-particle tunneling processes at the inter-
section. Thick black curves denote the two wires; wide arrows
indicate simultaneous tunneling of two particles from one wire to the
other. (Top) Two conjugate processes in Ty. (Bottom) Two conjugate
processes in Ty

two-body tunneling strengths at the intersection Gy and Gg
are small, interactions will still affect how excitations pass
through the intersection, because interactions will determine
what these excitations actually are.

To determine the effect of the intersection, therefore, we
will translate our system of interacting fermions into the
equivalent bosonized model of Luttinger plasmons, which
are noninteracting and dispersionless along the length of the
wires. In terms of plasmons, the simple one- and two-body
fermion operators 7r 3 and f‘p, p will be extremely nonlinear.
To then uncover the effect of these nonlinear terms, we
will use the renormalization group (RG) to derive a simpler
approximation to them which will be valid for low-energy
excitations.

III. EFFECTIVE LOW-ENERGY THEORY

Our work in this section is inspired by similar studies on
crossed nanotubes by Komnik and Egger [42,43], and refines
recent results in the context of a bilayer graphene systems
[44,45].

A. Bosonization

Within an Abelian bosonization framework [4,41] we can
map our fermion operators onto bosonic fields by defining

; Netj iEav/7K ;()—/7TK ©(s)
Yeils) = e J 7~ 3)
a/ V21 A
where £, is + for « = R, — for o« = L. Here, A is the
ultraviolet cutoff length scale representing the extent of the
k-space window around kr in which the fermion dispersion

relation is linear, allowing bosonization to work. The Klein
factors nZ j = laj ensure anticommutation relations among
different branches and obey a Clifford algebra {n,;, noj/} =
28q8jj for e, 0’ =R, L and j, j/ = 1,2. In particular, we
follow Komnik and Egger [42] in identifying the products of
Klein factors with Pauli matrices:

Na1Na2 = iO'X, Na1N—a2 = q:aqua

Nall—al = — Fa 10z, Na2l-a2 = Fal0:.

The bosonic fields and their duals satisfy
[dADj(s), @j’(s/)] = —%Sjjrsgn(s — ). They directly measure
the collective low-energy density modes of the quantum
fluid. For later convenience, we additionally introduce left-
and right-moving fields such that Cb‘,- = dp ;i + b, ; and
(:) ji= C,I\)L j C,I\)R e

The bulk interaction parameter K encodes the two-particle
Coulomb interaction in the first line of Eq. (2). We assume the
two wires are sufficiently similar within the region of interest
1 84 82
T for

Tnop ' 2mup

both wires, as well as identical bare plasmon velocities u; =

to have identical Luttinger parameters K =

U =u= UF\/(l + 2‘;—; - (;—ZUF)Z.We then choose units in
which u = vp /K = 1 assuming g, = g4. As usual, products
of ¥ ; and Vo; are to be understood in terms of a standard
point splitting and normal ordering prescription which yields

the following bosonized expressions for the densities in each

wire j =1, 2:
. . K. .
PRj + PLj = ;8@;, @

. . 1 N
PLj — PRj Z‘/H_Kax@f (5)

Integrating over the densities gives the total charge operator

4 = / ds [r;(s) + Pry(o)] ©)

for j =1, 2. Thus an elementary excitation with charge g; =
1 corresponds to a kink of amplitude \/% in the bosonic field

® ;. Further zero modes [46] of the fields ®; and ©; govern
the commutation relations

(G} Yajr ()] = 8} j Vo (5) (7)

such that acting with a left- or right-moving fermion field
operator of the form of Eq. (3) indeed changes the total
number of fermions and total charge relative to the ground
state in integral numbers as physically demanded.

In this bosonized representation, the total fermionic Hamil-
tonian H = H,p + Hiy, of Egs. (1) and (2) is mapped onto two
single-channel Luttinger liquids that are coupled at s = 0 by a
chiral impurity scattering term:

.1 i é
=3 3 /azs[(ascp,-)2 +(8,0,)°]

Jj=12

+grir + gpip + Gr Tr + Gy T, (8)

235136-4



DECOHERENCE OF CHARGE DENSITY WAVES IN BEAM ...

PHYSICAL REVIEW B 101, 235136 (2020)

where we write the single-fermion tunneling operators at the
intersection in bosonized form as

n;’x cos[VTK(®1(0) — &(0))]

A

tr =

x sin[y/7/K(©1(0) — ©,(0))], )
fp= — % sin[v7 K (1(0) + $,(0))]
x cos[y/7 /K(©1(0) — ©,(0))]. (10)
and the two-fermion operators as

A

Tr = L cos[v4TK (®,(0) — ®,(0)],  (11)

22\
Ty = —% cos[v4r K (®,(0) + ®,(0)]. (12
272 A

B. Renormalization group analysis

In an approach analogous to that of Komnik and Egger
[42], we now study the competition between single-particle
terms like 77 p and two-particle terms like TF, g. Both single-
particle terms have conformal spin one and a scaling di-
mension of Ag}; = (K 4+ 1/K)/2. Hence they are both ir-
relevant when interactions are repulsive, i.e., for K < 1. As
was pointed out by Egger and Komnik, however, one has to
be careful drawing conclusions from the scaling dimension
(K + K~")/2 > 1 of the single-particle terms, since they have
conformal spin one and can generate higher-order terms that
are relevant.

A one-loop renormalization group analysis shows, in fact,
that each of the single-particle terms #r p generates at second-

order two-particle term f"p, B, With scaling dimension A;% =

2K, and zero conformal spin. Both f‘F,B are thus relevant
for K < 1/2, and marginal for K = 1/2. The respective
operator-product expansion (OPE) calculation is straightfor-
ward, and similar in spirit to previous analyses of impurity
[42] and bulk [47] perturbations. In contrast to the case
in Ref. [47], though, the Luttinger parameters u and K in
our wires are fixed, since in our problem the perturbations
frp and TF,B are localized effects at s = 0, which cannot
change the bulk properties of the whole wires. Our study also
differs from previous ones in that we analyze the RG flows
of forward and backward scattering terms separately, since
we expect the respective bare coupling constants to differ
greatly.

Neglecting irrelevant terms, the one-loop RG equations for
the flow of the effective coupling constants gr p and Gr g as
functions of the length scale [ (large / being long wavelength,
low frequency and low energy) are

dsrp _ |:1 — K—+ K1i|gFB

dl 2 -

dGrp
dl

=(1-2K)Grp+ (K —K ")grp  (13)

The general solutions are

1@1)21

grn(l) = grp(0)e” "
Gr.p(1) = Grp(0)e! 72 (14)
1 - K?
+K 2+ K-1
The coupling constants of the backward and forward pro-
cesses thus evolve independently of each other under the RG
flow (13).

We see that all four terms are irrelevant in the range 1/2 <
K < 1, and hence in that parameter regime the two wires
would effectively decouple completely at long wavelengths.
At K =1, the two-body terms Tp,B are irrelevant, while the
single-particle terms fr g are marginal. Our RG calculation
thus consistently preserves the single-particle Hamiltonian
Eq. (1) in the noninteracting limit.

For strong interactions K < 1/2, however, which shall be
our focus in the remainder of the paper, we see that while the
single-particle terms fr g are irrelevant, they generate another
set of localized terms that still couple both wires together at
s = 0, namely the very operators ~ cos [v/ 47 K (Ci>1 + <i>2)]
that we have defined as TF,B. These two-fermion terms are
relevant for K < 1/2 and marginal for K = 1/2, while the
single-particle 7 g terms both run to zero at low energy.

In order to analyze the flow of coupling constants in more
detail we rewrite the second term of Gpp(/) in Eq. (14) as

A (gr5(0)2e 2KV (1 — ¢~ x 1=K=K1) First of all, after
expansion of the exponential in the round brackets it becomes
apparent that there is no singular behavior of the coupling
constants for the zero point of K2+K—1, K*= %(«/_ —
1), as it might seem on first view. Moreover, we can infer
that there is a length scale [ > I* = K/(1 — K — K?) beyond
which we can neglect the final term in Gp g, proportional
to exp (—%(K — 1)?1), in comparison with the other terms
(in fact this is true for any K < K* ~ 0.618 but for 1/2 <
K < 1 all couplings are irrelevant anyway). In this range of

wavelengths we can write

12
[grp(O)? (172K — =5 1),

Grp(1) ~ Gr.p(0) ' 2 (15)
with “effective bare values” for the two-particle coefficients
~ — K?
Gr(0) = Grp(0) + [gF.B(O)]Zm (16)

that are modified by the bare values of the single-particle
processes. In other words, the low-energy behavior of the in-
teracting system at the intersection is dominated by localized
two-particle T p terms instead of single-particle 7r p terms,
but the effective low-energy strengths of the coupling con-
stants of the two-particle terms are still substantially affected
by the single-particle bare coupling strengths.

We can now consider the competition between the two-
particle forward and backward tunneling processes 7y and
Tz. We are focusing on the range of parameter values that
arises naturally in the context of topological intersections in
quantum valley Hall edge states. We therefore assume that the
bare value of the single-particle backward tunneling strength
gp(0) is much larger than the other three bare strengths
gr(0) and G p(0). Inserting this initial condition into our
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RG solutions (14) shows that only G remains significant at
long wavelengths for K < 1/2, and so only the two-particle
tunneling operator T need be retained to represent the low-
energy effects of the intersection. That other two-particle term
Tr will also be relevant in this case, but because its bare value
is so much lower its effective strength Gp will remain much
smaller than Gp even at increasing wavelength.

For K < 1/2, G will in fact flow to strong coupling. Fol-
lowing Kane [10,42], we can express the strength of coupling
indirectly in this regime, by defining an energy scale /. which
is like Agcp in quantum chromodynamics, in that it is the scale
[ at which Gg(l) grows to order unity. From (15), we find this
scale to be

|, = GO (17)

2K — 1

The case K = 1/2 exactly is seen from (15) to be a special
case in which TB is marginal. In a certain sense, it is nonethe-
less typical of cases with K near 1/2, because if K is slightly
greater than 1/2, Gg will run towards zero only slowly, and
thus still remain significant for a broad range of long (but not
infinite) wavelengths. Conversely, even if K approaches 1/2
from below (the strongly interacting side), (17) says that the
wavelength /. beyond which the effect of Tj is truly strong
becomes infinite in the limit K — 1/2. So once again there
will be a broad range of long but not infinite wavelengths
on which T has a significant but not dominating effect. For
any K sufficiently close to 1/2, therefore, we can consistently
treat Gp as a finite parameter by focusing on an experimentally
accessible energy range of long wavelengths that are yet not
too long.

We will therefore focus on this marginal case for the
remainder of this paper, because although it can be considered
in the sense just described to be a typical case of “medium-
strength” interactions, it is exactly solvable by the technique
known as refermionization.

IV. THE MARGINAL CASEK =1/2
A. Refermionization

At K = 1/2, the operator T is marginal and it is possible
to reexpress our bosonic Hamiltonian (8) locally interacting
via highly nonlinear sine functions of the fields as a theory
of noninteracting fermions. In particular, with our choice of
refermionization T turns into a simple tunneling term of the
noninteracting form. We begin by introducing the following
bosonic fields:

| A A
P+(s) = E(CDI(S) + @1 (s)), (18)
A | BN A
0+(s) = ﬁ(@h(S) + O1(s)). 19)

These new bosonic fields have the correct commutation rela-
tions for Luttinger liquid dual phase fields, [@+(s), 0.(s)H) =
—%sgn(s — §") with other commutators vanishing, but since
each of the @4, 9i fields is a sum of fields on wires 1 and
2, the s argument of them refers to two distinct locations in
physical space. We will be able to use these peculiar nonlocal
fields to solve the time evolution of the K = 1/2 system very

straightforwardly, but we will need to include an additional
step of expressing our results in terms of local observables.

1. Local charge densities

The reason for defining the nonlocal fields ¢, 9i appears
when we express the Hamiltonian in terms of them (including
only T3 with renormalized coupling):

o 1 A
-2 ; / ds[(02) + (0,02)]

_2_‘; cos(v/8T K, (0)) (20)

in which V = G" . We thereby discover that the ¢_ fields do
not appear in the intersection term at all. Only the ¢, fields
are involved in tunneling between the two wires.

As a next step, we refermionize by defining new fermionic
quasiparticles

Nor _i(as/T ¢r(5)— /7 B:(5)
— ¢ 1)
V2T A

for « = R, L and r = £ where again the role of the Klein
factors 1y, which obey {ny,, No'r'} = 28448, 1S to ensure cor-
rect anticommutation relations among the different Fermion
species. The refermionization prescription is chosen such that
inserting it into Eq. (20) does not generate bulk interactions
among the new quasiparticles, i.e., all prefactors in the ex-
ponent must be the same as in the analogous Eq. (3) for
noninteracting fermions (corresponding to K = 1). In general
after refermionization the new fermions (“refermions”) carry
fractional charge which can be quantified by considering the
charge operators ¢; and §, of Eq. (6). Their commutators
with the refermion creation operators yield [4y, \ilot,(s)] =

\/g @7 (s) and [Ga, Wi, (5)] = i,\/g &7 (s) for r = + and
o = R, L and, thus, these refermion quasiparticles carry abso-

"ijo:r (s) =

lute value of charge w1th respect to both §; and §,. Since

electric charge is still carrled microscopically by unit-charged
electrons, this means that a single refermion can never be
created on its own. It can only appear in combination with
other refermions or with additional charge-carrying string
operators [48] such that the overall operator does not leave the
physmal Hilbert space [49,50]. In terms of the densities 7i,+ =
\I/ai\llai with @ = R, L, the relation between the physical
fermions and the refermions reads

(22)

1
Ape + ALy = ﬁa@i
1
= ﬁ[(ﬁm + 0L1) £ (Pra + Pr2)]. (23)
We see that for the special point K = 1/2, where each
refermion carries charge \/g = 1/2, we can identify the

physical charge density operators on each wire j = 1,2 as
particularly simple sums and differences of the refermion
densities:

Pr1(S) + Pri(s) = 3 (Ary + Ay + A + Ap),

Pro(8) + Pra(s) = 3(Ary + Ay —Ar- — AL ). (24)
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We will now see that K = 1/2 also greatly simplifies the effect
of our intersection impurity.

2. The impurity at K = 1/2

The intersection term in Eq. (20) has turned out to involve
only the + field for any K, as long as we can neglect Gr. For
K = 1/2, however, we have the further great simplification
that the ¢, fields each appear in the exponent of the intersec-
tion term with the prefactor +/47 that one has for a product
of a left-moving refermionized field operator with a right-
moving one. Thus, for K = 1/2, indeed, the intersection can
be expressed by refermions without additional string operators
and naturally the intersection will not lead out of the physical
Hilbert space. Choosing a representation of products of the
Klein factors such that n; ML+ = —i, we can thereby cast the
complete total Hamiltonian at K = 1/2 as

A=Y Z[ds{\@;,(zpaias)%r}

a=R/L r=%
—i2V {0, (0) = W) Fpp ()}, (25)
in which the intersection term is now merely a single-particle
scattering impurity at s = 0.
We can diagonalize this H straightforwardly by expanding
the refermionized field operators in the basis of single-particle
energy eigenstates,

Ury(s) = dk ™ (0(—s)ar+

1
=/
+ O[T arks — Rarr+]),

Upi(s) = dk e™™ (0 (s)ap+

1
=/
+O(=NTarrs+ + Ragr+]),

Ur_(s) = dk e®ag_,

7

U, _(s) = dke ®a,_, (26)

7=/
2
where 6(s) is the Heaviside step function and the transmission
and reflection coefficients are
2y 1= V?
1+ VY 14+ VY
which obey R? 4+ 72 = 1.
One can check by straightforward integration that inserting

the expansions (26) into the refermionized Hamiltonian (25)
produces

27

H= > Y / dkka!,, agrs. (28)

a=L,R *

We therefore see that negative k modes in the expansion (26)
have negative energy with respect to the Fermi energy, and so
the usual particle-hole transformation will mean re-defining
okt —> 6;,( 4 for all k¥ < 0. Normal ordering will then mean
moving all daggered operators to the left, after performing the
particle-hole transformation.

We have now diagonalized the many-body Hamiltonian
(25) into (28) through the expansion (26) of the refermionized

field operators into fermionic creation and destruction opera-
tor for orthogonal normal modes; and we have expressed the
observable charge density operator in terms of bilinear func-
tions of the refermionized field operators. We are therefore
ready to compute the exact time-dependent expectation values
not only of the charge density itself, but of any functions or
functionals of the charge density, for our Luttinger intersec-
tion at K = 1/2. The only remaining question is: What initial
quantum states do we want to evolve?

B. Incident charge density waves

For intersecting wire problems like ours, it has been cus-
tomary to compute conductances for DC currents through the
intersection that may result from differing voltages (chemical
potentials) applied to the wire leads. The simplicity of the
Luttinger intersection problem in our K = 1/2 case, how-
ever, will allow us to compute much more general time-
dependent results for propagation of charge density wave
packets through the intersection, as in the experiments re-
ported in Ref. [5]. Continuous AC waves can be recovered in
the limit of extremely broad packets. Continuous DC currents
can also be represented by taking very broad packets of very
long wavelength, since the region near the crest of a moving
wave looks just like steady current.

States with incident charge density wave packets can
be prepared in experiments by applying localized time-
dependent potentials far away from the wires’ intersection,
for example by shining maser pulses onto the leads, or by
applying time-dependent voltages via capacitively coupled
gate electrodes [5]. Both these methods effectively apply
arbitrary time- and space-dependent external potentials that
couple to the local charge densities in the wires. We show in
Appendix B that driving our refermionized system (25) in this
way can prepare an initial quantum state with arbitrary charge
density wave packets converging onto the intersection from
all four leads, including the limit of DC currents driven by
constant voltages.

We further show in Appendix B that the evolution under
(25) of this initial state can be represented simply if we use the
Heisenberg picture of quantum mechanics, in which quantum
states are time-independent and quantum fields evolve in
time. In the Heisenberg picture, the quantum state which
represents the experimental initial state with incident charge
density waves will be simply the ground state of (28) (i.e.,
the state which is annihilated by all dys for k£ > 0 and by
all &Zk . for k < 0). The initial charge density waves will
be fully and exactly represented by multiplying the time-
dependent Heisenberg field operators by certain c-number
phases. Other than these c-number pre-factors that represent
the initial charge density wave packets, the only Heisenberg
evolution of the fields will be that generated by (28), namely
Aokt (1) = Aape™™.

The result that we derive in Appendix B is

o 1 . .

\IlR_ (S, t) — _el.AR,(Sfl‘) dk elk(sft)&Rk_’
V2w

N 1 A (s (s

U, _(s,1) = me—zALJa-ﬂ) /dk e—zk(a+r)&1‘k7,
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Upi(s,t) = % / dk e*CTD([0(—s) + TO(s)]
1AR+(Y t)aRk R@(s)e_iA“(l_S)&LH),
U, (s,1) = \/Lz_n / dk e *ST([0(s) + TH(—s)]

x e—i.AL+(S+t)&Lk+ + Re(_s)ei.ARJr(—t—s)&RkJr )
(29)

Here the c-number functions A,+ define the initial charge
density wave packets; we will discuss some explicit examples
below. From now on we will express all of our results in
terms of R and T rather than of the intersection strength V' in
Eq. (25). We will assume that a wide range of R and 7 values
are possible, for suitable microscopic parameters of the wires
and their intersection, and we will choose particular R and
T values for illustrative purposes, to show most clearly the
kind of qualitative behavior that can result from the Luttinger
intersection.

Although it is easy to confirm that (29) is a solution to
the Heisenberg equations of motion generated by (25), it may
seem surprising that the entire effect of the driving fields is
to give the fields c-number phase factors. If one na1vely con-
structs the charge density (24), one might suppose \I!()(illlodE
to be completely unaffected by any c-number phase factors,
and therefore conclude that we have no charge density waves
at all. This conclusion would be wrong, however, because this
is one of the points at which we must recall that our quantum
fields must all be projected into the subspace of many-body
Hilbert space within which the fermion dispersion relation is
linear, by smearing out short wavelengths. As we review in
Appendix B, the actual results when this is properly done turn
out to be, for example,

:\TI;_(S t)‘i’ _(s,t):

1 0
_2_3_“4 (s =1

— / dkdk' & %5 a7 ag_:,  (30)

where : - - - : denotes normal ordering after the particle-hole
transformation for all negative X modes. Thus (27) '3, A,
are precisely the charge density waves that we wish to study.
The more complicated effects of the A, phase factors in the
W, (s, 1) fields will be the main results of our paper.

C. Heisenberg time evolution of charge densities

We can now insert our Heisenberg evolutions (29) into our
expressions (24) for the local charge densities, performing
the correct spatial smearing as explained in Appendix B, and
discarding all constant Fermi sea contributions. If we define
=£; tobe +1 for j = 1 and —1 for j = 2, and use the identity
T2 =1 — R?, then we find that the Heisenberg-picture time-
dependent charge densities can be written as sums of three
kinds of terms:

Paj(s,1) = Py (s, 1) + sgn(s)0 (£us)
x [pels| — 1) + px (Is| — )],
31)

Here, p? ; for « =R, L is simply the charge propagation
that we would have if we had two separate wires, with no
intersection:

Paj(s.1)
dkdK o o ror i i
= \/T ei“ (e=k)C t)(:alk/ Agk+ - Zl:] :alk,_aak_:)
1
+4—a—(u4a+(5 Fa 1) xj Ag—(s Fa 1)) (32)

The other two terms pcx in Eq. (31) are the same for
both wires 1 and 2, and their contributions to the charge
density are both odd functions of position s along the wires.
Their contribution appears in the left-moving charge only for
s < 0 and the right-moving charge only for s > 0, and their
time evolution is to move outward in s away from the origin
in either direction, so it is clear that they both have to do
with effects that have propagated through the junction. We
distinguish them as two separate terms because they are of
significantly different forms. The first term has been labeled
with a “C” subscript because it is more conventional and
convenient, in that it is a combination of local charge density
operators of the usual kind, with separate products of left- and
right-moving operators:

pe(ls| —1)
RZ
= 5o | dkdk’ e NS0 al apgy: — 1y, ges o)
RZ
+ o (AL (€= 5D = A (sl = 1)), (33)

where A" denotes the derivative of A with respect to its
argument, whatever that may be. The final term px is in
contrast more exotic, in that it is a cross term which mixes
left- and right-moving modes:

px (Is| —1)
_RT
=~ dkdk’
T
x (kKO0 il Ars (ol -0+ Au=IDIgT ) 4 HLG),

(34)

We can note that both p? ; and pc are simply sums of
quantum terms and classical terms, neither of which involves
the other. The more exotic term pyx, however, is not a simple
sum of separate quantum and classical pieces. To understand
what all these terms mean, we can now proceed to compute
some experimentally observable expectation values.

D. Expectation values of charge density and current

All the operators in Eq. (31) have ground state expectation
value zero; their effects are only seen in higher-order corre-
lation functions. The time-dependent expectation value of the
charge density is therefore given entirely by the classical terms
in Egs. (32) and (33), consisting of various sums of derivatives
of A, functions. To see the effects of our Luttinger intersec-
tion we will now focus first of all on the DC limit in which
time-independent potentials drive constant currents, and then
on a number of simple scenarios in which the derivatives
of the A,+ functions are all Gaussian packets (so the A,+
themselves are various integrals of Gaussians).
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1. Expected currents in the DC limit

Since our subscripts & and L, R are already used to denote
other things we will refer to a time-independent potential
at the left-hand end of wire j=1,2 as Uy;, and at the
right-hand end as Ug; (using W and E to stand for “West”
and “East”). With this notation the A, (s, ) obtained by the
methods of Appendix B are sums of terms proportional to U
and Uy ;, with the functional forms of various error functions
(integrals of Gaussians) of which the spatial width tends to
infinity. For the currents in each wire these then imply ground
state expectation values which are independent of position
and time, and which turn out to depend only on the potential
difference U; = Uy ; — Ug; across each wire:

I; = (01410 = (r;(s, 1)) = (Pr(s, 1))

_ ! U 722(U + Us) (35)
T4\ 2 T
Both currents are necessarily uniform along each wire sep-
arately in this steady state scenario because the relevant two-
body tunneling terms that we have retained in our Hamiltonian
do not allow any net charge transfer between the wires. If
U =U,=U, thenwehave I, =L, = (1 — R)U/(4r), im-

J

_ (+D-1)?

L,
g.ARi(s —t) =Agie” A

s—D+1)2

1 _
ALl 1) = Ane i

cos[ko(s + D —t) — Sri] £ Appe”  #2

coslko(s — D +1) — 8p1] £ Appe™ 2

plying that the junction adds resistance to the paired Luttinger
channels.

A similar result is obtained for the K = 1/2 case in
Ref. [42], except that in the scenario of Ref. [42] the junc-
tion affects all channels symmetrically, whereas our junction
only affects the + modes. Adding the same kind of junc-
tion effect to our — mode would add a term of the form
— % (R?/2)(U, — U») to (35), yielding I; o U;. Because our
junction in contrast only affects the + mode, due to the
topological constraints from chirality that we assumed from
our model microphysics of edge state modes, our junction is
a transistor, with the current in each wire depending on the
voltage across the other. A voltage across wire 1 can drive a
current in wire 2, and vice versa. If the voltages are opposite,
U, = —-U, = U, then we have I, = —I, = U/(4x), without
any increased resistance from the junction.

2. Expectation values of charge density for wave packets

We show in Appendix B how one can generate arbitrary
incident charge density wave packets by applying appropriate
time-dependent potentials to the ends of the wires. For illus-
tration, we will therefore now take specific cases of the form

_ (stD=1)?

coslko(s + D —t) — Sro]

s—D+1)2

coslko(s — D +1t) — 812]. 36)

Here D represents the initial distance of the packets from the origin, while A is their width; A is much smaller than D but much
larger than the wavelength 1/kq. The amplitudes A, ; and phase shifts §,; represent experimentally tunable parameters. In general
the four packets could all begin at different distances from the intersection, but interesting effects only appear if they overlap,
and so we set all initial distances equal to D.

Inserting these particular A, in the ground state expectation value of the total charge density (0[p;|0) = (0]pg;10) +
<0|ﬁLJ|O>, we find

D—1)? (s—D+t 2

(01p;(s, 1)]0) = Agje™ % coslko(s + D — 1) — g;] + Aje” + coslho(s — D +1) — 8]

_ Usl+D=?
A2 Z (Apj coslko(|s| +D — 1)+ 8.;] — Agj coslko(|s| + D —t) — g;1). 37

j'=12

R2
+ sgn(s)Te

We will now specify some particular examples of A, ; to show how the intersection affects charge density wave pulses.

For t <« D, the whole R? term is negligible for all s, and we simply have four charge density wave packets converging on the
origin from all four directions, with independent amplitudes and phases.

For ¢ > D, however, when all four packets have propagated through the intersection, the R? term is no longer vanishing. If
we look near s = ¢t — D in this limit, far to the right at late times, we will see

R2
(O|,bj(l — D+ As,1)|0) = ARj cos[kgAs — ajR] + 7 Z (ALj’ cos[koAs + SLj] — ARJ" cos[kgAs — 5Rj]) (38)

j'=12
while if we look far to the left near s = —(¢r — D) at late times we will see
RZ
<0|,6](D —t+ As, 1)|0) = AL]' cos[koAs + (SjL] — 7 Z (ALjf cos[koAs + SLJ‘] — ARj’ cos[kgAs — (SRj])- 39)
=12

(

A few examples will show that the intersection provides
nontrivial scattering of the incident charge density waves.
Consider the case of a single wave packet incident from
the north-west lead; this means that Ag; is the only nonzero

amplitude. At late times we find this packet transmitted to the
north-east in wire 1 with reduced amplitude Ag; (1 — R?/2),
and reflected back to the north-west in wire 1 with amplitude
Ag1R?/2. Transmitted waves also appear in wire 2, with equal
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(a) Incident Emitted
A A
(b) Incident Emitted
~ vf/ \W\M W/
(c) Incident Emitted
WM e
(d) Incident Emitted
A -
/J\P /VV\

FIG. 3. Expectation value of the local charge density along the
two intersecting wires, for various pairs of incident charge density
wave packets, all in the illustrative case R? = 72 = 1/2. The height
of the ripples is the local charge density. All packets are identical
except for wave phase; in particular their patterns of charge density
are either equal or opposite in sign. The two packets in each pair are
timed to overlap at the intersection. Plots labeled “Incident” show
the charge density at a time shortly before the packets have reached
the intersection; plots labeled “Emitted” show the outgoing packets
shortly after the packets have traversed the intersection. In (a) and
(b), incident packets come from opposite ends of wire 1, with phases
equal (a) or opposite (b). In (c) and (d), the incident packets come
from the left in both wires, with phases equal (c) or opposite (d). The
relative phase of the two packets determines whether or not they will
split as they pass through the intersection.

and opposite amplitudes Az, R?/2 in the two directions. The
total charge traveling outwards from the intersection is thus
exactly equal to the incident charge.

Now look at cases with two incident packets; see Fig. 3. If
the two packets are both incident in wire 1, coming from both
left and right with equal amplitudes but arbitrary phases, then
the packets excited in wire 2 by Coulomb dragging at the in-
tersection will have amplitudes proportional to R? sin[(8z; +
812)/2]. If on the other hand our two incident packets are in
separate wires, consider them both to come from the left with
equal amplitude, by setting Aog = Ajg = A and A, = Ay =
0. From (38), we find a more complicated phase-dependent
transmission pattern. For 8,z = 81, it reduces to two identical
packets transmitted to the right in both wires, but with reduced
amplitude (1 — R?)A, while two identical reflected packets
propagate to the left with amplitude R*A. If the two drives and
packets are exactly out of phase, however (8, = 81 + 7),
then both packets are transmitted in their wires without any
reflection or attenuation, but only a phase shift. In effect
the two-wire system in this case can be said to have an

(a) Incident

Emitted

(b) Incident

FIG. 4. Diagonally crossing axes show the expectation value
of the charge density as in Fig. 3, again for the illustrative case
R? = T?=1/2. (a) shows a single incident wave packet dividing
at the intersection into four outgoing packets. (b) shows four con-
verging packets, identical except that the packets coming from the
right have opposite phase; the packets of charge density expectation
value annihilate each other at the intersection. In both panels the
horizontal blue axis shows the density-density correlation function
between the two wires, at the points joined by the vertical lines. For
the single incident packet in (a), some of the incident energy and
information is emitted in correlated quantum noise that is generated
as the packet crosses the intersection. For the four incident packets
in (b), the entire incoming signal is transformed into quantum
noise with zero expectation value but nonzero two-point correlation
function.

impedance which depends on the relative phase of the incident
packets. Both of these phase dependence effects in two-packet
transmission may potentially be exploited for interferometry.

A particularly striking example appears if we have four
incident packets with equal amplitude A,; = A, but set the
phases dz; = 4, §1; = m — 4. In this case, the outgoing pack-
ets in all four leads have the same reduced amplitude A(1 —
2R?). If the case R?> = 1/2 could be achieved, the incident
packets would all annihilate each other, with no outgoing
packets surviving! See Fig. 4. Even for less extreme values
of R, however, it is clear that the intersection is somehow
reducing the total intensity of the incident waves.

In fact this reduction occurs in general, even with fewer in-
cident packets. This may be surprising, because we have seen
that R? + 7?2 = 1, implying exact conservation of refermions
through the intersection. Our waves here are in the expec-
tation value of the charge density, however, rather than of
refermions, and we must note that it is indeed the squared
amplitude R? which appears in Eqs. (38) and (39), rather than
R and 7T themselves. This means that total charge emitted
from the intersection, which is proportional to the amplitude
of the charge density waves, is always exactly equal to the
total incident charge.

The intensities of charge density waves are proportional
to the squares of their amplitudes, however, so terms with
R* will appear for the wave intensities in our charge density
expectation values, and the total ratio of emitted intensity to
incident need not sum to one. Specifically, in fact, Egs. (38)
and (39) imply that the total integrated intensity of incident
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waves in the expectation value of charge density is pro-
portional to A%l +A12‘2 +A12e1 +A12€2, while the total emitted
intensity in the expectation values is proportional to

A7+ AT, + ARy + Ajy — RPT*(Ari + Ago — ALt — A,
(40)

which in general is less.

This does not of course mean that the intersection is
destroying energy or information. All the waves that we
have so far discussed are patterns in the expectation value
of the charge density, which is simply the average of the
charge densities that are observed in many runs of the same
experiment. What our result therefore means is that, unless
RT or Ag; + Ars — A1 — A, should happen to vanish, the
intersection transfers some of the incident information and
energy from classical charge density waves, which look the
same in every run of the experiment, into quantum fluctuations
which vary randomly from run to run, and over many runs
average to zero.

These fluctuations whose average value is zero can sys-
tematically carry information and energy, however, because
they are correlated. To see this, we can compute the time-
dependent density-density correlation functions.

E. Charge density correlation functions

The density-density correlation function in the ground state
is defined as

Sij(s, 8", 1) = (01 pi(s, 1)p; (s, 1)]0)
—(01pi(s, 1)|0) (0]p,(s', )[0).  (41)
Inserting (31) into (41) yields

Sij(s, 8", 1) = — %j _ R? sen(s)sgn(s)
(s — s 8m? (Is|+15])?
+SX(S, S/,l), (42)
where
2
Sx(s.8'.1) = — 5= sgn(s) sgn(s')
=2 Ari (Is|=t) = Agy (I8 =)+ Apy (= [s)—Ar (t—|5'])
Xsm( R+ t R+ t2L+f L+ )

(sl —1Is'D?
(43)

is the same whichever wires the points s and s may be on.

The first term in Eq. (42) is simply the usual Luttinger
liquid correlation function; it is due to ground state fluctua-
tions and is present regardless of any experimentally gener-
ated charge density waves. It describes correlations decaying
quadratically with distance between any two points in each
wire, but not between any points on different wires. The
second term in Eq. (42) is also a time-independent property
of our system’s ground state; it is a sort of vacuum polariza-
tion effect localized around the s origin. It implies that the
charge densities on the two wires become correlated near the
intersection.

The final term Sy is only nonzero if there are incident wave
packets or currents. In the case of DC currents driven by time-
independent potentials Uy ;, U j, the calculations described in

Appendix B provide

A _
.AR+(S —1) = \/_%(le + Uvm)[@l‘f(%) — 1],

A
App(s —1t) = \/_%(Um + UEZ)I:erf<¥> + 1:|, (44)

where A — oo. Inserting this in Eq. (43), we consider |s| —
|s’| small compared to A and expand |s| and |s'| around (|s| +
|s’)/2 as a Taylor series in £(|s| — |s'|)/2. In the limit A —
oo only the first terms in these expansions survive, yielding

S ') = Rz(l _R2) /
x(s,8,1) = ngn(s)sgn(s)
sin’[(Un 4+ Ua)(Is| = Is'D)] 45)
(sl = 1s')?

for U; = Uy ; — Ug;. The analogous current-current correla-
tion function is simply Sx without the sgn(s)sgn(s’) factor.

When we compare (45) with our DC conductance result
(35), we see that precisely in the cases of U; 4+ U, # 0, where
the junction provides additional resistance in comparison to
two separate wires, there is additional quantum noise in the
local currents and charge densities in our two wires. The px
terms in the charge density operators, which are responsible
for Sx, depend on |s| — ¢ under Heisenberg evolution, and so
this quantum noise is clearly being continuously generated
at the junction by the incoming currents and propagating
outwards. We interpret the continuous generation of this noise
as a form of Joule heating associated with the additional
resistance of the junction.

We now turn to consider correlations in charge density
for our cases of incident charge density wave packets. With
our incident packets defined by (36), Ag,(x) is a constant
independent of x forx < —D, and Ay (x) is likewise constant
for x < D. Hence for all + < D, the Sy vanishes, and the
correlation function is simply equal to its time-independent
ground state value without any wave packets. This tells us that
until the incident charge density wave packets reach the inter-
section, they are really classical waves just like laser pulses,
with no effect on any quantum fluctuations. If the incident
packets are followed in many successive experimental runs,
they will appear exactly the same in every experiment, with
only the same quantum noise superposed that is observable in
the wires in their ground state, without any incident waves.

Once t > D and our packets have reached the intersection,
however, Sx becomes nonzero. For long-wavelength wave
packets, the approximation

. + s
Ap(ls] —1) = AR-&-(w - f)

o IsI+ 18] |s] — Is']
+AR+< > 1! 3

remains excellent until |s| — |s|" is so large that the (|s| —
|s'|)?> denominator in Eq. (43) makes Sy negligible anyway.
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We can therefore approximate

2 /
. / Is| + 15|
Sx(s,s', 1) = 1622 sgn(s) sgn(s’) ( Rt (T -
2 (Bl pory2
— sgn(s)sgn(s)e > &2

/
X Z (ALjf COS [ko(@
2

i

J=1

where in the last line we have inserted our particular exam-
ple of Gaussian wave packets. At |s| = |s'| the above result
becomes exact even for short-wavelength packets.

If we look at (47) for s’ = s, therefore, we see that there are
packets of correlated noise that exactly match the “missing”
wave intensity in the average charge density that we noted in
the preceding section. Over many runs of the experiment one
will see random run-to-run variations in the charge density
that are equally likely to be positive or negative, but which are
distinctly larger in both directions within the outgoing packet.
Even in the extreme four-packet scenario mentioned above,
where the expectation value of the outgoing packets vanishes,
the packets that are invisible in the average could still be
followed as propagating packets of enhanced fluctuations.
These packets of charge density perturbations, positive and
negative, are different in every run, and show no steady pattern
in any one wire, but the apparently random charge density
patterns in the two wires, and at opposite positions in each
wire, maintain a consistent relationship.

The correlations between fluctuations do not only exist at
s = s’, moreover; they extend over a packet-sized range of
nearby s and s, within outward-moving envelopes that follow
the outgoing wave packets of average charge density. The
same correlations that exist between nearby s and s” within the
outgoing packet envelopes also exist for s” close to —s, even
though at late times these points will be far apart. It makes no
difference for the correlation pattern whether the two points s
and s’ are even on the same wire or not. The intersection thus
induces long-ranged quantum correlations between outgoing
charge density waves, even when the incident charge density
waves are classical signals with no quantum correlations.

V. ENTANGLEMENT

The many-body quantum states which exist after our
charge density wave packets have crossed the intersec-
tion have long-range quantum correlations. Do they in fact
show entanglement? We can address this question straight-
forwardly, in a way that also sheds some general light
on the nature of these states, by examining a particular
subspace of the many-body Hilbert space, consisting of
the second-quantized fermionic excitations of two particular
single-particle modes. Two fermionic modes define a four-
dimensional Hilbert space which can be identified with a
two-qubit Hilbert space (under certain conditions [51-54]
which we will satisfy). The Peres-Horodecki criterion [55,56]

)
o)

, Is| 4+ 15T\
(- 15)

2
s|+ 18
+8Lj:| —Aij Cos [ko(%

+D—t)—3R,D ., @7
{

then determines unambiguously whether these two qubits are
entangled.

We first identify our two fermionic modes, by defining their
fermionic destruction operators:

1 Lo 22 A
- I ,—5(s'+D)"/a ’
by nl/4ﬁ/dse V(s 1),

1 1o 27,2 A /
A Ja /ds e 2T (8 ). (48)

That is, b; destroys a left-moving refermion somewhere
within the short distance a of the point s = —D, well to the left
of the intersection, while b, destroys a right-moving refermion
somewhere well to the left of the intersection, near the point
s =+D.

Since both of these fermionic modes involve ¥, fields,
neither of them is localized on either one of our two wires,
but rather both modes are delocalized between the two wires,
as even superpositions of being on both. Since one of our
modes is well to the left of the intersection while the other
is well to the right, however, these two modes are definitely
well separated in space. Although it might be difficult to probe
these nonlocal modes experimentally we can still analyze
them theoretically to reveal long-range entanglement in our

system. o
Note well that bqbl is not simply a Gaussian-weighted
integral of the charge density around s = —D, not even for any

combination of wires. That integrated charge density would
be the operator we would obtain if we integrated the product
1&[ i Y+ of refermion field operators over s around —D. The
product of the two integrals is not the same as the integral
of the product. The integrated charge density will have many
eigenvalues, and they can be quite large, since there could be
many excess charges within a of s = —D); but the eigenvalues
of 5?131 are only 0 and 1. We may say that 13;131 does not
ask the question, “How much charge is near —D?” but rather,
“Is there a refermion occupying this Gaussian orbital?”” There
might be many more refermions near —D with wave functions
orthogonal to that Gaussian, but for that particular Gaussian
wave function, Pauli allows no more than one refermion
occupant.

For simplicity we will assume that a is long enough for
our linear dispersion relation to be valid on its scale, but yet
very short compared to the wavelengths of our charge density
wave packets as defined by the c-number functions A, (s).
This means for example that we will be able to approximate

e—i.ALJr(t—S/) - e_iAL+(I_D)e+iAi+ (t—D) (s'—D) (49)
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within the range of s" in which exp[—(s’ — D)?/(2a*)] has
significant support. Since we will allow our charge density
wave packet to have arbitrarily large amplitude even though
its wavelength must be long compared to a, we will not
be allowed in general to further Taylor-expand the above
exponentials.

J

With the above approximation we can use Eq. (29) to
express 131,2 directly in terms of our refermion normal mode
operators dyy, since we can easily perform the Gaussian s’
integrals if we assume that the Gaussian factors in Eq. (48)
have negligible support for s > 0 in the case of b; and for
s <0 in the case of b,. The results are simply Gaussian
integrals in k space:

~ a . . 2 r Y2 A . oy _d 2 A
by = e dkezk(D—t)[Te—t.AH(t—D)e— TIHAL (DI g 4 ReArr D=0 p= 7 k= Ay (D-1)] are ),
N a . : a2 ’ 2 : a? / 2
2= ]'[,\{;1 dk elk(D*t)[TE*I.ARJr(D*t)efT[kaRJr(th)] &Rk+ _ Re*l.AL+(t7D)€77[k+AL+(17D)] &Lk+]- (50)

We can gain some understanding of what our many-body quantum state implies for the state of these two fermionic modes,
by computing the expectation values of their occupation numbers. We can do this for any time 7 by working in the Heisenberg
picture, since (50) correctly expresses the Heisenberg time dependence of the b; , as inherited from the Heisenberg-picture
1/7a+(s, t) that we gave in Eq. (29). Straightforward integrals reveal

(W1blh W) = [1 + TPerf(aAy, (t — D)) — RPerf(aAy, (D —1))],
(W|b}bs|W) = 1[1 + Rerf(aA], (t — D)) — Terf(aAy, (D —1))], (51)

where erf (x) is the error function
erf(x) = — f “dye (52)
X) = — ye .
NEL

Since A;, (s) defines the classical charge density pertur-
bation of our incident charge density waves, we can interpret
Qr =aA; (t — D) and Qg = aA; (D —1) as the classical
total charges, from the two left-moving and right-moving
charge density waves, respectively, within a Gaussian weight-
ing envelope of width a. Both these classical charges can be
positive or negative, representing charge density perturbations
around the ground-state Fermi sea. These classical charge val-
ues are not directly equal to the occupation numbers of either
of our refermion modes, since many orthogonal refermion
modes may contribute to the total charges Q; g, but Q; and Qg
do provide statistical biases to the occupation probabilities of
our particular Gaussian modes. At small x, we have erf(x) =
x + O(x*), and so if Qy r is small then the average occupation
numbers for our two modes are small positive or negative
perturbations around the ground state value of 1/2. (One-half
is the average occupation of local fermion modes that is
implied by a Fermi sea filling half of k space). Since the limits
of erf(x) as x — oo are %1, large O, ¢ can in principle bias
the occupation probabilities for our local refermion modes so
strongly as to make the average occupation numbers approach
zero or one. In fact, erf(Qy g) will approach quite close to 0
or 1 as soon as |Qy, g| rises much above 1.

Having defined our two fermionic modes, we can now pro-
ceed to identify the projection of the pure many-body quantum
state into their two-qubit subspace. Using the two-qubit tensor
product |mn) = |m)|n) for m, n = 0, 1, the density operator p
for the two-mode subspace has matrix elements

Pmnm'n’ = (\IJ|m’n/)(mn|\I/), (53)

where |W) is the many-body quantum state of our two-wire
Luttinger system, which in our case is a pure state. The

(

crucial step which makes this density matrix easy to compute
explicitly is to recognize that we can express the density
matrix in terms of expectation values of combinations of 51,2
and their conjugates, because if we define

|11) = b5b1100),  |10) = bT|00), |01) = b]|00), (54)
then we have

111)(00] = bb], 101)(10| = biby, (55)

as well as their Hermitian conjugates. Hence we have, for
example,

Poi.10 = (W|01)(10]¥) = (W[b}h|W), (56)

which we can compute because we know our many-body
quantum state |\V) in terms of occupation number eigenstates
of the k modes, and we know 131,2 in terms of the @, opera-
tors. We can even use our Heisenberg evolution of 1/, (s, 1),
in Eq. (29), to obtain the time-dependent Bl,z(t) in Heisenberg
picture, and thereby compute the two-qubit density matrix
Pmn.pyw () at any time.

Products of three b, » and 13*1 , operators provide eight other
off-diagonal mappings between |mn) and |m'n’y # |mn), mak-
ing twelve such off-diagonal operators in total. The diagonal
projection operators can be be realized as products of two of
the operators shown in Eq. (55), for example,

100) (00| = [00)(11|11)(00] = bybyb}b". (57)

A charge density wave of finite wavelength does not inject
or remove net charge in a quantum wire, but only redis-
tributes the charges present in the ground state. Our partic-
ular many-body quantum state |W) is thus an eigenstate of
total refermion number, and therefore the only operator com-
binations with nonvanishing expectation values have equal
number of refermion creation and destruction operators. This
implies that our two-qubit density matrix can only have two
nonzero off-diagonal elements, namely, o110 and its complex
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conjugate pjo.01, given as expectation values in Eq. (56)
above. The only other nonzero elements are the four diagonal
ones

piiin = (V|bib1b3b | W),
porot = (W|b1b}b}b | W),
£10,10 (‘I’|b b1bzb V),
poo.00 = (V|66 6,03 W), (58)

which sum identically to one because of the canonical anti-
commutation relation of the fermionic operators.

The Peres-Horodecki criterion tells us that a four-by-four
density matrix implies a state which is not separable in the
tensor product basis of the two qubits, if and only if the partial
transpose of the density matrix has one or more negative
eigenvalues. The partial transpose of Ouuwn 1S Punmnw =
Pmn'.mn- In our case, therefore, the diagonal elements of f) are
the same as those of p, while the only nonzero off-diagonal
elements of,?) are Pii,00 = Py = (\L’|l;;l;1|\l/).

Since Py, 18 thus block-diagonal we can easily compute
its four eigenvalues by solving only quadratic equations.
Even without evaluating the various expectation values, it is
straightforward to show that three of the four eigenvalues must
be positive; the fourth one will be negative, making the state
entangled, if and only if

(W |BSo1 W) > > (W|bTbibLby | W) (Wb B b,b5 W), (59)

Inserting our expressions for 131,2 in terms of a4, we find
that this reduces to the condition

4R*T?[erf(Qr) + erf(Qr)]?
> (1 — [erf(Q)I*)(1 — [erf(Qr)T?). (60)

Since the right-hand side of this inequality approaches zero
whenever either of |Qy g| is significantly greater than 1, while
the left-hand side will not vanish unless R7T is zero or Q; =
—Qg, it is perfectly possible to satisfy this inequality with
moderately strong charge density waves. Our intersection can
indeed generate long-range entanglement.

VI. CONCLUSIONS

In this work, we have calculated the exact propagation
of charge density wave packets in a system of two one-
dimensional channels for electrons which cross each other.
The intersection of the channels is described as a localized
impurity which couples two Luttinger liquids representing the
interacting electrons. We solved the system for the special
case of Luttinger parameter K = 1/2, observing a phase-
dependent splitting of wave packets. The Luttinger param-
eter K depends on electron-electron interactions, where the
effective strength of Coulomb interaction should in principle
be tunable by manipulating screening through varying the
thicknesses of the narrow “wires.”

In any system which is not exactly at K = 1/2 the coupling
constants of the tunneling processes at the intersection will
flow under renormalization either towards zero or to strong
coupling—in the limit of infinite wavelength. Our main re-
sults, however, concern finite frequencies and finite durations,

finite wavelengths and packets of finite extent. The running
of coupling constant away from the K = 1/2 fixed point with
increasing wavelength is very slow, being logarithmic. There-
fore, K = 1/2 is not a qualitatively unique case but should
be close, for the finite-time nonequilibrium observables that
we consider, to a finite range of experimentally achievable
conditions.

In addition to mixing and scattering incident charge density
wave packets, with a dependence on relative phase that one
expects for a coherent beam splitter, the intersection also
transfers some of the coherent incident excitations into cor-
related quantum noise that propagates outwards along with
the scattered classical packets. In extreme cases like the one
of four incident packets at R*> = 1/2 in which no outgoing
signals can be detected in charge density averages, the packets
of correlated noise may even be the only outgoing signal.

This occurs because, although the intersection at K = 1/2
is a linear beam splitter for refermions, it is still a highly
nonlinear beam splitter for charge density waves. In terms of
the bosonic fields whose quanta are Luttinger plasmons, the
intersection term 7 is a sine function whose Taylor expansion
includes arbitrarily high powers of creation and destruction
operators. If we were to treat T3 as a local perturbation to
the free and dispersionless bulk plasmons, we would see
that it could annihilate many low-frequency plasmons and
replace them with a single high-frequency one or vice versa.
This means that if a quasiclassical Glauber coherent state of
plasmons is affected by the intersection, it ceases to be a
quasiclassical coherent state. If a coherent wave packet is split
by the intersection into multiple packets, the nonlinearity of
the plasmon beam splitter induces quantum entanglement be-
tween the outgoing packets. This phenomenon can be detected
experimentally as correlations between local charge densities
at spatially distant locations.

As explained in Appendix B, the multiplication of the
fermion fields by c-number phases in the Heisenberg picture
is exactly the fermionic representation of a Glauber coherent
state of Luttinger plasmons. In the special case K = 1/2
the refermionized representation lets us solve the intersection
problem exactly, instead of perturbatively. We were thereby
able to confirm the decoherence of incident coherent states
and the generation of long-range quantum correlations in the
charge density. The qualitative conclusion that this kind of
thing will occur is more general.

Decoherence of incident charge density waves does not
even require the fermions to be interacting. It is straightfor-
ward to repeat our calculations without any Coulomb inter-
actions, by computing the evolution of charge density wave
packets under our noninteracting Hamiltonian A, p of Eq. (1).
The result is somewhat more complicated than inthe K = 1/2
case, because without interactions the left- and right-moving
fermions are each affected by the intersection independently,
and there is no mode like the “4+” mode at K = 1/2 that
is unaffected by the intersection. In the end one obtains
very similar expressions, however. The bosonization mapping
from fermions to plasmons is valid regardless of whether the
fermions have two-body interactions or not; classical charge
density waves are always Glauber states of plasmons; and the
intersection is always a nonlinear beam splitter for plasmons,
even in the absence of inter-fermion interactions.
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Except in special cases, however, there is no reason to
expect the decoherence of incident coherent waves to be
entirely destructive. If R is not too large, which should
always be preventable by weakening the contact between
the two wires, the reduction in total signal strength of the
average charge density will remain modest. Transmission
through the intersection by two overlapping incident waves
will then depend on the relative phases of those incident
waves, as in an optical beam splitter. The possibility of de-
veloping Luttinger interferometry should therefore be further
investigated. The fact that decoherence can also depend on
relative phases of the incident packets may even give Lut-
tinger interferometry an additional read-out channel for phase
information.

Decoherence and long-range many-body entanglement in-
duced by the edge-state intersection are also interesting phe-
nomena in their own right. Luttinger liquid theory shows
that interacting fermions in one-dimensional channels behave
generically at long wavelengths as noninteracting bosons,
and although this mapping itself is a remarkable feature of
quantum many-body dynamics, it makes it difficult in general
to directly see quantum many-body effects in bulk in one
dimensional systems. As in the Kondo effect, one looks to
impurities for dramatic fingerprints of quantum dynamics.
Here we have shown that the impurity representing an inter-
section between edge state modes can be a controlled source
of interesting quantum correlations that may be accessible to
direct observation by detecting correlations in charge density
quantum noise. These possibilities will also deserve further
study.

One may ask, for example, whether the decoherence that
is induced by the intersection is irreversible. In principle, it
is not: our Hamiltonian is Hermitian and has a time-reversal
symmetry. For each of our decohered states of quantum-
entangled outgoing waves, therefore, there exists a time-
reversed state of entangled incoming waves, which emerge
from the intersection as purely classical signals. Experimental
preparation of such entangled initial states will surely be
much harder, however, than simply applying time-dependent
classical voltages to the leads, as sufficed to prepare the
incident classical waves.

An interferometer requires a sequence of two beam split-
ters, though. If our entangled outgoing packets propagate
through curving leads that bend around and meet each other a
second time, then we will have correlated incident packets on
the second intersection. Will some of the information which
these packets are carrying as quantum noise correlations be
returned, by the nonlinear action of the second intersection,
into classical form? We intend to examine this question in
future work.

Finally, an extension of our work to one-dimensional spin-
ful interacting systems would be of great interest. It is the
remarkable feature of a Luttinger liquid that spin and charge
density excitations propagate with different velocities. At the
intersection, however, the fate of the spin-charge separation
is unclear. A beam splitter as proposed here might enable
an individual control of the separately propagating spin and
charge density wave-packets. We intend to further investigate
this question.
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APPENDIX A: RENORMALIZATION GROUP FLOW

1. Renormalization group equations

Let us regard the Lagrangian corresponding to a Hamilto-
nian of the form

1 1
S = E/dt /dxd><af+;af)q>+2givi,

=S0+S

(where we regard only a single channel model for brevity
and perform a Wick rotation to imaginary time t = it). The
first term is manifestly invariant under a rescaling (x, 7) —
(Ax, A7), since the respective rescaling factors of the integrals
and the differential operators cancel. The second term Sj,
however, is not. One can show that, when going to lower and
lower energies, the behavior of the system is well described
by that of an effective system with g; — g;(/) where the
functional form of the coupling constants is given by the
renormalization-group equations [41]
dgx

— =(d—- L) — S Z(Ai + A — Agig)s

Al
dl — A
i#J

where d is the dimensionality and S; is the volume of the d-
sphere.

2. Extended RG

So far, we have neglected the effect of backward (intrawire)
tunneling processes in our analysis. Let us therefore add to
Hip in Eq. (1) single-particle intrawire tunneling terms

AP =g Y. / ds8(s) 1 (s), (A2)
j=1,2
with
PR =t A+ He (A3)
i T VRiVL e

and to Eq. (2) the respective two-particle intra-wire tunneling
term

AR =G Y / ds8(s)V{" (s) (A4)
j=1.2
with
VR 3t g i+ H A5
0 = i g+ He. (AS)
In bosonized form, these terms read
iB(s) = +,°% sin VATK D, (s), (A6)
TA
. 1
Vj(R)(S) = —m cosv 16K (I)J(S), (A7)

and from their autocorrelation function we can determine their
scaling dimension A;, = K and Ay, = 4K and conformal spin
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to be zero - i.e. fj(.R) is relevant for K < 1, marginal for K = 1

and irrelevant for K > 1, while Vj is relevant for K < 1 /4,
marginal for K = 1/4 and irrelevant for K > 1/4. Performing
operator product expansions in standard way [41], we arrive
at the modified version of our (one-loop) RG equations (13),
with three coupled equations for the single-particle terms

dgr K+ K™!
o= I—T 8r — K gpgr.
d K+K™!
- [1 - T} g5 —Kgrgr.  (A)
d
==K g —K " gran
and three coupled equations for the two-particle terms
dG
— = (1=2K)Gr — (K™ = K)gj: — g,
G
P =1 =2K)G — (K™~ K)gy —gp. (A9)
G
d_lR = (1 — 4K)Gg + Kg>.

Note that, as before, the single-particle terms in Eq. (A8)
contribute to the growth of the two-particle terms Eq. (A9), but
not vice versa—when looking for a fixed point in parameter
space, we must first set the respective r.h.s of Eq. (A8) to zero.
Integrating Eq. (A8) numerically, we find that that the trivial
fixed point (gr, gg, gr) = (0, 0, 0) is still a fixed point for any
K < 1, but it is no longer a stable fixed point, since A;,, = K
means that 7 is relevant for all K < 1, i.e. only if the bare
value ggr(l = 0) is zero can the system flow to the (trivial)
fixed point (0, 0, 0). Additionally, due to the one-loop cou-
pling terms [the respective second terms in the right-hand side
(r.h.s) of Egs. (A8)], and specifically the term - - - — K~ ! grgp
in the third equation, the system will also flow away from
the trivial fixed point, even if gr(/ = 0) = O—unless either
gr(l=0)=0o0rgg(l=0)=0.

We find that a finite fixed point is given for K = 1/2 and ei-
ther gr(l =0) =gp(l =0)=0,0orgr(l =0) =gr(l =0) =
O0—where the former case is again the one we have previously
examined. Due to the large momentum-transfer involved in
inter-wire backscattering, it is reasonable to assume that the
bare value of gg(/ = 0) will always be smaller than that of
the inter-wire forward-scattering term gp (I = 0), and hence,
gr(l =0)=gp(l =0) =0 is the only physically relevant
case in which the system flows to a finite fixed point for repul-
sive interactions K = 1/2. In that case, the system again flows
to effective Hamiltonian H = Hy[P, O] + Hy[D,, O,] +
gF(l)VF where H; denotes the Gaussian model.

APPENDIX B: CHARGE DENSITY WAVES

In this Appendix, we review the properties of quasiclassical
coherent states in quantum mechanics and show how they are
related to charge density waves in one-dimensional fermions
with linear dispersion relations. We also derive the important
Eq. (29) in our main text, by deriving an even more general
result.

1. The quantum optics of a laser pulse

Photons in a nondissipative linear medium are noninteract-
ing bosons, the excitation quanta of the quantized electromag-
netic fields. If the fields are decomposed into normal modes,
each normal mode is a harmonic oscillator, and a quantum
state with n photons in that mode is simply the nth excited
state of the quantized oscillator.

If the electromagnetic field is driven by an effectively
classical time-dependent charge distribution, then this time-
dependent source couples linearly to the field. By spatial
Fourier transformation, it therefore provides a time-dependent
linear drive for every normal mode oscillator. For each normal
mode, we can write the Hamiltonian

H = wé'e + f(1)e" + f*(t)e, (B1)

where o is the normal mode’s frequency, f(¢) is the spatial
Fourier component of the classical source which matches the
field’s normal mode, and ¢ is the canonical lowering operator
for the normal mode oscillator, which thus destroys a bosonic
photon in this mode of the field.

With f — 0 the ground state |0) of H is the state anni-
hilated by &, ¢0) =0, and in general the eigenstates of H
are |n) such that &'¢|n) = n|n) for any whole number n. If
this field mode begins at ¢ = 0 in its ground state, |V)(0)) =
|0), but then nonzero f(¢) is turned on, the time-dependent
Schrodinger equation for the evolving quantum state of the
mode is solved exactly for any f(¢) by

o0

o e o [y (O]
] — i) =31y (@) ,
[W(r)) = e Ve ,,E:o o

yt =—i /0 dr' f(t")e =, (B2)

1 t
0(1) = 5/0 dt' [f )y ")+ f* &)y @)l

The time-dependent drive has a certain time-dependent quan-
tum amplitude to excite any number of photons. The larger f
is, and the longer time runs, the larger the amplitudes become
to have excited more photons.

The entire class of states of a harmonic oscillator having
the form

& n
) = ety T, (B3)
n=0 *

for any complex c-number y and real phase 6 are known in
quantum optics as Glauber coherent states [57]. Our solution
(B2) to the driven field mode problem means that classi-
cally driving an electromagnetic field mode from its ground
state produces a particular time-dependent Glauber state. The
Glauber coherent states are quasiclassical states; to see this
we note that they are eigenstates of the photon destruction
operator:

cyy=vly), (B4)

as is readily seen from the definition (B4) and the action
¢|n) = /njn — 1) of the lowering operator. In the particular
case (B2) where our photon mode has been classically driven
with f(t), therefore, we could define a new, time-dependently
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shifted photon destruction operator,
&d=e—y@), (BS)

which would at any time always annihilate the driven quantum
state |\W(1)).

Because the shift y(¢) is only a c-number, moreover, the
commutation relation [¢, ¢"] = 1 of the new destruction op-
erator remains exactly the same as that of the original operator
¢. The new operator is therefore every bit as valid as a photon
destruction operator as the original one, and by converting
our notation to use it, we can say with perfect validity that
the driven quantum state remains forever in the ground state,
but the destruction operator acquires a time-dependent shift
—y(t). We can in fact define an entire new time-dependent
basis of n-photon states,

_ B =y
)y = ==

effectively redefining photons to be quanta destroyed by &
instead of by ¢é. Using this new, time-dependent basis, it
becomes an exactly true statement that the classical source
neither creates nor destroys any photons at all, but only shifts
the original operators ¢ and ¢' by time-dependent c-numbers
y(t) and y*(t), respectively:

ly (©)), (B6)

e=¢+y@), B7)
where now ¢’ is the destroyer of photons.

All of the above is obtained even more straightforwardly
if we switch from the Schrodinger picture of quantum me-
chanics, where the quantum states are time-dependent, to the
Heisenberg picture of time-independent states and evolving
operators. In this representation the Heisenberg equation of
motion for ¢(¢) under (B1) is

iié =[¢ H] = wé + f1).

(B8)
If we impose the Heisenberg initial condition at ¢t = 0, we find
exactly &(t) = e¢(0) + y(t). So the Heisenberg initial-
time operator ¢(0) is simply our &, and the c-number shift
y (¢) is the exact Heisenberg evolution.

If we repeat the above analysis for every normal mode
of the electromagnetic field, we find that Hermitian quantum
field components of the form

d(r) = Z e*Té, + Hec. (B9)
k

are effectively shifted, through the classical sources, by clas-
sical fields:

) = &) + > [* () +Hel  (BIO)
k

This is what is meant in quantum optics by saying that a laser
pulse—or for that matter a radio broadcast—is a classical
electromagnetic field superimposed on the fluctuating quan-
tum vacuum.

2. Charge density waves of one-dimensional chiral fermions
a. Bosonization

Readers familiar with bosonization for one-dimensional
fermions with linear dispersion relations will quickly see how
to apply our discussion of photons to the fermionic system.
For a single wire the bosonization mapping from the chiral
fermionic field ¥, (s) to bosonic fields ®(s) and O(s) is

Lei[im/nl( d(s)—/7TK O(s)]

V2T A

where o« = R,L denotes right-moving or left-moving
fermions, and 4, is “+” for right movers and “—” for
left movers, respectively.

Because of the well-known subtlety of normal ordering
and the spatial smearing that projects all our fields into the
subspace of excitations with the linear dispersion relation, the
total charge density at position s is not simply a constant, as
one might think naively, but rather proportional to the bosonic
field ®(s):

Ya(s) = (B11)

o K9,
D i als) =/ = D). (B12)
T os

a=R,L

Since a time-dependent classical voltage applied to the wire
couples linearly to the charge density, it will therefore supply
linear drives to all the normal modes of the bosonic fields,
exactly as in the previous section of this Appendix.

The result in Heisenberg picture will be to shift the Hermi-
tian bosonic fields by some real classical field, and thereby to
multiply the fermionic fields 1, by c-number phases. Again
because of the subtlety of spatial smearing and normal order-
ing, the charge density will still be proportional to the spatial
derivative of the bosonic field ®(s). Since the applied classical
voltage has shifted this bosonic field by a certain classical
field, the quantum charge density has likewise been shifted by
a classical field. The general classical voltage creates classical
charge density waves in the system of fermions, and these are
represented by c-number phases in the fermionic fields.

b. Charge density

We can confirm that classical phases really do affect the
fermionic charge density, even without appealing to bosoniza-
tion, as long as we remember that the linear dispersion relation
which we assume only really applies within a finite range of
long wavelengths. We can ignore this, and calculate normally
with local quantum field theory, if we in the end project all of
our local field operators into the long-wavelength subspace.
As long as all the excitations that we actually have are well
within this subspace, the precise manner in which we define
the projection will not matter. A concrete way of projecting
is to smear the spatial arguments of our fields with a narrow
Gaussian whose width A defines our short-distance cutoff
scale:
dg J(E)e 5,

“P(s) = (B13)

7 |
2 A

Since we will be considering A to be very short compared
to all our excitation wavelengths, for most purposes we will
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be able to take the limit A — 0 and not have to consider the
spatial smearing at all. Correctly defining the local charge
density, however, is one case in which the smearing does
matter.

To see this, we can consider a right-moving fermionic
field operator which has been found, in a local calcula-
tion that ignores spatial smearing, to be multiplied by a

J

Ve =5 )2)@

1
T 2r)2A2

. , ne 2y ’
/.dkdk, et(kfk )s /dédé/ P (E2+§2)61[A(.V+$)*A(S+E )] t(ké’ kK'E' )&, &k

position-dependent classical phase A(s):
ei.A(x)

V2w

Implementing the smearing then means that the charge den-
sity, including the contribution from the Fermi sea down k ~
—1/x,is

J(s) = dk age™

(B14)

/dkdk’ /df;‘dé’ Sl HE =) JLAG) - AEN s KE 5T g

(B15)

For all A(s) that vary slowly compared to the cutoff length A, we can expand A(s + &) = A(s) + £ A'(s) + O(£?) and then

perform the & and &’ integrals, obtaining

VP (s) =

2i /dkdk/ ei(k*k/)sef%([k+A/(S)]2+[k/+A/(S)]2) &/TC &k
/4

/ dkdk &K = (A PHK + A ()P Dalay

1 [ /
o / dk e HIHAWE (B16)
—00

when we apply the identity &z,&k =: &z,&k : +8(k — k"0 (—k) for the fermionic normal ordering as standardly denoted with : - - - :.
For .A’(s) small compared to 1/A, we can evaluate the final c-number integral in Eq. (B16) as

1 2 7eV12 1 A 242 1 2,2 1 A's) 2.2 1 A/(S)
dk Al A )] —/ dk e ** ——/ dk *“+—/ dke?F = —— + A(s) = py +
2 w ) . 2 2 ), ¢ oy TA® =Pt
(B17)
[

for |A'(s)| < 1/1. We have recognized (v/21)~! = py as  right- or left-moving fermions, we have
the contribution to charge density of the ground state’s filled . el AL) e
Fermi sea, when the k-space cutoff 1/) effectively gives the Vo = N / dk ae™ (B19)
Fermi sea a finite depth. L

Since we assume that all our excitations will be on wave- yielding
lengths long compared to A, the normally ordered :&;,&k: will dkdk &%) a7 4 L
simply annihilate all the many-body quantum states that we Va()als):= “he i + A ),
consider, unless |k| and |k’| are both small compared to 1/A. (B20)

We have furthermore assumed that 4'(s) is small compared
to 1/A. For all the quantum states that we will consider,
therefore, we can take the limit A — 0 in the term in Eq. (B16)
that is proportional to :a,,a; :. We therefore conclude that for
the range of system states we consider, the charge density
without the Fermi sea contribution is

TP (s): = ¥ ()P (s) — po
% / dkdk’ & =" af oy oo A/(s)

(B18)

The c-number shift A’(s)/(27) in Eq. (B18) shows that the
¢A®) prefactor in 1 4 is really the Heisenberg picture’s way of
expressing the fact that externally driving the charge density
effectively shifts the Fermi level up and down locally. In
other words, it excites charge density waves that are truly like
surface waves on the Fermi sea.

Repeating the above calculation for left-moving fermions,
the change of sign e** — ¢~ in the field operator’s spa-
tial dependence requires a sign change A — —A in or-
der to maintain the same sign of the d;.4 contribution to
AT ()Y(s):. In general, therefore, for « = R, L denoting

where +, is + for R and — for L.

c. Generation of charge density waves

As we have already indicated in discussing the bosonized
representation of charge density waves, the classical charge
density waves that are analogous to classical laser fields,
and that are represented in Heisenberg picture by time- and
space-dependent classical phases multiplying the fermionic
field operators, are not only a set of theoretically interesting
quantum states. They are also precisely the states which are
generated by applying space- and time-dependent classical
voltages to a Luttinger liquid. The generation itself is not
really relevant to this present paper, since we will simply
assume an initial state at r = 0 in which certain classical
charge density waves have already been generated. The fact
that external voltages generate precisely this kind of classical
charge density waves, however, is what makes this particular
kind of initial state experimentally relevant, and not simply a
theoretical exercise.

For noninteracting fermions, including the “refermions”
of the case K = 1/2 in this paper, the result that classical
driving produces classical phases in the fermionic fields can
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also be obtained straightforwardly without bosonization, by
exploiting the same linear fermionic dispersion relation that
makes bosonization work. With an arbitrary time- and space-
dependent classical voltage f(s,t), the Hamiltonian for a
single wire of free right-moving fermions is

Hg = / ds (Py(~i0) 0k + F(s. OF P, (B21)

The Heisenberg equation of motion for the fermionic field
operator is then

i3 + 9)Yr(s, 1) = f(s, )Yr(s, 1).

Thanks to the linear dispersion relation, this is a first-order
differential equations and thus easy to solve:

Pr(s, 1) = ARSI Gp(s — 1 417, 17),

1 [+ u+s—t u—s+t
)= —= d , t
Ar(s, 1) 2/&; Mf( ) > + 1)

(B22)

(B23)

relates the time-dependent field to the initial field at# = #;, and
can be confirmed by straightforward differentiation to solve
(B22).

We now consider a scenario in which # is large and
negative, and the classical voltage is turned off before t =
0. If in this scenario we look only at t > 0, then for all
u>t—t;+s the integrand f((u+s—rt+1)/2,(u—s+
t —t7)/2) has a time argument (u — s+t —t;)/2 >t —t; >
0, and therefore vanishes because the classical drive has been
turned off long before any positive 7. For all r > 0 in this
scenario, then, we can replace the upper limit of the Ag
integral with infinity, and thereby find that Ag(s,7 —t;) =
Ag (s —1).

In a similar way, we can conclude for a left-moving
fermionic field that once the external driving voltage has
been turned off, all the later effects of the driving voltage on
Y. (s, 1) can be represented by

Yr(s, 1) = e AT (s + 1t — 1, 1),

1[5t u+s+t t+s—u
)= — d t
AL(S5 ) 2/;_[ Mf( 2 ) 2 + I)a

(B24)

with Ay (s, t — ;) — Ap(s + t) once the charge density wave
has propagated away from its source into the region of exper-
imental interest.

Since one can construct essentially arbitrary wave pack-
ets of coherent refermion density n,(s, t) = (27) ' 9,4, by
using an appropriate f(s,?), in our main text we have as-
sumed that the charge density has been given the form of
simple Gaussian packets with arbitrary amplitudes, carrier
wave numbers, and phases shifts. We have not shown the
relationships between these quantities and the generating po-
tentials f, except in the case of DC current, in which these
relationships define the conductances of the Luttinger system.

d. Generation of DC current
The limit of DC current generation in a Luttinger liquid can
be described within our formalism of localized external po-
tentials simply by taking time-independent f = U e~ (5ms0)*/A2

for constant U and A — oo. We consider a long wire with
potentials applied in two distant regions around sy = D for
D > A, to generate steady currents through the region of
interest |s| < A. In particular a potential with strength U =
Uy around sy = —D will generate a current of right movers
through the interest region, while a potential U = Ug around
so = +D will send a current of left movers in towards |s| <
A. (We use W, E for “West, East” to denote the potentials at
left and right ends of the wire, respectively, in order to avoid
confusion due to the fact that the potential at the left-hand end
of the wire sends in right movers and vice versa.)

Straightforward integration of (B23) or (B24) in this case
yields combinations of error functions

2 o —y
erf(x) = ﬁ dye™,
0

which approach %1 very closely for x > 1. In particular for
all |s| K A < Dandt; = —D, we find

A _
AR(S,[ —ZI) = I%Uw[erf<sA t) — 1:|,

A s+t
Ug [erf(T) + 1], (B26)

which indeed have the same forms Ag(s —t) and Ap(s + 1)
that we found for finite wave packets.

These imply very wide pulses of charge density moving
through the |s| < A regions:

(B25)

AL(S,I —1) = ﬁ

] U s—t
Pr(s. 1) = — s (s, t — 1) = ——e (3,
27 27
1 U, s+
pLs 1) = S0 AL(s 1 — 1) = ﬁe*%)z. (B27)

In the limit A — oo, there is a long-time interval |f| < A and
a large region |s| < A in which these extremely flat pulses
are essentially constant charge densities moving through each
other to right and left. The total current in the wire in
this region and interval is thus spatially uniform and time-
independent:

Uy — Ug

o (B28)

I=pr—pL=
We have hereby recovered the standard conductance e /(27 1)
of a 1D single channel wire in units where 7 and the charge
have been set to one, and shown that the A, (s 4= ¢) phases
used in our main text do indeed describe the coherent charge
density wave packets and pulses, including the limit of DC
currents, that can be generated by local potentials applied
far from s = 0. Furthermore we can note that the DC limit
coincides with the limit of a charge density wave packet of
infinite wavelength and breadth.

3. Charge density waves in the K = 1/2 Luttinger intersection

We are now ready to determine the combined effects in
our two-wire K = 1/2 Luttinger system of both driving to
generate incoming charge density waves, and propagation
through the intersection, by adding driving voltages fi 2(s, t)
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on each wire to our refermionized Hamiltonian (25):

1 — Hy = Z/ds{: Ul (=i 0 Wpe 4 U (+i0) Wy ) — 20V /dss(s){xi:;+®L+(s) — 9] Wi (o))
+

+ /ds (f1(s,0)p1(s) + fa(s, 1)p2(5)). (B29)

a. “Minus” fields

We begin by looking at the simpler part of our system, namely, the U,_ fields, which are not affected by the intersection.
Inserting (24) into (B29) reveals that for the W, _ fields the Heisenberg equations of motion under H are

d 0\ » 1 N
i<§ +4 5)%_@, 0 =316, = fols, O (5, ). (B30)

The solutions to (B30) with the initial condition \ifa_ (s,11) = \ila_(s) can easily be confirmed by straightforward differentiation
to be
e:taiAa,(s,tftl)

W, (s,1) = ———— | dk &*Fes=1H g,
N2 k
1 s+t Uu+s—t u—s+t u+s—t u—s+t

S ’ )= ’ u)|, B31

Are?) 4/#, ”[fl( 2 2 +’) fz( 2 > +1)} (B31)
1 st u+s+t s+t—u Ut s+t s4f—u

Avsls, 1) =7 d , n)+ , t)l

e 4/H u[f1< 2 2 +’> f2< 2 2 +1>]

where the d.— operators are the ones from (26) that diagonalize H without the f; driving. The A, fields will appear in the
more complicated solutions for \ifa+(s, t) that we will find below.

Just as we saw in the previous section, if the driving f; turn off before ¢+ = 0, then after t = 0 we can write Ag+(s,t —
t1) = Ags(s —t) and A;i(s,t —t;) = A;+(s +1). We can also freely absorb the s- and z-independent phases e into the
aqk— operators, since this phase multiplication alters neither the anticommutation relations of the d.;— operators nor their
diagonalization of H. We therefore obtain from (B31) the solutions for \i/a_(s, t) that are given in the first half of (29) of
our main text.

b. “Plus” fields

We now turn to the more complicated problem of the W, (s, ). Their Heisenberg equation of motion with driving included
reads

0 9\ - . 1 N
i<5 + —)‘I/m(s, 1) = =2V3()WL (0. 1) + SLfi(s. 1) + fols, DIWr+ (s, 1),

as
0 0\« . N 1 R
1(5 — £>WL+(S’ t) = +2iVa(s)Wrs(0,1) + E[fl (s,t)+ fol(s, )WL (s, 1). (B32)

These coupled equations are less trivial than (B30), but they are still a linear system of first-order differential equations that
can be solved exactly. If we already in advance absorb the time- and space-independent phases e* into the 4, operators
as we did above with their dq,— analogs, the solutions which apart from the absorbed e factors satisfy the initial condition
Wy (s, 1) = Wy (s) are

oiAR (s.1=11)

Wri(s,1) = ——=—=— [ dk & ([8(—s) + TOS)ags — RO(s)e AT 0ay,,), (B33)
V21
R e—iAL+(S-t—fl) ) o
Upi(s.0) = ——=— [ dke ™ *([0(5) + TO(=9)apes + RO(=9)e ™ ag,),
V2
A(t) = [Ar+(0,1) + AL (0,)]0). (B34)
[
Despite the apparent complexity of these solutions it is If we now consider as before that the driving voltages
straightforward to confirm them by differentiating, using which began at the large negative #; are turned off before t =
0,0 (£s) = £8(s) and §(s)0(£s) = (1/2)5(s). 0, for t > 0 we can again write Ay (s,1) = Ay (s Fo t). The
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new phase A must also be considered, however. It contains
A, functions with time arguments ¢ — f; F, s, and for large
enough |s| > ¢ — #; these time arguments may not be greater
than zero. If t — #; I, s < 0, then in fact the step function in
the definition of A will make A vanish, instead being equal to
any nonvanishing .4, function.

There is no need for us to consider any experimental
measurements at positions |s| > ¢ — #;, however. For all pos-
itive #, such positions are very far from the intersection
(recall that #; is large and negative). They are so far from
the origin, in fact, that there has not been time since #;

for any signal to have reached them from the intersection,
let alone to have reached them after passing through the
intersection from some more distant starting point. Mea-
surements at this remote locations will therefore show no
effects at all from the intersection, and we can ignore
them.

Once we restrict our attention to |s| <t —#; as well as
t >0, we see that At —t; F5) = Apyp (=t £ 5) + A (t F
s). Inserting this simplification into (B33) above completes
the derivation of the all-important Eq. (29) of our main
text.
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