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Isolating Kondo anyons for topological quantum computation
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We propose to use residual anyons of the overscreened Kondo effect for topological quantum computation.
A superconducting proximity gap of � < TK can be utilized to isolate the anyon from the continuum of
excitations and stabilize the nontrivial fixed point. We use weak-coupling renormalization group, dynamical
large-N technique, and bosonization to show that the residual entropy of multichannel Kondo impurities survives
in a superconductor. We find that while (in agreement with recent numerical studies) the nontrivial fixed point is
unstable against intrachannel pairing, it is robust in the presence of a finite interchannel pairing. Based on this
observation, we suggest a superconducting charge Kondo setup for isolating and detecting the Majorana fermion
in the two-channel Kondo system.
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I. INTRODUCTION

The quest for realizing non-Abelian anyons, like Majorana
zero modes (MZMs) and para-fermions, has led to an exten-
sive research due to their application in topological quantum
computation. [1,2] However, in spite of a decade of active
research and considerable progress, an unequivocal demon-
stration of MZMs in noninteracting systems is yet to be seen.
Moreover, the currently pursued Ising anyons are insufficient
for an all-topological quantum computation, which requires
Fibonacci anyons. The main option for realizing parafermions
is the edge states of fractional quantum Hall systems in prox-
imity to a superconductor (SC) [3,4]. Even so, an elaborate
technique is required to isolate the Fibonacci sector [5]. Here
we propose an alternative route of using the fractionalization
inherent to the Kondo effect to realize MZMs and Fibonacci
anyons.

The Kondo effect arises when the electrons in a metal
screen a magnetic impurity spin [Fig. 1(a)] so that the spin
effectively disappears at low temperatures [6]. When various
channels compete in screening a magnetic impurity, the spin
is overscreened and this typically leads to a fractionalization
of the spin and a residual degree of freedom at low
temperatures [7–12]. In the simplest case of two-channel
Kondo (2CK) model, the infrared (IR) fixed point (FP)
contains a decoupled MZM with ground-state degeneracy of
g2CK = √

2, similar to the edge mode of the one-dimensional
(1D) Kitaev model. The three-channel Kondo (3CK) has
g3CK = (1 + √

5)/2, corresponding to a Fibonacci anyon.
Can these anyons, e.g., the 2CK MZM, be utilized for
quantum computation?

Nowadays multichannel Kondo systems are not as out-
of-reach as before. Experiments on semiconducting quantum
dots [13,14] and charge Kondo effect [15–17] in the quantum
Hall regime [18,19] demonstrated 2CK and 3CK physics and
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there are also other proposals based on Majorana boxes [20],
Floquet-driven Anderson impurity [21], or magnetically frus-
trated Kondo systems [22–24]. Even though a MZM can be
achieved using simpler noninteracting setups, a 2CK realiza-
tion paves the way for producing Fiboancci anyons using 3CK
physics. However, there are various obstacles:

(i) It is unclear if the residual MZM in the 2CK model is
localized at the position of the impurity spin or delocalized
throughout the system.

(ii) Local relevant spin/channel symmetry-breaking per-
turbations destablize the nontrivial fixed point [25].

(iii) The gapless spectrum of the conduction band pro-
hibits singling-out the topological sector and braiding.

(iv) The coupling between two spin-impurities mediated
by the conduction band destabilizes individual 2CK FPs,
driving them to a Fermi liquid at the IR [26].

To solve these problems, we suggest to gap out the con-
duction band at low energies by a superconductor with a gap
� < TK . The low-energy effective theory of such a system is
only in terms of fractionalized degrees of freedom γ j localized
at the position of spin impurities, suitable for braiding. For
example, in the 2CK case, Heff = i

∑
m<n Mmnγmγn + O(γ 4).

The spin impurities do not need to move in real space and
a braiding in configuration space of Mmn is sufficient for
computation.

For simplicity and practicality we consider spin-singlet s-
wave pairing. For an infinitesimal Kondo coupling, the local
moment remains decoupled and it remains so, as long as TK <

�. [28,29] On the other hand, the TK > � regime is expected
to connect smoothly to the � → 0 limit. Indeed, for a single-
channel Kondo impurity at the strong-coupling FP one can
“pair” Kramers pairs of π/2 phase-shifted IR quasiparticles.

However, at the non-Fermi liquid ground state of over-
screend Kondo systems, an in-going single-particle state is
scattered into out-going many-body states [10] (no single-
particle amplitude in the 2CK case). In the absence of well-
defined quasiparticles, it is unclear whether it is possible at
all to open up a gap and how the nontrivial FP can smoothly

2469-9950/2020/101(23)/235131(7) 235131-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5439-9964
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.235131&domain=pdf&date_stamp=2020-06-11
https://doi.org/10.1103/PhysRevB.101.235131


YASHAR KOMIJANI PHYSICAL REVIEW B 101, 235131 (2020)

connect to a superconducting state far away from the impurity.
In fact, recent numerical renormalization group (NRG) studies
indicated that the 2CK FP is unstable against pairing [30].

Considering the potential application, we revisit the prob-
lem here. After a brief discussion of the weak-coupling
regime, we use dynamical large-N technique to show that
the residual entropy survives in the limit of a finite � < TK .
To gain insight about the more relevant SU(2) spin, we use
bosonization. We find that although the 2CK FP is unstable
against intrachannel pairing, it is robust against interchannel
pairing, and we propose a setup to isolate the MZM.

II. MODEL

The model consists of K channels of noninteracting spinful
electrons, proximity-paired to a SC and Kondo coupled to
an impurity spin. The Hamiltonian is H = H0 + H� + HK ,
where

H0 =
∑
k,a,α

εkc†
kaα

ckα
, HK = JK

∑
kk′,a,αβ

�S · c†
kaα �σαβck′aβ

. (1)

Here a = 1 . . . K is the channel index. In the SU(2) case �S is a
S = 1/2 spin operator, �σ are the Pauli matrices, and α, β =↑
,↓. We consider a singlet proximity pairing

H� = �
∑
k,a

[c†
k,a,↑c†

−k,a,↓ + H.c.], (2)

which for a wide conduction band of electrons, |εk| < D0,
results in the local Green’s function (without Kondo)

gc(z) = −2ρ
zτ 0 + �τ x

√
z2 − �2

log
D0 − √

z2 − �2

−D0 − √
z2 − �2

, (3)

with τ 0/x being Pauli matrices in the Nambu space.

III. WEAK-COUPLING

At the weak-coupling limit (small JK/D0) for any K , the
Kondo coupling evolves as dJK/d� = ρ(D)J2

K where d� =
−dD/D and ρ(ε) = g′′

c,ee(ε − i0+). This density of states is
shown in the inset of Fig. 1(b). As the cutoff D is reduced
JK (D) increases. TK (�) is defined as the D at which JK

diverges. If this happens before D is reduced to �, the Kondo
coupling has already renormalized to its infrared value and the
moment is fully/over-screened. Otherwise, the ground state
is an unscreened local moment, separated from the screened
phase with a first-order transition [28]. TK (�) as a function
of T 0

K = D0e−2D0/JK is shown in Fig. 1(b). The two phases are
separated by T 0

K /� = 1/2. To explicitly study SIR at T � �,
we use the large-N limit.

IV. DYNAMICAL LARGE-N

We use Schwinger bosons [31] to represent SU(N) spins
as Sαβ = b†

αbβ with α, β = 1 . . . N . The bosons have larger
Hilbert space than the original spin and a constraint b†

αbα =
2S has to be imposed to stay within the physical subspace.
Plugging this into HK and using a Hubbard-Stratonovitch

FIG. 1. (a) A Kondo impurity in a metal is screened within
a length scale of Kondo cloud [27] so that other electrons only
experience a e2iδc with δc = π/2 phase shift. Bottom: The problem
can be reduced to a 1D problem in the radial direction. (b) TK (�)
as a function of T 0

K . There is a threshold T 0
K = �/2 below which

the system remains in the local moment S = log(2) phase. The inset
shows the local density of states in the superconducting region.

transformation, HK reduces to

HK =
∑

a

χ†
a χa

JK
+

∑
aα

[χ†
a bαc†

aα + H.c.], (4)

where Grassmannian “holons” χ are introduced. Keeping the
ratios finite, but taking the N, K, 2S → ∞ limit, the Green’s
functions and self-energies of bosons and holons obey simple
forms as follows:

�B(τ ) = −K

N
gc,ee(τ )Gχ (τ ), �χ (τ ) = gc,ee(−τ )GB(τ ),

(5)
which can be solved self-consistently together with the Dyson
equations G−1

B (z) = z − λ − �B(z) and G−1
χ (z) = −J−1

K −
�χ (z). See Refs. [31–34] for details.

We first study the fully screened case K = 2S. The phase
shift Nδc, the residual entropy S, and the effective moment
T χ are shown in Fig. 2(a) as a function of T/T 0

K . The local
moment phase at T 0

K /� < 1 (red) and the screened phase at
T 0

K /� > 1 (blue) are clearly visible. Figure 2(b) shows the
same quantities in the overscreened case. While for T 0

K /� > 1
(blue), the moment disappears at low temperature, the residual
entropy (same value as the gapless system [8,10]) survives.
However, it remains unclear whether this large-N result holds
for N = K = 2 and 2S = 1. Therefore, to better examine the
SU(2) case, we use field-theory techniques.

V. BOSONIZATON

The Hamiltonian H in two dimensions can be reduced to
a sum of 1D wires (in the radial direction) terminated at the
position of the impurity (Fig. 3, Appendix A 1). We first
linearize the spectrum using caα = eikF xψRaα + e−ikF xψLaα

and use the recipe ψL/R,aα = FaαL/R exp [i
√

π (φaα ± θaα )] to
express the left/right-moving fermions in terms of conju-
gate bosons with commutation relations [φaα (x), θbβ (y)] =
− i

2 sign(x − y)δabδαβ and mutually anticommuting charge-
lowering operators Faα , referred to as Klein factors [35]. The
UV open boundary condition at the position of the impurity
corresponds to θaα (0) = 0 and FaαR = FaαL = Faα .
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FIG. 2. Conduction electron phase shift Nδc/π , thermodynam-
ical entropy S, and effective moment T χ as function of T/T 0

K for
(a) fully screened case K/2S = 1 and (b) overscreened case K/2S =
3. Blue curves correspond to T 0

K /� = 10 and red curves correspond
to T 0

K /� = 0.3. The calculation was done for 2S/N = 0.1.

VI. 1CK

In the single-channel case (K = 1) we define charge/spin
bosons according to φc/s = (φ↑ ± φ↓)/

√
2 (and same for θc/s)

in terms of which

H0 = vF

2

∑
μ=c,s

∫ ∞

0
dx[(∂xφμ)2 + (∂xθμ)2], (6)

and the proximity pairing becomes (I+ ≡ F †
↑ F †

↓ )

H� ∼ �

π

∫ ∞

0
dx cos

√
2πθs(x)[I+e−i

√
2πφc + H.c.]. (7)

The accompanying e−i
√

2πφc factor ensures that I+ always
appears with I− in the partition function. Whenever this is
the case, bosonic combination of Klein factors, e.g., I+ can
be replaced by 1 and fermionic ones by a corresponding
Majorana fermion. Thus, Eq. (7) leads to the pinning φc =
0, θs = √

π/2 or vice versa at the IR. An anisotropic Kondo
interaction bosonizes to

HK = J⊥
K

2
[S+S−ei

√
2πφs (0) + H.c.] − Jz

K√
2π

Sz∂xθs(0), (8)

where S− ≡ F †
↓ F↑. We use the unitary transformation U =

exp[iμSzφs(0)] to tune the system H → U †HU to the
Toulouse II [36] or decoupling [37] point. For any K , the de-
coupling point is defined as the choice of μ which maximizes
the scaling dimension for the transverse Kondo coupling J⊥

K

[38]. For the single-channel case, the bosonic factor ei
√

2πφs

can be eliminated by μ = √
2π . Moreover, φ̃(x) = φ(x) but

θ̃ (x) = θ (x) + μ
√

2Szsign(x), (9)

and the Hamiltonian becomes

U †(HK + H0)U =H0 + J⊥
K

2
[S+S− + H.c.] − J̃ z

K√
2π

∂xθs(0)Sz.

At the decoupling point, J⊥
K is highly relevant whereas the

term proportional to J̃ z
K = Jz

K − 2μ
√

πvF is (marginally) ir-
relevant. Via this term the conduction electrons “observe”
the state of the spin (along the z-direction) and entangle
to it, resulting in its decoherence. The strong coupling FP

corresponds to J⊥
K → ∞ and J̃ z

K → 0, i.e., a singlet between
the dressed spin S and the Klein-factor composite S .

Now we turn to coexisting Kondo and pairing terms. Due
to Eq. (9) the pairing term is modified by the unitary trans-
formation U †H�U , and the pinning of θs(x) depends on the
state of the spin. An infinitesimal J⊥

K
�S⊥ · �S⊥ cannot flip the

spin. However, a large J⊥
K can “melt” the bosonic solid of

θs(x) in an area ξK . Near the impurity, J̃ z
K is large and the spin

precession is negligible. But at long distances J̃ z
K → 0 and

the spin precession is set by J⊥
K which grows at low energies,

i.e., Sz(τ ) = eτJ⊥ �S⊥· �S⊥Sze−τJ⊥ �S⊥· �S⊥ is fluctuating in time, with
a rate given by J⊥. For θs(x) to follow this evolution, it
costs an energy vF

2 [∂xφs]2 = vF
2 [∂τ θs]2 ∝ [∂τ Sz(τ )]2 per unit

length. Hence beyond a certain distance, θs(x) can no longer
follow the spin and it is pinned to 〈Sz〉= 0. This defines a
characteristic distance ξK ∼ vF /TK (�) [27].

VII. 2CK

In the two-channel case (K = 2), we follow [9] and define
collective bosons according to⎛

⎜⎝
φc

φs

φ f

φs f

⎞
⎟⎠ = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠

⎛
⎜⎝

φ1↑
φ1↓
φ2↑
φ2↓

⎞
⎟⎠, (10)

and similarly for θμ. Again U = exp[iμSzφs(0)] with μ =√
π transforms HK to

J⊥
K [S+Fs(Fs f ei

√
πφs f (0) + H.c.) + H.c.] − J̃ z

K√
π

Sz∂xθs(0).

We defined four new Klein factors (Appendix A 2) in accord
with Eq. (10) and identified S−

1 = FsFs f and S−
2 = FsF†

s f .
Note that since S+ always accompanies Fs, the total spin
fluctuates only mildly. Representing S+Fs = d† with a Dirac
fermion d ≡ γ + iγ ′, and re-fermionizing the dim-1/2 oper-
ator ψL/R,s f ≡ Fs f ei

√
π [φs f (x)±θs f (x)], the Hamiltonian becomes

a resonant Andreev scattering

U †HKU → 2iJ⊥
K γ ′ηs f (0) − J̃ z

K√
π

iγ γ ′∂xθs(0), (11)

where ηs f (x) ≡ 1
2 (ψs f + ψ

†
s f ). It is safe to represent Fs f with

a Majorana fermion → �s f , here. The ground state of J⊥
K

term is thus a Schrödinger’s cat state [39] between the spin
and the pinning of the boson φs f (0) = 0,

√
π . This means the

difference of the spin in the two channels θs f (0), which is the
only nonconserved charge, strongly fluctuates [40]. The first
term of Eq. (11) hybridizes γ ′ with the conduction Majoranas
ηs f (0), and provides it with the scaling dimension 1/2. Near
this IR FP, the originally marginal interaction J̃ z

K , coupling
γ and γ ′, becomes a dim-3/2 irrelevant operator (the lead-
ing [41]). At the IR FP, γ is entirely decoupled [9] consistent
with the S = 1

2 log 2 residual entropy [8,10], realizing a MZM.
Can this MZM survive in a SC? The simplest form of SC

is an induced intrachannel pairing [cf. Eq. (7)],

H intra
� = 4�

π

∫ ∞

0
dx{cos

√
2πθs1(x) cos

√
2πφc1

+ cos
√

2πθs2(x) cos
√

2πφc2, (12)
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where we set I±
j → 1, as before. U †H intra

� U has the ef-
fect of θs → θ̃s as in Eq. (9). Far from the impurity the
two lines can be minimized independently. Since both θs1

and θs2 are pinned, θs f = (θs1 − θs2)/
√

2 is also pinned.
This means that φs f is strongly fluctuating and the term
J⊥

K iγ ′�s f cos
√

πφs f (0) becomes highly irrelevant. Thus in-
clusion of a small � destabilizes the 2CK FP, in agreement
with NRG results [30].

On the other hand, a singlet/triplet interchannel pairing has
the form

H inter
� = �

∫ ∞

0
dx[(c†

1↑c†
2↓ ± c†

2↑c†
1↓) + H.c.]

∼ �

π
{F†

c e−i
√

πφc [F†
s f e−i

√
πφ f cos

√
π (θs + θ f )

±Fs f ei
√

πφ f cos
√

π (θ f − θs)] + H.c.} (13)

using F †
1↑F †

2↓ = F†
c F†

s f and F †
1↓F †

2↑ = F†
c Fs f . Again, we can

safely replace Klein factors with Majorna fermions Fμ → �μ

because of the exponential factors and U †H inter
� U has the

effect of θs → θ̃s as in Eq. (9). Note that there is no θs f

here! This interaction tends to pin the φs f value and is benign
to the 2CK FP as the bulk pinning can smoothly connect
to the boundary value. The harmlessness of the interchannel
pairing can also be seen in a two-site problem, where the
addition/removal of a pair of interchannel electrons maps
the strong coupling to weak-coupling or vice versa without
affecting the channel isotropy. The possibility of coexistence
of interchannel pairing and 2CK FP seen here, can be verified
in future NRG studies.

VIII. MULTIPLE IMPURITIES

The case of two 2CK impurities coupled to the same bath
was discussed previously [26]. The double 2CK FP is trans-
formed to a line of FPs by the RKKY interaction JH �S1 · �S2

which becomes a marginal operator iJ ′
Hγ1γ2∂x�(0) at the

nontrivial FP. Here J ′
H is the renormalized coupling and � is

a linear combination of the spin bosons of each impurity [26];
the two decoupled Majoranas form a nonlocal charge qubit
whose state is dynamically measured (and decohered) by the
gapless ∂x� mode. The presence of a gap in the spectrum has
the additional feature of suppressing such decoherence effects
and reducing it to a static iM12γ1γ2 interaction discussed
before.

IX. EXPERIMENTAL REALIZATION

Based on the above discussion, we propose a modified ver-
sion of the charge Kondo setup [18,19] at zero magnetic field
to isolate the MZM in the 2CK case. In the simplest charge
Kondo effect, a spinless single electron transistor (SET) with
large charging energy is coupled to a spinless conduction bath.
The SET is tuned to a charge degeneracy point �Q = 0, 1e so
that the charge parity plays the role of the pseudospin. The
location of the electron, either in SET or the conduction bath,
plays the role of the conduction electron pseudospin [15]. The
spinful case provides the simplest realization of a two-channel
charge Kondo effect. Incidentally, this is ideally suitable for
combining with the previous discussion. A proximity pairing

FIG. 3. (a) The problem of three (multichannel) Kondo impuri-
ties in 2D can be mapped to (b) the problem of three Kondo impuri-
ties at the end of semi-infinite wires. This is so even in the presence of
proximity pairing of the host metal. Also various potential scatterings
(e.g., a scanning gate microscope) only modify the mutual Kondo
coupling and RKKY interactions among the impurities.

of the SET (or SET made of SC) and conduction bath with
singlet SC leads to purely interchannel pairing . Since the role
of the spin and channel are reversed, a singlet pairing in the
lead and the SET correspond to T± interchannel spin-triplet
pairing in the original basis, whereas Eq. (10) shows that
a T0 triplet pairing is benign to 2CK physics. Considering
c†

1↑c†
2↑ − c†

1↓c†
2↓ = c†

1→c†
2← − c†

1←c†
2→, we expect the later to

hold for all interchannel triplet pairings albeit with a π phase
difference, although this cannot be seen in abelian bosoniza-
tion. Such Coulomb-blockaded superconducting islands are
common in topological Kondo effect [20,42]. However, the
MZM here is produced by the 2CK, rather than by the band
topology.

Realization of the charge Kondo effect requires δE �
kBT � TK � EC where δE is the mean-level spacing, TK ∼
ECe−π2/2T is the Kondo temperature expressed in terms of
transmission T , and EC = e2/C is the charging energy. This
condition can be met in small metallic grains, e.g., the hy-
brid metal-semiconductor setup of Iftikhar et al. [18,19].
Alternatively, a purely proximity-induced superconductivity
in semiconductor heterostructures with large carrier mass can
be used. Since carrier mobility is unimportant, one possible
option is a dot with a large charging energy defined using
in-plane gates in a shallow 2D valence band hole gas [43,44].

X. DETECTION

The presence of the MZM has to be inferred indirectly; we
consider an additional normal lead (e.g., a scanning tunneling
microscope) weakly coupled to the SET to measure the con-
ductance between the two leads. At the 2CK FP, the coupling
of the probe channel is irrelevant [16,17] and a conductance of
G ∝ T is expected on resonance at T > � [16,17]. For T <

�, the capacitive coupling to the SET, with another scanning
SET might be a possibility, but its feasibility requires further
studies. Alternatively, entropy measurements along those is
Ref. [45] can be envisioned.

XI. CONCLUSION

We proposed to use Kondo-based anyons in proximity
with superconductivity for quantum computation. We found
that the residual entropy survives a gap in the spectrum,
particularly if the gap is produced by an interchannel proxim-
ity pairing. The presence of the gap in the spectrum protects
the Majorana fermion and the ground-state degeneracy against
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small symmetry-breaking perturbations. We suggested a su-
perconducting version of the charge Kondo setup for isolating
the MZM in the 2CK model.

Note added. After posting this paper we became aware of a
recent paper [46] that appeared online a few days before and
also seeks to use multichannel Kondo anyons for computation,
but in gapless systems. The two papers, however, do not have
any significant overlap.
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APPENDIX:

In these Appendixes we provide supporting documents for
some of the statements in the paper. Appendix A 1 shows that
the problem of N multichannel Kondo impurities immersed
in two and three dimensions can be reduced to a set of one-
dimensional problems, including the superconducting prox-
imity pairing term. Appendix A 2 summarizes our convention
for the Klein factors that are used in bosonization.

1. Dimensional reduction

For completeness, here we show how a problem of M
impurities in two dimensions can be reduced to a sum of 1D
metallic systems terminated at the spin impurities, appropriate
for field theory analysis. This is a generalization of the M = 2
case from Ref. [22]. We start from a two-dimensional system
described by H = H0 + HK + H� defined in Eqs. (1) and (2),
and generalize it to the case that there are M Kondo impurities
located at positions �dn coupled to the conduction band.

a. Kondo coupling

We consider M impurities located on a 2D plane at posi-
tions �dn (shown in Fig. 3). We have

HK =
∫

d2kd2k′

(2π )4
ψ

†
�k

�σ
2

ψk′ ·
M∑

n=1

Jn �Sne−i(�k−�k′ ). �dn . (A1)

We start by defining the fermions

ψnE =
∫

d2k

(2π )2
δ(εk − E )ei�k· �dnψ�k, (A2)

in terms of which the Kondo Hamiltonian is

HK =
∫

dEdE ′
M∑

n=1

Jnψ
†
nE

�σ
2

ψnE ′ · �Sn. (A3)

The problem is that ψnE do not obey standard anticommuta-
tion relations. Rather

{ψnE , ψ
†
mE ′ } = gnm(E )δ(E − E ′), (A4)

where

gnm(E ) =
∫

d2k

(2π )2
δ(εk − E )ei�k·( �dn−�dm ). (A5)

Representing the vector �dnm ≡ �dn − �dm in polar coordinates
by �dnm = dnm(cos φnm, sin φnm) we can write

gnm(E ) = kE

2π∂kεE

∫ 2π

0

dφ

2π
eikE dnm cos(φ−φnm )

= kE

2π∂kεE

∑
p

e−ipφnm Jp(kE dnm)ip
∫ 2π

0

dφ

2π
eipφ

= gE J0(kE dnm), (A6)

where

gE = kE

2π∂kεE
. (A7)

Remarkably, gnm depends only on mutual distances of the
impurities, measured by the corresponding wavelength kE dnm.
The matrix gnm is real and symmetric and it has real eigenval-
ues λn and can be diagonalized by orthogonal eigenvectors �un

where g�un = λn�un. So we can write gnm = ∑
p unpλpu∗

mp and
the orthogonality is

∑
p unpu∗

mp = δnm. Defining new operators
with

ψnE =
∑

i

uni(E )
√

λi(E )ψ̃iE , (A8)

and

ψ̃iE ≡ 1√
λi(E )

∑
n

u∗
ni(E )ψnE (A9)

we find that they are orthonormal

{ψ̃iE , ψ̃ jE ′ } = δi jδ(E − E ′), (A10)

and the Kondo Hamiltonian becomes

HK =
∫

dEdE ′ ∑
ni j

Jni j (E , E ′)�Sn · ψ̃
†
iE

�σ
2

ψ̃ jE ′ , (A11)

where

Jni j (E , E ′) = Jn

√
λi(E )λ j (E ′)uni(E )u∗

n j (E
′). (A12)

Although the Jni j couplings are complex in general, the re-
lation J∗

ni j (E , E ′) = Jn ji(E ′, E ) ensures the hermiticity of the
Hamiltonian. Whether or not a spin n couples the channels
i and j depend on the product of wave functions of i and
j at the site n, which can be tuned by moving potential
scatterings induced by scanning tips (Fig. 3). Next, we do a
Taylor expansion of Jni j (E , E ′) function around Fermi energy
and keep only the leading relevant term. HK can be written in
the matrix form [Jn]i j = Jni j ,

HK =
∑

n

�†(0)

[
Jn �Sn · �σ

2

]
� (0), (A13)

where � is a vector in m = 1 . . . M index and the spin is
implicit. As we see the impurities talk to all the channels
and scatter electron between all the channels. A result of the
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Taylor expansoin of Jni j (E , E ′) is that RKKY interactions will
be induced between the spins

HK → HK +
∑

i j

Ji j
H

�Si · �S j . (A14)

b. Mapping to 1D

The mapping to (unfolded) left-movers follows Ref. [22]

ψL(x, t ) = 1√
v

∫ D

−D
dEe−iE (t+x/v)ψE , (A15)

for x ∈ (−∞,+∞) with commutation relations

{ψ†
L (x), ψL(y)} = 2πδ(x − y). (A16)

Alternatively, we can work in the folded space of left and
right-movers defined as

ψR(x, t ) = ψL(−x, t ), (x > 0). (A17)

c. Kinetic term

As we saw above, the Kondo interaction involves M 1D
conduction bands pulled out of the 2D conduction band. The
natural guess for their kinetic energy is

H0( �d ) ≡
∫

dEEψ
†
nEψnE

=
∫

d2kd2k′

(2π )4
εkδ(εk − ε′

k )e
i
(
�k′−�k

)
· �d
ψ

†
�k ψ�k′ . (A18)

Summing over all the positions we have∫
d2rH0(�r) = δ(0)

∫
d2kd2k′

(2π )2
εkψ

†
�k ψ�k, (A19)

which is the total Hamiltonian up to a δ(0), i.e., the total
volume. Transformation from ψnE to ψ̃iE is a unitary trans-
formation at each energy and it does not change the kinetic
part. Therefore, we have

H0 →
M∑

n=1

∫
dEEψ̃

†
nE ψ̃nE . (A20)

d. Pairing term

Without loss of generality, we consider a channel-diagonal
s-wave singlet pairing

H� =
∫

d2k

(2π )2
(�ψ

†
k↑ψ

†
−k↓ + H.c.). (A21)

Let us look at

H+
� ( �dn) ≡ �

∫
dEψ

†
nE↑ψ

†
n,E↓

= �

∫
dE

∫
d2kd2k′

(2π )4
δ(εk − E )

× δ(εk′ − E )ψ†
k↑ψ

†
q↓e

−i
(
�k+�k′

)
· �dn

.

Summing over all the points gives a (2π )2δ(�k + �k′) term that
gives ∫

d2rH+
� (�r) = δ(0)�

∫
d2k

(2π )2
ψ

†
k↑ψ

†
−k↓, (A22)

which is our initial Hamiltonian up to the system volume.
Therefore,

H� → �

M∑
n=1

∫
dE (ψ†

nE↑ψ
†
nE↓ + H.c.)

= �
∑

i j

∫
dE (ψ̃†

iE↑ψ̃
†
jE↓ + H.c.). (A23)

2. Klein factors

Here we briefly review the treatment of Klein-factors fol-
lowing Ref. [35]. Denoting the total number of fermions μ

with

Nμ =
∫ ∞

0
dxc†

μ(x)cμ(x), μ ∈ {1 ↑, 1 ↓, 2 ↑, 2 ↓},
(A24)

the Klein factors have the property (no summation):

FμF †
μ = F †

μ Fμ = 1, (A25)

{Fμ, F †
ν } = 2δμν, (A26)

{Fμ, Fν} = 0, ∀μ �= ν, (A27)

[Fμ, Nν] = δμνFν, (A28)

[Fμ, φν (x)] = [Fμ, θν (x)] = 0. (A29)

In the paper we transform into the collective boson basis:

⎛
⎜⎝
Nc

Ns

N f

Ns f

⎞
⎟⎠ = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠

⎛
⎜⎝

N1↑
N1↓
N2↑
N2↓

⎞
⎟⎠. (A30)

In accord with this transformation, we define new Klein
factors Fμ for μ = c, s, f , s f that satisfy

FμF†
μ = F†

μFμ = 1, (A31)

{Fμ,F†
ν } = 2δμν, (A32)

{Fμ,Fν} = 0, ∀μ �= ν, (A33)

[Fμ,Nν] = δμνFν, (A34)

[Fμ, φν (x)] = [Fμ, θν (x)] = 0. (A35)

It can be seen that these any off-diagonal relation combina-
tion, like F †

μ Fν change the population of the collective modes
Nζ by integers and thus can be represented by a combination
of new Klein factors [35]. For example,

F †
1↑F1↓ = F†

s f F
†
s , F †

2↑F2↓ = Fs f F†
s . (A36)

In the paper, we repeatedly use these and similar relations.
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