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It has been known that encoding Boltzmann weights of a classical spin model in amplitudes of a many-
body wave function can provide quantum models whose phase structure is characterized by using classical
phase transitions. In particular, such correspondence can lead to finding new quantum phases corresponding to
well-known classical phases. Here, we investigate this problem for the Kosterlitz-Thouless (KT) phase in the
d-state clock model, where we find a corresponding quantum model constructed by applying a local invertible
transformation on a d-level version of Kitaev’s toric code. In particular, we show the ground-state fidelity in
such a quantum model is mapped to the heat capacity of the clock model. Accordingly, we identify an extended
topological phase transition in our model in the sense that, for d � 5, a KT-like quantum phase emerges between
a Zd topological phase and a trivial phase. Then, using a mapping to the correlation function in the clock model,
we introduce a nonlocal (string) observable for the quantum model which exponentially decays in terms of
distance between two end points of the corresponding string in the Zd topological phase, while it shows a power
law behavior in the KT-like phase. Finally, using well-known transition temperatures for the d-state clock model,
we give evidence to show that while the stability of both the Zd topological phase and the KT-like phase increases
by increasing d , the KT-like phase is even more stable than the Zd topological phase for large d .
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I. INTRODUCTION

Characterizing different phases of matter is a central prob-
lem in condensed-matter physics [1]. While this problem
seems well established in classical physics, it is specifically
challenging in quantum physics, where a completely dif-
ferent property, namely, entanglement, plays a very specific
role [2]. This problem has led to cross-fertilization between
condensed-matter physics and quantum information theory,
where using concepts from quantum information theory, one
is able to characterize a quantum phase transition [3–5]. In
particular, besides different measures provided by quantum
information theory, the ground-state fidelity has attracted
much attention in recent decades, where a quantum phase
transition can be well characterized by a singularity in the
ground-state fidelity [6–8].

Among different quantum phases, topological quantum
phases have attracted much attention because of their ap-
plications in fault-tolerant quantum computation. A well-
known example is Kitaev’s toric code [9], which shows a
robust topological degeneracy against any local perturbation
[10–12]. The Abelian d-level version of this model, which
we call a Zd Kitaev model, is also interesting because it has
been used as a string-net model with a Zd topological phase
[13–16] which is even more robust than the Z2 one [17,18].
In spite of the above important applications, since topological
phases have a nonlocal order and do not follow the symmetry-
breaking paradigm of Landau [19], their characterization is a
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challenging task. Different approaches for characterizing
topological phases [20–23] are based on the fact that the
nonlocal nature of a topological order should lead to stability
against any local transformation. In particular, considering
local stochastic transformations [i.e., local invertible (LI)
transformations] on entangled states was recently shown to
be a very important approach in which topological phases are
stable against small LI transformations [24].

On the other hand, recently, it has been common to con-
sider some quantum phase transitions by mapping to clas-
sical phase transitions [25–35]. An interesting idea behind
such mappings is that the thermal fluctuations are mapped
to quantum fluctuations by encoding Boltzmann weights of
a classical model in amplitudes of a quantum entangled state.
In particular, it has been shown that the ground-state fidelity
in such entangled states is mapped to the heat capacity of
the corresponding classical models [36,37]. Therefore, any
singularity in the heat capacity corresponds to a singularity in
the ground-state fidelity, and the corresponding quantum and
classical phase transitions will be related to each other.

Motivated by the above classical-quantum mappings, one
can ask whether it is possible to find new quantum phases by
considering such mappings for various classical spin models
with well-known classical phases. In particular, one of the
most interesting classical phases is the Kosterlitz-Thouless
(KT) phase, which was originally seen in the classical X -Y
model [38]. Such a phase has also been seen in the classical
d-state clock model, where, for d � 5, a KT phase emerges
between the ferromagnetic and paramagnetic phases [39–42].
In this respect, in order to find a quantum phase corresponding
to the KT phase, it is enough to find a quantum entangled
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state corresponding to the classical clock model. Interestingly,
we show that such a quantum state is a simple deformation
of the Zd Kitaev state, where it is constructed by applying
an LI transformation in the Zd Kitaev state, and can also be
considered the ground state of a quasi-Hermitian Hamiltonian
[43–46]. We explicitly prove that the ground-state fidelity of
such a quantum model is mapped to the heat capacity of the
clock model. Therefore, we identify an extended topological
phase transition in the deformed Kitaev model where a KT-
like quantum phase emerges between the Zd topological phase
and a trivial phase.

We also provide a mapping from the correlation function
in the clock model to a nonlocal (string) observable [47] in
the quantum model. Accordingly, we show that such a string
parameter can characterize the KT-like phase in the sense
that it exponentially decays in terms of distance between two
end points of the corresponding string in the Zd topological
phase, while it shows a power law behavior in the KT-like
quantum phase. Furthermore, using the fact that for d � 4
the clock model shows a single ferromagnetic-paramagnetic
phase transition, we conclude that in this case the KT-like
quantum phase disappears in the quantum model. Finally, we
also use the well-known transition temperatures for the clock
model for different values of d [39–41] to derive transition
points of our quantum model. In particular, using an inter-
pretation of transition points as a measure of stability against
small LI transformation, we give evidence which shows that
the stability of both the Zd topological phase and KT-like
phase increases by increasing d . Furthermore, we show that
the KT-like phase is even more stable than the Zd topological
phase for large d .

This paper is structured as follows: In Sec. II, we give
a brief review of the Zd Kitaev state and its corresponding
Hamiltonian. In Sec. III, we introduce the deformed Kitaev
model constructed by an LI transformation on the Zd Kitaev
model. Then in Sec. IV, we prove the correspondence between
the ground-state fidelity and the heat capacity, and finally,
in Sec. V, we give the main results of the paper, where we
use well-known facts about the clock model to identify the
KT-like quantum phase.

II. Zd KITAEV STATE

The Zd Kitaev state is defined as a simple generalization
of Kitaev’s toric code state where qubits are replaced by
d-level quantum systems called qudits [48–51]. Therefore,
consider a two-dimensional L × L square lattice with qudits
living on the edges of the lattice. Furthermore, we also label
each edge by a direction [for example, see Fig. 1(a)]. Like the
qubit case, the Zd Kitaev state is also a stabilizer state which
is stabilized by a generalized stabilizer group on N qudits.
A generalized stabilizer group is a subgroup of generalized
Pauli group PN which is constructed by the product of d-level
Pauli operators that commute with each other. The d-level
Pauli operator of Z is a diagonal matrix with eigenvalues
in the form 1, ω, ω2, . . . , ω(d−1), where ω = exp{2π i/d} in
the sense that if we denote eigenstates of Z by |m〉, we
will have Z = ∑d−1

m=0 ωm|m〉〈m|. The Pauli operator of X is
also a ladder operator in the form of X = ∑

m |m + 1〉〈m|

FIG. 1. (a) A square lattice with qudits living on the edges.
Each edge is labeled by a direction. (b) A plaquette operator of
Z1Z−1

2 Z−1
3 Z4 and a vertex operator of X1X2X −1

3 X −1
4 are defined, cor-

responding to each plaquette and vertex of the lattice, respectively.

and X |m〉 = |m + 1〉. It is clear that these generalized Pauli
operators are not Hermitian, but they are unitary in the sense
that XX −1 = 1 and ZZ−1 = 1. Furthermore, since ωd = 1,
one can conclude that X d = Zd = 1. Finally, one can check
that there is a commutation relation between the X and Z
operators in the form of ZX = ωXZ .

Now we are ready to introduce stabilizers of the Zd Kitaev
state. To this end, we consider a plaquette of the lattice as
shown in Fig. 1(b). Corresponding to each plaquette of the
lattice, a plaquette operator is defined in the following form:

Bp = Z1Z−1
2 Z−1

3 Z4. (1)

If we turn the plaquette around in a clockwise direction, the
above stabilizer can be written in a general form as

∏
e∈∂ p Zσe

e ,
where e ∈ ∂ p refers to edges around the plaquette p and σe

is equal to 1 if the direction of that edge is matched with the
clockwise direction and is equal to −1 otherwise. The advan-
tage of such a general definition is that it is independent of
directions that we had considered for edges in Fig. 1(a), and it
works for any given direction for edges. Then, corresponding
to each vertex of the lattice [see Fig. 1(b)], a vertex operator
is defined in the following form:

Av = X1X2X −1
3 X −1

4 . (2)

This operator can also be written in a compact form as∏
e∈v X γe

e , where e ∈ v refers to edges connected to the vertex
v and γe is equal to −1 if the direction of the edge e is
incoming to the vertex v and is equal to +1 otherwise.
According to the commutation relation of generalized Pauli
operators and since each vertex operator has zero or two qudits
in common with plaquette operators, it is simple to check
that vertex and plaquette operators commute with each other.
Therefore, vertex and plaquette operators generate a stabilizer
group.

Then, the Zd Kitaev state, denoted by |Kd〉, is defined as
a quantum state which is stabilized by vertex and plaquette
operators where Bp|Kd〉 = |Kd〉 and Av|Kd〉 = |Kd〉. Up to
a normalization factor, such a state can be written in the
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following form:

|Kd〉 =
∏
v

(
1 + Av + A2

v + · · · + Ad−1
v

)|0〉⊗N (3)

where N = 2L2 is total number of qudits. In order to show
that the above state is stabilized by Av’s and Bp’s, it is
enough to note that Ad

v = 1 and therefore we have Av (1 +
Av + A2

v + · · · + Ad−1
v ) = (1 + Av + A2

v + · · · + Ad−1
v ). Fur-

thermore, since Bp commutes by Av’s and Bp|0〉⊗N = |0〉⊗N ,
it is simply concluded that Bp|Kd〉 = |Kd〉. Furthermore, in the
same way, one can prove that the Zd Kitaev state can also be
written in the following form, up to a normalization factor:

|Kd〉 =
∏

p

(
1 + Bp + B2

p + · · · + Bd−1
p

)|+〉⊗N , (4)

where |+〉 = 1√
d

(|0〉 + |1〉 + · · · + |d − 1〉) is the eigenstate
of Pauli operator X .

On the other hand, the Zd Kitaev state can also be con-
sidered a ground state of a Hermitian Hamiltonian in the
following form:

H0 = −
∑

p

(
BP + B−1

P

) −
∑

v

(
Av + A−1

v

)
. (5)

Interestingly, it has been shown that when the square lattice
has a periodic boundary condition on a torus, the above
Hamiltonian shows a topological degeneracy where |Kd〉 is
only one of the ground states of the system. It is shown that
other ground states can be constructed by applying a few
nonlocal X -type operators corresponding to noncontractible
loops around the torus [9]. Therefore, it is concluded that
the above degeneracy is robust against any local perturbation.
Such a robustness is, in fact, a universal signature of all
topological phases.

From a microscopic perspective, it has been shown that
topological order in the Zd Kitaev state is related to a con-
densation of string nets with a long-range entanglement. It is
especially simple to see string nets in Eq. (3). To this end, note
that if we expand the operator of

∏
v (1 + Av + A2

v + · · · +
Ad−1

v ) where it is product on all vertices of the lattice, it will
be a summation of all X -type stabilizers of the Zd Kitaev state
which are constructed by products of Av’s. On the other hand,
each vertex operator of Av can be represented by a loop on the
dual lattice, as shown in Fig. 2. However, since each power of
Av in the form of Am

v for m = {1, 2, . . . , d − 1} is also a stabi-
lizer, we should represent such stabilizers by weighted loops,
where the weight of each loop will correspond to a power
of m. Furthermore, a product of weighted vertex operators
for different vertices will also be a stabilizer. Such stabilizers
are also represented by the product of weighted loops. In
particular, if two weighted loops have a common edge, their
product should be represented by a different structure in the
sense that the weight of the common edge will be equal to
the summation of weights of two initial loops (see Fig. 2).
Generally, such structures are called string networks, and each
stabilizer of the Zd Kitaev state corresponds to one such string
network. In this way, it is simple to see that the Zd Kitaev state
is a superposition of string networks, and therefore, it is called
a string-net condensed state.

1

-1

-1

1

2

-2

-2

2

1

-1

-1

2

-2

2-1

vA

vA

vA2

vA2

FIG. 2. A vertex operator is represented by a loop on the dual
lattice where there is also a weight for each edge of the loop
corresponding to the power of the X operator in Av . A2

v is also
represented by a loop with different weights corresponding to the
power of X in A2

v . A product of Av and A2
v corresponding to two

neighboring vertices is represented by a string net, where the weight
of the common edge of two initial loops is derived by a summation
of the initial weights.

III. LOCAL INVERTIBLE TRANSFORMATION ON THE Zd

KITAEV STATE: A DEFORMED KITAEV STATE

In this section, we introduce a deformation of the Zd Kitaev
state by applying an LI transformation; see also [15,16] for
similar deformations. To this end, consider an invertible trans-
formation on a single qudit in the form of exp{ β

2 (Z + Z−1)},
where β is a positive real number. Then we consider an
LI transformation as the product of exp{ β

2 (Z + Z−1)} on all
qudits of the Zd Kitaev state in the following form:

|Kd〉 → exp

{
β

2

∑
i

(
Zi + Z−1

i

)}|Kd〉. (6)

Since the invertible transformation is not unitary, it does
not preserve the norm of the quantum state. However, we
can add a normalization factor to the final state to have a
normalized state denoted by |Kd (β )〉. Note that for an arbitrary
value of β the above transformation can be considered a
sequence of small transformations which gradually map the
initial state to the final state. In particular, it is interesting to
consider the final state when β → ∞. To this end, note that
since Z = ∑d−1

m=0 ωm|m〉〈m|, one can show that exp{ β

2 (Z +
Z−1)} = ∑d−1

m=0 exp{β cos 2πm
d }|m〉〈m|, which can be writ-

ten in the form exp{β}(|0〉〈0| + exp{β(cos 2π
d − 1)}|1〉〈1| +

· · · + exp{β(cos 2π (d−1)
d − 1)}|d − 1〉〈d − 1|). Then, since

cos x � 1, for β → ∞ the above operator converts to a pro-
jective operator of |0〉〈0|. Using this fact, we conclude that the
invertible transformation on the Zd Kitaev state converts it to
a trivial state of |000 · · · 0〉 for the limit of β → ∞.

In this way, it seems that, by an infinite sequence of
small invertible transformations, we will be able to convert
a topological state to a trivial state. This means that in the
space of quantum states on N qudits, we have a transition
between two different quantum phases. On the other hand,
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it is clear that |K (β )〉 can be considered the ground state of
a Hamiltonian which is constructed by applying the same LI
transformation to H0 in the following form:

Hβ = exp

{
β

2

∑
i

(
Zi+ Z−1

i

)}
H0 exp

{
−β

2

∑
i

(
Zi + Z−1

i

)}
.

(7)

Since the invertible transformation is a similarity transforma-
tion, it preserves the real energy spectrum of the initial Zd

Kitaev model. Therefore, if we denote eigenstates of H0 by
|Ki〉, eigenstates of Hβ will be in the form of exp{ β

2

∑
i(Zi +

Z−1
i )}|Ki〉 with the same eigenvalues. In particular, |Kd (β )〉 is

the ground state of the above Hamiltonian.
We should also emphasize that Hβ is, in fact, a non-

Hermitian Hamiltonian with real eigenvalues and with eigen-
states which are not orthogonal. However, it is not an impor-
tant problem because it has been shown that one can define
a different metric for the definition of the inner product in
the sense that the above eigenstates are orthogonal [46]. Such
non-Hermitian Hamiltonians are physically meaningful and
are called quasi-Hermitian Hamiltonians [43]. Regardless of
different physical motivations behind quasi-Hermitian Hamil-
tonians, using the above quasi-Hermitian Hamiltonian is im-
portant for us because we will be able to consider the phase
structure of |Kd (β )〉 as a quantum phase transition in a model
Hamiltonian. In particular, since |Kd (β )〉 is the ground state
of the above quasi-Hermitian Hamiltonian, we can compute
the ground-state fidelity as a measure for characterizing a
quantum phase transition.

IV. GROUND-STATE FIDELITY AND MAPPING TO THE
d-STATE CLOCK MODEL

As we mentioned in the previous section, using a quan-
tum Hamiltonian with an exact ground state a simple way
to characterize the quantum phase transition is to com-
pute the ground-state fidelity. The ground-state fidelity is
defined in the form of the inner product of two consecu-
tive ground states, |Kd (β )〉 and |Kd (β + δβ )〉, in the form
F = 〈Kd (β )|Kd (β + δβ )〉. In order to compute this quantity,
note that the normalization factor in |Kd (β )〉 should be in
the form 1/[〈Kd | exp{β ∑

i(Zi + Z−1
i )}|Kd〉] 1

2 . If we denote
〈Kd | exp{β ∑

i(Zi + Z−1
i )}|Kd〉, which is a function of β, by

Z (β ), the ground-state fidelity will take the following form:

F = 〈Kd | exp
{
(β + δβ/2)

∑
i

(
Zi + Z−1

i

)}|Kd〉√
Z (β )

√
Z (β + δβ )

. (8)

Now, note that the numerator in the above equation is the same
as Z (β + δβ/2). Therefore, the ground-state fidelity will have
the following simple form in terms of Z:

F = Z (β + δβ/2)√
Z (β )

√
Z (β + δβ )

. (9)

Now, we use a statistical mechanical mapping [52] and prove
that the function of Z is related to the partition function of a
classical d-state clock model. To this end, consider a classical
clock model on a square lattice where d-state variables of θ =
2πn/d , n = 0, 1, . . . , d − 1, live on vertices and the classical

injn
en

e1n

e2n

e3n
e4n

1 2

4 3

FIG. 3. The d-state clock model defined on a square lattice with
d-state variables living on vertices. New edge variables of ne are
defined that correspond to each edge of the lattice, in the form of
ne = ni − nj .

Hamiltonian is in the following form:

Hcl = −
∑
〈i, j〉

cos(θi − θ j ), (10)

where 〈i, j〉 refers to the interaction between the nearest
neighbors. The partition function of such a system in terms
of a finite temperature of T has the following form:

Zclock (T ) =
∑
{θi}

exp

⎧⎨
⎩

∑
〈i, j〉

cos(θi − θ j )/T

⎫⎬
⎭, (11)

where we set the Boltzmann constant kB equal to 1 and∑
{θi} refers to the summation on all configurations of d-state

variables. Then if we use the fact that cos(x) = exp{ix}+exp{−ix}
2

and use the equation ω = exp{i2π/d}, we will have

Zclock (T ) =
∑
{ni}

exp

⎧⎨
⎩

∑
〈i, j〉

ωni−n j + ωn j−ni

2T

⎫⎬
⎭, (12)

where ni = 0, 1, . . . , d − 1 refer to different values of the
d-state variables of θi. In the next step, we define new d-state
variables corresponding to each edge of the square lattice in
the form of ne = ni − n j , which are called edge variables.
We can replace these edge variables in the partition function
relation. However, there is a point where new edge variables
are not independent variables because of their definition in
terms of ni’s. For example, consider a square plaquette of
the lattice as shown in Fig. 3, where there are four vertex
variables, n1, n2, n3, n4. We consider a specific direction for
each edge, as shown in Fig. 3, and accordingly, each edge
variable is equal to a vertex variable living on the end point of
the edge minus a vertex variable living on the first point of that
edge, i.e., ne1 = n2 − n1, ne2 = n2 − n3, ne3 = n3 − n4, and
ne4 = n1 − n4. By such a definition, it is concluded that there
is a relation between edge variables corresponding to each
plaquette in the form of ne1 − ne2 − ne3 + ne4 = 0. Using the
same notation that we used for plaquette operators of the
Kitaev state in Sec. II, the above constraint can be written in
compact form as

∑
e∈∂ p σene = 0. We apply these constraints
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using a set of δ functions in the partition function in the
following form:

Zclock (T ) =
∑
{ne}

exp

{∑
e

ωne + ω−ne

2T

}∏
p

δ

⎛
⎝∏

e∈∂ p

ωσene , 1

⎞
⎠.

(13)

On the other hand, since ω = exp{i2π/d}, it is simple to
check that 1 + ω + ω2 + · · · + ωd−1 = 0. Therefore, it is
concluded that the delta function δ(ωk, 1) can be written in
the form of 1

d

∑d−1
m=0 ωkm. In this respect, we rewrite each δ

function in Eq. (13) in the following form:

δ

⎛
⎝∏

e∈∂ p

ωσene , 1

⎞
⎠ = 1

d

d−1∑
m=0

⎛
⎝∏

e∈∂ p

ωσene

⎞
⎠

m

. (14)

Now we are ready to introduce a quantum formalism for the
partition function of (13). To this end, note that ωne is, in fact,
an eigenvalue of the Pauli operator of Z corresponding to the
eigenstate of |ne〉. Consequently, an arbitrary function in the
form

∑
ne

g(ωne ) can be rewritten in the form of d〈+|g(Z )|+〉.
Using the above equation, we are able to write the partition
function in the following quantum language:

Zclock (T ) = dN N⊗〈+| exp

{∑
e

Ze + Z−1
e

2T

}

×
∏

p

∑d−1
m=0

( ∏
e∈∂ p Zσe

e

)m

d
|+〉⊗N . (15)

Interestingly, the operator of
∏

e∈∂ p Zσe is the same as the
plaquette operator of Bp in the Zd Kitaev model. Therefore,

it is concluded that the state of
∏

p

∑d−1
m=0 Bm

p

d |+〉⊗N is the same
as the Zd Kitaev state up to a normalization factor where it is
stabilized by all Bp and Av stabilizer operators. On the other

hand, since
∏

p

∑d−1
m=0 Bm

p√
d

is a projective operator, it is concluded

that it is equal to by replacing (
∏

p

∑d−1
m=0 Bm

p√
d

)2 in Eq. (15), the
partition function will be equal to an inner product in the
following form:

Zclock (T ) = d
N
2 〈Kd | exp

{∑
e

Ze + Z−1
e

2T

}
|Kd〉. (16)

The above equation is exactly the same relation that we looked
for. If we go back to Eqs. (8) and (9) for the ground-state
fidelity, we can conclude that the normalization factor of Z (β )
in the ground-state fidelity is the same as the partition function
of the clock model in Eq. (16) where 1

2T in the classical
model has been mapped to β in the ground-state fidelity for
the deformed Kitaev state. Furthermore, we should emphasize
that the above mapping from the normalization factor of the
deformed Kitaev state and partition function of the clock
model is, in fact, a result of encoding Boltzmann weights of
the clock model in amplitudes of the deformed Kitaev state.
In other words, it is enough to write an expansion of the Zd

Kitaev state in terms of string nets. Then if we apply the LI
operator exp{ β

2

∑
i(Zi + Z−1

i )} to different terms of the above

expansion, a square root of Boltzmann weights of the clock
model appears.

Finally, we rewrite the ground-state fidelity in Eq. (9) in the
following form:

FK−state(β, δβ ) = Zclock (β + δβ/2)√
Zclock (β )Zclock (β + δβ )

. (17)

It is, in fact, a relation between the ground-state fidelity
in the quantum model and the partition function of the clock
model. On the other hand, since the parameter δβ in the
above equation is very small, it is useful to perform a Taylor
expansion for the state fidelity in terms of different powers
of δβ. By a simple calculation, we derive the following
approximation for the ground-state fidelity:

FK−state(β, δβ ) 	 1 − 1

8

(
∂2 ln(Zclock )

∂β2

)
δβ2, (18)

where we have ignored higher powers of δβ. Furthermore,
it is well known that the second derivation of the partition
function is related to the heat capacity for any classical
statistical model. Therefore, we find that the ground-state
fidelity is related to the heat capacity of the clock model by
the following relation:

FK−state(β, δβ ) 	 1 − (Cv )clock

8β2
δβ2. (19)

We recall that we considered the ground-state fidelity to find a
signature for the phase transition from the Zd Kitaev phase
to the trivial phase. Now we have found that this quantity
is related to the partition function and the heat capacity of a
classical clock model. This means that if the partition function
or the heat capacity of the classical model shows a singularity
in the transition temperature Tc, the ground-state fidelity will
also show a singularity in βc = 1

2Tc
which will be, indeed, a

topological phase transition point in our quantum model.

V. IDENTIFYING A KT-LIKE QUANTUM PHASE

In the previous section we established a mapping from the
deformed Kitaev model to the clock model. In particular we
found that the ground-state fidelity of the deformed Kitaev
model is mapped to the partition function of the clock model
(17). Then, by an expansion of the ground-state fidelity in
terms of different powers of δβ, we showed that the ground-
state fidelity is related to the heat capacity of the clock model
up to second order of δβ [Eq. (19)]. Using the mapping
between the ground-state fidelity for the deformed Kitaev
model and the heat capacity of the clock model, now we are
able to consider the phase structure of our quantum system.

Fortunately, the clock model has been well studied in the
literature in the sense that we have much information about
its phase structure. Let us focus on the free energy and the
heat capacity of this model, which are related to the partition
function in the form of A = −kBT ln(Z ) and Cv = kBβ2 ∂2lnZ

∂β2 ,
respectively. It has been known that the clock model, for d �
5, shows two KT phase transitions [39–41] where a KT phase
emerges between the ferromagnetic and paramagnetic phases
(see Fig. 4). The indicator of the above KT phase transitions
is the existence of an essential singularity in the free energy
as a function of temperature at transition points denoted by
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FIG. 4. A schematic of the phase diagram of the d-state clock
model for d � 5 with two transition points, T 1

c and T 2
c , where a KT

phase emerges between the ferromagnetic and paramagnetic phases.
Although the magnetization is zero in the KT phase, the correlation
function C(r) shows a power law behavior where it decays in the
form of r−η. Since β in the deformed Kitaev model is equal to

1
2T , the trivial phase and the Zd topological phase correspond to the
ferromagnetic phase and the paramagnetic phase, respectively.

T 1
c and T 2

c (see Fig. 5, where values of transition temperatures
are given for a few values of d). The singular term of the free
energy near transition points is in the form of e− c

t1/2 , where
c is a positive constant and t = T −Tc

Tc
[53]. Such a singularity

is called essential because all derivatives of finite order of the
free energy with respect to T are continuous and there is only
a divergence in the derivative of infinite order. Furthermore,
since the heat capacity is equal to the second derivation of
the free energy, it is also concluded that there is an essential
singularity in the heat capacity as a function of T at the KT
transition point, which is called a weak singularity [53–55].

Now, using the mapping between the ground-state fidelity
and the partition function as well as the heat capacity, we
conclude that there must be two singular points, β1

c = 1
2T 2

c
and

β2
c = 1

2T 1
c

, in the ground state of the deformed Kitaev model
where the ground-state fidelity will show essential singulari-
ties as a function of β (see Fig. 4). In this respect, we conclude
that there are a trivial phase and a Zd topological phase in
the quantum model corresponding to the ferromagnetic phase
and the paramagnetic phase, respectively. However, for d � 5
there is not a simple phase transition from the Zd topological
phase to the trivial phase, but they are separated from each
other by an intermediate quantum phase.

Although singularities in the ground-state fidelity can re-
veal different natures of the intermediate quantum phase, we
need to characterize this phase in terms of some observable.
To this end, note that the trivial phase, the intermediate
phase, and the Zd topological phase in the quantum model
correspond to the ferromagnetic phase, the KT phase, and the
paramagnetic phase in the clock model, respectively. On the

d-state clock model deformed Kitaev model

( )1
cT ( )2

cT
( )1
c

( )2
c

d 2

d 3

d 8

d 7

d 6

d 5

d 4

0.906 0.952

0.690 0.913

0.531 0.907

0.417 0.906

1.4921.492

2.269 2.269

1.135 1.135

0.221 0.221

0.336 0.336

1.1990.552

0.9420.551

0.7250.548

0.5520.525

0.4410.441

d 0 0.893 0.560

ref
ere
nc
e

[39]

[40]

[50]

FIG. 5. According to the denoted references, there are critical
temperatures for the d-state clock model for d � 8 and d → ∞.
Note that temperatures are dimensionless in the form of kBT

J and we
have set J and kB equal to 1, where J refers to the coupling constant
of the clock model. The transition points of the quantum model are
also determined by the equations β1

c = 1
2T 2

c
and β2

c = 1
2T 1

c
according

to quantum-classical mapping.

other hand, it is known that three different phases in the d-state
clock model can be characterized in terms of a correlation
function in the form of 〈cos(θk − θl )〉, where θk and θl are
two arbitrary d-state variables. This quantity is a function
of r, the distance between two of the above variables in the
lattice, and we denote it by C(r). In the ferromagnetic phase
C(r) shows a long-range order in which it goes to a nonzero
value in the limit of r → ∞, and it will be the same as the
ferromagnetic order parameter. In the paramagnetic phase, the
system does not have a long-range order, and specifically, C(r)
exponentially decays to zero. Interestingly, in the KT phase
there is also no long-range order in the sense that the order
parameter is equal to zero. However, the correlation function
C(r) decays to zero in an algebraical way in which it shows
a power law behavior in the form of r−η [39]. In other words,
the KT phase has a quasi-long-range order.

According to the above motivation, if we are able to find
an observable in the quantum model corresponding to the
correlation function in the clock model, such an observable
can be considered a signature of the intermediate phase in
the sense that it reveals different behaviors of the intermediate
phase with trivial and Zd topological phases.

To this end, note that the correlation function 〈cos(θk −
θl )〉 = 〈cos 2π

d (nk − nl )〉 is equal to the real part of
exp{i 2π

d (nk − nl )}, which should be computed by the follow-
ing relation:〈

exp

{
i
2π

d
(nk − nl )

}〉

=
∑

{ni} ei 2π
d (nk−nl ) exp

{∑
〈i, j〉

cos 2π
d (ni−n j )

T

}
Z . (20)
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FIG. 6. A string S, denoted in red (light gray), connects two d-
state variables of nk and nl , where we consider a sequence of four d-
state variables, n1, n2, n3, and n4, between them. By a mapping from
classical vertex variables to quantum edge variables, the correlation
function 〈exp{i 2π

d (nk − nl )}〉 is mapped to the expectation value of
an operator of

∏
e∈S Ze corresponding to the string S.

Next, we rewrite the above equation in the quantum for-
malism by replacing vertex variables with edge variables.
Everything is similar to the formalism that we used for the
partition function in Sec. III. However, here we also have
another term of ei 2π

d (nk−nl ) which should be rewritten in terms
of edge variables. To this end, as shown in Fig. 6 as an
example, we can consider a sequence, denoted by a string S,
of d-state variables n1 to n4 between nk and nl . Then we write
ei 2π

d (nk−nl ) in the above equation in the following form:

ei 2π
d (nk−n1 )ei 2π

d (n1−n2 )ei 2π
d (n2−n3 )ei 2π

d (n3−n4 )ei 2π
d (n4−nl ). (21)

In this way, after the change in variable, Eq. (20) is written in
terms of edge variables ne in the following form:〈

exp

{
i
2π (nk − nl )

d

}〉

=
∑

{ne}
∏

e∈S ei 2πne
d e

∑
e

cos( 2πne
d )

T
∏

p δ
(∑

e∈p σ ene, 0
)

Z .

(22)

Next, it is enough to replace variables of ωne by Pauli
operators of Z using the same mechanism that we used to
derive Eq. (16). However, there is only a difference where we
will have an operator in the form of

∏
e∈S Ze corresponding to∏

e∈S ei( 2πne
d ) in the above equation. In this way, the correlation

function will take on the following form in the quantum
language:

〈ei(θk−θl )〉 = 〈Kd |
(∏

e∈S Ze
)

exp
{ ∑

e
Ze+Z−1

e
2T

}|Kd〉
〈Kd | exp

{∑
e

Ze+Z−1
e

2T

}|Kd〉
. (23)

Interestingly, the above relation is, in fact, the same as the
expectation value of the operator of

∏
e∈S Ze, which we

call a string operator, in the deformed Kitaev state, i.e.,
〈Kd (β )| ∏e∈S Ze|Kd (β )〉. In this way, the expectation value of

a string operator in the form of
∏

e∈S Ze+
∏

e∈S Z−1
e

2 , which we call a
string parameter, behaves similar to the correlation function in

the clock model. This means that if r is the distance between
two end points of the string S, the string parameter shows
different behaviors as a function of r for three different phases
of the quantum model. In particular, when r → ∞, it goes to
a nonzero value in the trivial phase, it exponentially decays to
zero for the Zd topological phase, and finally, it shows a power
law behavior in the intermediate phase.

On the other hand, note that it has been shown that two
quantum states which can be transformed into each other
by small local invertible transformations are in the same
topological class [24]. Therefore, since the intermediate phase
shows a singular transition to the trivial phase during the small
local invertible transformation, it seems that the intermediate
phase must be a topological (nontrivial) phase. However,
note that the intermediate phase is also distinguished from
the Zd topological phase by a power law behavior instead
of an exponential one. Finally, since the intermediate phase
corresponds to the KT phase in the clock model and there
is also a power law behavior which is also observed in the
correlation function in the KT phase, we call the intermediate
phase a KT-like quantum phase.

We should emphasize that for d � 4, the clock model
shows a simple ferromagnetic-paramagnetic phase transition
point. Specifically, for d = 2 and d = 4 there is a single
critical point in the Ising universality class, and for d = 3
the clock model will be a three-state Potts model with a
single critical point. Therefore, for the corresponding quan-
tum model the KT-like quantum phase disappears, and we
will have a simple topological phase transition from the Zd

topological phase to the trivial phase.
Finally, we also have the phase transition points for the

deformed Kitaev model according to well-known critical tem-
peratures for the clock model. In Fig. 5, according to a few re-
cent papers in the literature, we show transition temperatures
of the clock model for d � 8 and the corresponding transition
points for the deformed Kitaev model. Furthermore, the clock
model will be the same as the X -Y model in d → ∞ with
a well-known phase transition point [38,56]. In particular,
in the X -Y model there is no ferromagnetic phase at finite
temperature. On the other hand, the ferromagnetic phase in
the classical model corresponds to the trivial phase of the
quantum model. This means that for the deformed Kitaev
model in d → ∞, there are only a Zd topological phase and a
KT-like phase in which the trivial phase occurs at an infinite
value of β.

It is also important to interpret the above transition points
in the deformed Kitaev model as a measure of stability of
topological phases. To this end, note that it is well known that
topological phases are stable against small LI transformations
[24]. Therefore, it is expected that the Zd topological phase
shows stability against the LI transformation that we consid-
ered in the sense that it must remain in the topological phase
for small values of β. Consequently, we expect that by increas-
ing β the above stability breaks and a phase transition occurs.
Therefore, we can interpret β1

c as a measure of stability of the
Zd topological phase. Furthermore, β2

c will also be interpreted
as a measure of the stability of the KT-like quantum phase.
By these interpretations and according to the table in Fig. 5,
we conclude that the stability of both the Zd topological phase
and the KT-like phase increases by increasing d . In particular,
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the KT-like phase shows an infinite stability for d → ∞. This
also means that the KT-like quantum phase is more stable than
the Zd topological phase against the above LI transformation
for large d .

VI. DISCUSSION

In mapping between classical spin models and quantum
entangled systems, an interesting problem is to find quantum
phase transitions corresponding to different well-known clas-
sical phase transitions. In this paper, we found an extended
topological phase transition corresponding to the Kosterlitz-
Thouless phase transition in the classical d-state clock model.
On the one hand, we mapped the ground-state fidelity in
a deformed Kitaev model to the heat capacity of the clock
model and showed that there are three different phases in
the deformed Kitaev model where an intermediate phase
emerged between the Zd topological phase and the trivial

phase. On the other hand, we mapped the correlation function
in the clock model to a string parameter in the quantum
model to characterize the intermediate phase in terms of
an observable. We believe that the intermediate phase that
we called a KT-like quantum phase might have important
properties which have not already been seen in other quantum
systems. In particular, while we know that the Zd topological
phase has long-range entanglement, it is important to consider
entanglement in the KT-like quantum phase. Specifically, we
note that since the KT-like phase corresponds to a classical
phase with a quasi-long-range order, it might be a topological
phase with quasi-long-range entanglement, a problem that
should be considered in future works.
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