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Systematic construction of topological flat-band models by molecular-orbital representation
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On the basis of the “molecular-orbital” representation which describes generic flat-band models, we propose a
systematic way to construct a class of flat-band models with finite-range hoppings that have topological natures.
In these models, the topological natures are encoded not into the flat band itself but into the dispersive bands
touching the flat band. Such a band structure may become a source of exotic phenomena arising from the
combination of flat bands, topology, and correlations.

DOI: 10.1103/PhysRevB.101.235125

I. INTRODUCTION

Interplay among flat bands, topology, and electron-electron
correlation gives rise to intriguing physics. A typical example
is the fractional quantum Hall effect (FQHE) [1]. In the two-
dimensional electron gas, the formation of completely flat
Landau levels occurs due to an external magnetic field, and
the electron-electron correlation leads to the emergence of
fractionalized quasiparticles composed of the electrons being
attached to the flux [2].

Novel aspects of FQHE have still been studied actively
[3–24]. One of the prominent examples is the realization of
the FQHE without external magnetic fields, which is called
fractional Chern insulators (FCIs) [3–19]. A key ingredient
to realize FCIs is the exact or nearly flat bands with finite
Chern number. Together with the theoretical developments,
candidate materials for such phenomena have been intensively
explored. Examples include metal organic frameworks with
ions having strong spin-orbit coupling [25,26], and twisted
bilayer graphene [27–32].

To study exotic phases due to the combination of flat
band, topology, and correlations, simple tight-binding models
having flat bands are expected to provide a good starting point
[33–38]. Such models are defined on a class of Lieb lattices
[39,40] and line graphs [41] and their variants [42]. However,
implementation of the topologically nontrivial structures to
those well-known flat-band models, such as adding spin-
orbit couplings, often leads to finite dispersion of flat bands
[13,16,33,43,44]. For this reason, most of the theoretical stud-
ies of FCIs have been carried out on the models which have
nearly flat bands with nontrivial topological natures. In those
models, the flatness of the bands is controlled quantitatively
[15,18,19].

In this paper, we introduce a different approach to construct
“topological flat-band models.” Our models have finite-range
hoppings and exact flat bands. In such models, it was proved
on the basis of K theory that flat bands must not have a finite
Chern number [45]. However, it is possible to construct the
models whose dispersive bands are topologically nontrivial
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and they have touching points with the flat bands. Such models
will serve as another platform for studying the interplay
among flat bands, topology, and electron correlations.

The key strategy to construct such models is to make use
of the “molecular-orbital” (MO) representation, which was
developed in the prior works [46–48]. In this representation,
we describe tight-binding models having flat bands using
nonorthogonal basis composed of a small number of atomic
orbitals. For the line graphs, which we will consider in this
paper, the MOs are usually defined on the dual lattice, e.g.,
a honeycomb lattice for a kagome lattice. Since there are
a variety of examples of topological models defined on a
honeycomb lattice, one may simply implement such models
for the molecular orbitals, and recast them into the original
kagome lattice (see Fig. 1 for the schematic of the construction
of such models). Then, the topologically nontrivial bands and
the exact flat band coexist in the models thus obtained, as we
will show.

The rest of this paper is organized as follows. In Sec. II, we
explain a method of a systematic construction of topological
flat-band models based on the MO representation. Then, our
main results are illustrated in Sec. III, where we show three
examples of topological flat-band models composed of MOs.
In Sec. IV, we present a summary of this paper. The Appendix
is devoted to the three-dimensional model constructed by the
same method.

II. MOLECULAR-ORBITAL REPRESENTATION OF
TOPOLOGICAL FLAT-BAND MODELS

In this section, we explain how to construct topological
flat-band models by using the MO representation. Throughout
this paper, we focus on a tight-binding model on a kagome
lattice of spinless or spinful fermions. Application of the same
strategy to other lattices is straightforward (see the Appendix
for an example on a pyrochlore lattice).

On a kagome lattice, each site is labeled by the position of
the unit cell R = r1a1 + r2a2, and the sublattice η = 1, 2, 3;
we use the abbreviated form i = (R, η). The annihilation
and creation operators on i are represented by ci,σ and c†

i,σ ,
respectively. σ =↑,↓ labels the spin degrees of freedom for
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FIG. 1. Schematic figure for the construction of the tight-binding
models considered in this paper.

the spinful systems; for the spinless systems, we simply omit
this index.

We first illustrate how the MO representation can yield the
exact flat bands [46,48]. We consider the models written by
the following nonorthogonal and unnormalized basis C�

R,σ and
C�

R,σ which we call MOs:

C�
R,σ = γ

�
1 cR,1,σ + γ

�
2 cR,2,σ + γ

�
3 cR,3,σ (1)

and

C�
R,σ = γ �

1 cR+a1,1,σ + γ �
2 cR,2,σ + γ �

3 cR+a1−a2,3,σ ,

(2)

with γ �/�
η ∈ C.

These MOs are defined on the triangles, and thus they
are placed on a honeycomb lattice. Now, let us consider
the tight-binding models which can be written only by the
MOs:

H =
∑
R,R′

C†
RhR,R′CR′ , (3)

where CR = (C�
R,↑,C�

R,↑,C�
R,↓,C�

R,↓)T, and hR,R′ represents the
Hamiltonian for the MOs which is defined on a honeycomb
lattice. Using Eqs. (1) and (2), one can easily recast the model
onto the original kagome lattice. The model thus obtained has
an exact zero-energy flat band, since the projection from the
original kagome sites onto the MOs causes the reduction of
the degrees of freedom, and the kernel of the projection is
enforced to have zero energy [46,48].

The Hamiltonian of Eq. (3) can be written in the
momentum-space representation if hR,R′ has a translational
symmetry, i.e., hR,R′ depends only on R − R′ and thus it can
be written as hR,R′ = hR−R′ . In the original basis of a kagome
lattice, it can be written as

H = ∑
k c†

kHkck, (4)

with ck = (c1,k,↑, c2,k,↑, c3,k,↑, c1,k,↓, c2,k,↓, c3,k,↓)T. The
Hamiltonian matrix Hk has a form

Hk = �khk�
†
k , (5)

where

hk =
∑

R

hRe−ik·R (6)

is the Hamiltonian matrix for the MOs in the momentum-
space representation, and

�
†
k =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ
�
1 γ

�
2 γ

�
3 0 0 0

γ �
1 eik·a1 γ �

2 γ �
3 eik·(a1−a2 ) 0 0 0

0 0 0 γ
�
1 γ

�
2 γ

�
3

0 0 0 γ �
1 eik·a1 γ �

2 γ �
3 eik·(a1−a2 )

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

is a matrix which maps the original basis on a kagome lattice
to the MOs:

Ck = �
†
k ck. (8)

The dispersion relation of the tight-binding Hamiltonian
can be obtained by solving the eigenvalue equation,

Hkun,k = εn(k)un,k, (9)
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where un,k is the six-component column vector representing
the nth eigenvector and εn is the nth band energy. As Hk has
the form of Eq. (5), two out of six eigenvalues are guaranteed
to be zero regardless of the momentum k, meaning that they
form flat bands. This can be explained as follows: As the
matrix �

†
k is a 4 × 6 matrix, we have

dim[ker(�†
k )] � 2. (10)

Let v1,k and v2,k be two linearly independent vectors in the
kernel of �

†
k , i.e., �

†
kv1/2,k = 0. Then, substituting these into

the eigenvalue equation of Eq. (9), we have

Hkv1/2,k = (�khk�
†
k )v1/2,k = 0. (11)

This means that v1,k and v2,k are the zero-energy eigenvectors
of Hk.

Henceforth, for simplicity, we set (γ �
1 , γ

�
2 , γ

�
3 , γ �

1 ,

γ �
2 , γ �

3 ) = (1, 1, 1, 1, 1, 1). For this choice, the quadratic
band touching between the flat band and the dispersive band
at the � point is enforced to occur, due to the reduction of the
linear space spanned by the MOs [48,49]. Namely, at the �

point, �
†
k=0 is given as

�
†
k=0 =

⎛
⎜⎜⎜⎝

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

⎞
⎟⎟⎟⎠, (12)

whose kernel is four dimensional. This means that there has to
be four zero modes; two of them come from the flat bands and
the others from the dispersive bands. If we choose γ �/�

η such

that the vectors (γ �
1 , γ

�
2 , γ

�
3 ) and (γ �

1 , γ �
2 , γ �

3 ) are linearly
independent of each other, the band touching can be erased
[48,50].

As we have seen, the emergence of the exact flat band
and the band touching to the dispersive band at the � point
originate from �

†
k , hence hR,R′ can be a generic tight-binding

Hamiltonian. In the previous works, rather simple forms
of hR,R′ are considered. For instance, the nearest-neighbor
hopping model on kagome and breathing kagome lattices
can be described by setting hR,R′ as an “on-site potential”
[46,48]. Our strategy is to set hR,R′ as well-known topological
models defined on a honeycomb lattice, as we show in the
next section. The models thus obtained have more or less
complicated patterns of the hoppings on the original kagome
lattice. Nevertheless, the hoppings are finite ranged, and the
topological natures of hR,R′ are indeed inherited by the disper-
sive bands.

III. EXAMPLES OF TOPOLOGICAL FLAT-BAND
MODELS ON A KAGOME LATTICE

A. Molecular-orbital Hofstadter model

The first model is the Hofstadter model [51] for the molec-
ular orbitals. Here we consider the spinless fermions. The
Hamiltonian reads

H(φ) =
∑

R

−tC�,†
R

(
C�

R + ei2πφr1C�
R−a1

+ C�
R−a1+a2

)
+ (H.c.), (13)

FIG. 2. The energy spectrum for the Hamiltonian of Eq. (13). A
red line represents the degenerate zero-energy states, i.e., flat bands.

where φ = p/q with p and q are relatively prime numbers.
It should be emphasized that the model is different from the
conventional Hofstadter model on a kagome lattice [52] and
its variants [53,54].

In Fig. 2, we show the energy spectrum as a function
of φ. The diagram resembles neither the honeycomb Hof-
stadter model [55,56] nor the kagome Hofstadter model
[52]. Remarkably, the zero-energy modes with macroscopic

FIG. 3. (a) The magnetic Brillouin zone for φ = 1/3. We set the
magnetic lattice vectors as ã1 = 3a1 and ã2 = a2. The corresponding
reciprocal lattice vectors, b̃1 and b̃2, are denoted by blue arrows.
The coordinates of the corners of the first Brillouin zones are k̃1 =
7
27 (3b̃1 + 2b̃2) and k̃2 = 1

2 (b̃1 + b̃2). (b) The band structure for φ =
1/3. The Chern numbers of the bands are indicated in the figure.
(c) A Dirac point formed by the third and the seventh band. At the
Dirac point, they are also degenerated with three flat bands.

235125-3



TOMONARI MIZOGUCHI AND YASUHIRO HATSUGAI PHYSICAL REVIEW B 101, 235125 (2020)

FIG. 4. (a) The band structure of the MO Haldane model for
(t, t ′, M, φ, γ ) = (−1,−0.3, 0, π

2 , 1). The high-symmetry points in
the Brillouin zone are � = (0, 0), K = ( 4π

3 , 0), and M = (π, π√
3

).
(b) The band structure for the same parameter on a cylinder ge-
ometry. (c) A M-φ phase diagram of the MO Haldane model at
t ′ = −0.3. The orange, brown, and blue regions correspond to the
Chern numbers of the lowest band 1, 0, and −1, respectively. In the
yellow region, the lowest dispersive band overlaps with the flat band.

degeneracy remain for any φ. Note that the same behavior is
also seen in the Hofstadter model on a Lieb lattice [57] and a
dice lattice [58].

To study the topological properties, let us look at the band
structure for the specific choice of p and q; here we choose
p = 1 and q = 3. The band structure in the magnetic Brillouin
zone [Fig. 3(a)] and the Chern numbers computed numerically
by using the method of Ref. [59], are shown in Fig. 3(b).
We see that the flat bands, which have threefold degeneracy,
touch the dispersive band at the � point. Furthermore, we
also find Dirac cones along the �̃-k̃1 line, which are formed
by the dispersive bands whose Dirac points degenerate with
the flat band as well [Fig. 3(c)]. These Dirac cones originate
from those of the Hofstadter model on a honeycomb lattice.
Namely, the band touching between flat bands and dispersive
bands occurs when det hk = 0 or when det �†

k�k = 0 [48].

In the present model, hk is nothing but a Hofstadter model
on a honeycomb lattice, and it hosts Dirac cones where det
hk = 0 is satisfied for certain values of φ. Then, the multiplet
of middle bands, composed of two dispersive bands and
threefold-degenerate flat bands, has the Chern number −1
in total. This result indicates that it is possible to make the
flat band touch the topologically nontrivial dispersive band,
although the mathematical theorem prohibits the fully gapped
flat bands with finite Chern number in the finite-range hopping
model.

B. Molecular-orbital Haldane model

Another representative model of Chern insulators on a hon-
eycomb lattice is the Haldane model [60]. The MO-Haldane
model reads

H =
∑

k

(
C�,†

k ,C�,†
k

)
h(H)

k

(
C�

k

C�
k

)
, (14)

where

h(H)
k = εkτ0 + Rk · τ + Mτ z, (15)

with τ0 being a 2 × 2 identity matrix, τ = (τ x, τ y, τ z ) being
the Pauli matrices,

εk = 2t ′ cos φ[cos k · a1 + cos k · a2 + cos k · (a2 − a1)],

(16)

Rx
k − iRy

k = t
3∑

p=1

e−ik·δp, (17)

and

Rz
k = 2t ′ sin φ[sin k · a1 − sin k · a2 + sin k · (a2 − a1)].

(18)

In Eq. (17), we have used δ1 = a1 − a2, δ2 = 0, and δ3 = a1.
The analytical expression of the dispersion relations of two
dispersive bands can be obtained by mapping the original
eigenvalue problem of the 3 × 3 matrix to that of the 2 × 2
matrix, h(H)

k �
†
k�k [46,48,61,62]. The dispersion relations thus

obtained are

ε±(k) = 3εk +
(
Rx

k

)2 + (
Ry

k

)2

t
±

√√√√(
9 −

(
Rx

k

)2 + (
Ry

k

)2

t2

)(
Rz

k + M
)2 + [(

Rx
k

)2 + (
Ry

k

)2](
3 + εk

t

)2
. (19)

We plot the band structure and the Chern numbers for
(t, t ′, M, φ) = (−1,−0.3, 0, π

2 ) in Fig. 4(a). The zero-energy
flat band is located between the upper and the lower dispersive
bands. The lower dispersive band has the Chern number
−1, thus the sum of the Chern numbers over the flat band
and the upper dispersive band is 1. Therefore, we can again
realize the flat band touching the topologically nontrivial
band.

We also compute the dispersions for the cylinder geometry,
shown in Fig. 4(b). We see the chiral edge modes appear, due

to the nontrivial Chern number and the bulk-edge correspon-
dence [63]. Interestingly, the chiral edge mode crosses with
the bulk flat band at zero energy. Note that similar dispersion
is found in a topological flat-band model on a Lieb lattice
[34,36].

In Fig. 4(c), we map the Chern number of the lowest band
in the M-φ space. We see that two topological phases with
the Chern numbers 1 and −1 are separated by the gapless
region, where the lowest dispersive band overlaps with the flat
band.
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FIG. 5. The band structure of the model of (21) with
(t, t ′, M, M ′, φ) = (−0.6, −0.3, 0, 2, π

2 ).

In the MO Haldane model, the flat band is located between
two dispersive bands. For realization of topologically nontriv-
ial many-body states, on the other hand, it is often desirable
to construct a model where the flat band has the lowest energy
[5–8]. In the present model, such a situation can be realized
by considering a slightly modified model:

H =
∑

k

(
C�,†

k ,C�,†
k

)
h̃(H)

k

(
C�

k

C�
k

)
, (20)

with

h̃(H)
k = h(H)

k + M ′τ0. (21)

The second term of (21) is an on-site term for the MOs, but
it does not give rise to an entire shift of energy in the original
kagome model [46,48]. In Fig. 5, we show the band structure
for the representative choice of parameters. We see that the
desirable band structure is obtained; namely, the flat band,
touching the dispersive band, has the lowest energy, and the
total Chern number for these two bands is indeed finite.

C. Molecular-orbital Kane-Mele model

Finally, we present an example of a model having Z2

topology. To be concrete, we implement the Kane-Mele model
[64] as the Hamiltonian of MOs. We now consider the spinful
fermions. The Hamiltonian is given as

H =
∑

k

(
C�,†

k,↑ ,C�,†
k,↑ ,C�,†

k,↓ ,C�,†
k,↓

)
h(KM)

k

⎛
⎜⎜⎜⎜⎝

C�
k,↑

C�
k,↑

C�
k,↓

C�
k,↓

⎞
⎟⎟⎟⎟⎠, (22)

where

h(KM)
k =

⎛
⎜⎜⎜⎝

εk(φ) + Rz
k(φ) + M Rx

k − iRy
k 0 t ′′αk

Rx
k + iRy

k εk(φ) − Rz
k(φ) − M t ′′βk 0

0 t ′′β∗
k εk(−φ) + Rz

k(−φ) + M Rx
k − iRy

k

t ′′α∗
k 0 Rx

k + iRy
k εk(−φ) − Rz

k(−φ) − M

⎞
⎟⎟⎟⎠, (23)

with t ′′ being the Rashba spin-orbit coupling; the explicit
forms of αk and βk are

αk = i[ei(2π/3) + e−ik·(a1−a2 ) + e−ik·a1+(i4π/3)] (24)

and

βk = i[e−i(2π/3) + e−ik·(a1−a2 ) + e−ik·a1−(i4π/3)]. (25)

In the following, we set φ = π
2 , for simplicity.

We plot the band structure for (t, t ′, t ′′, M ) =
(−1,−0.3,−0.5, 0) in Fig. 6(a). The doubly degenerate flat
bands touch the dispersive bands at the � point. Figure 6(b)
shows the dispersion relation on a cylinder geometry. We see
that the helical edge states are intersected by the bulk flat
bands.

In Fig. 6(c), we depict the phase diagram of this model,
obtained by calculating the entanglement Chern number
[65–68], enChσ , for the lowest two bands. To be concrete, the
entanglement Chern number is defined for the eigenstates of
the entanglement Hamiltonian Hen(k):

Hen(k)T = ln

[
1 − P↑P−(k)P↑

P↑P−(k)P↑

]
, (26)

with

P↑ = diag(1, 1, 1, 0, 0, 0) (27)

FIG. 6. (a) The band structure of the MO Kane-Mele model for (t, t ′, t ′′, φ, M ) = (−1, −0.06, −0.05, π

2 ,−0.1); (b) the same parameter
on a cylinder geometry. (c) The t ′′-M phase diagram of the MO Kane-Mele model at t ′ = −0.06.
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and

P−(k) =
2∑

n=1

un,ku†
n,k. (28)

Here un,k denotes the nth eigenvector of Hk = �kh(KM)
k �

†
k .

In Fig. 6(c), we find three phases: the Z2 topological phase
(enChσ = 1), the trivial phase (enChσ = 0), and the gapless
phase where one of the lower dispersive bands overlaps with
the flat bands.

IV. SUMMARY AND OUTLOOK

In summary, we have introduced a systematic method
to construct topological flat-band models with finite-range
hoppings. The existence of flat bands is guaranteed since
the model is constructed by the MOs. Although flat bands
themselves are not allowed to have nontrivial topological
numbers, the dispersive bands touching the flat bands can have
the topologically nontrivial nature. Such models will serve
as a platform to look for intriguing phenomena arising from
the topology and the correlation effects. In this light, studying
the many-body effects in these models will be an interesting
future problem.

Throughout this paper, we consider the models on a two-
dimensional kagome lattice, but it is straightforward to ap-
ply our method to other lattices, including ones in three
dimensions. For instance, if we consider the model on a
pyrochlore lattice, the MOs are defined on a diamond lattice.
Thus, to find the Z2 topological model, the Fu-Kane-Mele
model [69] can be used as a MO Hamiltonian; in the Ap-
pendix, we explicitly construct such a model. If we consider
the many-body effects in the model thus obtained, the flat
band will lead to the ferromagnetism, while the Z2 topo-
logical nature leads to the topological surface states. Then,
the interplay between these two may lead to the quantum
anomalous Hall effect, as in the case of magnetic topological
insulators [70,71].
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APPENDIX: A MODEL IN THREE DIMENSIONS:
MO FU-KANE-MELE MODEL

In this Appendix, we present an example of the Z2 topolog-
ical insulator with exact flat bands on a pyrochlore lattice. The
pyrochlore lattice has a corner-sharing network of tetrahedra.
Defining the MO on each tetrahedron, one can find that it
forms the diamond lattice. To be concrete, the MO on an
upward tetrahedron [colored in cyan in Fig. 7(a)] at the unit
cell R is

CR,U,σ = cR,1,σ + cR,2,σ + cR,3,σ + cR,4,σ , (A1a)

FIG. 7. (a) The pyrochlore lattice. Orange arrows represent the
lattice vectors: a1 = (0, 1/2, 1/2), a2 = (1/2, 0, 1/2), and a3 =
(1/2, 1/2, 0). Blue and red spheres represent the sites of the di-
amond lattice on which the MOs for the upward and the down-
ward tetrahedra are defined, respectively. (b) The band structure of
the MO Fu-Kane-Mele model for (t, t ′, δt ) = (1, 0.125, 0.4). The
high-symmetry points in the Brillouin zone are � = (0, 0, 0), X =
(2π, 0, 0), W = (2π, π, 0), K = ( 3π

2 , 3π

2 , 0), and L = (π, π, π ).
(c) The band structure for the same parameters with a slab ge-
ometry. The surface is perpendicular to the [11̄1̄] direction. The
high-symmetry points in the surface Brillouin zone are �̄ = (0, 0),
M1 = (

√
2π,

√
2π√
3

), M2 = (0, 2
√

2π√
3

), and M3 = (−√
2π,

√
2π√
3

).

and that on a downward tetrahedron [colored in magenta in
Fig. 7(a)] is

CR,D,σ = cR,1,σ + cR−a1,2,σ + cR−a2,3,σ + cR−a3,4,σ , (A1b)

where cR,a,σ represents the annihilation operator defined on
a site of the pyrochlore lattice with the unit cell R and the
sublattice a having spin σ .

Following the method discussed in the main text, we im-
plement a model for three-dimensional topological insulators
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as a Hamiltonian for the MOs. Specifically, we employ the
Fu-Kane-Mele model [69]:

H =
∑

〈I,J〉,σ
tI,JC†

I,σCJ,σ + (H.c.)

+ 8it ′ ∑
〈〈I,J〉〉,σ,σ ′

[
τ · d (1)

I,J × d (2)
I,J

]
σ,σ ′C

†
I,σCJ,σ ′ , (A2)

where I and J represent the sites on a diamond lattice on which
the MOs are placed, and 〈, 〉 and 〈〈, 〉〉 represent, respectively,
the nearest-neighbor and the next-nearest-neighbor pairs. d (1)

I,J

and d (2)
I,J are the nearest-neighbor bonds which traverse the

sites I and J . For the nearest-neighbor hopping tI,J , we set
tI,J = t + δt if rJ − rI is parallel to a1, and tI,J = t otherwise;
rI and rJ represent the position of I and J , respectively.

In Fig. 7(b), we plot the band structure for the rep-
resentative set of parameters. The band structure has
many things in common with the kagome models dis-
cussed in the main text; there is a zero-energy flat
band, which has fourfold degeneracy, and two dispersive
bands, each of which has twofold degeneracy. Further,
the lower dispersive band touches the flat band at the �

point.
To verify the topological nature, we plot the band struc-

ture for the slab geometry in Fig. 7(c). We clearly see the
topologically protected surface states, penetrating the bulk flat
band. This is another common feature to the kagome-lattice
model. As we have mentioned, such a band structure may be
a platform of the quantum anomalous Hall effect induced by
the flat-band ferromagnetism, when the interaction is turned
on.
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