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Parallel time-dependent variational principle algorithm for matrix product states

Paul Secular ,1,* Nikita Gourianov ,2 Michael Lubasch ,2 Sergey Dolgov,3 Stephen R. Clark ,4,5 and Dieter Jaksch 2,6

1Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
2Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom

3Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
4H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom

5Max Planck Institute for the Structure and Dynamics of Matter, CFEL, 22761 Hamburg, Germany
6Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore

(Received 10 January 2020; revised manuscript received 30 March 2020; accepted 2 April 2020;
published 5 June 2020)

Combining the time-dependent variational principle (TDVP) algorithm with the parallelization scheme
introduced by Stoudenmire and White for the density matrix renormalization group (DMRG), we present the
first parallel matrix product state (MPS) algorithm capable of time evolving one-dimensional (1D) quantum
lattice systems with long-range interactions. We benchmark the accuracy and performance of the algorithm
by simulating quenches in the long-range Ising and XY models. We show that our code scales well up to 32
processes, with parallel efficiencies as high as 86%. Finally, we calculate the dynamical correlation function of a
201-site Heisenberg XXX spin chain with 1/r2 interactions, which is challenging to compute sequentially. These
results pave the way for the application of tensor networks to increasingly complex many-body systems.
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I. INTRODUCTION

Although classical simulation of the quantum many-body
problem is in general exponentially hard, many physically
interesting, slightly entangled states can be efficiently sim-
ulated using tensor network methods [1–3]; in particular,
those obeying an entanglement “area law” [4,5]. The most
common approach for one-dimensional (1D) and quasi-two-
dimensional (2D) systems is the matrix product state (MPS)
ansatz. This forms the basis of the modern formulation [6–8]
of White’s density matrix renormalization group (DMRG)
algorithm [9] for computing ground states and low-lying
excited states [10,11].

The introduction of the MPS-based time-evolving block
decimation (TEBD) algorithm [1,2,12] (and subsequent de-
velopments) allowed the short-time dynamics of local 1D
quantum lattice models to be simulated with great success.
In recent years, however, there has been a renewed interest in
the dynamics of models with long-range interactions, driven
by experimental advances in atomic, molecular, and optical
physics. Interactions that decay as 1/rα are now realized in ex-
periments with polar molecules (α = 3) [13,14] and Rydberg
atoms (α = 6) [15–17], whilst trapped ion experiments can
simulate spin models with a tunable exponent (0 � α � 3)
[18–24].

In response, MPS algorithms have been developed that are
able to simulate the time evolution of such models classically
[25–38]. One of the most promising approaches is the time-
dependent variational principle (TDVP) [31,33–35], which
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has found widespread use in condensed matter physics,1 and
which is beginning to find applications in quantum chemistry
[53–60].

TDVP is a serial algorithm that uses sequential sweeps for
numerical stability. This means it cannot easily take advantage
of multicore architectures or high-performance computing
clusters. In fact the same is true of most MPS algorithms.
Attempts to address this shortcoming include the use of
parallel linear algebra operations [60–63], parallelization over

1TDVP is applied to 1/rα models in Refs. [35,39–52].

FIG. 1. Best and worse case strong scaling of the parallel time-
dependent variational principle algorithm for our benchmark exam-
ples. “Ising” is the 129-site spin chain evolved under the 1/r2.3

transverse-field Ising Hamiltonian described in Sec. IV A. “XY” is
the 101-site spin chain evolved under the 1/r0.75 XY Hamiltonian
described in Sec. IV B. The benchmark described in Sec. IV C is
excluded as it was unfeasible to run on a single process.
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quantum number blocks [61,64], and parallelization over
terms in the Hamiltonian [65]. More generally, it is desirable
to parallelize over different parts of an MPS, but this network-
level parallelization is nontrivial. To the best of our knowl-
edge, the only such algorithms to date are nearest-neighbor
TEBD [66–69], real-space parallel DMRG [70,71], and par-
allel infinite DMRG [72], although network-level paralleliza-
tion has also been proposed for projected entangled pair states
(PEPS) [73,74]. A parallel time evolution method for MPS
capable of handling long-range interactions has remained an
open problem.

Given the close relationship between TDVP and DMRG
established in Refs. [34,35], it is natural to ask whether a par-
allel version of TDVP can be developed in a similar manner to
real-space parallel DMRG. In this work, we demonstrate that
it can. The parallelization of the algorithm allows state-of-the-
art calculations to be sped up by a factor of 20+ (see Fig. 1).
Moreover, we show how it makes larger calculations possible
that may otherwise be unfeasible. For example, in Sec. IV C,
we calculate the dynamical spin-spin correlation function of
a 201-site long-range Heisenberg model in a matter of days,
rather than weeks.

The rest of the paper is organized as follows. We start
with a background section, before moving on to introduce the
parallel TDVP algorithm in Sec. III. We provide increasingly
complex benchmark examples for quantum spin-chains in
Sec. IV, and finally conclude and suggest directions for future
research in Sec. V.

II. BACKGROUND

For completeness, we start by reviewing relevant back-
ground material, covering matrix product states, the inverse
canonical gauge, matrix product operators, and the time de-
pendent variational principle. We also establish the notation
used in the rest of the paper.

A. Matrix product states

Any finite-dimensional, N-partite quantum state can be
expressed in a given basis |σ1σ2 . . . σN 〉 as

|ψ〉 =
d1...dN∑

σ1...σN =1

Mσ1
1 Mσ2

2 . . . MσN
N |σ1σ2 . . . σN 〉 , (1)

where the M
σ j

j are matrices (Mσ1
1 and MσN

N being row and
column vectors, respectively). This decomposition is known
as a tensor train [75] or matrix product state (MPS) [76].
To avoid index gymnastics we will often use the graphical
tensor notation introduced by Penrose [77] to represent MPS
as tensor networks (see, e.g., Ref. [78]). In this notation,
tensors are displayed as nodes in a network, with their con-
nected edges representing pairs of dummy indices in the usual
Einstein notation. A contractible edge is referred to as a bond
and the dimension of the corresponding dummy index is the
bond dimension. Free indices (which may represent physical
degrees of freedom) are shown as disconnected edges. In this

notation, Eq. (1) is written as

|ψ〉 =
d1 d2 d3 dN

χ1 χ2 χ3
M1 M2 M3 MNχN−1

,

(2)

where we have explicitly labeled the dimensions of all bonds
χ j , and physical edges d j (for notational clarity, dimensions
are suppressed in the rest of the paper).

Here we are interested in MPS in the context of finite 1D
lattice models with open boundaries. In such a model there
is a one-to-one correspondence between the lattice sites and
the MPS “site tensors” Mj . In quantum chemistry, the “sites”
may instead be molecular orbitals [79]. In a lattice model,
the physical dimensions d j will often be independent of j.
For the spin-half chains considered in this paper, d j = d = 2.
The bonds between sites capture the entanglement present. In
general, χ j is not independent of j. It is thus convenient to
define χ = max(χ j ). Exactly representing an arbitrary state as
an MPS requires a χ = χexact that is exponential in the number
of sites. However, physical states are often well approximated
by MPS of lower bond dimension. We denote by χmax the
maximum bond dimension chosen for a calculation, where
typically χmax � χexact.

Even with all χ j fixed, an MPS representation is not
unique, since

. . . M
σ j

j M
σ j+1

j+1 · · · = . . . M̃
σ j

j M̃
σ j+1

j+1 . . . ,

where M̃
σ j

j = M
σ j

j X , and M̃
σ j+1

j+1 = X −1M
σ j+1

j+1 for any invert-
ible matrix X . This “gauge freedom” can be exploited by
algorithms for numerical stability. In particular, a canonical
form is usually employed in which one or more tensors act as
orthogonality centers [8]. The parts of the MPS to the left and
right of an orthogonality center form orthonormal basis states,
respectively |�L,k〉 and |�R,l〉, where k and l are the indices of
the states. The orthogonality center thus defines the quantum
state with respect to these bases.

Bipartitioning a system into sites [1 : j] and [ j + 1 : N]
allows us to write the Schmidt decomposition,

|ψ〉 =
χ j∑

k=1

λk

∣∣�[1: j]
L,k

〉 ⊗ ∣∣�[ j+1:N]
R,k

〉
. (3)

This can be expressed as an MPS with orthogonality center
� j = diag(λ1 . . . λχ j ) [8],

|ψ〉 =
∑

σ1...σN

Aσ1
1 . . . A

σ j

j � jB
σ j+1

j+1 . . . BσN
N |σ1 . . . σN 〉 , (4)

where A
σp
p (1 � p � j) and B

σq
q ( j + 1 � q � N ) satisfy

∑
σp

(
A

σp
p

)†
A

σp
p =

∑
σq

B
σq
q

(
B

σq
q

)† = 1. (5)

The orthogonality center can alternatively be made into a site
tensor. For example, setting 	

σ j

j = A
σ j

j � j gives an MPS with
orthogonality center at site j,

|ψ〉 =
∑

σ1...σN

Aσ1
1 . . . A

σ j−1

j−1	
σ j

j B
σ j+1

j+1 . . . BσN
N |σ1 . . . σN 〉 . (6)
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Eqs. (4) and (6) are known as the mixed canonical form [8].
This MPS gauge is useful for serial algorithms that update
tensors sequentially, as the orthogonality center can be shifted
by one site whilst maintaining the orthonormality of the state.
For details of this approach we refer the reader to Ref. [8].

B. Inverse canonical gauge

The key to parallelizing MPS algorithms is to use a gauge
with multiple orthogonality centers. This allows different
site tensors to be updated simultaneously, and to be merged
back into the MPS consistently. The first such gauge was
introduced by Vidal for TEBD. Any N-partite state can be
written in Vidal’s canonical form [1,2,12],

|ψ〉 =
∑

σ1...σN



σ1
1 �1


σ2
2 �2 . . . �N−1


σN
N |σ1 . . . σN 〉 , (7)

where the � j are again diagonal matrices of singular values
that serve as orthogonality centers. In graphical tensor nota-
tion, we write this as

|ψ〉 =
Γ1 Γ2 Γ3 ΓNΛ1 Λ2 Λ3 ΛN−1

,
(8)

where the 
 j are site tensors. The beauty of this canonical
gauge is that it simultaneously gives the Schmidt decomposi-
tion of all bipartitions.

In this work, we use the inverse canonical gauge due to
Stoudenmire and White [70], which is given by

|ψ〉 =
Ψ1 Ψ2 Ψ3 ΨNV1 V2 V3 VN−1

,
(9)

where V j ≡ �−1
j . Although equivalent to the canonical gauge,

it turns out to be a more natural choice for parallel TDVP and
DMRG, as well as for TEBD, due to the site tensors, rather
than the diagonal matrices, being orthogonality centers. An
MPS in canonical form is transformed into inverse canonical
form by inserting V j� j = 1 at each bond and then contract-
ing the � matrices with the 
 site tensors, i.e.,

Ψ1 Ψ2 Ψ3 ΨNΨ4V1 V2 V3 V4 VN−1

Γ1 Γ2 Γ3 ΓNΓ4Λ1 Λ2 Λ3 Λ4 ΛN−1

=

=

=
.

As � j is diagonal, calculating V j simply requires taking the
reciprocal of the singular values.2 The contractions 
 jV j , and
V j
 j+1 are similarly cheap. We find no issue with the inver-
sion of � j as tiny singular values corresponding to numerical
noise are discarded [8,80].

2Taking the reciprocal of a floating-point number should be “safe”
as long as overflows and divisions by zero are avoided.

C. Matrix product operators

We represent N-site operators using the matrix product
operator (MPO) construction,

O =
∑

σ1...σN
τ1...τN

Oσ1τ1
1 Oσ2τ2

2 . . . OσN τN
N |σ1 . . . σN 〉 〈τ1 . . . τN | , (10)

where the O
σ jτ j

j are matrices (Oσ1τ1
1 and OσN τN

N being row and
column vectors, respectively). In graphical tensor notation we
write this as

|ψ〉 =

O1 O2 O3 ON

,
(11)

where the Oj are site operators (represented by squares). Site
operators are analogous to MPS site tensors, but have an extra
physical edge. The physical edges have the same dimensions
d j as the MPS on which they act.

Local Hamiltonians are known to have a particularly com-
pact MPO representation [81,82], which means the maximum
MPO bond dimension m is independent of N . Exponentially
decaying interactions can also be encoded efficiently [28,83].
As the same is not true of arbitrary long-range interactions,
we follow Refs. [28,83,84] in approximating power laws by
sums of exponentials, giving m = nH nexps + 2, where nH is
the number of long-range terms in the Hamiltonian, and nexps

is the number of exponentials used in the approximation. In
this paper, we use the algorithm described in Ref. [28]. An
alternative method [85–87] is discussed in Ref. [88].

D. Time-dependent variational principle

The McLachlan formulation of the Dirac-Frenkel-
McLachlan time-dependent variational principle (TDVP)
[89,90] approximates the time evolution of a state |ψ〉 under
the Hamiltonian H by minimizing

∥∥∥∥ i
d

dt
|ψ (t )〉 − H |ψ (t )〉

∥∥∥∥
2

2

, (12)

with |ψ〉 kept fixed while its derivative is varied (note that
we set h̄ = 1 throughout this paper). Assuming the set of
MPS with a given uniform bond dimension to be a smooth
manifold (proven in Refs. [91–93]), Haegeman et al. used this
variational principle to derive a novel algorithm for real and
imaginary time evolution [31].

More recently, an improved TDVP algorithm was derived
for finite MPS with open boundaries, which relies on the
mixed canonical gauge [34,35]. This approach leads to an
effective Schrödinger equation for states constrained to the
MPS manifold,

i
d

dt
|ψ (t )〉 = PT|ψ〉H |ψ (t )〉, (13)

where PT|ψ〉 is an orthogonal projector onto the tangent space
of |ψ (t )〉. The essence of this method is that the tangent space
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projector can be decomposed as

PT|ψ〉 =
N∑

j=1

P[1: j−1]
L ⊗ 1 j ⊗ P[ j+1:N]

R

−
N−1∑
j=1

P[1: j]
L ⊗ P[ j+1:N]

R , (14)

where

P[1: j−1]
L =

χ j−1∑
k=1

∣∣�[1: j−1]
L,k

〉〈
�

[1: j−1]
L,k

∣∣,

P[ j+1:N]
R =

χ j+1∑
l=1

∣∣�[ j+1:N]
R,l

〉〈
�

[ j+1:N]
R,l

∣∣, (15)

meaning

|ψ (t + δt )〉 = exp
(−iPT|ψ〉Hδt

) |ψ (t )〉 (16)

can be approximated by applying a Lie-Trotter-Suzuki de-
composition [94] to the exponential. Consequently, one can
sweep back and forth along the MPS (as in single-site DMRG
[95–97]), time evolving one site tensor at a time. This al-
gorithm, which we refer to as 1TDVP, is symplectic, so
conserves the energy and norm of a state. However, it also
restricts MPS to a fixed bond dimension.

To overcome this limitation, Haegeman et al. introduced
a two-site variant (2TDVP) that similarly relies on the mixed
canonical gauge [35]. In 2TDVP, the tangent space projector
of Eq. (14) is replaced by

PT [2]
|ψ〉

=
N−1∑
j=1

P[1: j−1]
L ⊗ 1 j ⊗ 1 j+1 ⊗ P[ j+2:N]

R

−
N−1∑
j=2

P[1: j−1]
L ⊗ 1 j ⊗ P[ j+1:N]

R . (17)

Because MPS of different bond dimension do not belong to
the same manifold, it is no longer possible to describe the time
evolution of the entire MPS by a differential equation. Instead,
Haegeman et al. use a symmetric second-order Lie-Trotter-
Suzuki decomposition with a discrete time step δt to arrive at
an algorithm with the same sweeping pattern as the original
two-site DMRG.3 Being able to dynamically vary the bond
dimension makes 2TDVP particularly convenient. It has also
been shown to give accurate results for a range of problems
[37,98], so it is this variant we consider here.

III. PARALLEL TWO-SITE TDVP

In this section, we introduce the parallel two-site TDVP
(p2TDVP) algorithm. As a preliminary, we describe how se-
rial 2TDVP can be carried out in the inverse canonical gauge.
This is mathematically equivalent to the usual formulation
given in the literature but, crucially, allows the algorithm

3Higher-order decompositions entailing more sweeps are also pos-
sible [35].

FIG. 2. Left-to-right sweep in serial two-site TDVP using the
inverse canonical gauge. Pairs of site tensors are evolved forwards in
time by half a time step and single site tensors are evolved backwards
in time by half a time step.

to be parallelized. We then describe how this parallelization
is carried out, and finally discuss the truncation of singular
values, and the algorithm’s stability.

A. Serial algorithm

A single time step in 2TDVP comprises a sweep from left
to right followed by a sweep from right to left. During each
of these two sweeps the MPS is evolved forwards in time by
half a time step. Here we only explicitly describe the left-to-
right sweep, illustrated in Fig. 2, as the right-to-left sweep is
equivalent, with just the direction reversed. Both sweeps are
described formally in Appendix A.

Starting from the left, the algorithm proceeds as follows:
sites 1 and 2 are evolved forwards in time by half a time
step; site 2 is evolved backwards in time by half a time step;
sites 2 and 3 are evolved forwards in time by half a time
step; site 3 is evolved backwards in time by half a time step;

FIG. 3. (a) The effective left environment β j , and (b) the ef-
fective right environment γ j , for an MPS site tensor 	 j . β j is
formed from all MPS tensors to the left of 	 j , along with their
Hermitian conjugates. The corresponding Hamiltonian MPO tensors
are sandwiched in between. γ j is formed similarly, but from the
tensors to the right of 	 j .
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FIG. 4. Definition of the local state and its effective Hamiltonian
for (a) the two-site update, and (b) the one-site update. The effective
Hamiltonian is formed by connecting the left and right effective
environments to the Hamiltonian MPO tensor(s) corresponding to
the site(s) being updated. When carrying out a two-site update we
use the L and R subscripts to refer to the left site and right site,
respectively.

and so on. This pattern of local updates continues until the
rightmost pair of sites is reached. The final step is to evolve
this pair of sites forwards in time by half a time step, with
no backwards time evolution necessary. The whole process is
then reversed and the algorithm sweeps back from right to left.
As the second sweep is simply the mirror image of the first,
it begins by evolving the rightmost pair of sites forwards in
time by another half a time step. One can therefore evolve the
rightmost pair just once by a full time step instead of two half
time steps (see Appendix A).

The one and two-site time evolution steps rely on “effective
environments”, which are the same as in DMRG. Each site
tensor 	 j has a left and a right effective environment, labeled
β j and γ j , respectively. These are defined in Fig. 3. The
leftmost and rightmost MPS environments (β1 and γN ) are
trivial, corresponding to 1 × 1 identity matrices. It is impor-
tant to note that the effective environments need not be created
from scratch at every step since previous environments can
be cached and updated. At the beginning of a simulation, all
righthand environments γ1 . . . γN are created iteratively from
right to left.

To time evolve two sites, 	 j and 	 j+1, we construct an
effective local state �(2) and an effective two-site Hamiltonian
H (2)

eff . These are described in Fig. 4(a). Evolving �(2) forwards
in time means calculating

�(2)′ = exp
( − iH (2)

eff δt/2
)
�(2). (18)

Using the Lanczos exponentiation [99] method4 means that
H (2)

eff is not explicitly required, only H (2)
eff �(2), so a more

4An alternative is the recent algorithm from Al-Mohy and Higham
based on truncated Taylor series [100].

FIG. 5. The resplitting of �(2)′ following a two-site update. First
�(2)′ is reshaped into a matrix. Then a truncated singular value
decomposition (SVD) is performed, giving A′�′B′. A′ and B′ are
reshaped into site tensors, and V′�′ is inserted between �′ and B′.
Finally, A′�′ is contracted to form 	 ′

L , and �′B′ is contracted to
form 	 ′

R.

efficient tensor contraction pattern can be employed. Figure 5
explains how �(2)′ is split back into two site tensors using
the singular value decomposition (SVD). Here the smallest
singular values are discarded to keep the bond dimension from
growing too large (see Sec. III C). After this two-site update a
new lefthand environment β j+1 is created from the contraction
of β j , 	 j , V j , 	

†
j , V j , and the Hamiltonian MPO tensor for

site j, i.e.,

βj+1 βj

. (19)

Time evolving one site 	 j+1 requires the construction of an
effective one-site Hamiltonian H (1)

eff from β j+1 and γ j+1. This
is described in Fig. 4(b). The local state �(1) is now just the
vectorization of 	 j+1. To time evolve �(1) backwards in time
means calculating

�(1)′ = exp
( + iH (1)

eff δt/2
)
�(1), (20)

but again only H (1)
eff �(1) is actually required by the Lanczos

routine. After this one-site update, γ j+1 can be discarded.
A time step in 2TDVP has the same time complexity as a

sweep in two-site DMRG. The most expensive operation is
the contraction of the network representing H (2)

eff �(2), giving a
bound of

O
(
Nχ3md2 + Nχ2m2d3

)
. (21)

This means that systems with many degrees of freedom (e.g.
bosonic systems) can be very demanding. Large systems with
long-range interactions are also challenging because of the
size of the bond dimension required by the Hamiltonian MPO
(especially if it contains multiple long-range terms). These
considerations motivate the need for a parallel algorithm.

B. Parallelization

The intuition behind the parallel algorithm is the fact that
local updates approximately preserve the inverse canonical
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FIG. 6. Partitioning of MPS and sweeping pattern for parallel
2TDVP with (a) two and (b) four processes. The dashed lines
represent partition boundaries. At the start of a time step the sweeps
proceed away from the center of the MPS, with each neighboring
partition sweeping in the opposite direction (top arrows). For the
second half of the time step the sweeps are reversed (bottom arrows).

gauge for small δt . We thus parallelize 2TDVP by carrying
out these local updates simultaneously on separate processes.
More concretely, we split the N-site MPS into p partitions,
which are updated in parallel. We use a message-passing
parallel programming model and assign each partition to a
separate process. A partition must contain a minimum of two
site tensors, so we let p be an even number between 2 and N/2.
The full sweeps of the serial algorithm are replaced by partial
sweeps carried out in parallel; each process simultaneously
sweeps along the tensors in its own partition following the
pattern introduced by Stoudenmire and White for parallel
DMRG [70]. This is illustrated in Fig. 6 for two and four
processes. Notice that the sweeping direction alternates for
each neighboring partition. The two central processes always
sweep away from the center of the MPS during the first half
of a time step.

At the start of a simulation, the necessary initial effective
environments are computed sequentially, with each being
assigned to the process owning the corresponding site tensor.
Processes that start by sweeping right will require righthand
environments and vice-versa for those that start by sweeping
left.

When sweeps reach a partition boundary, it is necessary for
neighboring processes to communicate. Firstly, the processes
need to exchange boundary environments, and secondly, one
of the processes needs the 	 tensor belonging to its neighbor
in order to carry out the two-site update. This communication
involves sending O(χ2(m + d )) floating-point numbers. We
let the lefthand process update the boundary sites while the
righthand process waits. The lefthand process then sends the
updated tensors to the righthand process and both processes
update their respective effective environments. Figure 7 illus-
trates how the local updates proceed in parallel away from
partition boundaries. We describe the algorithm formally in
Appendix B.

C. Truncation of singular values

Serial 2TDVP has four sources of error: the projection,
the Lie-Trotter-Suzuki decomposition, the local integration,

FIG. 7. Time evolving local sites in parallel 2TDVP. Two neigh-
boring processes are shown sweeping away from their shared bound-
ary (represented by a dashed line). As in Fig. 2, pairs of sites are
evolved forwards in time by half a time step and single sites are
evolved backwards in time by half a time step.

and the truncation of Schmidt coefficients. For a detailed
discussion we refer the reader to Ref. [37]. The dependence
of the different errors on the MPS bond dimension and the
choice of δt is rather subtle [98] but, if these parameters are
chosen with care, it is the truncation and projection errors that
usually dominate due to the growth of bipartite entanglement
[101]. The projection error can be prohibitively expensive
to compute, especially for long-range models [37,102], but
the truncation error is simply calculated from the discarded
singular values, as in TEBD [12].

In both the serial and parallel algorithms, we quantify the
truncation error due to the single SVD shown in Fig. 5 using
the discarded weight

w =
χ ′∑

j=χ+1

λ2
j , (22)

where χ ′ is the full rank of the matrix �(2)′, λ j are its
singular values (sorted in order of descending magnitude),
and χ is the truncated rank. We choose χ as follows. First,
we define a truncation error tolerance wmax, which is the
maximum allowed discarded weight per SVD. We then find
the minimum rank χw such that w � wmax. Finally, we set
χ = min(χw, χmax).

The total discarded weight wtotal is defined as the cumula-
tive sum of w over all SVDs, over all time steps. In the worst
case, wtotal will grow exponentially due to a linear growth of
bipartite entanglement entropy [4]. However, long-range mod-
els can exhibit a logarithmic growth of entanglement entropy,
even when this growth is linear in the corresponding local
model [41,103–106], meaning wtotal will grow as a power law.

D. Time step and stability

The parallelization of 2TDVP introduces two further
sources of error:

(i) Information about lattice sites propagates along the
MPS at a finite speed meaning that each process will always
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be using at least one “out-of-date” local environment. For
nonlocal 1D models, this induces an artificial locality, since
instantaneous long-range interactions become effectively re-
tarded. For p parallel processes, we expect this error to be
small if the characteristic velocity v of the dynamics satisfies

v � (N/p)/δt, (23)

where we have assumed that each parallel partition contains
∼(N/p) sites.

(ii) Like all parallel MPS algorithms, the local updates in
p2TDVP formally break the global gauge conditions, meaning
the inverse canonical form only holds approximately. In serial
TDVP the inverse canonical gauge is also technically broken,
but the orthogonality of the state is preserved with respect to
the last updated site (which remains an orthogonality center).
In parallel TDVP this orthogonality may be lost, since differ-
ent parts of the MPS are updated simultaneously.

These errors can be controlled by reducing δt or decreasing
the number of parallel processes, meaning that it should be
possible to converge a calculation, as is typically done with
serial MPS algorithms. For moderate values of δt , however,
the breaking of the gauge conditions at partition boundaries
can cause the p2TDVP algorithm to become unstable if very
small singular values are kept. To circumvent this, we define a
relative SVD truncation tolerance ε. We discard singular val-
ues smaller than ελ1 (where λ1 is the largest singular value), in
addition to carrying out the truncation procedure described in
Sec. III C.

If the error in the norm grows unacceptably large during
a simulation, the MPS can also be reorthonormalized and the
effective environments recomputed. As this is a serial proce-
dure, it should be carried out infrequently to avoid affecting
the algorithm’s parallel efficiency. Note that it is, however,
important to ensure the initial state is orthonormal.

For the benchmark calculations described in Sec. IV, a
value of ε = 10−12 was sufficient, with no reorthonormaliza-
tion necessary. However, the appropriate value of ε depends
on the system and choice of time step. In Fig. 8, we describe a
p2TDVP simulation carried out on a 641-site spin chain using
different values of δt and ε. With δt = 0.01 and ε = 10−8, the
error in the norm is seen to blow up. However, reorthonor-
malization brings it back under control. In comparison, the
calculation with δt = 0.002, and ε = 10−12 remains stable,
taking 2.4 times longer to run.

IV. BENCHMARKS

In this section, we describe the results of our numerical
experiments. To test p2TDVP, we carried out benchmark cal-
culations on spin-half models with one, two, and three long-
range interaction terms. We utilized up to 32 processes, with
one process assigned per compute node. Each compute node
used up to 16 threads (e.g., for linear algebra operations). Full
details of the test platform [107], software used [108–121],
and simulation parameters are provided in Ref. [88].

To quantify the error introduced by the parallelization,
we run our benchmark simulations on a single process and
calculate the difference in the observables of interest. We also

FIG. 8. Error in the norm for a 641-site spin chain evolved
using 32 processes under the long-range Ising Hamiltonian with
α = 2.3, following the quench described in Sec. IV A. The solid
curve shows the result for δt = 0.01, ε = 10−8. After about 600
time steps, the error starts to grow exponentially (dotted curve). If
the MPS is reorthonormalized before this, its norm is brought back
under control (righthand solid curve). At the end of the calculation
χ = 116 and wtotal = 7.0 × 10−10. The dashed curve shows the
result for δt = 0.002, ε = 10−12. At the end of this calculation,
χ = 90 and wtotal = 8.8 × 10−10. Both calculations used m = 22,
and wmax = 10−16.

compute the infidelity,

I (|ψ1〉 , |ψ2〉) ≡ 1 − |〈ψ1 | ψ2〉|√〈ψ1 | ψ1〉〈ψ2 | ψ2〉
, (24)

between the serial and parallel MPS at the end of the calcula-
tions, which bounds the error in all observables.

When truncation is the dominant source of error, I ∼ wtotal

[3,75]. Under this condition wtotal can be used as a proxy for I .
In general, however, we would expect wtotal to provide a lower
bound as it does not account for the projection error.

In the following, we define spin Hamiltonians in terms of
Pauli X , Y , and Z operators σ x

i , σ
y
i , and σ z

i (where i is the
index of the spin), and set the interaction strengths (and hence
the energy and time scales) to unity.

A. Long-range Ising model

Our first benchmark looks at the spreading of correlations
after a global quench in the ferromagnetic phase of the
transverse field Ising model with short to intermediate-range
interactions (α > 2). Denoting the transverse magnetic field
by B, the Hamiltonian is

H = −
N∑

i< j

1

|i − j|α σ z
i σ z

j − B
N∑

i=1

σ x
i . (25)

We track the evolution of an equal-time spin-spin correlation
function to see how well p2TDVP can capture a nonlocal
observable. Here we follow Liu et al. [106], but note that this
scenario was first studied using TDVP for the antiferromag-
netic interaction case in Refs. [40,41].

Using a Krylov space method [122,123], Liu et al. accu-
rately simulate the quench dynamics of a 19-site lattice with
periodic boundaries. Starting from the ferromagnetic prod-
uct state |ψ0〉 = |111 . . . 1〉, correlation confinement [124] is
shown to arise due to the presence of power law interactions.
This confinement is stronger the longer the range of the
interactions. Stronger confinement is also shown to decrease
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FIG. 9. Density plots of the correlation function Cr,65(t ) for a
129-site chain evolved under the long-range Ising Hamiltonian for
four values of α. The data were calculated using p2TDVP with 32
processes. All values deviate from the serial calculations by less than
1% (less than 0.2% for the more accurate α = ∞ case).

the bipartite entanglement present, meaning the maximal bond
dimension required for our simulations should decrease for
smaller α.

Liu et al. note that correlation confinement persists when
the initial state is a ferromagnetic ground state of H . We
observe this behavior for lattices with open boundaries when
applying a quench to the ground state of Eq. (25) with α = 3.0
and B = 0.1. As in Ref. [106], we quench to B = 0.27 for
various values of α, and calculate the correlation function,

Cr,k (t ) = 〈ψ (t ) | σ z
r σ z

k | ψ (t )〉
− 〈ψ (t ) | σ z

r | ψ (t )〉〈ψ (t ) | σ z
k | ψ (t )〉, (26)

where r is the lattice site index, k is the index of the cen-
tral lattice site, and |ψ (t )〉 is the state at time t after the
quench. As we consider chains with an odd number of spins,
k = (L + 1)/2.

In Fig. 9, we plot Cr,65(t ) for α = 2.3, 2.5, 3.0, and for
the nearest-neighbor case (α = ∞). These results, computed
using 32 processes, give excellent agreement with the serial
calculations over many orders of magnitude. We see that the
correlation confinement disappears as α → ∞, and a linear
light cone [125–128] is recovered. In fact a linear light cone
already seems to be present in the α = 3.0 case, consistent
with the bounds given in Refs. [129,130]. Our numerical
experiments lead us to conjecture that the light cone is sub-
linear for α < 3. The other striking difference between the
local and nonlocal models is the existence of oscillatory long-
range correlations in the latter, similar to Refs. [40,41]. The
relatively large system size used here allows us to conjecture
that these correlations decay as a power-law with an exponent
approximately equal to α.

At the end of the simulations, we compute the infidelities
I between the serial and parallel calculations. In Table I, we
show these for 32 processes, along with the total discarded
weights wtotal from the end of the serial calculations. We find

TABLE I. Summary of results for the 129-site long-range Ising
model at the end of 1000 time steps (corresponding to t = 20).
Calculations were carried out using δt = 0.02, and ε = 10−12, on
1 and 32 processes. χmax is the maximal MPS bond dimension, m
is the Hamiltonian MPO bond dimension, wmax is the truncation
error tolerance, and wtotal is the total discarded weight from the serial
calculation. Speedups relative to the serial calculations are indicated
in the last column.

α m χmax wmax wtotal Infidelity (I) Speedup

2.3 15 128 10−16 3.3 × 10−11 3.8 × 10−10 20.8
2.5 14 192 10−16 3.1 × 10−11 3.4 × 10−10 23.0
3.0 13 256 10−16 6.1 × 10−11 5.6 × 10−10 25.0
∞ 3 512 10−18 1.7 × 10−13 4.2 × 10−13 23.9

that the ratio I/wtotal grows with decreasing α, from 2.5 for
the nearest-neighbor case, to 11.5 for α = 2.3.

A strong scaling analysis for the α = 2.3 case is shown
in Fig. 1. A speedup of 20.8 was achieved using 32 processes,
although by this point the parallel efficiency drops below 70%.
We find greater speedups for the simulations with larger bond
dimensions (summarized in Table I for 32 processes). This is
to be expected as the computational complexity of the linear
algebra operations asymptotically dominates over the parallel
overheads.

B. Long-range XY model

We next simulate a local quench in the antiferromagnetic
XY model,

H = 1

2

N∑
i< j

1

|i − j|α
(
σ x

i σ x
j + σ

y
i σ

y
j

)
, (27)

with very long-range interactions (α < 1). In this regime,
information can spread through the system almost instanta-
neously [40,131–134]. This is an important test case as it is
not a priori clear how accurately p2TDVP will capture the
nonlocal [40] propagation of information from a single site.

Following Haegeman et al. [35,135], we calculate the
ground state |ψ0〉 of H for a 101-site spin chain and apply
a U(1) symmetry-breaking perturbation,

U = exp
(
iπσ

y
51/4

)
, (28)

to the central spin. We then examine the evolution of the
single-site observable [35,132]

C51,r (t ) = |〈ψ (t ) | σ x
r | ψ (t )〉 − 〈ψ0 | σ x

r | ψ0〉|, (29)

where the perturbed state at time t is given by

|ψ (t )〉 = e−iHtU |ψ0〉 . (30)

Using p2TDVP we reproduce the results of Ref. [35] for
α = 0.75, which is the most interesting case as it illustrates
the breakdown of light cone dynamics. It is also the most nu-
merically challenging due to the large MPO bond dimension.

As shown in Fig. 1, this calculation scales well up to 32
processes with an efficiency �86%. For 32 processes this
corresponds to a speedup of 27.4. The scaling is near optimal
because the MPS saturates our chosen χmax after just one time
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FIG. 10. Time evolution of the 101-site long-range XY spin chain with α = 0.75. All calculations were carried out using δt = 0.02,
ε = 10−12, χmax = 256, m = 28, and no truncation error tolerance. (a) Density plot of C51,r (t ), calculated using 32 processes. Above the cutoff
of 8.575 × 10−6, all values deviate from the serial calculation by less than 1% (less than 0.1% after t = 2.24). (b) Log-log plot of C51,r (t ) at
times t = 1 and t = 4, calculated as in (a). On this scale, differences from the serial calculation are not visible. (c) Maximum absolute deviation
of C51,r (t ) from the serial calculation for p processes. wtotal from the serial calculation is show for comparison.

step. We have excluded the time taken to compute expectation
values, but note here that we were also able to compute these
in parallel, as discussed in Ref. [70], since C51,r depends on
σ x

r , which is a single-site observable.
The time evolution of C51,r (t ), calculated using 32 pro-

cesses, is shown in Fig. 10(a). The results deviate from the
serial calculation by less than 1%, except for small values
at the start of the simulation (t < 0.8). The spatial profile of
C51,r is seen most clearly in Fig. 10(b). Its value oscillates, but
appears to decay algebraically with r, in excellent agreement
with Fig. 5 of Ref. [35].

In Fig. 10(c), we show the maximum absolute deviation in
C51,r (t ) from the serial calculation for 2, 16, and 32 processes,
along with the discarded weight from the serial calculation.
The deviation has a weak dependence on the number of
processes p, but appears to be approximately bounded by
wtotal (except at the beginning of the simulation where the
parallelization error seems to dominate). The infidelities I and
total discarded weights wtotal from the end of the calculations
are shown in Table II. These also depend weakly on p,
with I being less than an order of magnitude larger than
wtotal.

C. Long-range XXX model

In our final benchmark, we test p2TDVP with a U(1) sym-
metric MPS [110,136] by simulating the long-range isotropic
Heisenberg (XXX) Hamiltonian with α = 2,

H = 1

4

N∑
i< j

1

|i − j|2
(
σ x

i σ x
j + σ

y
i σ

y
j + σ z

i σ z
j

)
. (31)

TABLE II. Total discarded weights and infidelities for the 101-
site long-range XY model at the end of 500 time steps.

Processes (p) Total discarded weight (wtotal) Infidelity (I)

1 6.0 × 10−5 N/A
2 6.0 × 10−5 5.1 × 10−4

8 6.5 × 10−5 5.3 × 10−4

16 6.9 × 10−5 5.6 × 10−4

32 7.9 × 10−5 6.1 × 10−4

In the thermodynamic limit this is equivalent to the exactly
solvable spin-half Haldane-Shastry model [137,138], which
was argued in Ref. [30] to provide a stringent test case as it is
both long-ranged and critical. Here we instead use p2TDVP
to time evolve a 201-site spin chain with open boundaries
in order to calculate the dynamical spin-spin correlation
function,

C(r − k, t ) = 〈ψ0 | σ z
r (t )σ z

k (0) | ψ0〉, (32)

where |ψ0〉 is the ground state of Eq. (31), and k is the central
lattice site (i.e., k = 101). As a σ z perturbation does not
break the U(1) symmetry of |ψ0〉, the Z component of spin
is conserved. This allows us to take advantage of symmetric
block-sparse tensors [110,136], and hence use a relatively
large bond dimension of χmax = 1024.

In the thermodynamic limit, the dynamical spin-spin cor-
relation function is given by [139]

C∞(x, t ) = (−1)x

4

∫ 1

−1
dλ1

∫ 1

−1
dλ2 ei(Qx−Et ),

Q = πλ1λ2,

E = π2

4

(
λ2

1 + λ2
2 − 2λ2

1λ
2
2

)
. (33)

In Fig. 11, we show the magnitude of C(x, t ) calculated using
p2TDVP on 32 processes. We also show the relative difference
η∞ from C∞(x, t ), where

η∞ = |C(x, t ) − C∞(x, t )|
|C∞(x, t )| . (34)

There is quantitative difference between the calculations, but
they agree well qualitatively (except towards the edges where
|C(x, t )| drops off exponentially in the finite system due
to the open boundaries). In Fig. 12, we plot the real and
imaginary parts of C(x, t ) for x = 0, 2, 4, 6. Again, we see
good qualitative agreement with the analytic result, and with
Fig. 4 of Ref. [30].

The simulation took 3.4 days to run, excluding the cal-
culation of C(x, t), although a different partitioning of the
MPS should give a slight speedup (see Ref. [88]). The same
computation would likely take weeks to run on a single
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FIG. 11. (Left) Density plot of |C(x, t )| in the t-x plane for the
201-site long-range XXX spin chain. At the edges, |C(x, t )| drops
to 1.2 × 10−3. (Right) The relative difference η∞ from the exact
thermodynamic limit result. Towards the edges, η∞ grows to 0.78.
The calculation was carried out using p2TDVP on 32 processes with
m = 38, δt = 0.025, ε = 10−12, and wmax = 10−16. wtotal at the end
of the calculation was 7.4 × 10−11.

compute node with serial 2TDVP, making a full scaling
analysis impractical.

As we cannot easily calculate the error introduced by the
parallel splitting for this system, we repeat the simulation
on a smaller lattice of 65 sites with χmax = 512. Denoting
the results calculated on 1 and 32 processes by Cs and
Cp, respectively, we find a maximum relative difference of
max(ηp) = 3.1 × 10−5, where

ηp = |Cp(x, t ) − Cs(x, t )|
|Cs(x, t )| . (35)

In contrast, min(η∞) = 5.3 × 10−4 for both the serial and
parallel simulations. At least for this smaller system then, the
parallelization error is negligible compared to the deviation
from the thermodynamic limit (see Fig. 13).

FIG. 12. Real and imaginary parts of C(x, t ) for x = 0, 2, 4, 6.
The markers are the results of the p2TDVP calculation described in
Fig. 11. The solid lines show the exact thermodynamic limit results
for comparison.

FIG. 13. Error in C(x, t ) for the 65-site long-range XXX model
calculation carried out with p2TDVP on 32 processes. (Left) Rel-
ative difference η∞ from the thermodynamic limit result. (Right)
Relative difference ηp from the serial 2TDVP calculation. The ratio
ηp/η∞ < 1.3 × 10−4 for all x and t . At the end of the calculation,
wtotal was 5.8 × 10−11 (4.5 × 10−11 for the serial calculation).

V. DISCUSSION

We have introduced a parallel version of the two-site
TDVP algorithm (p2TDVP) and applied it to quenches in
paradigmatic spin-half models with power law decaying in-
teractions. To assess our algorithm’s accuracy, we calculated
onsite expectation values, equal-time two-point correlation
functions, and a dynamical spin-spin correlation function.
Remarkably, we have shown that demanding calculations can
be accelerated at the cost of very little additional error. Though
the parallel splitting can potentially lead to instability, we
have explained how this can be worked around. Speedups
are system dependent, but we have demonstrated parallel
efficiencies of 65%–86% with 32 processes. This suggests that
it should be possible to use our algorithm to simulate systems
in a week that would otherwise take many months. The use of
a dynamical load balancer may further improve this efficiency.

As a next step, p2TDVP could be applied to fermionic
models. It is not yet clear how accurately p2TDVP can simu-
late 2D systems, but fermionic models in two dimensions can
be especially challenging for all numerical methods [11,140],
underlining the need for a parallel algorithm. Targeting larger
1D systems should be more straightforward. Large system
sizes are important for the study of open quantum dynamics
[141] and transport properties [49], and for distinguishing
between many-body localized and thermal phases [142,143].

In Ref. [71], it was established that single-site DMRG can
be parallelized. We therefore expect that a parallel variant of
one-site TDVP (p1TDVP) could be developed using the same
approach. This would enable a parallel version of the hybrid
method discussed in Refs. [37,101,144], whereby a simulation
starts with 2TDVP and switches to 1TDVP when χmax is
saturated. 1TDVP is faster, and can give more accurate results
for some observables [101]. A parallel version should scale
well as the fixed bond dimension would allow for optimal
load balancing. It may similarly be possible to apply the
parallelization scheme presented here to other related MPS-
local time-evolution methods [26,37,60].

We have focused on real time evolution, but p2TDVP can
also be used for imaginary time evolution. This might prove
beneficial for cases where parallel DMRG fails to converge.
As this evolution is nonunitary, however, one has to pay par-
ticularly careful attention to the orthonormality of the MPS.
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FIG. 14. UML activity diagrams illustrating the (a) left-to-right, and (b) right-to-left, sweeps constituting a single time step in the serial
2TDVP algorithm, when carried out in the inverse canonical gauge. Note that “site tensor” is abbreviated as “site”. For simplicity, we assume
N > 2 (the trivial N = 2 case only requires the first sweep).

An obvious extension to this work would be the combi-
nation of parallel TDVP with established MPS techniques
such as non-Abelian symmetries [81], different local bases
[145–149], and infinite boundary conditions [150]. A code
combining these features would be of great benefit to the
community. Generalizing to other tensor network types is a
further avenue to explore. TDVP can be extended to tree
tensor network states [35,151], so it would be worthwhile to
see if our algorithm can be modified to work with these or
other networks that admit a canonical form [152,153].

Finally, another promising application is the solution of
general partial differential equations (PDEs). MPS-based PDE
solvers, such as the multigrid renormalization method [154],
can be exponentially faster than standard PDE solvers. It is
exciting to anticipate an additional speedup for such methods
via the parallelization technique reported here.
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APPENDIX A: SERIAL ALGORITHM

We use unified modeling language (UML) activity dia-
grams to describe a single time step in the serial 2TDVP
algorithm for an MPS in the inverse canonical gauge. Figures
14(a) and 14(b) describe the left-to-right sweep (illustrated
schematically in Fig. 2) and right-to-left sweep, respectively.
For each two-site update, the left and right site tensors are
labeled 	L and 	R, with V being the diagonal matrix sand-
wiched between them.

As noted in Sec. III A, one can evolve the rightmost pair
of sites at the end of the first sweep by a single full time
step. This means that the second sweep does not need to carry
out a forwards time evolution step for the rightmost two sites.
This same approach can be used in the parallel version of the
algorithm (see Fig. 15).
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FIG. 15. UML activity diagram describing the first half of a p2TDVP time step on four processes. Dashed lines represent message-passing
communication, and “site” is shorthand for “site tensor”.
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FIG. 16. UML activity diagram describing the second half of a p2TDVP time step on four processes. The sweep on each partition occurs
in the opposite direction to the corresponding sweep in Fig. 15.

APPENDIX B: PARALLEL ALGORITHM

Here we use UML activity diagrams to describe a sin-
gle time step in the p2TDVP algorithm. Figures 15 and

16 describe the first and second sweeps, respectively. For
concreteness we show four parallel processes (illustrated
schematically in Fig. 6(b)). This case contains all the logic
necessary to generalize to p processes.
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