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We construct and solve a two-dimensional, chirally symmetric model of Dirac cones subjected to a
quasiperiodic modulation. In real space, this is realized with a quasiperiodic hopping term. This hopping model,
as we show, at the Dirac node energy has a rich phase diagram with a semimetal-to-metal phase transition at
intermediate amplitude of the quasiperiodic modulation, and a transition to a phase with a diverging density of
states (DOS) and subdiffusive transport when the quasiperiodic hopping is strongest. We further demonstrate
that the semimetal-to-metal phase transition can be characterized by the multifractal structure of eigenstates
in momentum space and can be considered as a unique “unfreezing” transition. This unfreezing transition in
momentum space generates flat bands with a dramatically renormalized bandwidth in the metallic phase similar
to the phenomena of the band structure of twisted bilayer graphene at the magic angle. We characterize the
nature of this transition numerically as well as analytically in terms of the formation of a band of topological
zero modes. For pure quasiperiodic hopping, we provide strong numerical evidence that the low-energy DOS
develops a divergence and the eigenstates exhibit Chalker (quantum-critical) scaling despite the model not being
random. At particular commensurate limits the model realizes higher-order topological insulating phases. We
discuss how these systems can be realized in experiments on ultracold atoms and metamaterials.
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I. INTRODUCTION

Quantum phase transitions are ubiquitous in condensed
matter systems [1]. For conventional symmetry-breaking
quantum transitions, which are described within a Landau-
Ginzburg-Wilson paradigm [2], macroscopic thermodynamic
observables show singularities associated with a fundamental
change of the ground state with critical exponents dictated by
the universality class. There are also quantum phase transi-
tions that take place in the energy spectrum, not necessarily in
the ground state, that do not have to have any effect on ther-
modynamic observables but can affect transport or thermal-
ization properties, such as Anderson [3–6] or many-body lo-
calization [7–10], respectively. Interestingly, these transitions
fall outside the conventional Landau-Ginzburg paradigm for
symmetry-breaking thermodynamic phase transitions. More-
over, since they are associated with a fundamental change
in the wave functions, it is more apt to call them eigenstate
phase transitions (EPTs). These are inherently dynamical
phase transitions and can be driven by either randomness or
deterministic quasiperiodicity.

The majority of the known examples of eigenstate phase
transitions involve localization. These transitions do not nec-
essarily have an effect on the density of states (DOS), there-
fore they do not need to coincide with a thermodynamic phase
transition [6,9]. However, in some cases EPTs can affect both
eigenstates and thermodynamics by fundamentally changing
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the low-energy DOS. There are various examples where an
EPT gives rise to a “pile up” of states near zero energy which
creates a diverging low-energy DOS, with the chiral symmetry
classes (purely “off-diagonal” matrices) of both one- and two-
dimensional disordered conductors being prominent examples
[11–13]. The form of the divergence can depend sensitively on
the model under consideration and the presence of rare region
effects [14–20].

There is naturally, a completely separate question of EPTs
that generates a nonzero DOS, namely, where an EPT leads
to the DOS going from zero to a nonzero value. This question
is particularly poignant to the case of semimetals that have a
power-law vanishing DOS at the nodal energy. For instance,
both two- and three-dimensional Dirac semimetal lattice mod-
els are unstable to disorder as indicated by a finite DOS
[21–26]. In the case of quasiperiodicity, however, it has re-
cently been shown numerically [27,28] and rigorously proven
mathematically [29] that an infinitesimal potential strength is
not sufficient to generate finite DOS. Instead, the semimetallic
phase survives, albeit with a perturbatively reduced veloc-
ity, over an extended regime where the quasiperiodicity is
sufficiently weak. At the phase boundary, which at fixed
potential strength will be called the (first) “magic-angle,” in
analogy with twisted bilayer graphene [30–32], the semimetal
undergoes a quantum phase transition into a metallic phase
with a finite DOS. This transition is sharp, with the DOS
developing true nonanalytic behavior, a feature that is rounded
out in the presence of randomness [24]. The semimetal is
ballistic and composed of a subextensive number of plane
wave states, which corresponds to localized wave functions in
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momentum space. The development of a finite DOS coincides
with a delocalization transition in momentum space [27,28]
and is sufficient to generate diffusive dynamics and random
matrix theory level statistics in three dimensions [27]. As we
have shown recently in Ref. [28], this kind of EPT is related
to the single-particle physics of “magic-angle” twisted bilayer
graphene [30–32]. We use the term “magic-angle semimetals”
to describe this transition as it occurs along the line of vanish-
ing Dirac cone velocity due to a moiré structure in generic
Dirac semimetals. Moreover, two-dimensional Dirac points
are straightforward to generate using ultracold atom setups
[33–37], which make this setting an ideal platform to study to
these phenomena in experiments. While randomness becomes
stronger as the dimension decreases, quasiperiodicity evades
this and can achieve transitions forbidden in the random
problem.

With this in mind, a formidable task is to classify vari-
ous universality classes within the family of “magic-angle”
transitions. As a first step, an interesting open question is
how does such an EPT depend on the symmetries of the
model. Indeed, it is now well understood that symmetries
[6,39] dictate the universality class of conventional Ander-
son localization transitions with disorder. Moreover, as we
mentioned previously, symmetries can give rise to dramatic
effects in random systems, for example, the diverging DOS
at low energies in the chiral symmetry classes [11–13]. How-
ever, it is currently unclear what role symmetry plays in the
quasiperiodic (QP) semimetal-to-metal transition and even at
quasiperiodicity driven localization transitions in general [40].
Does the diverging DOS also exist in the QP models with
chiral symmetry? The semimetallic model that we investigate
in this paper is an ideal setting to numerically investigate this
question because in the homogeneous limit the DOS is zero.
This allows for any potential divergence to show up clearly
and not be hidden or obscured by the band structure. Finally, a
comprehensive understanding of EPTs requires disentangling
the effects of strong randomness, such as rare regions, and
the effects of symmetry, which is usually a nontrivial task.
The comparison of QP and random systems with the same
symmetries is a natural way to study this: Quasiperiodic
systems do not possess rare regions due to the lack of large
scale statistical fluctuations.

In this work, we show two-dimensional semimetals with
Dirac points and QP hopping have (1) a “magic-angle”
semimetal-to-metal phase transition [28] at weak quasiperi-
odicity and (2) a diverging DOS similar to the random case
induced by chiral symmetry at the strongest quasiperiodic
strength. This model is constructed and solved using a com-
bination of numerical and analytic techniques. We show that
at the semimetal-to-metal phase transition the DOS jumps,
discontinuously to within our resolution, and develops a
sharp nonanalyticity. This generalizes the transition driven
by a QP potential to the chiral symmetry class. This tran-
sition is accompanied by even flatter bands than what was
seen in Ref. [28], a phenomenon even seen in the so-called
chiral model of twisted bilayer graphene [41]. Therefore,
this model provides a route towards significantly increased
correlations due to the quenching of kinetic energy, and we
will see that in the strong QP limit, other mechanisms could
additionally lead to strong correlations. A schematic phase

FIG. 1. (a) Schematic phase diagram at the band center (E = 0)
extracted from our work. In the semimetal phase the linearly dis-
persing Dirac cone is stable in the low-energy regime. In the chiral
metal phase a band of hybridized zero modes qualitatively explain
the sparse (yet still delocalized) structure of the wave functions at the
band center. The point W = 1 is critical, with a diverging low-energy
DOS, a dynamic exponent z > 2, and multifractal eigenstates that
obey Chalker scaling. (b) The zero-energy DOS ρ(0) for a linear
system size L = 233 and KPM expansion order [38] NC = 214 and
the momentum space inverse participation ratio IM (q = 2), as defined
in Eq. (11), at E = 0 with Q = 2πFn−2/L and L = 144 versus the
hopping strength W on a linear scale. The zero-energy DOS becomes
nonzero when the momentum-space IPR vanishes. (c) The low-
energy DOS ρ(E ) as a function of energy E for pure QP hopping
(W = 1) for the case of real and complex hopping amplitudes for
system sizes L = 987 and L = 233, respectively. For the real QP
hopping amplitudes we find the zero-energy DOS diverges, which is
cut off by the finite KPM expansion order NC , here we take NC = 216.

diagram of the model is shown in Fig. 1(a), demonstrating
the existence of a semimetal phase with Dirac cones in the
band structure, a “chiral metal” phase with nontrivial real-
space structure in the wave functions, as well as the pure
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QP hopping limit, which is critical exhibiting subdiffusive
dynamics.

In addition to the phases described above, we generalize
the multifractal analysis of real-space wave functions to mo-
mentum space and demonstrate that the semimetal-to-metal
phase transition can be described by a unique kind of an
“unfreezing” transition [28]. Due to the chiral symmetry in
the model we are able to qualitatively describe the metallic
phase as the formation of a band of topological zero modes.
As a complementary analysis, we use wave packet dynamics
across the phase diagram to determine (non-energy-resolved)
transport properties and find crossovers from ballistic, to su-
perdiffusive, and last, to subdiffusive dynamics. Importantly,
even for the strongest possible QP hopping strength we find
that some delocalized states remain. In the limit of pure
QP hopping we show that the low-energy DOS diverges
in a power-law fashion with corresponding eigenstates that
exhibit Chalker scaling [42,43]. This potentially implies that
interactions are a relevant perturbation to the pure QP hopping
model [44–47].

The rest of the paper is organized as follows. In Sec. II
we introduce the QP hopping model. In Sec. III we define the
main observables of interest, while in Sec. IV we present, in
detail, our numerical and analytical results. We discuss the
experimental aspects of realizing the theory in Sec. V and
summarize our results and the remaining open questions in
the conclusion, Sec. VI. In Appendix A we analyze a complex
QP hopping model, in Appendix B we provide detailed deriva-
tions of our analytic results, and in Appendix C we describe
the numerical method we use to extract the multifractal expo-
nent. Last, in Appendix D we analyze commensurate limits of
the model that can be described as a higher-order topological
insulator.

II. MODEL

The general form of the Hamiltonian that we focus on can
be written as

H = H0 + HQP, (1)

where H0 denotes a bare, translationally invariant hopping
model and HQP is the nontrival part of the model that has the
QP structure. The model we consider is on the square lattice,
and the bare hopping model is given by

H0 =
∑

r,μ=x,y

iJ0ψ
†
r+μ̂σμψr + H.c., (2)

where J0 is the bare hopping amplitude between site r and
r + μ̂, σx,y are the Pauli matrices, and ψr is a two-component
spinor of annihilation operators. The dispersion relation for H0

is E0(k) = ±2J0

√
sin k2

x + sin k2
y , which contains four Dirac

points at (0, 0), (0, π ), (π, 0), and (π, π ), and a low-energy
DOS ρ(E ) ∼ |E |. Thus, this spinful model on the square
lattice describes a two-dimensional semimetal with linearly
dispersing excitations. This model naturally captures the uni-
versal low-energy physics of two-dimensional semimetals
and is convenient for performing both analytical as well as
numerical calculations. It is important to realize that, on the
single-particle level, the model in Eq. (2) describes the direct
sum of two π -flux models [28] which are readily implemented

using shaken optical lattices [34]. And indeed, much of our
analysis and conclusions apply equally well for a single copy
of pi-flux.

A. Quasiperiodic perturbation

The QP part of the Hamiltonian on the square lattice is
given by

HQP =
∑

r,μ=x,y

iJμ(r)ψ†
r+μ̂σμψr + H.c., (3)

where Jμ(r) is the QP hopping amplitude between site r and
r + μ̂. We construct the hopping matrix elements by consider-
ing a two-dimensional surface [e.g. [cos(Qx) + cos(Qy)] with
a quasiperiodic wave vector Q (i.e., incommensurate with the
underlying lattice) that we evaluate at the midpoint of each
bond on the lattice, this yields

Jμ(r) = W
∑
ν=x,y

cos [Q(rν + μ̂ · ν̂/2) + φν], (4)

where Q is an incommensurate wave vector, φx and φy are
random phases sampled uniformly between [0, 2π ] that are
the same at each site, and we have set the lattice spacing
to unity. We take the linear system size to be given by a
Fibonacci number L = Fn and take a rational approximate for
the QP wave vector Q = QL ≡ 2πFn−2/L (unless otherwise
stated) such that as n → ∞, Q/2π → 4/(

√
5 + 1)2.

In order to reach the pure QP hopping model with finite
model parameters we find it convenient to parametrize the
bare hopping to be given by

J0 =
√

1 − W 2, (5)

such that at W = 0, H → H0 and for W = 1, H → HQP. To
test for the possibility of a divergence in the low-energy DOS
it is ideal to start from a semimetal model where we know a
priori there is (strictly speaking) zero DOS in the bare model,
thus any potential finite or divergent DOS we find is strictly
due to the QP hopping.

B. Commensurate limit and higher-order
topological insulator phases

In a commensurate limit, the model in Eq. (1) can real-
ize a higher-order topological phase. Higher-order topolog-
ical insulators have a gapped topological bulk as well as a
gapped topological surface. This induces corner modes in
two-dimensions and hinge modes in three dimensions [48].
In particular, in the present model for Q = πn/2 for n = 1, 3
(n = 2) the hopping is commensurate with a 16 (four) site
unit cell and perfect nesting induces a gap at the Dirac nodes.
As a result, the model realizes a higher-order topological
insulator phase for a sufficiently strong W , which we describe
in more detail in Appendix D. We will sketch the results in
this subsection.

As a concrete example, for Q = π we analytically
show that the model we consider is a quadrupole topo-
logical insulator [48] (QTI). The hopping for Q = π in-
duces a two-sublattice unit cell. The Bloch Hamiltonian
is then h(k) = W [cos(kx )τxσ0 − sin(kx )τyσx − cos(ky)τyσy −
sin(ky)τyσx] + E0(k)τzσ0, where σ, τ are Pauli matrices
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parametrizing an effective four-dimensional Hilbert space;
see Appendix D. Interestingly, this Bloch Hamiltonian is
equivalent to the QTI model in Ref. [48] without intracell
coupling for W > 0, and as we demonstrate in Appendix D,
this phase has topological corner modes at zero energy that lie
within the surface and bulk band gap.

In Sec. IV A 2 and Appendix D we show similar HOTI
behavior also show up when Q = 2πm/n, where n is an even
factor of L, and gcd(m, n) = 1. These can be interpreted by
considering a unit cell of n2 sites. For larger n, there are fewer
unit cells in our finite-size calculation, making the HOTI char-
acter more challenging to observe. Interestingly, in a similar
vein, recent work on twisted bilayer graphene predicts the
existence of HOTI with large twist angles [49]. It is interesting
to note that the quasiperiodic model we investigate here can
be regarded as tuning away from a higher-order topological
phase via an incommensurate flux.

III. OBSERVABLES

We solve the Hamiltonian in Eq. (1) using a combina-
tion of numerically exact methods. To compute the DOS
and wave packet dynamics we use the Chebyshev expansion
techniques including the kernel polynomial method (KPM)
[38,50], which allows us to reach sufficiently large system
sizes (L = 987 is the largest system size considered here).
In addition, we obtain wave functions via Lanczos or exact
diagonalization. In this section, we define various observables
that are used in this work.

A. The structure of eigenvalues

To study the transition out of the semimetal phase and the
effect of strong QP hopping, we compute the average DOS,
which is defined as

ρ(E ) = 1

L2

[∑
i

δ(E − Ei )

]
, (6)

where [· · · ] denotes an average over random phases and
twists. The KPM expands the DOS in terms of Chebyshev
polynomials up to an order NC , and as a result any nonanalytic
behavior in the DOS will be rounded by the finite expansion
order (in addition to the finite system size). For the DOS
calculations we use twisted boundary conditions, e.g., a phase
eiθμ along the μ direction, which we incorporate by multiply-
ing each hopping element J0 + Jμ(r) → eiθμ/L[J0 + Jμ(r)] in
Eqs. (2) and (3). We average over random twists and phases
sampled uniformly between [0, 2π ]; for the KPM data we
average over 500 samples. In certain regimes of the model
we use the power-law scaling of the low-energy DOS

ρ(E ) ∼ |E |d/z−1 (7)

to extract the dynamic exponent z. The finite KPM expansion
order leads to a broadening of the Dirac δ functions in the
definition of the DOS [see Eq. (6)] into Gaussians with a
width δE = πD/NC for a bandwidth D (this holds for the
Jackson kernel [38] that we are using for all of the calculations
presented here). Thus, we also use the scaling of ρ(E = 0)
with NC , where Eq. (7) implies that ρ(E = 0) ∼ (NC )1−d/z, to
analyze the scaling of the low-energy DOS.

To study the real-space localization properties of the model
we study the typical DOS, which is the geometric mean of the
local DOS. This is defined as

ρtyp(E ) = exp

{
1

Ns

[
Ns∑
i

log ρi(E )

]}
, (8)

and the local DOS is given by

ρi(E ) =
∑
n,α

|〈n|i, α〉|2δ(E − En), (9)

where |n〉 and En denote exact eigenstates and eigenenergies,
α denotes the two spin states due to the spinor structure of
the Hamiltonian, and Ns 	 L2 is a small number of randomly
chosen sites that we average over to improve the statistics. In
the thermodynamic limit, the typical DOS is nonzero in the
extended phase and will go to zero in an Anderson insulating
phase, which thus serves as a diagnostic for real-space local-
ization.

B. The structure of eigenstates

We connect the physical properties of the model to its
low-energy eigenstates by studying their structure in both real
and momentum space. The semimetal phase is characterized
by stable plane-wave states that are localized in momentum
space. As shown in Refs. [27,28], a unique feature of the
“magic-angle” semimetal-to-metal transition is that it coin-
cides with a delocalization of the momentum-space wave
functions. This implies that the critical momentum-space
wave functions are developing nontrivial structure that we
should be able to describe using methods to treat localization
transitions in real space.

The properties of the probability distribution of an eigen-
state can be characterized by a multifractal analysis [6,51]. We
first define a “coarse-grained” real-space wave function (ψb)
with its resolution controlled by a binning size b � 1. The
spatial region is divided into (L/b) × (L/b) boxes. We assign
a position vector X j to indicate the position of the jth box. The
binned wave function is given by ψb(X j ) ≡ ∑′

x ψ (x) where
ψ is the original normalized wave function, and

∑′
x runs over

the positions inside the jth box. Then we define the real-space
(generalized) inverse participation ratio (IPR) and multifractal
exponent via

IR(E ; q, b, L) =
∑
X j

|ψb(E , X j )|2q ∝
(

b

L

)τR (q)

, (10)

where IR(E , q, b, L) is the qth real-space IPR with a binning
size b, E is the energy of the wave function, and we use a
subscript R to denote real space. Note that the sum in Eq. (10)
is running over the positions of boxes (X′

j s) rather than
the full lattice points. The quantity τR(q) is the multifractal
exponent associated with the qth IPR in real space, and b = 1
is the finest resolution in the IPR measure. The exponent
τR(q) is extracted via varying values of b for b 	 L. To
obtain τR(q) in the finite-size system, we vary the binning
size b for a given L. The exponent τR(q) is known to be
a self-averaging quantity in the studies of disordered free-
fermion models [52]. In addition, τR(q = 0) = −d = −2 (the
trivial limit which corresponds to counting binning boxes) and
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τR(q = 1) = 0 (normalization of the wave function) must hold
for arbitrary wave functions. Conventionally, one sets b = 1
and q = 2 for studying the second IPR as a proxy of spatial
ergodicity/nonergodicity in a wave function.

We now generalize the multifractal analysis to momentum-
space wave functions and focus on the Dirac node energy
E = 0 and therefore drop the energy label. Similar to
our work in Ref. [28], we Fourier transform the zero-
energy wave function from real to momentum space φ(k) =
(1/L)

∑
x e−ix·kψ (E = 0, x). Then, we set up momentum-

space boxes of size B and the binned wave function (φB)
in momentum space. We note that the box size B in the
momentum space determines the effective infrared scale while
b in real space is related to the effective ultraviolet scale. The
momentum-space IPR and multifractal exponent are given by

IM (q, B, N ) =
∑
K j

|φB(K j )|2q ∝
(

B

N

)τM (q)

, (11)

where IM (q, B, N ) is the qth momentum-space IPR with a
momentum binning size B, a linear size of the momentum grid
N = L, and we use a subscript M to denote momentum space.
Using this definition we can study localization transitions
in momentum space by either fixing q = 2 (Ref. [27]) or
in more detail by analyzing the behavior of the multifractal
exponent τM (q) (Ref. [28]). τM (q) also obeys the conditions
τM (q = 0) = −d = −2 and τM (q = 1) = 0.

The multifractal exponents τR(q) and τM (q) provide sys-
tematic ways of characterizing the properties of the wave
function probability distributions in the in the real- and
momentum-space bases, respectively. For a plane wave in
real space, the spectrum is simply τR(q) = 2(q − 1), i.e.,
a straight line. The corresponding momentum-space wave
function generically contains a few of sharp peaks (due to
a linear combination of the degenerate eigenstates) and is
characterized by τM (q) = 0 for q � qc where the termination
value qc � 1, indicates a “frozen” spectrum [6]. In the limit
of a single peak, the spectrum is reduced to a localization
spectrum with qc → 0. We will focus on an “unfreezing”
transition in τM (q) which is related to the semimetal-to-metal
transition. In addition, we adopt a variant of the real-space
multifractal exponent α0 (see Appendix C) for characterizing
the localization properties for finite-energy wave functions in
the strong QP hopping limit.

Last, we test for Chalker scaling by defining a two-wave-
function correlation function as follows [42,43,53,54]:

C(E ) ≡
∑

x

|ψE0 (x)|2|ψE (x)|2, (12)

where E0 is a reference energy and ψE is the eigenstate with
energy E . Note that the sum runs over all the positions and
the internal degrees of freedom have been integrated over.
We are interested in energies near the Dirac node so we
set E0 = 0. The two-wave-function correlation C(E ) char-
acterizes the degree of overlapping probability among two
eigenstates separated by an energy E in a fixed realization.
In particular, C(E ) ∼ 0 for localized states with 0 � E 	 δl

(δl is the mean level spacing in a localization volume). For
states near a mobility edge, C(E ) shows nontrivial scaling
in the energy separation [42,43,53,55]. States that obey a

power-law scaling

C(E ) ∼ |E |−μ (13)

with μ = [d − τR(2)]/z > 0 exhibit Chalker scaling. (Note
that the exponent μ here has been generalized to the system
with a low-energy power-law DOS [54].) The existence of
the power-law scaling potentially implies an enhancement of
interactions [44–47]. We adopt such a diagnostic to study
the correlations among the low-energy states in the pure QP
hopping limit.

C. Dynamics

We study transport properties of the model via wave packet
dynamics. We initialize a wave packet to be localized at
a single site (r0 = (0, 0)) in real space �0(r) = 〈r|�0〉 =
δr0,r with zero initial velocity (in this case, a spin up/down
state suffices), then time evolve that state |�(t )〉 = e−iHt |�0〉,
which we evaluate using a Chebyshev expansion [50]. We
compute the spread of the wave packet

〈δr(t )2〉 ≡ 〈�(t )|[r̂ − r0]2|�(t )〉, (14)

where r̂ = (x̂, ŷ) = ∑
r(x, y)|r〉〈r| and r = (x, y). The initial-

ized wave packet has weight across the spectrum of eigen-
states and is not energy resolved. Therefore it will not be par-
ticularly sensitive to the semimetal-to-metal phase transition
at E = 0. As a result any estimate we make will be averaged
over all energy eigenstates. With this in mind, we use the
scaling of wave packet spreading at long times

〈δr(t )2〉 ∼ t2/z̃ (15)

to extract an “average” estimate of of the dynamic exponent
z̃ (and hence use a tilde) to distinguish this from our energy-
resolved DOS estimate of z in Eq. (7). We note here that the
Chebyshev expansion order NC does not lead to a broadening
of levels; it instead dictates the final time that can be reached
accurately. Here we track this by requiring the norm of the
wave function be preserved for all times. In all the results
presented here we choose NC such that the wave packet has
enough time to spread out as far as possible (=L/2 in each
direction due to periodic boundary conditions) so that the only
finite-size effect in our data is due to system size and not NC .

IV. RESULTS

While we study all energies and quasiperiodicity strengths,
our principle consideration is the Dirac node energy (E = 0).
At weak quasiperiodicity, we study the development of a
nonzero DOS at the Dirac node, which coincides with a de-
localization of the wave function in momentum space [27,28].
At strong quasiperiodicity, we study the evolution of the low-
energy eigenstates and wave packet dynamics that contribute
to a clear divergence in the low-energy DOS in the limit of
pure QP hopping (W = 1).

A. Transition out of the semimetal phase

1. Formation of the miniband(s)

Introducing a weak QP hopping with Q close to π , creates
dominant internode scattering that transfers momentum QL
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FIG. 2. DOS versus E for L = 233 and NC = 214 with different
QP hopping strengths W . (a) Formation of the first miniband with
increasing values of W (vertical black arrows marking the gap that
separates this miniband from the rest of the states). (b)–(e) Formation
of the second miniband and semimetal-to-metal transition (vertical
black arrows mark the location of the gap to the second miniband).
The second miniband is displayed as a thicker line for clarity. Note
that the full bandwidth for W = 0 is 4

√
2 ≈ 5.7 and all of these

results are obtained for Q = 2π × 89/233 with a critical value of
W for this Q given by Wc = 0.485 ± 0.005.

and mixes degenerate states of equivalent spin. This leads to
the formation of hard gaps at finite energy that separates a
semimetal miniband near E = 0 described by a DOS ρ(E ) ≈
ρ ′(0)|E | with the rest of the spectrum. We note that this
defines the slope ρ ′(0) and formally we only focus on ρ ′(0+).
As W increases, higher-order processes gain importance, hy-
bridize with lower-energy eigenstates, and, therefore, open
additional smaller mini bands; see Fig. 2. Similar to what was

reported in Refs. [27,28] for semimetals in a QP potential,
these minibands can be described perturbatively in the QP
strength, and the states in the miniband can be counted by
considering the number of states near the Dirac cones that
cannot be mixed via a momentum transfer that is restricted to
a size QL (or smaller for higher-order perturbative processes).
For QL = 2πFn−2/Fn we find that there N1 = 2(Fn−3)2 states
in the first miniband and N4 = 2(Fn−6)2 states in the second
miniband, which are generated by a momentum transfer of
QL (from first order in perturbation theory) and 4QL − 3π

(from fourth order in perturbation), respectively. This matches
our numerical results, which we compute using either exact
diagonalization on small sizes or integrating the DOS over the
energy window of the miniband. The formation of the first and
second miniband is shown in Fig. 2 for a potential strength
W ≈ 0.1 and W ≈ 0.48 respectively. The van Hove peaks in
each miniband are conventional, and we have checked that
they diverge logarithmically in the thermodynamic limit (not
shown). Interestingly, this is a similar result to what was found
in Refs. [27,28], thus the development of minibands at weak
QP hopping is not distinct from those generated by a QP
potential or from “twisting” two layers of graphene.

If we instead focus on a small QL (relative to π ), then
internode scattering is no longer the dominant effect, and
intranode scattering also plays a prominent role in the low-
energy description. In this case, the hard gaps can be softened
into pseudogaps or smeared out altogether. Nonetheless, we
still find a semimetal-to-metal phase transition persists at
small QL. For QL � 2πFn−3/Fn the location of semimetal-to-
metal transition is roughly the same, as shown in Fig. 3.

2. Density of states and velocity renormalization

We first focus on the low-energy DOS at weak QP hopping
strength. The semimetal is defined as having zero DOS at
E = 0, and we find this is stable over a finite range of W
(as shown in Figs. 1, 3, and 4). This can be seen clearly
from the scaling of the zero-energy DOS with the KPM
expansion order; in the semimetal regime ρ(E ) ∼ |E | implies
that ρ(E = 0) ∼ 1/NC (see inset of Fig. 4), and we use this
to locate the boundary of the semimetal phase. Note that this
is completely different then the random model, where DOS is
always nonzero due to the perturbative (marginal) relevance
of disorder in two dimensions [4,21,22].

As the QP hopping is increased the gaps approach E = 0,
which “flattens” the semimetal miniband until a nonzero value
of the DOS is generated after a critical QP hopping strength.
For QL = 2πFn−2/Fn with L = Fn we find that this occurs at
Wc = 0.485 ± 0.005 by studying the NC dependence as shown
in Fig. 4. After the transition we find a low-energy peak
centered about E = 0 survives (which eventually develops
structure at larger QP hopping strength); see Fig. 2. We
find that all of the states that make up the second (smaller)
miniband = 2(Fn−6)2 for QL/2π = Fn−2/L and L = Fn in the
semimetal phase become mixed in the metallic phase and are
all contained in the peak about zero energy in Fig. 2 for
W = 0.50 and 0.52. This behavior holds only for the chiral
model and does not necessarily occur for the case of a QP
potential [28]. The location of the transition Wc is not universal
and depends on the model details.
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(a)

(b)

SM
SM

Chiral metal

≥

FIG. 3. The dependence of the DOS at zero energy on the choice
of the wave vector QL . (a) A phase diagram in the space of W and
Q specifying the semimetallic regime (SM), the gapped higher-order
topological insulating phases (indicated by the sharp drops in DOS
on vertical lines indicating rational Q labeled on top), and the chiral
metal phase, where the color plot denotes the value of log ρ(0).
Each data point is calculated for a system size L = 144 and KPM
expansion order of NC = 212. For these finite sizes, ρ(0) around 10−3

corresponds to the SM phase, while larger DOS signals the metallic
phase. At Q = nπ/2 and other highly commensurate ratios with even
denominators, however, the model is gapped (as indicated by the
sharp drop in DOS) and is a higher-order topological insulator as
shown in more detail in Appendix D. The solid red curve shows
the result of perturbation theory for the critical Wc, given by v = 0
in Eq. (16). For Q > π the estimate of Wc from Eq. (16) becomes
imaginary, and we plot the magnitude of this as a dashed red curve.
(b) The QL/(2π ) = Fn−m/Fn cuts (marked by the black ticks in
top panel) with system sizes L = 144, and NC = 214. We see the
transition persists for very small QL . Note that the finite value of ρ(0)
in the semimetal regime is just a finite-size effect and the transition
appears when this rises over several orders of magnitude; see Fig. 4.

We find that the semimetal miniband is well described by
ρ(E ) ≈ ρ ′(0)|E |, with no change to the power law in energy
as the quantum phase transition is approached. The Fermi
velocity of the Dirac cone v is related to the DOS via ρ ′(0) ∝
1/v2. As the transition is approached from the semimetal
side we find ρ ′(0) diverges like ρ ′(0) ∼ (Wc − W )−β , with
β = 2 ± 0.2; see Fig. 5. This signals that the DOS develops
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FIG. 4. The zero-energy DOS ρ(0) as a function of W for various
KPM expansion orders NC and a system size of L = 233. In the
semimetal regime ρ(0) goes to zero for increasing NC like ρ(0) ∼
1/NC , which allows us to identify a sharp semimetal-to-metal transi-
tion at Wc = 0.485 ± 0.005. (Inset) The NC independence of ρ(0)NC

allows us to identify the semimetal phase boundary and demonstrates
the robustness of the semimetal phase to quasiperiodicity. These data
for NC = 214 on a linear scale are shown in Fig. 1(b).

nonanalytic behavior at the semimetal-to-metal transition. As
a result the velocity of the Dirac cone goes to zero like
v ∼ (Wc − W ). It is very interesting to compare this result
with what we found in Ref. [28] for the case of a QP po-
tential, which yielded β = 1.8 ± 0.4, which suggests (rather
remarkably) that this exponent seems to be independent of the
symmetry class.

The suppression of the velocity for 0 < Q < π can also
be captured analytically using perturbation theory in the QP
hopping strength, borrowing techniques originally applied to
twisted bilayer graphene [28,31]. Using this framework and
going to second order in the QP hopping strength we find (see
Appendix B 1)

v

2J0
=

1 − W 2

4J2
0
[1 + 2 sec(Q/2)]

1 + W 2

4J2
0

sec(Q/2)2
. (16)

This yields a vanishing velocity, i.e., a magic-angle condition
v = 0, for W = W (v)

c ≡ 2/
√

5 + 2 sec(Q/2), which we com-
pare to the numerical calculation of the DOS at zero energy in
Fig. 3(a). In the regime near Q = π , where the Wc is small
and perturbation theory is controlled, both methods agree
well.

These results strongly suggest that the semimetal-to-metal
transition generates flat bands due to the vanishing velocity.
To clearly demonstrate the presence of flat bands, we study
how the low-energy eigenvalues evolve as a function of the
twist in the boundary condition. To twist the boundaries we
apply a gauge transformation that is equivalent to replacing
the hopping terms J0 + Jμ(r) → eiθμ/L[J0 + Jμ(r)] for a twist
θμ in the μ direction. We use this as a measure of the
low-energy dispersion in the mini (twist) Brillouin zone of
size (2π/L). This is mathematically equivalent of tiling an
infinite system with supercells of size L × L and finding the
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(a)

(b)

FIG. 5. The effective Dirac cone velocity extracted from the scal-
ing of the low-energy DOS ρ(E ) ∼ ρ ′(0)|E | [formally we compute
ρ ′(0+)]. (a) The slope ρ ′(0) vs W for various combination of Nc and
L. We find that ρ ′(0) rises steeply, strongly suggesting a divergence
and a nonanalytic DOS at the transition. We extract ρ ′(0) from a fit to
the scaling of the low-energy DDOS ρ(E ) ∼ ρ ′(0)|E |. (b) Velocity
v = 1/

√
ρ ′(0). The dashed line shows the linear fit of highest Nc

and L we have. The linear scaling of ρ ′(0)−0.5 indicates ρ ′(E =
0) ∼ (Wc − W )−2 and predicts critical point W 0.485 ± 0.005 that is
consistent with our other analysis.

corresponding band structure (much akin to tiling graphene
with moiré unit cells). As shown in Fig. 6(a), we clearly
see the presence of the Dirac cones at (0,0) and (π, 0) for
weak QP hopping. These bands become incredibly flat in the
metallic phase, as shown in Fig. 6(b), which confirms both
the qualitative expectation from the perturbative analysis and
our approach of extracting the velocity from the scaling of the
DOS. The flattening effect is substantial in the chiral model
and suppresses the minibandwidth orders of magnitude more
from the magic-angle transition driven by a quasiperiodic
potential [28]. Interestingly, incredibly flat bands have also
been seen in the so-called chiral model of twisted bilayer
graphene [41], and we find a similar effect here in this
much simpler model that also possess a chiral symmetry.
Thus, we conclude that the particle-hole symmetry leads
to a significant enhancement of miniband renormalization
effects.

3. Wave function delocalization in momentum space

We now connect the structure of the eigenvalues that we
have probed through the DOS with the structure of the wave

(a)

(b)

FIG. 6. The twist dispersion in the semimetal phase (a) and in the
chiral metal (b), i.e., low-energy eigenvalues (E ) as a function of a
twist (θx) in the boundary condition along the x direction obtained by
diagonalizing an L = 89 sample. (a) For W = 0.35 in the semimetal
phase with clear Dirac points at (0,0) and (π, 0). (b) Focusing on
W = 0.50 that is right after the semimetal-to-metal transition. We see
the low-energy minibandwidth for W = 0.5 has been substantially
renormalized, and the band in the center of the spectrum has a
bandwidth that has been renormalized by a factor ∼10−8 from its
unperturbed value, which is an even stronger effect than has been
seen previously [28].

function. A complementary way to understand the transition
is to study how the zero-energy plane-wave eigenstates are
perturbed by the QP hopping. For the case of two- and
three-dimensional Dirac/Weyl cones subject to a QP scalar
potential it has been shown that the generation of a nonzero
DOS coincides with a momentum-space delocalization tran-
sition [27,28], which can be seen in the momentum-space
IPR (IM) for q = 2. Similar results for the current model
are shown in Figs. 1(b) and 7. In the absence of the QP
hopping, the wave function at zero energy is composed of
the Fourier modes at the Dirac points (kx, ky) = (0, 0), (0, π ),
(π, 0), and (π, π ). Generically, the zero-energy states are
linear combinations of these four plane waves. Therefore, the
probability distributions (integrating over the internal degrees
of freedom) of the momentum-space wave function contains
four peaks, which we call “ballistic peaks.” If we now translate
the multifractal nomenclature to the present problem, we see
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FIG. 7. The q = 2 inverse participation ratio in momentum space
IM (q = 2) as a function of W for various system sizes L. In the
semimetal regime the momentum-space IPR is L-independent and
becomes L-dependent in the chiral metal phase due to the wave func-
tion delocalizing in momentum space. At W = 0.7, the momentum-
space wave functions are still delocalized (see Fig. 9) even though
the IPR data seem to be only weakly depending on the sizes. All the
statistical error bars in this plot are smaller than the symbols.

that these ballistic peaks give rise to a frozen wave function.
We note that the momentum-space wave function here has
peaks at the Dirac points regardless of the QP potential
(as long as it is weak). On the other hand, the real-space
frozen wave functions, as realized in the the random vector
potential Dirac model [56,57], have peaks randomly dis-
tributed depending on the disorder realization.

To support the argument of perturbing stable ballistic
peaks, we plot the momentum-space wave functions in Fig. 8.
In Fig. 8(a) the momentum-space wave function is essen-
tially composed of the four ballistic peaks. Generically, the
QP hopping decreases the ballistic peaks via “hopping” in
momentum space and generates other satellite peaks which
arise due to the coupling of the QP wave vectors (±QL, 0)
and (0,±QL ). Those satellite peaks have weights related to
the order of scattering off of the QP hopping. While there
are infinitely many such peaks in the thermodynamic limit,
the wave function is weighted subextensively among them
(akin to how a localized state dies off exponentially from a
central localized site). In finite system sizes and sufficiently
weak W , only a finite number (smaller than L2) of satellite
peaks dominate, as shown in Fig. 8(b). For W < 0.49, where
W = 0.49 is close to the critical point, the ballistic peaks
remain sharply defined even in the presence of the satellite
peaks, and this structure can be captured perturbatively. The
weight of the wave function on the satellite peaks increases
when driving W to a larger value, similar to a localized
wave function as we approach a delocalization transition.
For W > 0.49, the ballistic peaks hybridize with extensively
many satellite peaks, the wave function is “delocalized” in
momentum space, as displayed in Figs. 8(d)–8(f). Throughout
this transition, the wave function is delocalized in real space;
however, it acquires a definitive structure that we explain qual-
itatively in terms of topological zero modes in Sec. IV A 4.
This state is delocalized in both real- and momentum- space,
in contrast to the wave functions with W < 0.49 which are
ballistic and composed of a measure-zero set of momenta. The
hybridization of an extensive number of momenta most likely
creates extensive degenerate zero-energy states, causing a fi-
nite DOS. And, indeed, we witness numerically [see Fig. 1(b)]

FIG. 8. Probability distributions of zero-energy wave functions in momentum space with L = 144 and different values of W . (a) and
(b) The wave functions contain well-defined ballistic peaks at (kx, ky ) = (0, 0), (0, π ), (π, 0), and (π, π ). A few of satellite peaks can be seen
in (b) while the major ballistic peaks are still well resolved from the figures. (c) The wave function is close to the critical point; The ballistic
peaks can still be resolved. Meanwhile, the satellite peaks start to form regions instead of a few well-separated points. (d)–(f) The ballistic
peaks are no longer sharply defined due to the hybridization with the satellite peaks which arise from scattering off QP potentials. In (f), the
momentum-space wave function looks very much like a conventional delocalized state. The critical value is close to W = 0.49.
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FIG. 9. Zero-energy momentum-space wave function with W =
0.7. (a) The probability distribution. The wave function is made of
sparse peaks and is still delocalized in momentum space. (b) The
multifractal spectra τM (q). Each datum is averaged over 100 realiza-
tions. For smaller binning sizes (B = 1, 2 and B = 2, 4), the τM (q)
show strongly multifractal (but still unfreezing) behavior. Note that
τM (q = 2) is not zero for all the binning sizes.

that the unfreezing transition in the momentum-space wave
function coincides with the semimetal-to-metal transition in
the DOS.

To study the momentum-space wave function quantita-
tively, we first compute the second momentum-space IPR
IM (q = 2, B = 1, N = L) [given by Eq. (11)] for different
system sizes (L = 55, 89, 233). In Fig. 7 the IPR with q = 2 in
different system sizes are essentially L-independent for W <

0.49. For W > 0.49, the IPR becomes size-dependent, an
indication that the wave function is composed of an extensive
number of momentum states. Similar results can be obtained
for L = 34, 144, 610. Note that, while it looks like W = 0.7
is close to being localized in momentum space, this is not
the case as we demonstrate in Fig. 9. For even numbers, the
Dirac nodes gap out at order L/2 in perturbation theory, so
while the trend of the IPR is the same as for odd numbers, it
quantitatively differs. Correspondingly, we compute the τM (q)
spectrum [6] for L = 144 by varying the binning size B in
every realization as shown in Figs. 9(b) and 10. This anal-
ysis directly answers if the wave functions are governed by
well-localized peaks. For W < 0.49, the wave functions show
freezing which is characterized by τM (q) = 0 for all q � 1.
We note that a single localized peak results in a spectrum
with τM (q) = 0 for all q > 0. The frozen spectrum indicates
that the dominating regions in the probability distribution
of a wave function are characterized by a measure-zero set
of peaks. For W > 0.49, the well-defined ballistic peaks are
broadened with finite widths due to hybridization with the
satellite peaks. We find that the τM (q) spectrum is weakly
“multifractal.” For instance, with W = 0.495, the τM (q) ≈
2(q − 1) − 0.34q(q − 1) for |q| < 1. These results are sum-
marized in Fig. 10. The ballistic peaks are no longer sharply
defined as their weights strongly depend on the binning size
B. The location of the semimetal-to-metal transition obtained
from the wave function diagnostic is in excellent agreement
with the semimetal-to-metal transition in the DOS. As a

FIG. 10. Multifractal spectrum of the zero-energy momentum-space wave function with different W for L = 144. Each τM (q) is obtained
via numerical extrapolation of two different values of the binning size B. Each datum is averaged over 100 realizations. (a) and (b) All the
τM (q) spectra show freezing behavior. (c) τM (q) spectra extracted from larger binning sizes (B = 4, 8 and B = 8, 16) start to show unfreezing
behavior. While the spectra from B = 1, 2 and B = 2, 4 are still frozen. This is very close to the critical value of W . (d)–(f) All the τM (q)
spectra show unfreezing, weakly multifractal behavior.
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FIG. 11. Probability distributions of zero-energy wave functions in real space with L = 144 and different values of W comparing the
exact numerical calculations (top row) with the analytic results (bottom row) for the wave functions of the chiral metal, in Eq. (19). (a) and
(d) The wave functions are plane waves. (b) and (e) The model is close to the critical point of the semimetal-to-metal transition, and the wave
function looks like a periodic array of localized peaks. (c) and (f) The wave functions are delocalized but possess intricate structure that agrees
qualitatively well with the analytic prediction. The critical value obtained from numerics is close to W = 0.49. Despite the analytical treatment
overestimating the position of the semimetal-to-metal transition by a factor of 2, it leads to qualitatively similar behavior near the transition.
As a result for the analytic results we show W = 0.83 in (d), W = 0.87 in (e), and W = 0.91 in (f).

comparison, we also plot the real-space wave functions with
the associated parameters in Fig. 11. We also emphasize that
the present transition is not related to the freezing transition
[14,15,54,57–59] in the context of highly random delocalized
systems. Here we simply use the multifractal analysis to
explore the intricate structures in the momentum-space wave
functions due to the QP hopping.

4. A theory for the chiral metal phase in terms
of topological zero modes

For W > Wc(Q), we have seen how the low-energy eigen-
states delocalize in momentum space, which induces well-
defined patterns in the real-space structure of the wave func-
tion (see Fig. 11). There are a few key features that are unique
to this chiral model and were not observed for a QP potential
in Ref. [28]. First, the low-energy excitations minibandwidth
has been substantially renormalized reducing it by a factor
of ∼10−8, which is a much larger effect then we observed
for a QP potential [28]; see Fig. 6. Second, we do not find
any reentrant semimetal phase, for the chiral model, once the
system has undergone a transition to the metallic phase, it
remains there. This suggests that the metallic phase in the
chiral limit should have a unique description that relies on
the chiral symmetry. In the following, we will show that the
our model possesses a band of quasizero modes which are
intimately linked to the chiral symmetry. These solutions to
an effective Dirac equation are bound states due to a sign
changing Dirac mass induced by the QP hopping. For W <

Wc(Q) these bound state solutions strongly overlap: They are
not well-defined local eigenstates, therefore they hybridize
with the continuum of plane waves and hence do not play

a role in the low-energy behavior. On the other hand for
larger W > Wc(Q), these zero mode bound states become
sufficiently sharp to be stable. This produces a finite DOS at
zero energy and a nontrivial structure in the wave function that
agrees well with our numerical results in the metallic phase.
Since it exists only due to the chiral symmetry (e.g., they do
not occur in the QP potential model in Ref. [28]) we dub this
phase the chiral metal.

To mathematically derive the above statements, we invoke
a perturbative inclusion of the incommensurate modulation
on top of a continuum model. In view of the stability of the
semimetallic phase below the “magic-angle” semimetal-to-
metal transition. Therefore, the physics near the center of the
band may be treated in the continuum approximation lead-
ing to Dirac Hamiltonians subjected to certain background
“Higgs” fields (i.e., a spatially dependent mass fields [60,61]).
In Appendix B we explicitly derive such effective Hamiltoni-
ans, which take the form H = ∑

± h±
1±τy

2 with (v0 = 2J0):

h± = v0/pλz + V (x)λy ± V (y)λx. (17)

Here /p = pxσx + pyσy and the original basis in Eq. (2) has
been rotated for convenience; to account for all four Dirac
nodes, we require more sets of Pauli matrices, τμ works within
blocks of the same helicities (0,0) and (π, π ) [or (0, π ) and
(π, 0)], while λμ connect these blocks. In this basis, the chiral
symmetry is represented by {σzλz, H} = 0 and time-reversal
symmetry implies H = σyλzHT σyλz. Both constrain the struc-
ture of the effective Hamiltonian. The dominant contributions
for the model at Q = 2π [2/(

√
5 + 1)]2 are

V (x) = V1 sin[(π − Q)x] + V4 sin[(4Q − 3π )x], (18)
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with V1 = 2W , V4 = W 4/{J3
0

∏3
l=1[2 sin(lQ)]}. Since, in the

chiral model γ1 = σxλz, γ2 = σyλz, γ3 = λy, γ4 = λx form a
Clifford algebra, zero modes (as in other magic-angle sys-
tems, such as twisted bilayer graphene [62]) may be readily
found analytically at the vortex-like nodes of (V (x),V (y)).
The zero modes of h± have the form

�±(x) = N e− ∑
i=1,4

2Vi
v0qi

[sin2( qix
2 )λxσx∓sin2( qiy

2 )λyσy]
�±, (19)

with q1 = π − Q, q4 = 4Q − 3π , �+ = (1, 0, 0, 1), and
�− = (0, 1, 1, 0) such that the eigenvalues of σxλx and
∓σyλy are both 1. The solution of Eq. (19) is plotted in
Fig. 11 along with the numerical solutions. These bound
states are irregularly localized at distances set by 2π/q1,4

and their decay length is given by
√

v0/(q1,4V1,4). There-
fore, a simplest estimate (keeping only q1 and V1) sug-
gests that bound states become stable for W � W (0 modes)

c ≡
1/

√
1 + const × (π − Q)−2, in good agreement for Q close to

π (apart from the numerical constants) with the Wc obtained
of Eq. (16).

We conclude with three remarks: First, we repeat that this
nonperturbative analysis is based on the continuum Dirac
Hamiltonian which is clearly only justified for sufficiently low
W and inapplicable deep in the metallic phase. Second, we
highlight that the bound state picture explains the observation
of the sparse real-space structure of the eigenstates for W �
Wc; see Fig. 11. Finally, in order to analyze the importance of
symmetries, we also applied the same method to a nonchiral
model with a QP potential (from Ref. [28]) and to the model
with complex hopping (from Appendix A). In both cases
additional mass terms appear in Eq. (17), which breaks the
topologically protected depletion of the gap inside a vortex
configuration of [V (x),V (y)]. As a consequence, topological
bound-state solutions are absent in these cases.

5. Real-space Anderson localization and structure
of the mobility edges

Real-space Anderson localization in disordered systems
of orthogonal and unitary chiral classes are special, because
the zero-energy state is robust against localization [12,14,63],
and tend to form a line of critical fixed points between
Anderson localized states at finite energy [4]. This model [64]
is fundamentally distinct from its random counterpart because
the QP hopping is, in some sense, infinitely correlated and
generic localization at E �= 0 no longer occurs. It is therefore
nontrivial to determine the localization phase diagram in the
present model at finite energies. To do so we compare the
typical and average DOS [see Eq. (8)]. Anderson localized
eigenstates necessarily have a typical DOS that goes to zero
for increasing KPM expansion order (or system size), and we
compare with the average DOS to differentiate between a hard
gap (with no states) and localized states. We also use Lanczos
diagonalization to examine the localization properties directly
via wave functions.

As shown in Fig. 12, we find that the finite-energy eigen-
states are not localized for weak QP hopping strength. For
QP hopping strengths beyond the semimetal-to-metal phase
transition we find semimetal minibands develop at finite
energy with a linearly vanishing DOS that is shifted away
from E = 0 and the edges of the these minibands have Van

Hove-like peaks in the average DOS. Interestingly, the typical
DOS shows that these finite-energy semimetal minibands
are Anderson localized As a result, for a single value of
W there can be various mobility edges in the system and
the region separating localized and delocalized states does
not monotonically vary as we tune W . Looking directly at
wave functions, we confirm the nonmonotonic localization
behavior and multiple mobility edges in Fig. 12. For example,
wave functions for W = 0.8 and L = 144 at different energies
are plotted in Fig. 13. The results clearly show the same
nonmonotonic localization properties as a function of energy
and are consistent with the typical DOS diagnostics.

Upon increasing the QP hopping strength further, the
number of localized states increases but even for pure QP
hopping (W = 1.0) we still find a finite number of delocalized
states. In particular, the low-energy states that contribute to the
diverging DOS do not appear to localize.

B. Strong quasiperiodic hopping

We now turn to the properties of the QP hopping model in
the limit of large W , where our parametrization of the model
gives a purely QP hopping model for W = 1; see Eq. (5). A
striking feature of random chiral class models is the presence
of a divergence in the low-energy DOS [6,12–15], but this
behavior is strongly dependent on the type of model chosen. In
random hopping models the precise form of this divergence is
modified due to Griffith effects [14]. This is naturally a very
interesting problem to compare with the QP hopping model
since we know a priori it has no rare region effects. However,
observing anything beyond just a power-law divergence is
notoriously difficult numerically and therefore that is not our
goal here. Instead, we aim to demonstrate the existence of a
divergence and not necessarily pinpoint its precise analytic
form beyond the leading power-law dependence.

1. Diverging low-energy DOS

Focusing on the pure QP limit W = 1, we compute the
DOS using KPM on very large system sizes (L = 987) such
that any low-energy divergence of the DOS is not affected by
the mean level spacing on finite-size systems. Any low-energy
divergence in the DOS will be rounded out to due the extrinsic
effects of finite system size and KPM expansion order. By
going to L = 987 we are able to reach large enough system
sizes so that all of the (artificial) rounding is due to the KPM
expansion order, i.e., a finite NC [65]. We now reach one of our
main results; as shown in Fig. 14, we find a clear divergence of
the low-energy DOS in the pure QP hopping model (rounded
by the finite KPM expansion order NC). Since we are working
at such large system sizes we can use the rounding of the
divergence in the DOS by NC to our advantage: in order to
accurately compute the power-law divergence in the DOS
ρ(E ) ∼ 1/|E |xQP , we use the fact that the KPM expansion
order is related to an infrared energy scale NC ∼ 1/δE that
implies the ansatz

ρ(E = 0) ∼ (NC )xQP . (20)

As shown in Fig. 14, we find that xQP ≈ 0.32 for Q =
2πFn−2/Fn and Q = 2πFn−4/Fn, which is consistent with
the divergence and value of xQP being Q-independent for
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FIG. 12. Localization properties obtained through the typical DOS. Typical DOS are in black solid lines, and average DOS are in blue
dashed lines (to distinguish hard gaps and localized states) for L = 144 and NC = 214 [(a) W = 0.2; (b) W = 0.4; (c) W = 0.6; (d) W = 0.8;
(e) W = 0.9; and (f) W = 1.0].

irrational Q. Thus, we conclude that randomness is not nec-
essary to create a low-energy divergence in the DOS. Using
ρ(E ) ∼ |E |d/z−1 this leads to the estimate z ≈ 3 for W = 1.

It is interesting to compare this result with the corre-
sponding randomized version of the model, which has phases
that are random across each bond [i.e., the φν in Eq. (4)
are replaced by φν (r) and sampled between (0, 2π ) at each
site]. We find the nature of the divergence of the DOS
goes like ρ(E = 0) ∼ (NC )xR with xR ≈ 0.35. Thus, we find
that the low-energy divergence in the QP hopping model
agrees well with that of the random model to within our

numerical accuracy. Since these two problems share the same
distribution of hopping strengths at each bond, with the
distinction being that the phases (φν) are correlated across
the entire sample for the QP model. Note that this distri-
bution is Q-independent and is given by the distribution of
cos(x) + cos(y) for x, y ∈ [0, 2π ], which is consistent with
xQP being Q-independent as we have already found. In this
way, our results on xQP and xR implies that the nature of
the low-energy divergence is dictated by the distribution and
not whether the models possess rare regions. We note that
other numerical studies have also seen just a simple power-
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FIG. 13. Real-space wave functions at various energies corresponding to W = 0.8 and L = 144. (a), (c), and (e) are delocalized wave
functions; (b), (d), and (f) are localized wave functions. This confirms the multiple mobility edges observed in the typical DOS in Fig. 12.

law divergence in related (but not equivalent) disordered
models [14].

The low-energy divergence of the DOS for the pure QP
limit of the model poses a natural question: is there a phase
with a divergent low-energy DOS or is it only an isolated
point as a function of W ? As shown in Fig. 15, for KPM
expansion orders up to NC = 218 and L = 610 we do not
find a clear sign of a divergence at W < 1 in the data for
ρ(0) versus NC , but we do find that the DOS is showing
trends to a divergence at the largest expansion orders for
W � 0.95. Thus, our data suggest that the point W = 1 is
fundamentally distinct from the phases of the model with W <

1, i.e., any finite bare hopping (J0 > 0) appears to be sufficient
to suppress this divergence. As we show in Appendix A, if
we instead consider complex QP hopping matrix elements,
then the low-energy divergence goes away. As we discuss in
Sec. VI, we attribute the divergence in the low-energy DOS to
the hopping vanishing along lines in real space, which induces
an extensive number of zero modes.

2. Real-space wave functions at W = 1

Here we focus on the pure QP hopping case (W = 1). As
plotted in Fig. 12(f), both low (|E | 	 1) and finite-energy
(|E | ≈ 2.2–2.5) delocalized states still appear in the pure QP
hopping limit. This is very different from the expectation
from the disordered problem where all finite-energy states are
localized. Therefore, it is important to confirm the detailed
features of the finite-energy localized states.

We compute the multifractal exponent α0 [66] (see Ap-
pendix C) as an indicator of localization. For a uniformly
distributed plane wave, α0 = d = 2. For a localized state,
α0 → ∞. As shown in Fig. 16, the values of α0 show non-
monotonic dependence as a function of energy. We found
strongly multifractal delocalized states (intermediate α0 val-
ues) in certain finite energies. Importantly, the low-energy
states remain delocalized within every measure we have con-
sidered so far. In addition, we identify a few delocalized states

within the region where the typical DOS is small but finite
(near E ≈ 0.5). Those finite-energy wave functions consist
of two similar peaks with arbitrary separation in L = 144 as
shown in Fig. 17. We attribute this feature to the QP hopping
rather than the (chiral) symmetry of the present model. Similar
features are also presents for larger system sizes (L = 610),
but the associated energy region becomes narrower. We can
not conclude if such states are due to a finite-size effect in the
current study.

We also study the low-energy wave functions in a fixed
realization. The low-energy wave functions are strongly mul-
tifractal for L = 144 and L = 610. We compute the two-wave-
function correlation C(E ) [given by Eq. (12)] to quantify
the degrees of probability amplitude overlap. The numerical
results of L = 144 with W = 1 and W = 0.99 (W/J0 ≈ 7)
are plotted in Fig. 18. The finite overlap of the wave func-
tions with adjacent energies signals the metallic rather than
localized behavior and is consistent with our intuitive argu-
ment about the hybridizing subregion states. Remarkably, the
pure QP hopping (W = 1) limit gives a power-law behavior,
C(E ) ∼ E−μ, where μ ≈ 0.48 for L = 144. In the disordered
problems with a power-law low-energy DOS, the exponent μ

is given by μ = [d − τR(2)]/z. In the QP hopping model, we
are not aware of any scaling argument that supports such a
relation. If we assume μ = [d − τR(2)]/z and compute the
τR(2) numerically, the dynamic exponent extracted this way is
z∗ ≈ 2, different from the dynamic exponent from low-energy
DOS. The discrepancy might come from (a) the sampled
energies are not low enough in C(E ) or (b) the relation μ =
[d − τR(2)]/z does not hold in this QP hopping model.

The presence of power-law correlations in the wave func-
tions implies a multifractal enhancement of the interactions
[44–47]. Unlike for the plane wave states, these multifractal
wave functions have an intricate spatial probability distribu-
tion. The existence of correlations in energy indicates that
the probability distributions of wave functions at adjacent
energies have significant overlaps. Therefore, we expect this
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FIG. 14. Divergence of the low-energy DOS for W = 1 (i.e.,
pure QP hopping). (a) NC dependence near zero energy for a very
large system size L = 987 and QL = 2πFn−2/Fn. (Inset) Similar
results for the randomized version of the model (letting the phase be
random at each site) with L = 233 for NC = 212, 213, 214, L = 377
for NC = 215, and L = 610 for NC = 216; note that the divergence is
similar between the two. (b) Divergence of the low-energy DOS for
W = 1 in the pure QP limit comparing two different quasiperiodic
wave vectors and the random (R) hopping model with the KPM
expansion order that acts like a low-energy scale that rounds out the
divergence of the DOS. Fits to the power-law form are shown as red
dashed lines.

potentially produces an enhancement of correlated effects for
certain types of four-fermion interactions. In disordered sys-
tems, the multifractal enhancement of interactions is related
to the wave function multifractality directly due to quantum-
critical scaling. The relevance of the four-fermion interaction
(U ) is determined by [46] dU/dl = x1 − x(U )

2 , where x1 =
d − z is the local DOS exponent and x(U )

2 is the scaling
dimension of the four-fermion operator. In the clean case,
the relevance is determined by x1 alone since x(U )

2 = 2x1. For
disorder systems, x(U )

2 � x2 where x2 = τR(2) − 2(1 − x1) is
the scaling exponent for the second moment of the local
DOS operator after the disorder average has been performed.
Nevertheless, it is not currently clear if one can apply the
above results to the present QP hopping model at W = 1; if
we do, they imply a strong multifractal enhancement of some
short-range interactions (e.g., the density-density interaction).

On the other hand, we do not observe power-law corre-
lation in our finite-size data for W = 0.99. This indicates
that the power-law correlation is a special feature in the
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FIG. 15. The onset of a divergence in the DOS at zero energy
ρ(0) versus (a) NC and (b) W close to W = 1 and L = 610. We see a
trend towards an increasing ρ(0) for W > 0.95, but there is no clear
sign of divergence in the data other than at W = 1.

pure QP hopping limit. More quantitative tests (e.g., much
larger system sizes) are required to pin down the precise
mechanism.

FIG. 16. Inverse multifractal exponent α0 as a function of energy
for W = 1 and L = 144. The green dashed line indicate the plane
wave value 1/α0 = 0.5. Localized states in the thermodynamic limit
give 1/α0 → 0. The results demonstrate nonmonotonic dependence
as a function of energy. Blue dots indicate the data extracting from
ψ (x) (b = 1); red dots correspond to the data extracting from binned
wave functions with resolution length b = 2. The black arrows indi-
cate the states consisted of double identical peaks. The corresponding
typical DOS values are very small but nonzero in Fig. 12.
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FIG. 17. Real-space wave functions that show double peaks
structure for W = 1 and certain finite energies [(a) E = 0.4; (b)
E = 0.6]. These two wave functions correspond to the data in
Fig. 16 indicated by the black arrows. They are not the conventional
localized or frozen wave functions that are found in the disordered
systems. Such an unconventional feature is probably due to the
quasiperiodicity.

3. Wave packet dynamics

Last, we now study the wave packet dynamics in the QP
hopping model using an expansion of the time evolution op-
erator in terms of Chebyshev polynomials. We are interested
in the spread of the wave packet 〈δr(t )2〉 in the long-time
limit; see Eq. (14). We initialize the state in an up-spin state
localized to one lattice site. Then we use Eq. (15) to extract
estimates of an averaged dynamic exponent z̃ via 〈δr(t )2〉 ∼
t2/z̃ as shown in Fig. 19 for the largest system size L =
987 considered. Despite the wave packet dynamics not being
energy resolved, for moderate QP strength when a mobility
edge is present in the spectrum, the localized states will
not contribute and therefore the long-time limit of the wave
packet spreading probes contributions to transport from the
“quickest” parts of the spectrum. Thus, in the limit of a large
QP potential wave packets are a good way to probe dynamical
transport properties, despite not being energy resolved.

As shown in Fig. 19 we do not see any clearly diffusive
regime in the model (consistent with other QP studies in two
dimensions [28,40]). Instead 2/z̃ smoothly decreases from
2 (for ballistic transport) as a function of the QP hopping
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(E

* )

W=1
W=0.99

FIG. 18. Two-wave function correlation [given by Eq. (12) with
E0 ≈ 0] as a function of energy (E ). We take 300 lowest positive-
energy states of L = 144 per realization and compute the probability
overlap of two wave functions in the same realization. The data
are averaged over 400 realizations. E∗ = 0.01 for W = 0.99; E∗ =
0.0025 for W = 1. We rescale all the data points with the rightmost
point. In the pure QP hopping limit (W = 1), the two-wave-function
correlation shows a clear power-law scaling. For W = 0.99, the low-
energy wave functions lose clear power-law overlapping features.

FIG. 19. Wave packet dynamics, we initialize the wave function
to be localized to a single site and evolve it under H . (a) Spread
of the wave packet as a function of time t on a log-log scale with
L = 987 and NC = 213 we never see a clear diffusive phase (z = 2).
(b) Extracted dynamic exponent z from 〈δr(t )2〉 ∼ t2/z̃ (inset) zoom
in near W = 1 with a dashed line to mark diffusion 2/z̃ = 1. Note
that the wave packet dynamics is not sensitive to the semimetal-to-
metal transition at E = 0.

strength and the transport looks superdiffusive 1 < z̃ < 2 and
2/z̃ passes through 1 at W ≈ 0.95. For W > 0.95 we find z̃ >

2 and the transport appears subdiffusive, approaching z̃ ≈ 4 in
the pure QP hopping limit.

It is an interesting finding that for the low-energy DOS to
diverge requires z > 2, and our current estimate for z̃ from
the wave packets yields z̃ > 2 for W � 0.95. However, the
DOS does not appear to have any divergence in this regime
(see Fig. 15), which suggests that this feature is due to z̃ not
being energy resolved. From this perspective, we contrast this
estimate of z with that of the divergence in the DOS. From the
power-law divergence at W = 1 we estimate from the DOS
z ≈ 3, which is close but does not completely match the wave
packet estimate (z̃ ≈ 4). However, this is not entirely surpris-
ing since the wave packet estimate gets contributions from
states across the spectrum at finite energies (which possess
both finite-energy delocalized and localized states as shown in
Fig. 12), whereas the DOS is energy resolved and probes only
the states near E = 0. The presence of finite-energy localized
states will slow down the energy averaged transport and give
an enhanced value of z̃. These results suggest that the energy
averaged transport properties are subdiffusive over a range of
W , while the low-energy states develop subdiffusion only at
W = 1.
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V. EXPERIMENTAL REALIZATION

In this section we present a way to realize Eq. (1) in a cold
atomic setup and discuss how to probe the phase diagram. In
addition, we also briefly discuss how the model in Eq. (1) can
be implemented using metamaterials.

We closely follow Ref. [67], where two-dimensional spin-
orbit coupling in ultracold atomic bosonic systems was pro-
posed and experimentally tested. The continuum version of
Eq. (1) has the following form (we consider two internal
degrees of freedom per atom):

H = p̂2

2m
+ Vlatt (x) + Mx(x)σx + My(x)σy. (21)

The limit of interest is a deep optical potential Vlatt (x), in
which spin-preserving hopping is suppressed. However, an
appropriately designed Mx,y(x) assists spin flip hopping in
a certain direction and generates the Hamiltonian of interest.

To realize Eq. (21), we follow the recent implementation
of two-dimensional SOC in Ref. [67]. However, in contrast
to that work, we tune the angle of incidence of the Raman
beam and detune the system sufficiently strongly such that
the Raman laser (called E2x,z in Ref. [67]) has a wavelength
2π/k2 which differs from twice the lattice constant 2π/k0.
Then, tuning the optical path such that δϕL = π/2 and ϕL =
0, we find that Mx ∝ [cos(k0x) cos(k2y) − cos(k0y) sin(k2x)]
(and analogously for x ↔ y). For k0 and k2 incommensurate,
spin-flip hopping acquires a QP modulation, which in the tight
binding limit leads to a Hamiltonian akin to Eq. (1).

In such a setup, experimental verification of the semimetal-
to-metal transition (where the kinetic energy is quenched, i.e.,
the “magic-angle” effect) as well as a probe of the diver-
gent DOS at W = 1 may be achieved using radio-frequency
spectroscopy [68]. Within such an experiment, the magic-
angle effect of quenched kinetic energy can be observed by
means of momentum resolved radio-frequency spectroscopy.
As a complementary approach, band mapping techniques
[69,70], allow one to reconstruct the miniband structure
experimentally.

Alternatively, metamaterial setups can also realize our
model with current experimental techniques. For example, us-
ing an array of connected electrical resonators with a suitable
choice of the intrinsic frequency and connecting capacitance,
one can construct a circuit equivalent to the tight-binding
model we have studied here and the overall absorption spec-
trum is analogous to the DOS [71,72] and thus allows one
to probe the semimetal-to-metal transition we have explored
here. The spatial distribution of the eigenmodes of resonance
can also verify our results regarding localization. Besides
resonators, photonic [73] and phononic [74] systems are also
nicely tunable, and we also expect that they can be used
to engineer the Hamiltonian in Eq. (1) in a majority of the
parameter space.

VI. DISCUSSION AND CONCLUSION

We have analyzed the properties of a two-dimensional
Dirac semimetal with quasiperiodicity that respects chiral
symmetry. The quasiperiodicity takes the form of a QP
hopping on a tight-binding model. As shown in Fig. 1(a),

the low-energy states demonstrates a semimetal phase with
Dirac cones in the band structure, a chiral metal phase with
nontrivial real-space structure in the wave functions, as well
as the pure QP hopping limit W = 1 [see the paramaterization
of J0 in Eq. (5)], which is critical exhibiting subdiffusive
dynamics. A clear demonstration of the semimetal-to-metal
EPT, in the DOS [see Eq. (6)] and the inverse participation
ratio (IPR) in momentum space [see Eq. (11)], is shown in
Fig. 1(b). The momentum-space IPR (indicating a delocaliza-
tion in the momentum basis) vanishes in a continuous fashion
concomitantly with the onset of the zero-energy DOS, which
demonstrates the nature of this phase transition in the structure
of the eigenstates and eigenvalues, respectively. In Fig. 1(c)
we show the diverging DOS in the pure QP hopping limit, and
we find that the low-energy eigenstates in this regime exhibit
quantum-critical Chalker scaling.

First, we demonstrate the stability of the two-dimensional
semimetal phase to QP hopping. We find that the QP hopping
introduces gaps at finite energy that create a low-energy
semimetal miniband that retains the scaling ρ(E ) ∼ |E |. The
semimetal phase persists until a critical, Q-dependent, po-
tential strength Wc where a semimetal-to-metal transition
takes place. At this transition the Dirac velocity vanishes in
a universal fashion and the low-energy bands become flat,
which should strongly enhance correlation effects and has
been dubbed magic-angle transitions in analogy to twisted
bilayer graphene at the magic-angle [75,76]. Concomitantly,
the single-particle wave functions delocalize in momentum
space. Interestingly, we find that the velocity vanishes with a
critical exponent that is in excellent agreement with models
that have a QP potential and are lacking chiral symmetry.
While these results suggest that the chiral symmetry does not
play a role in the critical properties of the semimetal-to-metal
transition, they do have a strong effect on the structure of
the phase diagram and the minibandwidth renormalization
(being about four orders of magnitude smaller then for a QP
potential [28]). For example, we find that the metallic phase
does not undergo an additional transition back to a reentrant
semimetal phase, which occurs in a wide multitude of other
models [28]. In the metallic phase, we find that the low-energy
eigenstates are weakly multifractal in momentum space and
wave packet dynamics are superdiffusive over a large region
of the phase diagram (W < 0.95). Using the chiral symmetry
of the model, we characterize this transition and the formation
of the low-energy DOS as a band of topological zero modes
that form due to bound zero-energy states that arise from a
sign-changing Dirac mass [60,61]. If we consider values of Q
that are commensurate but are close to the irrational values
we have investigated here, then the single-particle phase tran-
sition will be rounded into a crossover, which will result in
a small but nonvanishing velocity and the momentum-space
wave functions that do not truly delocalize.

We also investigate the effects of strong quasiperiodicity
and therefore determine the real-space Anderson localization
properties of this model. We demonstrate that the model
exhibits a sequence of real-space Anderson localization-
delocalization transitions as a function of energy, and thus the
system hosts multiple mobility edges. Interestingly, the low-
energy eigenstates evade exponential localization and appear
to remain critical even for maximal QP hopping strength
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FIG. 20. The hopping configurations of QP hopping models
with L = 13. (Right) The hopping configuration of the QP hopping
model with W = 1. The QP pattern generates nearly zero lines of
bonds which effectively separate the system into many subsystems.
(Left) The hopping configuration of the QP hopping model with
W = 0.9. The system is typically well connected as a whole.

(W = 1). These results are markedly distinct from disordered
systems, where all the finite-energy eigenstates would be lo-
calized for the models with real and complex random hopping
terms. We verify this nontrivial structure of the phase diagram
characterizing real-space localization by using a combination
of typical DOS and wave function analysis.

In the pure QP hopping limit (W = 1), the system exhibits
a diverging DOS at zero energy; see Fig. 1(c). We provide
evidence that this power-law divergence is universal, for irra-
tional Q. The low-energy states that make up this divergence
are not exponentially localized, and instead appear strongly
multifractal, i.e., critical. Using wave packet dynamics we
have shown that the majority of the chiral metal phase is su-
perdiffusive and crosses over to subdiffusion near W ≈ 0.95.
These results are consistent with that the low-energy states are
not localized. The slow subdiffusive wave packet dynamics
gives a dynamical exponent z ≈ 3. In addition, we find power-
law scaling as a function of energy for almost two decades in
the two-wave function correlation [see Eq. (12)] (in the W = 1
limit). This provides strong numerical evidence of Chalker
scaling without randomness [42,43]. Interestingly, we find
Chalker scaling does not clearly hold in the limit of the pure
complex quasiperiodic hopping (not shown), demonstrating
that the strong correlations between wave functions seem to
rely on the low-energy diverging DOS in the limit of real
quasiperiodic hopping.

One remaining important question is to understand the
origin of the diverging low-energy DOS for W = 1. We
provide evidence that this is a result of local subregions with
an imbalance NA �= NB of sublattice sites. This induces a
pile up of an extensive number of zero modes due to the
QP hopping elements vanishing along certain lines in real
space. In Fig. 20 we plot the configuration of hopping matrix
elements in the pure QP hopping model (W = 1) and strong
QP hopping (W = 0.9). The pure QP hopping case shows
nearly zero hopping lines which effectively cut the system
into many subsystems. Those nearly zero lines roughly track
the zeros of the QP hopping, which are obtained by solving
cos(2πQLx∗ + φx ) + cos(2πQLy∗ + φy) = 0 for x∗ and y∗.
It is apparent that there are several virtually disconnected
subregions in which NA − NB �= 0. Those are an imperative

origin of zero modes by means of a poor man’s index theorem
(rectangular matrices have a nonzero kernel) [19,77]. To add
additional support to this picture we have also studied a model
with complex QP hopping amplitudes. This model is chosen
to have no lines of vanishing hopping strength as in Fig. 20,
since the bonds’ norms can now never vanish. As shown in
Appendix A, we find that the complex QP hopping model
has no diverging DOS for pure complex hopping. In addition,
we also find that this model does not exhibit Chalker scaling.
These results lend support to the above argument but are not
conclusive, and therefore we leave the question of the origin
of the pile up of zero-energy states at W = 1 to future work.

Last, our work demonstrates two separate routes to induc-
ing strong correlations in quasiperiodic semimetals. The first
is due to magic-angle transitions, where the Dirac cone veloc-
ity vanishes at an EPT. The second route is due to Chalker
scaling in the limit of pure QP hopping. The presence of
power-law correlations in the wave functions potentially im-
plies a multifractal enhancement of the interactions [44–47].
Our work provides a clear-cut example of how this can occur
in the absence of randomness.
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APPENDIX A: COMPLEX QUASIPERIODIC
HOPPING MODEL

As a comparison to real QP hopping, we also introduce a
complex QP hopping model. The complex QP hopping model
is realized by introducing complex hopping matrix elements
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FIG. 21. The zero-energy DOS as a function of W in the complex
hopping model for various KPM expansion orders NC and a system
size of L = 233. We find a small metallic phase near W ≈ 0.41.

to replace Eq. (4) with

Jμ(r) = W
∑
ν=x,y

exp[iQL(rν + μ̂ · ν̂/2) + iφν], (A1)

where Jμ(r) is the QP hopping amplitude between site r
and r + μ̂. In the pure complex QP hopping limit, the bonds
are nonzero almost everywhere in contrast to the “nearly cut
lines” as plotted in Fig. 20 for real QP hopping with W =
1. Therefore, we expect that the low-energy physics in the
complex QP hopping model with W = 1 should be distinct
from the real hopping model with W = 1 discussed in the
main text.

The zero-energy DOS in this model is shown in Fig. 21
for various KPM expansion orders. We find a small metallic
phase near W ≈ 0.41, which transitions back into a reentrant
semimetal phase, which is distinct from the case of real QP
hopping (see Fig. 1). The metallic phases are clear from where
the data are (roughly) NC independent. We also find a second
semimetal-to-metal transition at a larger W ≈ 0.93, and the
zero-energy DOS does not look divergent at W = 1.

Interestingly, we find that the existence of a reentrant phase
is consistent with our zero mode analysis. As mentioned in
Sec. IV A 4 for complex QP hopping, similar to the case of
a QP potential, the zero mode solution is not topologically
protected. This implies that for the case of real QP hopping,
the model cannot return to the semimetal phase due to a
stable proliferation of overlapping zero modes. Whereas in the
complex QP hopping model there is no band of zero modes
and thus the model can in principle return to the semimetallic
phase as in the case of the QP potential model.

Last, we turn to the pure complex QP hopping model, i.e.,
at W = 1. As shown in Fig. 22, we find that the complex QP
hopping model does not have a low-energy divergence. How-
ever, if we randomize the model, by letting the φν in Eq. (A1)
be random at each site then we find that the divergence returns
as we would expect for the random model [14]. The random
model has the low-energy divergence given by ρ(0) ∼ (NC )yR

with yR ≈ 0.17, which is half of the value of the random real
hopping model. Thus, the complex QP hopping model is an
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FIG. 22. The lack of a divergence of the low-energy DOS for
W = 1, i.e., pure QP complex hopping model. (a) NC dependence
near zero energy for a system size L = 233 and QL = 2πFn−2/Fn.
(Inset) Similar results for the randomized version of the model
(letting the phase be random at each site) with L = 233, displaying
a clear divergence unlike the complex QP hopping model. (b) The
zero-energy DOS for W = 1 in the pure QP limit comparing real
and complex QP hopping with the complex random (R) hopping
model. The complex QP hopping model clearly has no low-energy
divergence in the DOS. The KPM expansion order that acts like
a low-energy scale that rounds out the divergence of the DOS in
the random model, and the red line is a fit to the power-law form
ρ(E = 0) ∼ (NC )yR .

example of a system that has no broken bonds since their
norm is always nonzero and the low-energy DOS does not
diverge, whereas its random counterpart has a DOS that does
diverge. To complete this analysis we test for Chalker scaling
from Eq. (12) in the complex QP hopping model at W = 1
as shown in Fig. 23. While the regime of power-law scaling
extends over about two decades of energy in the real QP
hopping model we do not find clear evidence of a power-law
scaling with energy in the complex QP hopping model. Thus
we conclude that the complex QP hopping model does not
have Chalker scaling.

APPENDIX B: ANALYTICAL CALCULATIONS

1. Perturbative velocity renormalization

To second order in perturbation theory, it
is sufficient to consider the truncated effective
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FIG. 23. Two-wave-function correlation [given by Eq. (12) with
E0 = 0] as a function of energy (E ) for the QP hopping model and
for the complex QP hopping model with W = 1. We take 600 lowest
positive-energy states of L = 144 per realization and compute the
probability overlap of two wave functions in the same realization.
The data are averaged over 400 realizations. E∗ ≈ 0.01 for the
real hopping model; E∗ ≈ 0.1 for the complex hopping model. We
rescale all the data points with the rightmost point. The real QP
hopping model shows a power-law scaling persisting around two
decades. The complex QP hopping model (red diamond) does not
exhibit a clear power-law scaling behavior.

Hamiltonian

Heff =

⎛
⎜⎜⎜⎜⎜⎝

h0 Wx,+ Wx,− Wy,+ Wy,−
Wx,+ hx,+ 0 0 0
Wx,− 0 hx,− 0 0
Wy,+ 0 0 hy,+ 0
Wy,− 0 0 0 hy,−

⎞
⎟⎟⎟⎟⎟⎠. (B1)

We introduced the notation h0 = 2J0[sin(kx )σx +
sin(ky)σy], hx,± = 2J0[sin(kx ± Q)σx + sin(ky)σy], hy,± =
2J0[sin(kx )σx + sin(ky ± Q)σy], and Wx,± = W [σx sin(kx

± Q/2) + σy sin(ky)] and Wy,± = W [σx sin(kx ) + σy sin(ky ±
Q/2)].

The perturbative calculation of the self energy near the �

point leads to

� � W 2

J2
0

{
− E

2[1 + cos(Q)]
− J0/p

1 + 2 sec(Q/2)

2

}
. (B2)

The velocity renormalization, Eq. (16), immediately follows.

2. Topological bound states in the effective low-energy theory

Here we map the problem to the dominant low-energy
physics near the Dirac nodes. The translationally invariant
Hamiltonian may be expanded and, in first quantization, takes
the form

H0 =

⎛
⎜⎜⎝

v0/p 0 0 0
0 −v0/p 0 0
0 0 −v0/p∗ 0
0 0 0 v0/p∗

⎞
⎟⎟⎠, (B3)

where v0 = 2J0, each element is a two-by-two matrix with
/p = pxσx + pyσy, and each column represents a different
Dirac point in momentum space: the � (0,0), M (π, π ), X
(π, 0), and Y (π, 0) points. For Q = 2π [2/(

√
5 + 1)]2, the

most important low-energy processes are have momentum
transfer Q (close to π ) and 4Q (close to 3π ), both of which
connect Dirac points either vertically or horizontally (diagonal
coupling is included by higher-order processes in the Hamil-
tonian that is about to be derived. 2Q and 3Q processes are
virtual processes that we integrate out.

The off-diagonal components of the self energy introduce

V =

⎛
⎜⎜⎜⎝

0 0 −iV (x)σx −iV (y)σy

0 0 iV (y)σy iV (x)σx

iV (x)σx −iV (y)σy 0 0
iV (y)σy −iV (x)σx 0 0

⎞
⎟⎟⎟⎠.

(B4)

The function V (x) is defined in Eq. (18) There are also terms
of higher-order in gradients that we omitted (i.e., terms with
both p and x dependence). Note that the chiral symmetry
{H, σz} = 0 is preserved.

It is instructive to rotate the Hamiltonian by means of
U = diag(1,−iσz, σx, σy) so that the effective low-energy
Hamiltonian may be written as

H =

⎛
⎜⎜⎝

v0/p 0 0 0
0 v0/p 0 0
0 0 −v0/p 0
0 0 0 −v0/p

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎝

0 0 −iV (x) −iV (y)
0 0 iV (y) −iV (x)

iV (x) −iV (y) 0 0
iV (y) iV (x) 0 0

⎞
⎟⎟⎟⎠. (B5)

We remind ourselves of the matrix structure of this 8 × 8
matrix: The diagonal kinetic parts reflect �, M, X,Y points
(in this order). We can compactly write

H = v0/pλz + V (x)λy + V (y)τyλx. (B6)

Here τ are Pauli matrices within � − M (or X − Y ) blocks
of equal winding in Eq. (B5), while λ matrices connect these
blocks. Since only τy and 1τ appear, we may diagonalize in
τ (i.e., choose wave functions with equal weight at, e.g., �

and M points). This leads to the direct sum of two 4 × 4
Hamiltonians presented in Eq. (17), i.e., the approximate low-
energy theory is the theory of two two-dimensional Dirac
electrons coupled by two incommensurate to one another
off-diagonal terms.

The involved matrices γ1 = σxλz, γ2 = σyλz, γ3 =
λy, γ4 = λx form a Clifford algebra. In particular, it therefore
follows that the zero-energy wave function h±�0(x) = 0 can
be found via the usual ansatz

�0(x) = e−[
∫ x dx′V (x′ )σxλx∓

∫ y dy′V (y′ )σyλy]/v0�. (B7)

Here the position independent four-spinor � is constraint
by the normalizability condition [ultimately, by the wish of
having maximum weight at V (x)V (y) = 0]. For example,
focusing on the node at x = y = 0 and the model at Q =
2π [2/(

√
5 + 1)]2, we obtain

�0(x) � e− V1q1+V4q4
2v

(x2σxλx∓y2σyλy )�. (B8)
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We defined q1 = π − Q and q4 = 4Q − 3π . Normalizabil-
ity then implies �+ ∝ (1, 0, 0, 1) [�− ∝ (0, 1, 1, 0)] for h+
(h−), such that the eigenvalues of σxλx and ∓σyλy are both 1.
Keeping the whole system, this leads to a wave function given
in Eq. (19).

APPENDIX C: MULTIFRACTAL EXPONENT α0

Here we define the multifractal exponent α0 which is
employed for characterizing the localization properties in
the main text. The α0 can be computed via numerical
Legendre transformation of τ (q). Instead, we use the method
by Chhabra and Jensen [66] to compute α0. For a real-space
wave function ψ (x), we define [66]

μ(q)
x = |ψ (x)|2q∑

x |ψ (x)|2q
, (C1)

fq =
∑

x μ
(q)
x ln μ

(q)
x

− ln(L2)
, (C2)

αq =
∑

x μ
(q)
x ln |ψ (x)|2

− ln(L2)
, (C3)

where fq and αq form the singularity multifractal spec-
trum. The multifractal exponent α0 corresponds to q = 0 in
Eq. (C3). In the f (α) spectrum, the most probably value of
the probability density is given by |ψ (x)| ∼ L−α0 . For plane
wave states, α0 = d due to the uniform distributing nature.
For a localized state, α0 → ∞ as all the probability densities
are vanishingly small except the localized peak.

One can extend the above definition with the binned wave
function ψb(X j ) (defined in Sec. III B) in order to test the
robustness of the results.

APPENDIX D: QUADRUPOLE TOPOLOGICAL
INSULATOR AT COMMENSURATE

LIMITS OF THE MODEL

As we already discussed in the main text, for Q = π , the
model in Eq. (1) is a quadrupole topological insulator [48].
In this case, the model can be separated into two copies

(a) (b)

FIG. 24. (a) Density of state by energy, with QL = π , in twisted
periodic boundary condition (TPBC) and open boundary condition
(OBC). Both boundary conditions show bulk gap, while OBC allows
the topological corner states. The system size is L = 144, and QL =
2π (72/L). NC = 8192 for KPM calculations. (b) Real-space wave
function at QL = π and W = 0.4. System size is L = 89.

of decoupled π flux model by alternating spin. For each
copy, four lattice sites on the corners of a plaquette form a
unit cell when Q = π . We label them from the left-bottom
corner as |1 ↑〉, |3 ↓〉, |4 ↑〉 and |2 ↓〉 counterclockwise (and
opposite spin labels for the other copy). The Bloch Hamil-
tonian is given by h(k) = W (cos(kx )τxσ0 − sin(kx )τyσx −
cos(ky)τyσy − sin(ky)τyσx ) + E0(k)τzσ0, where σ, τ are Pauli
matrices that act on the degrees of freedom within a unit cell,
with identical/opposite spin, respectively. The dispersion with

W = 0 is E0(k) = ±2J0

√
sin k2

x + sin k2
y .

For W > 0, we see a hard gap near E = 0. When L is
odd with twisted periodic boundary condition, or L is even
with open boundary condition, a small peak is seen at E = 0
[Fig. 24(a)]. When L is even and taking closed boundary
condition, the corner state do not show up. The corner states
survive twisted periodic boundary condition when L is odd
because the unit cell has size 2 × 2, and hence a strip of half
unit cells opens the boundary. The peak includes two states,
independent of what L is chosen to calculate the DOS, indi-
cating a topological nature of such a peak. The wave function
data shown in Fig. 24(b) also indicate that the system is in
a quadrupole TI phase since the zero-energy wave function
concentrates near the corners.
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