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Band dispersion of graphene with structural defects
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We study the band dispersion of graphene with randomly distributed structural defects using two comple-
mentary methods, exact diagonalization of the tight-binding Hamiltonian and implementing a self-consistent
T matrix approximation. We identify three distinct types of impurities resulting in qualitatively different spectra
in the vicinity of the Dirac point. First, resonant impurities, such as vacancies or 585 defects, lead to stretching
of the spectrum at the Dirac point with a finite density of localized states. This type of spectrum has been
observed in epitaxial graphene by photoemission spectroscopy and discussed extensively in the literature.
Second, nonresonant (weak) impurities, such as paired vacancies or Stone-Wales defects, do not stretch the
spectrum but provide a line broadening that increases with energy. Finally, disorder that breaks sublattice
symmetry, such as vacancies placed in only one sublattice, open a gap around the Dirac point and create an
impurity band in the middle of this gap. We find good agreement between the results of the two methods and
also with the experimentally measured spectra.
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I. INTRODUCTION

Graphene has presented high potential for providing the
next generation of electronic materials due to its strictly
two-dimensional character as well as its high electron mo-
bility. It has demonstrated high design flexibility, such as
doping by atoms or molecules, efficient decoupling from
an underlying substrate, or high tensile strength for flexible
electronics [1–3], and has been the catalyst for the creation
of new fields of study such as two-dimensional materials or
Dirac semimetals [4–10]. Several theoretical proposals as well
as experiments are concerned with enhancing the spin-orbit
coupling to open a band gap or inducing spin splitting [11,12].
Even a transition to a superconducting state has been theoreti-
cally and experimentally demonstrated [13]. However, one of
the most important prerequisites for graphene, and other two-
dimensional materials, to become a base material for future
electronics concerns the opening of a band gap, which has not
been successfully demonstrated so far. For graphene the linear
crossing of the bands near the Dirac point is protected by
symmetry, because the two sublattices are equivalent. In order
to open a band gap, this sublattice symmetry has to be broken.

Angle-resolved photoemission spectroscopy (ARPES) is
the most direct method to probe the electronic structure
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experimentally. Numerous studies have examined the band
structure of graphene near the Dirac point [14–23]. Several of
these studies observe an elongated region near the Dirac point
as if the two touching cones are pulled apart, stretched but
without tearing apart. Such occurrences have been discussed
extensively in literature and, depending on the specific envi-
ronment of the graphene, were attributed to imperfections in
the graphene, interactions with the substrate, or the opening of
a band gap [23–28]. One observation common to all instances
of the stretched Dirac point is the residual spectral weight that
is still present at lowest energies. It needs to be understood in
more detail in order to judge if and under what conditions it
can be referred to as an actual gap.

In this paper, we present a real-space tight-binding calcu-
lation modeling different kinds of structural defects randomly
distributed over a graphene sample. We show that in all
instances, except the case of vacancies placed in a single sub-
lattice, there is no band gap opening near the Dirac point. The
spectrum near the Dirac point is either almost unchanged or
exhibits a stretched Dirac point with broadened states, which
resemble experimentally observed band dispersion. Comple-
menting our tight-binding model with a self-consistent T ma-
trix approximation (SCTMA) calculation [29–31], we show
that there are two types of point defects in graphene, resonant
or nonresonant [32,33]. This not only provides insight into the
possible origin of the “elongated” Dirac point, but also gives a
way to categorize point defects. It is resonant defects that pro-
duce a dispersion with broadened states near the Dirac point
resembling the results of the tight-binding calculation as well
as experimental findings. Due to the remarkable similarity
between the results of the SCTMA, numerical simulations of
the tight-binding model, and the experiment, we conclude that
the broadened states measured in epitaxial graphene must at
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least in part be caused by resonant defects in graphene. On the
other hand, nonresonant defects are shown to weakly affect
the dispersion near the Dirac point, which is also confirmed
by the tight-binding model calculation. Although we may
expect similar results for the tight-binding model and the
SCTMA, because both calculations start with a real-space
tight-binding defect Hamiltonian, this is not necessarily the
case, as our tight-binding model considers higher orders of
nearest-neighbor hopping. The similarity in the results shows
that the approximation in the SCTMA is valid. Our findings
lead to the conclusion that it is close to impossible to open a
band gap in graphene by virtue of defects only.

II. METHODOLOGY

We employed a second nearest-neighbor real-space tight-
binding model with the following Hamiltonian:

H = −
∑
〈i j〉

|i〉t〈 j| +
∑
〈〈i j〉〉

|i〉t ′〈 j|. (1)

Here the indices i and j label individual atoms with one pz-
orbital per atom. The parameters t and t ′ are hopping ampli-
tudes between first and second nearest neighbors, respectively.
The sums with single and double angular brackets run over
first and second nearest neighbors, respectively. We have
typically built the Hamiltonian for a rectangular supercell
of 160 000 carbon atoms with periodic boundary conditions
and add randomly distributed structural defects with a given
concentration. The Hamiltonian is then exactly diagonalized
numerically and the resulting real-space wave functions are
converted to momentum space. This yields the complete set
of eigenenergies En and corresponding eigenfunctions ψn(p).
The spectral weight function is then computed as

A(E , p) =
∑

n

|ψn(p)|2δ(E − En). (2)

The code was programed in Matlab using the built-in rou-
tines for calculating eigenvalues and eigenvectors as well as
Fourier transforms. The defects were introduced by removing
the hopping between particular randomly chosen lattice sites.
The atom positions of the defects have not been relaxed,
except in the case of the Stone-Wales (SW) defect, which
involves repositioning of two carbon atoms [34]. The hopping
terms near the defects have not been relaxed. The concen-
tration of defects, nimp, is the ratio of the number of carbon
atoms taken out or displaced to the total number of carbon
atoms in the lattice. The large number of lattice sites used in
the calculation is necessary for statistical reasons to increase
the number of eigenstates in the region of low density of states
(DOS) near the Dirac point as well as to have a large enough
number of randomly distributed defects in the supercell. For
the calculations presented in this paper the values of the
parameters are t = 3.033 eV and t ′ = 0.2 eV [35].

In the alternative SCTMA calculation, we start with the
exact Green’s function on a honeycomb lattice at zero energy.
Only nearest-neighbor hopping terms are taken into account
with t = 3.033 eV. Any individual structural defect consid-
ered in our calculation perturbs at most six neighboring sites
of the lattice; hence we describe it with an exact 6 × 6 T
matrix. We use this as the starting point of the calculation

as the zero-energy T matrix, which is located at the energy
of the Dirac point, can be calculated exactly, allowing us to
later apply an energy dependent perturbation. We convert the
exact zero-energy T matrix to the basis of four-component
spinors governed by the continuous low-energy massless
Dirac Hamiltonian with two valleys [36]. The converted
T matrix is averaged over all possible positions and orien-
tations of the defect and a nonzero energy is introduced as
a perturbation. The averaged Green’s functions of graphene
with a finite concentration of defects, nimp, acquire the self-
energy � = (nimp/A)〈T (E − �)〉. Here we have also included
the same self-energy in the argument of the impurity T matrix,
thus introducing the self-consistency equation. The spectral
weight is calculated from the self-energy as

A(E , p) = − 2

π
Im

[
1

E − � − vp
+ 1

E − � + vp

]
(3)

and is compared to the results of the tight-binding model
and to the experimentally measured dispersion. Similar cal-
culations have been performed recently showing consistent
results with ours, with discrepancies that can be accounted for
by our first nearest-neighbor approximation in the SCTMA
calculation [37]. Further details of the SCTMA calculation
can be found in the Supplemental Material [30].

III. RESULTS

We consider five different types of structural defects illus-
trated in Fig. 1. They show the effect of sublattice symmetry
breaking and the qualitative difference between resonant and
nonresonant defects. The first three types of impurities are
vacancies that are either distributed in a single (A) sublattice,
equally in both sublattices (A and B), or paired (whole AB
unit cells removed). These defects are shown in Figs. 1(a)–
1(c). While vacancies are not feasible in graphene, they pro-
vide a good model for adatoms attached to individual lattice
sites inducing a strong on-site potential [32,38]. Vacancies
allow us to probe sublattice symmetry breaking and to demon-
strate its effect on the band dispersion [33,36,38–40]. We also
consider two other structural point defects, that have been
experimentally observed in epitaxial graphene [34,41] and are
shown in Figs. 1(d) and 1(e). Although other point defects are
also observed, these two have been chosen as they highlight
the difference between resonant and nonresonant defects. The
585 defect, Fig. 1(d), is similar to the AB paired vacancy
but with two reconstructed bonds. The SW defect is shown
in Fig. 1(e) and involves a 90◦ rotation of a bond between
two adjacent atoms, along with the rearranging of the hopping
terms around them.

Numerically computed spectra for distributions of vacan-
cies are shown in Figs. 1(f)–1(h). We see that vacancies
placed in only one sublattice, Fig. 1(f), open a gap in the
Dirac spectrum with an additional midgap band [40]. We
will discuss the origin of this extra band below. Removing
atoms randomly from both sublattices, as shown in Fig. 1(g),
induces additional spectral weight in the vicinity of the Dirac
point with momentum broadening that gets stronger closer
to zero energy. At higher energies we see a band structure
resembling elongated Dirac points. Finally, removing adjacent
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FIG. 1. Different types of structural defects: (a) vacancies in
a single sublattice, (b) vacancies in both sublattices, (c) double
vacancies, (d) 585 defect with two sites removed and two bonds
reconstructed, and (e) Stone-Wales defect with two adjacent atoms
rotated by 90◦ [34]. Electron spectrum computed from exact diago-
nalization of the tight-binding model (1% vacancy concentration):
(f) for vacancies in a single sublattice, (g) for vacancies in both
sublattices, and (h) for double vacancies.

atoms, Fig. 1(h), does not noticeably affect the spectrum
apart from an energy dependent broadening of the linewidth.
Among these three qualitatively different electronic spectra,
only the first one [vacancies placed in one sublattice, Fig. 1(a)]
provides a true band gap, Fig. 1(f).

The structural defects shown in Figs. 1(d) and 1(e)
also demonstrate qualitatively different spectra similar to
Figs. 1(g) and 1(h), respectively. We analyze them analytically
in the framework of the SCTMA; see Supplemental Mate-
rial [30]. For the 585 defect we find the following equation
for the self-energy:

� = −βnimp

(E − �) log[−i(E − �)/t]
. (4)

This form is the result of a divergent zero-energy T ma-
trix [29,30]. Such defects are known as resonant. For the
case of the 585 defect β = 12.5 eV2. In Fig. 2 we compare
the spectral weight obtained from direct numerical diagonal-
ization of the disordered lattice model [panels (a)–(c)] with
the solution of the self-consistency Eq. (4) [panels (d)–(f)].
For both calculations, the resulting structure near the Dirac
point is very similar to experimentally measured graphene
dispersion. Stretching of the spectrum near the Dirac point

FIG. 2. Band structure of graphene with 585 defects obtained
from (a)–(c) exact diagonalization of the tight-binding Hamiltonian
and (d)–(f) SCTMA calculation. A significant “stretching” near the
Dirac point is already visible for 0.1% defect density. Such spectrum
is typical for resonant impurities. (g) The apparent gap size as a
function of defect concentration compared to Eq. (5) (shown with
solid line).

can be estimated from Eq. (4) as

� =
√

2βnimp

| log(cnimp)| , (5)

where c ∼ 1 is a fitting parameter. Here �, or the apparent gap
size, is defined as the absolute value of the energy found at
one of the linear crossings in the band dispersion. We plot the
size of the smeared region around the Dirac point in Fig. 2(g)
along with the fit (c = 2.0712 ± 0.38).

Another type of structural defects [SW, Fig. 1(e)] belongs
to the nonresonant case. In this case, the SCTMA provides the
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FIG. 3. Electron spectrum of graphene with SW defects obtained
from (a)–(c) exact diagonalization of the tight-binding Hamiltonian
and (d)–(f) SCTMA calculation. In contrast to the 585 defect, cf.
Fig. 2, stretching near the Dirac point does not occur. Instead the
linewidth broadening gradually increases away from the Dirac point.
This behavior is typical for nonresonant impurities.

following self-energy equation [30]:

� = nimp{α(E − �) log[−i(E − �)/t]}. (6)

For the SW defect in graphene, we find α = 6.85. The band
dispersion from the direct numerical diagonalization and from
the SCTMA are shown in Fig. 3. There is no apparent elon-
gated Dirac point even at relatively high concentrations of
impurities. Instead an energy-dependent line broadening gets
stronger away from the Dirac point. This is in contrast to the
relatively uniform broadening found in the band dispersion
with resonant impurities. We see that both for resonant 585
defects and nonresonant SW defects, the results of direct
diagonalization and SCTMA calculation show a remarkable
agreement.

The two forms of the self-energy, Eqs. (4) and (6), are
mathematically the only two possibilities for point defects in
graphene (as long as sublattice symmetry is preserved). In
the resonant case, the zero-energy T matrix diverges; hence
it can be approximated as T ∼ 1/E (up to a logarithmic
factor). This leads to the self-consistency equation of the form
in Eq. (4). In the nonresonant case, small-energy expansion
of the T matrix starts with a nonessential constant (it can
be absorbed in the chemical potential) and a linear term
leading to Eq. (6). Both resonant and nonresonant cases are

FIG. 4. Electron spectrum of graphene with equal concentration
of 585 and SW defects from (a) exact diagonalization of the tight-
binding Hamiltonian and (b) SCTMA calculation. Vicinity of the
Dirac point is dominated by the resonant 585 impurities with the
characteristic stretching of the spectrum; cf. Fig. 2. Linewidth away
from the Dirac point is broadened mainly by the weak SW defects as
in Fig. 3. (c) ARPES spectrum of epitaxial graphene [23–28]. (d),(e)
Average DOS corresponding to the spectra in (a),(b).

in a good agreement with our direct numerical simulations
of the tight-binding model. When the sublattice symmetry
is broken, self-energy is not a number anymore but rather
an operator in the sublattice space. Then more possibilities
beyond Eqs. (4) and (6) emerge [33]. Vacancies distributed
in only one sublattice, Figs. 1(a) and 1(f), is one possible
illustration of this effect.

We also consider a mixture of 585 and SW defects in a
single sample to gain insight on how these defects interact and
to have an approximation of realistically disordered graphene.
In Fig. 4, we compare the band structure for an equal amount
of 585 and SW defects obtained from direct diagonalization
[panel (a)] and the SCTMA calculation [panel (b)] with the
ARPES data of epitaxial graphene [panel (c)] [23–28]. The
average DOS is shown in Figs. 4(d) and 4(e) for the tight-
binding model and SCTMA, respectively. In the tight-binding
model we implement an equal number of 585 and SW defects
in the lattice, while for the SCTMA calculation the self-
consistency equation contains the sum of the right-hand sides
of Eqs. (4) and (6). The DOS is a momentum integral of the
previously calculated spectral weight.

The results in Figs. 4(a) and 4(b) not only show a striking
resemblance to each other but also match the “elongation”
found in experimentally measured epitaxial graphene disper-
sions as seen in Fig. 4(c). The DOS shows a nearly constant
region near the Dirac point, while further away it matches the
linear dispersion of states expected for graphene. This finite
DOS near the Dirac point is dominated by the effect from
resonant defects whose T matrix diverges at zero energy. The
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DOSs also show an excellent agreement between the SCTMA
and the direct tight-binding model.

IV. DISCUSSION

From our calculations, we can make several conclusions
and comment on some new insight. First, the only possibility
for a gap in the spectrum is when the sublattice symmetry
is broken, for example, in the case of vacancies in a single
sublattice, Fig. 1(f). Mathematically, this can be understood
by representing the tight-binding Hamiltonian in the matrix
form as [40]

H =
(

0 h
h† 0

)
. (7)

Here, the block h contains hopping terms from one sub-
lattice to the other and h† defines the opposite hopping.
Second nearest-neighbor hopping is temporarily disregarded.
Removing atoms from only one sublattice causes h and h† to
be nonsquare blocks. The matrix (7) has a number of zero
eigenvalues equal (or larger [42]) to the difference of the
number of A and B sites. Hence the DOS exhibits a delta
peak at zero energy with a gap opening around it. This gap
is a result of statistical repulsion between zero and nonzero
eigenstates of the random Hamiltonian matrix [39,40]. When
the second nearest-neighbor hopping is taken into account,
the zero-energy eigenstates rearrange into a dispersive midgap
band found in Fig. 1(f). These results suggest that selective
removal of (or chemical bonding to) carbon atoms from
a given sublattice may be the only way to realize gapped
graphene experimentally.

The second remark is on the ability to now categorize de-
fects, and about the origin of the elongated Dirac point that has
been measured experimentally in epitaxial graphene [23–28].
The SCTMA shows that a point defect in graphene can
only be either resonant or nonresonant, where the geometry
of a defect affects only the parameters α or β, effectively
giving us a model that can be used to categorize defects
in graphene without needing to specify them. Furthermore,
due to the remarkable similarity between the experimentally
measured elongated Dirac point [Fig. 4(c)], the tight-binding
result [Fig. 4(a)], and the SCTMA result [Fig. 4(b)], we infer
that this elongation is caused, at least in part, by resonant
defects. Although other effects may also contribute to this
signature, Fig. 4 suggests that a 585 defect concentration
of 0.5% could explain the elongation we observe. We have
shown that 585 defects are resonant and provide an apparent
stretching of the Dirac point. At the same time, it is known that
585 defects are common in epitaxial graphene [34,41]. We
thus conclude that the elongation of the Dirac point observed
in many graphene samples is in part the result of resonant
defects which could partially be accounted for by 585 defects.
In addition, the resonant and nonresonant defect picture we

have demonstrated could provide a way of estimating the
percentage of certain types of defects in graphene simply by
looking at the stretching of the Dirac point. Regarding the
prospective band gap in epitaxial graphene, our calculations
explicitly show that there are states in the Dirac point region,
leading us to conclude that the elongation of the Dirac point
cannot be considered as a gap. Furthermore, any concentration
of resonant defects will increase the number of states at low
energies. Nevertheless, the stretching of the spectrum near
the Dirac point creates an energy range where electrons are
localized in real space. This phenomenon may be used to open
a mobility gap around the Dirac point in graphene and realize
an insulating state [43].

We would also like to comment on a potential outlook
resulting from these findings. Primarily, it would be inter-
esting to see how easily extended our model could be to
other Dirac materials. Some materials, such as germanene and
silicene, are for the intents and purposes of this manuscript
identical to graphene and should also have defects that can
be categorized into resonant and nonresonant types [44,45].
As both silicene’s and germanene’s band dispersions have
Dirac points, it would be safe to speculate that an elongated
Dirac point could also be measured in these materials. For
more complex materials, calculating the self-energy of various
defects using a T -matrix approximation could provide a way
of categorizing defects in those materials. This would be
particularly interesting to test with three-dimensional Dirac
materials, such as Cd3As2 or Na3Bi [7,9].

V. CONCLUSION

In summary, we implemented a simple real-space tight-
binding model that allowed us to calculate the band dispersion
of graphene with defects. We found that a band gap can
only be induced when the sublattice symmetry is broken as
shown in Fig. 1(f). Looking at more realistic defects, we
found that the 585 defect creates an elongated Dirac point
(Fig. 2) similar to those found in experimentally measured
spectra of epitaxial graphene. Graphene with SW defects has
a qualitatively different spectrum without apparent stretching
(Fig. 3). We have also developed a SCTMA theory [30],
which allowed us to classify point defects as either resonant
or nonresonant and showed a remarkable agreement with the
direct lattice calculations. We conclude that the experimen-
tally observed elongated Dirac points are partially due to
resonant defects (which the 585 defect happens to be) and
the contribution to the stretching scales as the square root of
their concentration. The SCTMA model also provides further
insights into the nature of the broadened states measured in
epitaxial graphene, showing that the elongated region cannot
be considered a spectral gap. At the same time, disorder can
lead to localization of the states near the Dirac point and hence
to a mobility gap [43].
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