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Thermodynamic properties of an S = 1
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By using a numerically exact diagonalization technique and a block-extended version of the finite-temperature
Lanczos method, we study thermodynamic properties of an S = 1/2 Heisenberg model on the triangular
lattice with an antiferromagnetic nearest-neighbor interaction J and a four-spin ring-exchange interaction Jc.
Calculations are performed on small clusters under the periodic-boundary conditions. In contrast to the purely
triangular case with Jc = 0, the specific heat exhibits a characteristic double-peak structure for Jc/J � 0.04. From
the calculations of the entropy and the uniform magnetic susceptibility, it is shown that nonmagnetic excitations
exist below the magnetic excitation for Jc/J � 0.04.
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I. INTRODUCTION

The S = 1/2 Heisenberg antiferromagnet on the triangular
lattice is a prototypical frustrated quantum system and has
been a candidate of a resonating-valence-bond (RVB) or a
spin-liquid ground state [1,2]. Although the ground state
is likely to be the conventional 120◦ Néel state accord-
ing to the recent numerical and theoretical studies [3–8],
the quest for a spin-liquid state in the same lattice is still
continuing by incorporating additional terms to stabilize
a spin-liquid state, such as the next-nearest-neighbor ex-
change interaction [9–13] and the four-spin ring-exchange
interaction Jc [5,14–16]. These exchange interactions can
be considered as an introduction of the charge fluctua-
tion [17,18] and thus become more relevant for describing
magnetic properties of Mott insulators in proximity of the
metal-insulator transition [19–29]. While the ring-exchange
interaction itself has long been considered for describing
the magnetism in the three-dimensional solid 3He [30–36],
NiS2 [37], and the parent compounds of high-Tc cuprate
superconductor such as La2CuO4 [38–43], its importance in
triangular-lattice systems near the Mott transition is attracting
renewed attention recently [15,16,44,45] in organic Mott insu-
lators κ-(ET)2Cu2(CN)3 [46–48] and EtMe3Sb[Pd(dmit)2]2
[49,50] and a charge-density-wave Mott insulator 1T -TaS2

[51,52].
As an effective model for the triangular-lattice materials

near the Mott transition but with frozen charge degrees of
freedom, the ring-exchange model on the triangular lattice has
been proposed [15,16,44,45]. The model is described by the
following Hamiltonian:

Ĥ = J
∑
〈i j〉

Ŝi · Ŝ j + Jc

∑
〈i jkl〉

(P̂i jkl + P̂†
i jkl ), (1)

where J is the nearest-neighbor exchange coupling, Jc is the
four-spin ring-exchange coupling, Ŝi = (Ŝx

i , Ŝy
i , Ŝz

i ) is the spin
S = 1/2 operator, and P̂i jkl permutes four spins at sites i, j, k,

and l on an elementary parallelogram cyclically connected
as i- j-k-l-i (see Fig. 1). More specifically, we define that
i-k and j-l are diagonals of the parallelogram, and k is the
next-nearest neighbor of i on the triangular lattice, as indicated
in Fig. 1. The ring-exchange operator P̂i jkl can be expressed by
a product of permutation operators as

P̂i jkl = P̂il P̂ikP̂i j, (2)

where P̂i j = P̂†
i j = 2Ŝi · Ŝ j + 1

2 is the permutation operator

exchanging spins at site i and j. It follows that P̂†
i jkl = P̂lk ji =

P̂−1
i jkl . The sum indicated by 〈i j〉 in the first term of Ĥ runs over

all pairs of nearest-neighbor sites i and j, and the second sum
indicated by 〈i jkl〉 runs over all elementary parallelograms
(denoted by shaded blue in Fig. 1) formed by sites i, j, k,
and l .

In terms of the t/U expansion of the half-filled Hubbard
model with the nearest-neighbor hopping t and the on-site
interaction U , the ring-exchange term appears in the fourth-
order expansion with Jc = 20t4/U 3, although there are ad-
ditional correction terms in the expansion with the fourth
order [17,18]. Note that the Hamiltonian in Eq. (1) has been
considered as a model for the nuclear magnetism of a 3He
film adsorbed on graphite preplated with 4He at a partic-
ular commensurate density but with a ferromagnetic J < 0
[5,53–62], although a recent fixed-node diffusion Monte Carlo
calculation poses a question on the realization of such a
commensurate crystalline state [63].

Since J > 0 and Jc � 0 are relevant for the magnetism
near Mott transition, let us briefly summarize the ground-state
phase diagram of the model in Eq. (1) for J > 0 and Jc � 0
discussed in the previous literature. For J > 0 and Jc = 0,
the ground state is the three-sublattice (120◦) Néel ordered
state [3–8,15]. For J = 0 and Jc > 0, the ground state is a
spin-liquid state (SL-I), which corresponds to the RVB state,
with no spin gap [5,60,64]. Another spin-liquid state (SL-II)
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FIG. 1. Schematic of the model described in Eq. (1) on the
triangular lattice. Elementary parallelograms, where P̂i jkl and P̂†

i jkl

act (indicated by circular arrows), are indicated.

appears for moderate Jc/J [5,15,60,64], where the SL-II phase
has many singlet excitations in the spin gap (i.e., below the
lowest magnetic excitation).

Besides exploring the spin-liquid ground states, it is also
crucial to study excitation properties such as thermodynamics
as they can be measured experimentally [48,65–67]. In this
paper, we examine the effect of the ring-exchange interac-
tion on the thermodynamic properties such as the specific
heat, entropy, uniform magnetic susceptibility, and general-
ized Wilson ratio. Recently, these thermodynamic properties,
except for the specific heat, of a model similar to Eq. (1)
but without the terms corresponding to Eq. (B4) on a 28-site
cluster has been reported [68] using an improved version [69]
of the finite-temperature Lanczos method [70–72]. Here, we
propose an extended version of the finite-temperature Lanczos
method with the block Lanczos algorithm and adopt it for
small-cluster calculations up to 36 sites. The block-Lanczos
extension allows for an efficient sampling over random states
that is required for approximate evaluation of the trace over a
basis set of the Hilbert space.

The rest of this paper is organized as follows. The finite-
temperature Lanczos method with the extension to the block-
Lanczos algorithm is described in Sec. II. The method is ap-
plied in Sec. III to calculate the entropy, the specific heat, the
uniform magnetic susceptibility, and the generalized Wilson
ratio of the model for various values of Jc/J . The results
are summarized and discussed in Sec. IV. An algorithm to
find a spin configuration from a given state label in a Hilbert
space of a fixed magnetization Sz = ∑

i Sz
i is described in

Appendix A. The effect of the ring-exchange interaction Jc

on the spin-wave excitation in the 120◦ Néel ordered state
is studied within the linear spin-wave theory in Appendix B.
Throughout the paper, we set h̄ = kB = 1.

II. METHOD

In this section, we describe the finite-temperature Lanczos
method, which allows us to evaluate the partition function
and thermal averages of physical observables approximately,
without full numerical diagonalization of the Hamiltonian.
Before entering the details, let us first briefly summarize
the procedure of the finite-temperature Lanczos method. The
key approximations made in the finite-temperature Lanczos
method are (i) stochastic evaluation of the trace of operator Ô
and (ii) approximate evaluation of Boltzmann factor e−βĤ by
the Lanczos method, where β is the inverse temperature. We
use the random-phase states for stochastic samplings in (i) and
adopt the block Lanczos method for (ii).

A. Exact partition function

The partition function Z at temperature T = 1/β is defined
by

Z = Tr[e−βĤ ] =
Nst∑

n=1

e−βEn , (3)

where En is an eigenvalue of Ĥ associated with an eigenstate
|En〉, i.e.,

Ĥ |En〉 = En|En〉, (4)

and Nst is the number of eigenstates. The thermal average of
operator Â is given by

〈Â〉 = 1

Z
Tr[e−βĤ Â] = 1

Z
Tr[e−βĤ/2Âe−βĤ/2]. (5)

In practice, one can make use of symmetries of the Hamil-
tonian to reduce the computational cost for numerical diago-
nalization or Lanczos iterations as

Z =
Nsym∑
α=1

Z (α) (6)

with

Z (α) =
N (α)

st∑
n=1

e−βE (α)
n (7)

and

Ĥ (α)
∣∣E (α)

n

〉 = E (α)
n

∣∣E (α)
n

〉
, (8)

where α labels symmetry sectors of the Hamiltonian, Nsym is
the number of symmetry sectors, N (α)

st is the number of states
in a given symmetry sector α satisfying Nst = ∑Nsym

α=1 N (α)
st ,

and Ĥ (α) is the block-diagonalized Hamiltonian, i.e., Ĥ =
⊕Nsym

α=1Ĥ (α).
We consider the Hamiltonian in Eq. (1) on small clusters

under the periodic-boundary conditions. The symmetry sec-
tors are labeled as (α) = (k, Sz ), where k is the momentum
and Sz is the eigenvalue of Ŝz = ∑L

i=1 Ŝz
i , and L is the number

of sites. This labeling of the symmetry sectors results in
Nsym = L(L + 1). Figure 2 shows the available momenta for
the L = 6 × 6 cluster, which is the largest size used in the
present study. In Appendix A, we describe an algorithm to
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FIG. 2. Available momenta k = (kx, ky ) for the L = 6 × 6 clus-
ter under the periodic boundary conditions. Solid lines denote the
Brillouin-zone boundaries and light green circles indicate the 36
momenta inside the first Brillouin zone. High symmetric momenta,
�: (0,0), K : (4π/3, 0), M: (π, π/

√
3), and K ′: (2π/3, 2π/

√
3), are

also indicated.

find a spin configuration for a given state label in the fixed-
magnetization Hilbert space.

We evaluate Z (α) numerically exactly if N (α)
st � 104. For

evaluation of Z (α) with larger N (α)
st , we employ the finite-

temperature Lanczos method [70–72] combined with the
block-Lanczos algorithm described in the following sections.
Below we drop the superscript (α) labeling the symmetry
sectors for brevity.

B. Random-phase state

Following Refs. [73,74], here we review some properties
of the random-phase states, which is relevant to the stochastic
evaluation of the trace. Consider a state |r〉 such that

|r〉 =
Nst∑

x=1

eiθ r
x |x〉, (9)

where {|x〉} is an arbitrary complete orthonormal set satisfying
1̂ = ∑Nst

x=1 |x〉〈x| and 〈x|x′〉 = δxx′ , and θ r
x are random vari-

ables distributing uniformly in [0, 2π ) [75]. Notice that |r〉
is not normalized because 〈r|r〉 = Nst.

We now define a statistical average as

〈〈· · · 〉〉 = lim
R→∞

1

R

R∑
r=1

· · · , (10)

where r denotes a different set of the random variables. Since
〈〈eiθ r

x 〉〉 = 0 and 〈〈(eiθ r
x′ )

∗
eiθ r

x 〉〉 = 〈〈ei(θ r
x −θ r

x′ )〉〉 = δxx′ , we can

easily show that |r〉’s are statistically complete

〈〈|r〉〈r|〉〉 =
Nst∑

x=1

|x〉〈x| = 1̂. (11)

The expectation value of operator Ô with respect to |r〉 is
given by

〈r|Ô|r〉 =
Nst∑

x=1

〈x|Ô|x〉 +
Nst∑

x=1

Nst∑
x′=1

(
ei(θ r

x −θ r
x′ ) − δxx′

)〈x′|Ô|x〉.
(12)

Therefore, the trace can be evaluated stochastically as

Tr
[
Ô

] =
Nst∑

x=1

〈x|Ô|x〉 = 〈〈〈r|Ô|r〉〉〉. (13)

Finally, if the statistical average is truncated at a finite
number R of the random-phase states in Eq. (13), the leading
error |δO|, where δO is the second term of the right-hand side
of Eq. (12), is estimated as [73,74]

|δO|2 = 1

R

∑
x �=x′

|〈x′|Ô|x〉|2

= 1

R

(
Tr[Ô2] −

Nst∑
x=1

〈x|Ô|x〉2

)
. (14)

Here, Ô is assumed to be a Hermitian operator. Note, however,
that Ô = e−βĤ Â is not Hermitian if Â does not commute with
Ĥ , even if Â itself is Hermitian. In such a case, Ô can still be
chosen Hermitian if the symmetric form

Ô = e−βĤ/2Âe−βĤ/2 (15)

is used as in Eq. (5).

C. Finite-temperature Lanczos method

From Eqs. (10) and (13) we obtain

Z = lim
R→∞

1

R

R∑
r=1

〈r|e−βĤ |r〉. (16)

Now the matrix element 〈r|e−βĤ |r〉 has to be evaluated.
If the full diagonalization of Ĥ were possible, the matrix
element could be evaluated exactly by inserting the identity
with the eigenstates P̂Eig = ∑Nst

n=1 |En〉〈En| = 1̂. In the finite-
temperature Lanczos method, P̂Eig is approximated by the
projection onto the Ritz states P̂Ritz = ∑NL

l=1 |εr
l 〉〈εr

l |, where
|εr

l 〉 is the lth Ritz state associated with the Ritz value εr
l

obtained by the Lanczos algorithm terminated at the NLth step
of the Lanczos iteration started with the initial state |r〉. The
partition function is thus approximated as

Z ≈ 1

R

R∑
r=1

〈r|e−βĤ |r〉 ≈ 1

R

R∑
r=1

NL∑
l=1

e−βεr
l
∣∣〈εr

l

∣∣r〉∣∣2
, (17)

where the first approximation is made by truncating the
number of the random states at a finite value R, and the sec-
ond approximation is made by approximating the Boltzmann
factor as e−βĤ ≈ e−βĤ P̂Ritz = ∑NL

l=1 e−βεr
l |εr

l 〉〈εr
l |. Equation
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(17) is the approximate partition function calculated in the
finite-temperature Lanczos method [70–72]. Notice that since
|r〉 defined in Eq. (9) is not normalized, differently from
Refs. [70–72], the factor Nst does not appear in Eq. (17). Such
a factor is taken into account in |〈εr

l |r〉|2 in our formulation.

D. Block Lanczos algorithm

Here, we describe the block Lanczos algorithm [76–79]
to adopt it for the finite-temperature Lanczos method. As the
initial states, we first generate MB random-phase states

|r1〉, |r2〉, · · · , |rMB〉. (18)

To describe the algorithm, it is convenient to move to the
matrix notation. Let Y ∈ CNst×MB be a matrix representation of
the set of random-phase states in Eq. (18) in the orthonormal
basis {|x〉} used in Eq. (9), i.e.,

[Y ]xb = 〈x|rb〉 = eiθ
rb
x . (19)

Namely, Y contains MB random-phase vectors as column
vectors.

Since the MB random-phase vectors are not orthonormal-
ized to each other, Y itself cannot be used as the initial vectors
for the block Lanczos algorithm. Instead, MB orthonormalized
vectors can be obtained from a QR factorization of Y as

Y = Q1B0, (20)

where Q1 ∈ CNst×MB satisfies Q†
1Q1 = I and B0 ∈ CMB×MB is

an upper triangular matrix satisfying Y †Y = B†
0B0. Now Q1

can be used as the initial vectors for the block-Lanczos algo-
rithm. Block-Lanczos vectors Q2, Q3, · · · , Qkmax

with kmax =
NL/MB are constructed successively by iterating the following
procedures for k = 1 to kmax:

Ak := Q†
kHQk (21)

X k := HQk − QkAk − Qk−1B†
k−1 (22)

X k =: Qk+1Bk, (23)

where Q0 := 0 and [H]xx′ = 〈x|Ĥ |x′〉 is the matrix represen-
tation of Ĥ . The procedure in Eq. (23) should be read as
the QR factorization of X k ∈ CNst×MB yielding the (k + 1)st
block-Lanczos vectors Qk+1 ∈ CNst×MB with Q†

k′Qk = δk′,kI
and an upper-triangular matrix Bk ∈ CMB×MB . The procedure
in Eq. (21) requires MB matrix-vector multiplications. Note
that NL is assumed to be a multiple of MB for simplicity.
However, if NL is not a multiple of MB, kmax should be read
as nint(NL/MB) for example and NL below as kmaxMB, where
nint(·) denotes the nearest-integer function.

Defining Q̃k = (Q1, · · · , Qk ) ∈ CNst×kMB , T k = Q̃
†
kHQ̃k ∈

CkMB×kMB can be constructed after the procedure (21) of the
kth block-Lanczos iteration. It follows from Eqs. (21)–(23)
that Q†

j′HQ j = A jδ j′, j + B jδ j′, j+1 + B†
j′δ j′, j−1. Therefore, T k

is a Hermitian-band matrix of the form

T k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1 B†
1 0 · · · 0

B1 A2 B†
2

. . .
...

0
. . .

. . .
. . . 0

...
. . . Bk−2 Ak−1 B†

k−1
0 · · · 0 Bk−1 Ak

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

A diagonalization of T kmax gives NL Ritz values as its eigen-
values, i.e.,

D = U†T kmaxU = diag
(
ε

{r}
1 , · · · , ε

{r}
NL

)
, (25)

where U is a unitary matrix. Here, the superscript {r}
denotes that the Ritz values are obtained by the block-
Lanczos method with the initial states {r} = {r1, r2, · · · , rMB}.
It follows from Eq. (25) and T kmax = Q̃

†
kmax

HQ̃kmax
that D =

(Q̃kmax
U )

†
H (Q̃kmax

U ). Therefore, the Ritz state |ε{r}
l 〉 which

satisfies Ĥ |ε{r}
l 〉 = ε

{r}
l |ε{r}

l 〉 and 〈ε{r}
l |ε{r}

l ′ 〉 = δll ′ is given by

〈
x
∣∣ε{r}

l

〉 = [Q̃kmax
U ]xl . (26)

Finally, the overlap between the initial state and the lth Ritz
state is given by〈

ε
{r}
l

∣∣rb
〉 = [

U†Q̃
†
kmax

Y
]

lb = [
U†Q̃

†
kmax

Q1B0
]

lb

=
MB∑

m=1

[U†]lm[B0]mb, (27)

where Q†
j′Q j = δ j′, jI is used in the last equality.

E. Block-extended finite-temperature Lanczos method

Now the block-extended version of the finite-temperature
Lanczos method can be formulated. For simplicity, we assume
that the number R of the random-phase states is a multiple of
the number MB of the block size. Introducing

RB = R

MB
, (28)

the approximate partition function in Eq. (17) can be ex-
pressed as

Z ≈ 1

R

R∑
r=1

〈r|e−βĤ |r〉 = 1

RBMB

RB∑
r=1

MB∑
b=1

〈rb|e−βĤ |rb〉

≈ 1

RB

RB∑
r=1

NL∑
l=1

e−βε
{r}
l

(
1

MB

MB∑
b=1

∣∣〈ε{r}
l

∣∣rb
〉∣∣2

)
. (29)

On the equality of the first line, the R (= RBMB) random-
phase states are simply relabeled by a combination of the
subscripts r and b. To obtain the second line, the projection
operator P̂Ritz = ∑NL

l=1 |ε{r}
l 〉〈ε{r}

l | is inserted. A formal differ-
ence from the standard finite-temperature Lanczos method
is that the overlap squared, |〈εr

l |r〉|2, in Eq. (17) is re-
placed by the averaged one over the MB random-phase states,∑MB

b=1 |〈ε{r}
l |rb〉|2/MB, in Eq. (29). Here, the overlap 〈ε{r}

l |rb〉
can be calculated through Eq. (27). Obviously, Eq. (29) repro-
duces Eq. (17) when MB = 1.
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Similarly to the partition function, the numerator of Eq. (5)
is approximated as

Tr[e−βĤ/2Âe−βĤ/2] ≈ 1

R

R∑
r=1

〈r|e−βĤ/2Âe−βĤ/2|r〉

≈ 1

RB

RB∑
r=1

NL∑
l=1

NL∑
l ′=1

e−β(ε{r}
l +ε

{r}
l′ )/2

×
(

1

MB

MB∑
b=1

〈
rb

∣∣ε{r}
l ′

〉〈
ε

{r}
l ′

∣∣Â∣∣ε{r}
l

〉〈
ε

{r}
l

∣∣rb
〉)

. (30)

Here, the right-most expression of Eq. (5) is adopted as in the
low-temperature Lanczos method [80]. If Â commutes with
Ĥ , then |ε{r}

l 〉 are simultaneous eigenstates of Â and Ĥ . In this
case, Eq. (30) can be further simplified because 〈ε{r}

l ′ |Â|ε{r}
l 〉 =

A{r}
l δll ′ , where A{r}

l is an eigenvalue of Â.
A nice property of the block-extended version of the finite-

temperature Lanczos method [Eqs. (29) and (30)] is that one
can flexibly choose RB and MB to exploit the computational
resource efficiently. For example, the summation

∑RB
r=1 · · ·

can be done independently for each r, while a block size of
MB > 1 allows for the better performance in a single process
as compared to the case of MB = 1. To be more specific,
let us consider an on-the-fly Hamiltonian multiplication to
the block-Lanczos vectors. In that case, the dominant com-
putational costs are generating Hamiltonian matrix elements
rather than performing simple multiply-add operations. Since
the block Lanczos method multiplies the Hamiltonian ma-
trix to MB vectors simultaneously, MB times less operations
for generating the matrix elements are required to achieve
the same number of Hamiltonian-vector multiplications, as
compared to the standard Lanczos method. We remark that
such simultaneous Hamiltonian multiplication to vectors can
be employed also in the polynomial expansion technique [74].

In the block Lanczos method, at least 2MB vectors (of Nst

dimension) have to be stored. When the required memory for
storing the 2MB vectors exceeds the limit of the available
resource, one can simply reduce the number MB of the block
size, or even switch to the standard finite-temperature Lanczos
method merely by setting MB = 1. Fortunately, the smaller
number R of samplings is required for the larger Nst to
maintain a statistical accuracy (see for example Refs. [81,82]
and Sec. II F).

Now we have three parameters RB, MB, and NL for control-
ling the accuracy of the block-extended version of the finite-
temperature Lanczos method. Values of these parameters will
be specified for each result in Sec. III.

F. Connection with the canonical thermal-pure-quantum state

The finite-temperature Lanczos method for observables
commuting with Ĥ [70–72], the low-temperature Lanczos
method for observables not commuting with Ĥ [80], and
the block-extended version of the finite-temperature Lanczos
method for observables not commuting with Ĥ described in
the previous section, can all be regarded as a method that
makes use of the canonical thermal-pure-quantum (CTPQ)
state [83], as recently demonstrated with the standard finite-

temperature Lanczos method in Ref. [84]. For example, the
matrix element 〈rb|e−βĤ |rb〉 appearing in Eq. (29) is the
inner product of the (unnormalized) CTPQ state e−βĤ/2|rb〉.
There are several ways to evaluate matrix functions operated
to vectors without full diagonalization, such as polynomial
expansion techniques [85–93]. With the Lanczos method used
here, the CTPQ state is approximated by a linear combination
of the NL Ritz states |ε{r}

l 〉 as

e−βĤ/2|rb〉 ≈ P̂Ritze−βĤ/2|rb〉 =
NL∑
l=1

e−βε
{r}
l /2〈ε{r}

l

∣∣rb
〉∣∣ε{r}

l

〉
.

(31)

In this sense, although it is difficult to estimate the systematic
error associated with the approximation made in Eq. (31),
one can still refer to the convergence analysis of CTPQ states
[83]. For instance, the better convergence in probability to the
ensemble average is expected for the larger D(T ) = eLs(T )

with s(T ) being the entropy density. Here D(T ) can be
interpreted as a temperature-dependent effective dimension of
the Hilbert space, because it satisfies limT →∞D(T ) = Nst and
limT →0D(T ) = g, where g is the ground-state degeneracy.

Note that the (block) Lanczos method approximates well
the extremal eigenvalues and eigenstates within a few hun-
dreds of the Lanczos steps NL, almost independently of the
realization of the initial random-phase state |rb〉. Therefore,
the (block) Lanczos approach to the matrix exponential, as in
Eq. (31), complements the CTPQ approach at low tempera-
tures by its fast convergence to the ground state and low-lying
excited states for each symmetry sector. In particular, the
block Lanczos method can better approximate the low-lying
excited states, especially within the block size, as compared
to the standard Lanczos method [76]. On the other hand,
empirically, the convergence of the (block) Lanczos method
to the inner (i.e., nonextremal) eigenpairs with dense spectra
seems “random,” in the sense that the convergence depends
on the realization of |rb〉 for fixed NL, as observed in spectra
of dynamical correlation functions [72]. This implies that
relatively large error bars are expected at temperatures where
the specific heat exhibits a peak, because the larger specific
heat indicates the larger fluctuation of the internal energy
〈Ĥ〉, thus implying the denser eigenspectra of Ĥ . Finally,
we remark that a connection between the finite-temperature
Lanczos method and the eigenstate-thermalization hypothesis
[94,95] has been discussed recently in Ref. [96].

III. RESULTS

Figure 3 shows the specific heat

c(T ) = 1

LT 2
[〈Ĥ2〉 − 〈Ĥ〉2], (32)

the entropy density

s(T ) = 1

LT
[〈Ĥ〉 + T ln Z], (33)

the uniform magnetic susceptibility

χ (T ) = 1

LT
[〈(Ŝz )2〉 − 〈Ŝz〉2], (34)
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FIG. 3. (a) Specific heat c(T ), (b) entropy density s(T ), (c) uni-
form susceptibility χ (T ), and (d) Wilson ratio RW(T ) at Jc/J = 0.07
for L = 4 × 4, 18, 5 × 4, 6 × 4, 30, and 6 × 6 clusters (see Fig. 4).
Solid lines are results obtained by the full exact diagonalization.
Block-Lanczos parameters are RB = 24, MB = 6, and NL = 120 for
L = 4 × 5, RB = 24, MB = 8, and NL = 160 for L = 18, RB = 8,
MB = 8, and NL = 200 for L = 6 × 4, RB = 6, MB = 8, and NL =
320 for L = 30, and RB = 6, MB = 4 for 0 � |Sz| � 1, MB = 6 for
2 � |Sz| � 5, MB = 6 for 6 � |Sz|, and NL = 720 for L = 6 × 6.

FIG. 4. Cluster structures used for the calculations. The periodic
boundary conditions are imposed.

and the generalized temperature-dependent Wilson ratio [97]

RW(T ) = 4π2T χ (T )

3s(T )
(35)

at Jc/J = 0.07 for L = 4 × 4, 18, 5 × 4, 6 × 4, 30, and 6 × 6
(see Fig. 4). Notice that the entropy density s(T ) is normalized
with respect to limT →∞ s(T ) = ln 2 in the figure. Since these
quantities involve only the thermal average of the quantities
that commute with Ĥ , the calculations are particularly effi-
cient as compared to the quantities that do not commute with
Ĥ . Each of the error bars represents the standard error of the
mean σ̃ /

√
RB with σ̃ being the estimated standard deviation

defined by

σ̃ =
√√√√ 1

RB − 1

RB∑
r=1

(Xr − X̄ )2, (36)

where Xr is calculated c(T ), s(T ), χ (T ), or RW(T ) but for a
given r (without averaging over r), and X̄ is c(T ), s(T ), χ (T ),
or RW(T ) itself. For comparison, the full-diagonalization re-
sults are also shown in Fig. 3 for L � 20. It is confirmed for
L = 18 and L = 5 × 4 that the results obtained by the block-
extended version of the finite-temperature Lanczos method
mostly coincide with the full-diagonalization results within
error bars [98].

Figure 5 shows the Jc dependence of c(T ), s(T ), χ (T ), and
RW(T ) for L = 6 × 6, which is the largest cluster available
and preserves all the symmetries of the triangular lattice.
Without the ring-exchange interaction (Jc = 0), c(T ) exhibits
a peak around T/J = 0.2 and a broad shoulder for T/J � 0.5,
while no significant structure can be found in s(T ). This is
in good agreement with the previous results calculated by
the finite-temperature Lanczos and the exponential tensor-
renormalization-group methods [68,99–101]. At low tempera-
tures, a power-law dependence of c(T ) ∼ T 2 is expected with
the Néel order [102]. However, such a power-law dependence
is not found here due to the energy gap intrinsic to the finite-
size calculation.

For Jc/J � 0.04, the specific heat c(T ) shows a double-
peak structure with a broad high-temperature peak at T =
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FIG. 5. Semilog (left) and linear (right) plots of (a),(b) specific heat c(T ), (c),(d) entropy density s(T ), (e),(f) uniform susceptibility χ (T ),
and (g),(h) Wilson ratio RW(T ) for several values of Jc/J , indicated in the figures, and L = 6 × 6. Block-Lanczos parameters are RB = 6,
MB = 4 for 0 � |Sz| � 1, MB = 6 for 2 � |Sz| � 5, MB = 6 for 6 � |Sz|, and NL = 720.
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Thigh ∼ J and a sharp low-temperature peak at T = Tlow � J .
Moreover, it is observed that the high-temperature peak shifts
towards higher temperature with increasing Jc/J like Thigh ∼
J + 5Jc. Such a behavior of the high-temperature peak can be
expected from Eq. (B5), where the effective nearest-neighbor
exchange J + 5Jc becomes a dominant energy scale at high
temperatures.

As shown in Fig. 3(a), the low-temperature peak po-
sition for Jc/J = 0.07 tends to be lowered for the larger
clusters, while the high-temperature peak is insensitive to
the system size. For example, for the L = 6 × 6 cluster, the
high-temperature peak appears at Thigh/J ≈ 0.8 and the low-
temperature peak is found at Tlow/J ≈ 0.05. At the highest
temperature around T/J ∼ 10, the entropy density reaches
s = ln 2 ≈ 0.693, indicating that the system is in the paramag-
netic state. In the temperature regime where c(T ) shows a dip
between the two peaks, s(T ) exhibits a shoulderlike structure
which is visible in the semilog plot shown in Fig. 5(c). In-
terestingly, about half of the total entropy s = 1

2 ln 2 ≈ 0.347
remains at such a temperature regime. The shoulderlike struc-
ture of s(T ) becomes more prominent for the larger system
size [see Fig. 3(b)].

As shown in Figs. 5(e) and 5(f), the uniform magnetic
susceptibility χ (T ) decreases quickly below temperature Tχ

at which χ (T ) takes a maximum. The peak position Tχ varies
from Tχ ≈ 0.3J for Jc/J = 0 to Tχ ≈ 0.15J for Jc/J = 0.1.
In particular, a rapid decrease of Tχ can be observed for 0 �
Jc/J � 0.06. It is also found that for Jc/J � 0.04 there exists
a temperature region where the entropy and specific heat are
finite while χ (T ) is almost zero. This implies that many non-
magnetic excitations exist below the first magnetic excitation,
which is consistent with the strong-coupling expansion of the
Hubbard model [103]. Such low-lying nonmagnetic excited
states are thus essential for forming the low-temperature peak
in the specific heat.

These characteristic low-lying excitations can be better
seen in the temperature-dependent Wilson ratio RW(T ) [97]
shown in Figs. 5(g) and 5(h). If this quantity tends to zero, it
is indicative that the magnetic excitations are inactive while
nonmagnetic ones are active. Although the error bars are
too large to discuss its behavior for T/J < 0.1 and Jc/J �
0.02, the slight upturn of R(T ) for Jc/J = 0 at T/J ∼ 0.2 is
consistent with the result for the pure-triangular case reported
in Ref. [97]. Despite the large error bars, one can still observe
a clear change of behavior in RW(T ) for T/J < 0.4 between
the parameter regions Jc/J � 0.02 and Jc/J � 0.04.

Finally, it is observed in Fig. 5 that the error bars become
larger below the temperature at which the specific heat takes
the maximum (the low-temperature maximum for J � 0.04).
This behavior is expected from the discussion in Sec. II F.

IV. SUMMARY AND DISCUSSION

The thermodynamic properties of an S = 1/2 antiferro-
magnetic Heisenberg model on the triangular lattice with the
ring-exchange interaction have been studied by the block-
extended version of the finite-temperature Lanczos method.
The results for entropy s(T ), uniform magnetic susceptibility
χ (T ), and Wilson ratio RW(T ) have shown that there exist
low-energy nonmagnetic excitations for Jc/J � 0.04. The spe-

cific heat c(T ) exhibits a characteristic double-peak structure
for Jc/J � 0.04, with the low-temperature peak being caused
by these nonmagnetic excitations.

As it is apparent from s(T ), χ (T ), and RW(T ), there is a
great deal of similarity in the low-lying excitations between
the ring-exchange model studied here and the J1 − J2 model
on the triangular lattice or the kagome-lattice antiferromagnet
[68,97,104,105]. However, the double-peak structure found
here in c(T ) for Jc/J � 0.04 distinguishes the ring-exchange
model from the other models. Indeed, such a double-peak
structure has not been observed in the J1 − J2 model on the
triangular lattice for J2/J1 = 0.1 and 0.2 [99]. Moreover, the
separation of these two peaks for the ring-exchange model
is found to be more pronounced with increasing the system
size. Such a system-size dependence of the low-temperature
peak positions is in contrast to that in the kagome-lattice
antiferromagnet where the lower-temperature peak moves
towards higher temperatures with increasing the system size
[81,106]. Instead, a system-size dependence similar to the
ring-exchange model found here has also been observed in
the Kitaev model [107]. This implies that the excitations cor-
responding to the high-temperature peak are spatially local,
while those corresponding to the low-temperature peak are
not.

It is interesting to compare the present results with the
recent experiments on Ba2CoNb6O24, which is considered
to be the S = 1/2 two-dimensional triangular-lattice Heisen-
berg antiferromagnet with a nearest-neighbor coupling J =
0.144 meV [66] or J = 1.66 ± 0.06 K [67]. In this material,
no indication of the magnetic order has been found in the
thermodynamic measurements down to T = 80 mK. After
subtraction of the phonon contribution (∝ T 3), the specific
heat takes a single-peak structure. Considering the absence
of the double-peak structure in the specific heat, the case
without the ring-exchange interaction (i.e., Jc/J = 0) is rather
more relevant to Ba2CoNb6O24 than the ring-exchange model.
In the literature [66,67], the absence of the 120◦ long-range
order at finite temperatures is attributed to a realization of the
Mermin-Wagner theorem [108] on the real material.

Thermodynamic properties of 1T -TaS2 have also been
measured experimentally [109–111]. So far, no indication of a
double-peak structure in the magnetic heat capacity has been
reported. For example, only a single broad hump in the mag-
netic heat capacity has been observed in Ref. [109]. However,
the entropy at high temperature, obtained by integrating the
magnetic heat capacity over the whole temperature region
measured, reaches only ≈40% of ln 2 [109]. If we assume
that there exists a sharp peak in the magnetic heat capacity
at temperature lower than the experimental reach, such a
missing entropy is not inconsistent with our results, because
our result implies that s ≈ 1

2 ln 2 remains at the temperature
where c(T ) exhibits a dip. Therefore, a further study on the
missing entropy in 1T -TaS2 is highly desirable. We should
note that a similar scenario on the missing entropy and the
double-peak structure in the heat capacity had been discussed
in the context of nuclear magnetism of 3He film [112], which
was resolved by the lower-temperature measurement of the
heat capacity [55].

In Appendix B, we study the effect of the ring-exchange
interaction Jc on the spin-wave dispersion in the 120◦ Néel

235115-8



THERMODYNAMIC PROPERTIES OF AN S = 1
2 … PHYSICAL REVIEW B 101, 235115 (2020)

ordered state, within the linear spin-wave theory. It is found
that the spin-excitation energies near the M point and sym-
metrically equivalent points are decreased drastically with Jc.
However, the spin-wave analysis, which takes into account
only the magnon excitation, was not able to capture the
characteristic thermodynamic features, including the double-
peak structure of c(T ), found in our numerical calculations.
In particular, the microscopic understanding of the double-
peak structure in c(T ) found here requires a rather systematic
analysis for larger clusters and is left for future study.
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APPENDIX A: ALGORITHM TO FIND A SPIN
CONFIGURATION FOR A GIVEN STATE LABEL IN A

FIXED-MAGNETIZATION HILBERT SPACE

The two-dimensional search technique introduced by Lin
[113] is an efficient method to find a state label j for a given
spin configuration i, i.e., j(i), with a relatively small amount
of storage, whose dimension is 2 × 2L/2. Here, a set of the
binary digits {bl} that represents i with

i =
L∑

l=1

bl 2
l−1 ≡ (bLbL−1 . . . b1)2 (A1)

is assigned to a spin configuration, by identifying bl = 0 (bl =
1) with the presence of a spin-↓ (spin-↑) at the lth site.

The inverse table, which returns a spin configuration i for
a given state label j, i.e., i( j), is often stored. For a fixed-
magnetization Hilbert space, the length of the inverse table is
given by the binomial coefficient(

L

N↑

)
= L!

N↑!(L − N↑)!
=

(
L

L − N↑

)
, (A2)

where Nσ is the number of spins with spin σ , N↑ + N↓ = L,
and the magnetization is given by Sz = (N↑ − N↓)/2. The
range of the state label j can be chosen as

1 � j �
(

L

N↑

)
. (A3)

For a concrete example of the correspondence between j and
i, see Table I. Since the range of i is given by

2N↑ − 1 � i � 2L − 2L−N↑ , (A4)

i might be 64 bit integer for L � 32. An algorithm that returns
a spin configuration i for a given state label j may be useful
when spin configurations i do not appear sequentially during
the calculation of matrix elements of the Hamiltonian, due to,
for example, a parallelization of the on-the-fly matrix-vector
multiplication.

TABLE I. Correspondence between state label j and spin con-
figuration i for L = 6 and N↑ = 3. Both j and i are assumed to be in
ascending order.

j i(L, N↑, j) j i(L, N↑, j)

1 (000111)2 =7 11 (100011)2 =35
2 (001011)2 =11 12 (100101)2 =37
3 (001101)2 =13 13 (100110)2 =38
4 (001110)2 =14 14 (101001)2 =41
5 (010011)2 =19 15 (101010)2 =42
6 (010101)2 =21 16 (101100)2 =44
7 (010110)2 =22 17 (110001)2 =49
8 (011001)2 =25 18 (110010)2 =50
9 (011010)2 =26 19 (110100)2 =52
10 (011100)2 =28 20 (111000)2 =56

Here we introduce such a function i( j) by assuming that
both i and j are in the ascending order, as in Table I. The basic
idea is to assign a state label j to one of the shortest paths
from the vertex ( L

L − N↑) to the topmost vertex (0
0) on Pascal’s

triangle (see Fig. 6). Since there are ( L
L − N↑) different paths, a

one-to-one correspondence between the shortest paths and { j}
should exist.

To find a correspondence between binary numbers and the
shortest paths on Pascal’s triangle, the following combinato-

FIG. 6. Schematic figure of the algorithm to find a spin config-
uration i for a given state label j. The figure should be read from
bottom to top to compare with Algorithm 1. For a given set of L,
N↑, and j, one of the shortest paths from the vertex

( L
L−N↑

)
to the

topmost vertex
(0

0

)
of Pascal’s triangle is assigned, and the path de-

termines the spin configuration i = ∑L
L̃=1 bL̃2L̃−1 = (bLbL−1 . . . b1)2.

The path goes rightward if j̃ >
(L̃−1

Ñ↑

)
(indicated by magenta) or else

leftward (indicated by green). The rightward (leftward) path from
L̃th row to L̃ − 1th row implies that bL̃ = 1 (bL̃ = 0). The figure
refers to the input (L, N↑, j) = (6, 3, 7), which results in the output
i = (010110)2 = 22. The (N↑ + 1) × (N↓ + 1) = 16 vertices on the
possible

(6
3

) = 20 shortest paths are highlighted with shaded blue
color, and bL̃ in i is highlighted with boldface. Although a quick
return is possible at L̃ = 3 in this example, according to the lines
9–11 of Algorithm 1, the remaining processes corresponding to the
lines 12–15 of Algorithm 1 for L̃ � 3 are also shown here in this
figure.
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Algorithm 1 A function that returns a spin configuration i for given number L of sites, number N↑ of up spins, and state label j. Comments
are given in the right-most side.

Require:
Input: integer L, N↑, and j
0 � N↑ � L
1 � j �

( L
N↑

)
Temporal integer variables L̃, Ñ↑, and j̃

Ensure:
Output: integer i
2N↑ − 1 � i � 2L − 2L−N↑

1: function FIND-CONFIGURATION(L, N↑, j)
2: i = 0 � initialization
3: j̃ = j � initialization
4: Ñ↑ = N↑ � initialization
5: for L̃ = L, L − 1, . . . , 1 do � sweep all binary digits of i
6: if j̃ = 1 then
7: i = i + 2Ñ↑ − 1 � Eq. (A7)
8: return i � i is determined
9: else if j̃ = ( L̃

Ñ↑

)
then

10: i = i + 2L̃ − 2L̃−Ñ↑ � Eq. (A8)
11: return i � i is determined
12: else if j̃ >

(L̃−1
Ñ↑

)
then

13: i = i + 2L̃−1 � L̃th binary digit of i is 1
14: j̃ = j̃ − (L̃−1

Ñ↑

)
� to satisfy Eq. (A9)

15: Ñ↑ = Ñ↑ − 1 � decrement “# of ↑ spins” by 1
16: end if
17: end for
18: end fuction

rial recursion formula should be reminded;(
L

L − N↑

)
=

(
L − 1

L − N↑ − 1

)
+

(
L − 1

L − N↑

)
. (A5)

In terms of Pascal’s triangle, Eq. (A5) relates the current
vertex (left-hand side) with its upper left vertex (first term of
the right-hand side) and upper right vertex (second term of the
right-hand side). More specifically, among the total ( L

L − N↑)

spin configurations, ( L − 1
L − N↑ − 1) = (L − 1

N↑ ) spin configurations

have “0” at the Lth binary digit, and ( L − 1
L − N↑) = ( L − 1

N↑ − 1) spin
configurations have “1” at the Lth binary digit, assuming
that the number of 1’s is N↑. By taking into account also
the assumption that both i and j are in the ascending order
with Eq. (A3), the Lth binary digit bL of i for a given j is
determined as

bL =
{

0 if j �
(L−1

N↑

)
,

1 otherwise.
(A6)

This property holds for any (L, N↑, j), implying that i can
be determined by repeatedly evaluating the above for the
remaining binary digits {bl}L−1

l=1 with a proper manipulation
(decrement) of (L, N↑, j). A proposed function of finding a
spin configuration i for a given set of (L, N↑, j) is summarized
in Algorithm1.

Several remarks on Algorithm 1 are in order.

(1) Binomial coefficients should be calculated and stored
in advance for better performance.

(2) Regarding the lines 3–5 of Algorithm 1, the temporal
variables j̃, Ñ↑, and L̃ can be considered as temporal state
label, temporal number of ↑ spins, and temporal system size,
respectively. In terms of the shortest paths on Pascal’s triangle,
the decrementing loop of L̃ means that the shortest path is
determined by climbing up Pascal’s triangle from its Lth row,
and Ñ↑ is the remaining number of rightward paths. Ñ↑ and j̃
also have to be decremented properly in the loop (lines 14–15
of Algorithm 1), as it will be described in remark (5) below.

(3) Regarding the lines 6–8 of Algorithm 1, the condition
j̃ = 1 indicates that, among the remaining L̃ binary digits of
i, the lowest Ñ↑ digits should be filled with 1’s, i.e.,

i = (bLbL−1 . . . bL̃+1

L̃︷ ︸︸ ︷
00 . . . 0︸ ︷︷ ︸

L̃−Ñ↑

11 . . . 1︸ ︷︷ ︸
Ñ↑

)2. (A7)

In terms of the shortest paths on Pascal’s triangle, this implies
that the rest of the path goes first in the upper left direction
L̃ − Ñ↑ times and then in the upper right direction Ñ↑ times.

(4) Regarding the lines 9–11 of Algorithm 1, the condition
j̃ = ( L̃

Ñ↑
) indicates that, among the remaining L̃ binary digits
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of i, the highest Ñ↑ digits should be filled with 1’s, i.e.,

i = (bLbL−1 . . . bL̃+1

L̃︷ ︸︸ ︷
11 . . . 1︸ ︷︷ ︸

Ñ↑

00 . . . 0︸ ︷︷ ︸
L̃−Ñ↑

)2. (A8)

In terms of the shortest paths on Pascal’s triangle, this implies
that the rest of the path goes first in the upper right direction
Ñ↑ times and then in the upper left direction L̃ − Ñ↑ times.

(5) Regarding the lines 12–15 of Algorithm 1, the condi-
tion j̃ > (L̃ − 1

Ñ↑
) indicates that the L̃th binary digit of i is 1, as

discussed around Eqs. (A5) and (A6). In terms of the shortest
paths on Pascal’s triangle, this implies that the rightward path
is chosen to go from the L̃th row to the (L̃ − 1)th row. As in
line 15, Ñ↑ is decreased by 1 because the remaining rightward
paths have to be decreased by 1. As in line 14, j̃ has to be
decreased in order to satisfy

1 � j̃ �
(

L̃

Ñ↑

)
(A9)

for the next loop. This allows us to make use of the relation
between the combinatorial recursion and the binary digits for
(L̃, Ñ↑, j̃).

(6) Although it is not implemented in Algorithm 1, at
some L̃ one can switch to refer to a “small” table i(L̃, Ñ↑, j̃)
stored in advance in the memory to determine the remaining L̃
binary digits of i, instead of fully performing the loop over L̃.
One can also implement a quick return when Ñ↑ = 1 (when
the current vertex is on the line next to the right edge) or
L̃ − Ñ↑ = 1 (when the current vertex is on the line next to
the left edge) is satisfied.

Figure 6 shows a concrete example of the algorithm for
L = 6, N↑ = 3, and j = 7. The path from the vertex (6

3) = 20
to the topmost vertex is uniquely determined, and accordingly
the algorithm returns the corresponding spin configuration
i(L = 6, N↑ = 3, j = 7) = (010110)2 = 22.

The algorithm is applicable also to other models such as the
Hubbard model where the total electron configuration can be
given as a tensor product of up-spin and down-spin electron
configurations, and the t-J model where the total electron
configuration can be given as a tensor product of hole and spin
configurations, if the Hilbert space is constructed for fixed
magnetization and number of electrons.

APPENDIX B: LINEAR SPIN-WAVE THEORY

Here we study the effect of the cyclic exchange interaction
Jc on the spin-wave dispersion in the 120◦ Néel ordered state
within the linear spin-wave theory. A comparison of the spin-
wave dispersion of the Heisenberg model on the triangular
lattice with the nearest and the next-nearest-neighbor inter-
actions (J-J ′ model) is also made.

1. Full Hamiltonian

Before starting the linear spin-wave approximation, it is
convenient to rewrite the full Hamiltonian Ĥ in terms of
the sum of inner products of spin operators. The four-spin

exchange term can be written as

P̂i jkl + P̂†
i jkl = 1

4
+

∑
i′< j′∈〈i jkl〉

Ŝi′ · Ŝ j′

+ 4(Q̂i jkl + Q̂il jk − Q̂ik jl ), (B1)

where

Q̂i jkl = (Ŝi · Ŝ j )(Ŝk · Ŝl ). (B2)

If the sum over all plaquettes
∑

〈i jkl〉 is performed, the first
term (multiplied by Jc) results in

Jc

∑
〈i jkl〉

1

4
= 3Jc

4
L, (B3)

because there exist 3L plaquettes for the L-site system under
periodic-boundary conditions (see Fig. 1). Similarly, the sec-
ond term results in

Jc

∑
〈i jkl〉

∑
i′< j′∈〈i jkl〉

Ŝi′ · Ŝ j′ = 5Jc

∑
〈i j〉

Ŝi · Ŝ j + Jc

∑
〈〈i j〉〉

Ŝi · Ŝ j,

(B4)

where 〈〈i j〉〉 denotes a pair of spins on the next-nearest-
neighbor sites i and j on the triangular lattice. The factor
5 in the first term is because the nearest-neighbor bonds
((i′, j′) = {(i, j), ( j, k), (k, l ), (l, i), ( j, l )}) appear five times
in the sum over the plaquettes for the ring-exchange term.
Similarly, the factor 1 in the second term is because the
next-nearest-neighbor bond ((i′, j′) = {(i, k)}) appears once
for each plaquette and is distinct for different plaquettes. Now
the full Hamiltonian is written as

Ĥ = (J + 5Jc)
∑
〈i j〉

Ŝi · Ŝ j + Jc

∑
〈〈i j〉〉

Ŝi · Ŝ j

+ 4Jc

∑
〈i jkl〉

(Q̂i jkl + Q̂il jk − Q̂ik jl ) + 3JcL

4
. (B5)

2. Rotating frame

The 120◦ Néel ordered state has a three-sublattice struc-
ture, as shown in Fig. 7. However, the introduction of a
rotating frame [114–121] allows us to develop a one-sublattice
spin-wave theory for the 120◦ Néel ordered state.

In terms of the spin operators in the rotating frame (X -
Y -Z), the spin operators in the original frame (x-y-z) can be
written as

Ŝx
i = cos θiŜ

X
i + sin θiŜ

Z
i ,

Ŝy
i = ŜY

i ,

Ŝz
i = cos θiŜ

Z
i − sin θiŜ

X
i , (B6)

where θi = Q · ri with Q = (4π/3, 0) being a wave vector
corresponding to the 120◦ order and ri the position of site i.
The inner product of spin operators is thus given by

Ŝi · Ŝ j = ŜY
i ŜY

j + (
ŜZ

i ŜZ
j + ŜX

i ŜX
j

)
cos θi j

+ (
ŜZ

i ŜX
j − ŜX

i ŜZ
j

)
sin θi j, (B7)

where θi j = θi − θ j .
We assume that the spins are pointing along the Z axis

of the rotating (X -Y -Z) frame. The Holstein-Primakoff trans-
formation [122] for the spin operators in the rotating frame
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FIG. 7. Schematic figure of the 120◦ Néel ordered state on the
triangular lattice. (ri )x(y) denotes the x (y) coordinate of ri.

results in

ŜZ
i = S − â†

i âi,

Ŝ−
i =

√
2Sâ†

i

(
1 − â†

i âi

2S

) 1
2

,

Ŝ+
i =

√
2S

(
1 − â†

i âi

2S

) 1
2

âi, (B8)

where Ŝ−
i = ŜX

i − iŜY
i , Ŝ+

i = (Ŝ−
i )†, and âi and â†

i are bosonic
annihilation and creation operators, respectively, satisfy-
ing the canonical commutation relations [âi, â j] = 0 and
[âi, â†

j ] = δi j .

3. Linear spin-wave approximation

Up to the quadratic terms of the bosonic operators, the
inner product of the spin operators is approximated as

Ŝi · Ŝ j ≈ S2 + S cos θi j (â
†
i âi + â†

j â j )

+ S

2
(cos θi j + 1)(â†

i â j + â†
j âi )

+ S

2
(cos θi j − 1)(â†

i â†
j + â j âi ). (B9)

Notice that cos θi j = −1/2 for the nearest neighbors and
cos θi j = 1 for next-nearest neighbors.

Similarly, Q̂i jkl is approximated as

Q̂i jkl ≈ ŜZ
i ŜZ

j ŜZ
k ŜZ

l cos θi j cos θkl

+ ŜZ
i ŜZ

j ŜX
k ŜX

l cos θi j cos θkl

+ ŜZ
k ŜZ

l ŜX
i ŜX

j cos θi j cos θkl

+ ŜZ
i ŜZ

j ŜY
k ŜY

l cos θi j

+ ŜZ
k ŜZ

l ŜY
i ŜY

j cos θkl

+ (
ŜZ

i ŜX
j − ŜX

i ŜZ
j

)(
ŜZ

k ŜX
l − ŜX

k ŜZ
l

)
sin θi j sin θkl

≈ [S4 − S3(â†
i âi + â†

j â j + â†
k âk + â†

l âl )] cos θi j cos θkl

+ S3

2
(â†

i â j + H.c.) cos θkl (cos θi j + 1)

+ S3

2
(â†

k âl + H.c.) cos θi j (cos θkl + 1)

+ S3

2
(â†

i â†
j + H.c.) cos θkl (cos θi j − 1)

+ S3

2
(â†

k â†
l + H.c.) cos θi j (cos θkl − 1)

+ S3

2
sin θi j sin θkl

× (â†
j âl − â†

j âk − â†
i âl + â†

i âk + â†
j â

†
l

−â†
j â

†
k − â†

i â†
l + â†

i â†
k + H.c.). (B10)

By substituting cos θi j = cos θkl = cos θil = cos θ jk =
cos θ jl = −1/2, cos θik = 1, sin θi j sin θkl = −3/4,
sin θil sin θ jk = 3/4, and sin θik sin θ jl = 0 for Q̂i jkl , Q̂il jk ,
and Q̂ik jl in the last term of Eq. (B1), we find

Q̂i jkl + Q̂il jk − Q̂ik jl

≈ S4 − S3(â†
i âi + â†

j â j + â†
k âk + â†

l âl )

+ S3

4
(â†

i â j + â†
k âl + â†

i âl + â†
j âk

− â†
i âk − 4â†

j âl + H.c.)

+ 3S3

4
(â†

i â†
j + â†

k â†
l + â†

i â†
l + â†

j â
†
k − â†

i â†
k + H.c.).

(B11)

Notice in Eq. (B11) that the subscript pair (i, k) contributes
to the next-nearest-neighbor terms, while the others to the
nearest-neighbor terms.

4. Spin-wave Hamiltonian

By substituting the approximations in Eqs. (B9) and (B11)
into the Hamiltonian in Eq. (B5), and carefully evaluating the
sum over all plaquettes, similarly in Eq. (B4), we obtain the
spin-wave Hamiltonian

Ĥ ≈ Ĥsw

= Esw + 3SA0

∑
i

â†
i âi

+ S

4

⎡
⎣A1

∑
〈i j〉

(â†
i â j + â†

j â j ) + A2

∑
〈〈i j〉〉

(â†
i â j + â†

j â j )

⎤
⎦

− 3S

4

⎡
⎣B1

∑
〈i j〉

(â†
i â†

j + âiâ j ) + B2

∑
〈〈i j〉〉

(â†
i â†

j + âiâ j )

⎤
⎦,

(B12)

where
A0 = J + 3Jc − 16S2Jc,

A1 = J + 5Jc,

A2 = 4(1 − S2)Jc,
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B1 = J + 5Jc − 16S2Jc,

B2 = 4S2Jc, (B13)

and

Esw = −3

2

[
(J + 3Jc − 8S2Jc)S2 − Jc

2

]
L. (B14)

With the Fourier transformation of the bosonic operators
âi = 1√

L

∑
q âqeiq·ri , Ĥsw in the momentum space is given by

Ĥsw = Esw +
∑

q

[
A(q)â†

qâq − 1

2
B(q)(â†

qâ†
−q + â−qâq)

]

= Esw − 1

2

∑
q

A(q)

+ 1

2

∑
q

(â†
q â−q)

(
A(q) −B(q)

−B(q) A(q)

)(
âq

â†
−q

)
,

(B15)

where

A(q) = 3S

[
A0 + A1

2
γ (q) + A2

2
γ ′(q)

]
, (B16)

B(q) = 9S

2
[B1γ (q) + B2γ

′(q)], (B17)

γ (q) = 1
6

∑6
i=1 eiq·δi , and γ ′(q) = 1

6

∑6
i=1 eiq·δ′

i with δi (δ′
i)

being the vectors connecting the nearest (next-nearest) neigh-
bors.

5. Spin-wave dispersion

We now introduce a Bogoliubov transformation(
âq

â†
−q

)
=

(
uq vq
vq uq

)(
b̂q

b̂†
−q

)
(B18)

under the condition u2
q − v2

q = 1 and thus the new operators

b̂q and b̂†
q obey the canonical bosonic commutation relations.

If uq and vq are chosen to satisfy u2
q + v2

q = A(q)/(q) and
2uqvq = B(q)/(q) with

(q) =
√

A(q)2 − B(q)2, (B19)

then the spin-wave Hamiltonian is given by

Ĥsw = Esw − 1

2

∑
q

A(q) +
∑

q

(q)

(
b̂†

qb̂q + 1

2

)
, (B20)

where (q) is the spin-wave dispersion.
Figure 8(a) shows the S = 1/2 spin-wave dispersion

(q) for several values of Jc/J along the high sym-
metric momentum direction �–K–M–�, where � = (0, 0),
K = (4π/3, 0), and M = (π, π/

√
3) (also see Fig. 2). The

zero modes at the �, K , and K ′ points are preserved be-
cause A(�) = B(�) = 9S

2 (J + 5Jc − 12S2Jc) and A(±K ) =
−B(±K ) = 9S

4 (J + 5Jc − 24S2Jc). The excitation energy at
the M point is given by

(M ) = 2S
√

[J − (3 + 28S2)Jc][J + (3 − 16S2)Jc]

=
√

(J − 10Jc)(J − Jc), (B21)

FIG. 8. Linear spin-wave dispersions for (a) the J-Jc model and
(b) the J-J ′ model with several Jc/J and J ′/J values indicated,
respectively, in the figures. The horizontal axis is momentum q along
the �–K–M–� points in the (nonmagnetic) Brillouin zone, where
� = (0, 0), K = (4π/3, 0), and M = (π, π/

√
3). Thin vertical lines

indicate the magnetic Brillouin-zone boundaries corresponding to
the 120◦ Néel order. The horizontal line at (q)/J = 1 indicates the
spin-wave excitation energy at M point in the purely triangular case
with Jc = J ′ = 0.

where the second line is for S = 1/2. It is found that the
spin-wave excitation energy along the K–M line, especially
at the M point, reduces drastically with increasing Jc/J , and
eventually becomes zero when Jc/J = 0.1, implying instabil-
ity of the 120◦ Néel order. On the other hand, the spin-wave
velocity around the � point remains the same and the highest
spin-wave excitation energy is kept around 1.5J as Jc/J is
increased.

For a comparison, Fig. 8(b) shows the S = 1/2 linear spin-
wave dispersion (q) for the J-J ′ model defined as

ĤJJ ′ = J
∑
〈i j〉

Ŝi · Ŝ j + J ′ ∑
〈〈i j〉〉

Ŝi · Ŝ j (B22)

with J ′ being the next-nearest-neighbor exchange interaction.
The linear spin-wave dispersion for this model can be ob-
tained by replacing A0, A1, A2, B1, and B2 in Eqs. (B16) and
(B17) with Ã0, Ã1, Ã2, B̃1, and B̃2, where

Ã0 = J − 2J ′,

Ã1 = J, Ã2 = 4J ′,

B̃1 = J, B̃2 = 0. (B23)

Again the zero modes at the �, K , and K ′ points are preserved
with increasing J ′/J . The excitation energy at the M point is
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given by

(M ) = 2S
√

(J − 8J ′)(J − 2J ′)

=
√

(J − 8J ′)(J − 2J ′). (B24)

Similarly to the J-Jc model, the spin-wave excitation energy
at the M point reduces most significantly with increasing J ′/J ,
and eventually becomes zero when J ′/J = 1/8. However,
differently from the J-Jc model, the spin-wave velocity around
the � point reduces and the highest spin-wave excitation
energy is also reduced from ∼1.6J to ∼1.05J as J ′/J is
increased. A similar dependence of the excitation energy on
the interaction parameter J ′ has been found also in the square
lattice with the linear spin-wave theory [42].

The spin-wave excitation has two characteristic energy
scales. One is the maxima of (q) and the other is the saddle
points, minima, and nearly flat dispersion of (q) at and

around the M and equivalent points. The comparison of the
spin-wave dispersions suggests that, although both Jc and J ′
can increase the separation of the two energy scales, the more
significant separation may appear in the J-Jc model rather than
in the J-J ′ model. Note however that analytical and numerical
studies beyond the linear spin-wave theory [13,123,124] have
shown a strong renormalization of the magnon excitation
energy as compared to the spin-wave theory for the pure
triangular-lattice case with Jc = J ′ = 0.

Finally, we note that the spin-wave analysis captures the
magnon excitations but not nonmagnetic ones. Indeed, we
were not able to find the double-peak structure of the specific
heat within the spin-wave analysis. This implies that the non-
magnetic excitations beyond the simple magnon excitations
might be essential to understand the characteristic double-
peak structure of the specific heat found here in the finite-
temperature Lanczos calculations.
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