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The Su-Schrieffer-Heeger (SSH) model, containing dimerized hopping and a constant onsite energy, has
become a paradigmatic model for one-dimensional topological phases, soliton excitations, and fractionalized
charge in the presence of chiral symmetry. Motivated by the recent developments in engineering artificial lattices,
we study an alternative model where hopping is constant but the onsite energy is dimerized. We find that it has a
nonsymmorphic chiral symmetry and supports topologically distinct phases described by a Z2 invariant ν. In the
case of multimode ribbon we also find topological phases protected by hidden symmetries and we uncover the
corresponding Z2 invariants νn. We show that, in contrast to the SSH case, zero-energy states do not necessarily
appear at the boundary between topologically distinct phases, but instead these systems support a new kind
of bulk-boundary correspondence: The energy of the topological domain wall states typically scales to zero
as 1/w, where w is the width of the domain wall separating phases with different topology. Moreover, under
specific circumstances we also find a faster scaling e−w/ξ , where ξ is an intrinsic length scale. We show that the
spectral flow of these states and the charge of the domain walls are different than in the case of the SSH model.
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The Su-Schrieffer-Heeger (SSH) model was originally in-
troduced to describe the properties of conducting polymers,
where the spontaneous symmetry breaking leads to dimer-
ization of the sites along the chain [1–3]. Due to twofold
degeneracy of the ground state a new type of excitation,
a domain wall (DW) between different bonding structures,
can exist. For the conducting polymers the width of the
DW excitations is large and they can propagate along the
chain. Thus, they can be considered as solitons in analogy to
the shape-preserving propagating solutions of the nonlinear
differential equations [3]. Moreover, the solitons in the SSH
model have a remarkable effect on the electronic spectrum
leading to an appearance of a bound state in the middle of
the energy gap. This midgap state is understood as a topolog-
ically protected boundary mode and the SSH model serves
as a paradigmatic example of chiral symmetric topological
insulator [4,5]. Namely, the chiral symmetry allows us to
block-off diagonalize the Hamiltonian and the winding of the
determinant zk of the off-diagonal block around the origin as
a function k determines a topological invariant (see Fig. 1).
Because this invariant is different on two sides of the DW,
each DW carries zero-energy bound state. The DWs come in
pairs so that the spectral flow is symmetric around zero energy
and each DW carries a charge q = ±1/2 in analogy to the
fractionally charged excitations studied in the quantum field
theory [6]. This can be also understood in terms of modern
notions of bulk obstructions and filling anomalies [7].

The idea of soliton excitations reappears in the context
of 1D diatomic polymers in a form of the Rice-Mele model
[8–10], which has been studied also in contexts of ferroelec-
tricity [11,12] and organic salts [13,14]. In this model not only
bond length alternates but also the onsite energy (mass) takes
opposite sign for the even/odd lattice sites (Fig. 1). A very
interesting feature of such a model is that its solitons can

carry irrational charge q = 1
2 (1 ± f ) [8], where f describes

the breaking of the chiral symmetry [15]. The interest for
these models has revived because they can be engineered in
photonic systems [16,17], optical lattices [18–23], and nanos-
tructures [24–29] in a controlled way, and in these systems
also their emergence from spontaneous symmetry breaking
[30] and the properties of the solitons can be tuned using ex-
ternal parameters [31–36]. Motivated by the new possibilities
opened by these recent developments we focus on a special
case of the Rice-Mele model where all the hopping amplitudes
are equal and only the mass term alternates. We show that in
this case the model has an interesting nonsymmorphic (NS)
chiral symmetry and it supports a topologically nontrivial
phase described by a nonsymmorphic chiral Z2 invariant ν.
This invariant was found by Shiozaki, Sato, and Gomi in their
pioneering work on nonsymmorphic topological insulators
[37] and therefore we name the special case of the Rice-
Mele model as the Shiozaki-Sato-Gomi (SSG) model. The
peculiar property of the SSG model is that the bulk topological
invariant does not guarantee the existence of the end states in
an open system, because the boundary always breaks the NS
chiral symmetry [37].

In this paper we analytically derive exact phase diagrams
of SSG nanoribbons of arbitrary width and uncover hidden
symmetries relying on interchange of transverse and longitu-
dinal modes. In addition to the NS chiral Z2 invariant ν the
multimode ribbons support Z2 invariants νn protected by the
hidden symmetries. These invariants lead to a new kind of
bulk-boundary correspondence: The energy of the topological
domain wall states typically scales to zero as 1/w, where w is
the width of the domain wall separating phases with different
topology. Moreover, under specific circumstances we also find
a faster scaling e−w/ξ , where ξ is an intrinsic length scale
(Figs. 2, 4, and 5). The NS chiral symmetry in SSG model
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FIG. 1. Comparison of SSH and SSG models. The topological
invariants are determined by the trajectory of the determinant zk of
the off-diagonal block of the Hamiltonian as a function k and the
DWs separating topologically distinct phases lead to bound states,
but in SSG model the bound state energy depends on the DW width,
and the spectral flow and charge of the DW are different than in the
SSH model.

leads to several important differences in comparison to the
SSH model (Fig. 1): (i) In SSH model the topological zero-
energy end or DW states come in pairs and have zero energy
for any DW width, whereas the SSG model supports unpaired
DW states approaching zero energy with increasing w. Note
that here we consider finite chains with open boundary con-
ditions and the chains are made out of integer number of unit
cells. An infinite SSH chain could also have an unpaired DW
state but in the finite system the end states always guarantee
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FIG. 2. (a) Schematic view of the multimode SSG model. (b) Do-
main wall separating different mass m regions with different NS
chiral Z2 invariants ν or hidden Z2 invariants νn. (c) Spectral flow
of the DW states for multimode SSG chain as a function of the DW
width w for Ly = 7, Lx = 1000, and ty = tx . DW separates regions
with masses m1 = 0.2tx , m2 = −20tx , and td = 0.6tx differing only
by ν. There is a single DW state whose energy approaches zero
∝1/w. (d) The same for DW separating regions differing both by
ν and νn with m1 = 0.25tx , m2 = −10tx , and td = 0.05tx . In addition
to the unpaired DW state with energy approaching zero ∝1/w, there
are hidden-symmetry protected DW states with energies approaching
zero ∝e−w/ξ , where ξ is an intrinsic length scale.

the the zero-energy states come in pairs. The SSG model is
different because even in this kind of situation we can obtain
a single zero-energy state at the smooth domain wall but there
are no low-energy states at the sharp interface with vacuum.
(ii) In the SSH model the charge of the DWs is q = ± 1

2 ,
whereas for the SSG model we get irrational charges q =
±1−δ

2 , ±1+δ
2 for solitons and antisolitons depending on whether

the zero-energy state is occupied or empty. The DWs in the
SSG model separate regions with different onsite energies
±m1 and ±m2 (mass terms) in the two sublattices (see Figs. 1
and 2), and δ = 1

2 (ζ2 − ζ1), where ζi is the difference of the
bulk filling factors of the two sublattices in the region with
mass mi.

The k-space SSG Hamiltonian for a multimode wire is

Hk = − mσzτz + 2tx cos
k

2

(
cos

k

2
σx − sin

k

2
σy

)

+ tyτx + 2td cos
k

2

(
sin

k

2
σx + cos

k

2
σy

)
τy, (1)

where m is the mass, tx and ty are hopping amplitudes in the
x and y directions, and td is the diagonal hopping amplitude
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with opposite signs in the two sublattices [Fig. 2(a)]. Here
σα are Pauli matrices describing the unit cell in the x direc-
tion, τα are Ly × Ly matrices describing transverse hopping
(τx )pq = δ1,|p−q|, (τy)pq = iδ1,|p−q|(−1)p, (τz )pq = δpq(−1)p,
and Ly is the width in the y direction. For Ly = 2 operators
τα are equivalent to σα and in the special case Ly = 1 we set
τz = 1 and τx = τy = 0. Because the SSG model belongs to
symmetry class AI [5] (for list of symmetries see Appendix A)
the only known topological invariant is the NS chiral Z2

invariant ν [37].
To calculate the topological invariant ν we rewrite the

Hamiltonian in a block off-diagonal form in the eigenbasis
of NS chiral operator Sk = sin k

2σxτz + cos k
2σyτz that anti-

commutes with Hk . The determinant zk of the off-diagonal
block is a complex number and its trajectory in the complex
plane as a function k determines the topological invariant [37].
Namely, due to nonsymmorphicity of Sk the period of zk is 4π

and in a properly chosen basis it satisfies constraints Imzk =
−Imzk+2π and Rezk = Rezk+2π , so that the trajectory zk starts
at k = 0 and ends at k = 2π with the same real part but with
opposite imaginary part. Thus the parity of the number of
times the trajectory zk crosses the positive real semiaxis for
k ∈ [0, 2π ] is a Z2 topological invariant because it cannot be
changed without closing the gap or breaking the NS chiral
symmetry (see Fig. 1). In our case the mirror symmetry Mx =
cos k

2 − i sin k
2σz becomes identity in the eigenbasis of Sk (see

Appendix A) so that zk = z−k . For this reason Imzπ = 0 and
the formula for the ν gets simplified to

ν = sign Rezπ (2)

in analogy to the simplification of the invariant for topological
insulators in the presence of inversion symmetry [38]. The
band inversion corresponding to a change of ν happens at
k = π and m = 0. We find that

ν =
{

1
2 [1 + sign(m)] if Ly = 2n − 1

0, if Ly = 2n (n ∈ N+)
. (3)

In Fig. 3 we show the topological phase diagrams of the
SSG model at Ly = 6, 7 as functions of m/tx and td/tx, setting
ty = tx. Surprisingly we find more phases than predicted by
the ν invariant. The gap closes not only for m = 0 at k = π

when Ly is odd but also for any Ly along lines m = mn at k =
kn, where

mn = tdty
tx

ε2
n, kn = ± 2 arccos

[
ty
2tx

εn

]
, εn = 2 cos

nπ

Ly + 1

(4)

and n = 1, 2, . . . , �Ly/2� provided that∣∣∣∣ ty
2tx

εn

∣∣∣∣ � 1. (5)

This means that in the limit of very wide ribbon (Ly → ∞)
the phase diagram consists of a quasicontinuous set of lines
td = γnm with slopes γn ranging between tx

4ty
and ∞. The

natural question to ask now is what is the origin of these
gap-closing lines? The answer are the hidden symmetries, that
can be found at the magical kn points, yielding to new Z2

invariants νn.
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FIG. 3. (a), (b) Phase diagrams of the multimode SSG model in
the m-td plane for Ly = 6, 7 and ty = tx . The phase transition line
between different ν phases protected by the NS chiral symmetry is
shown in red and phase transition lines between different νn protected
by hidden symmetries are shown in blue. (c) Phase diagram in the
m − ty plane for Ly = 8 and td = 0.3tx . Each hidden symmetry n =
1, 2, . . . , �Ly/2� exists only if condition (5) is satisfied. Therefore,
it is possible to connect phases with different νn without closing
the bulk gap by choosing a path in the parameter space which goes
outside the region where the hidden symmetry exists.

To see the hidden symmetries we rotate σα matrices by
angle k

2 around the z axis and use the eigenbasis of τx to
transform the operators τα in a block-diagonal form, where
the blocks are given by (see Appendix B)

τx,n = εnσ
′
x, τy,n = εnσ

′
y, τz,n = σ ′

z,

and σ ′
α is a new set of Pauli matrices. For odd Ly the blocks

n = 0 is given by τx,0 = τy,0 = 0 and τz,0 = 1. After this
transformation the Hamiltonian (1) also has a block-diagonal
form

H′
k,n = − mσzσ

′
z + 2tx cos

k

2
σx

+ 2tdεn cos
k

2
σyσ

′
y + tyεnσ

′
x. (6)

Now we notice that H′
k,n is invariant under interchange of

σ and σ ′ operators if 2tx cos k
2 = tyεn which provides the

condition for gap closing points in the k space [Eq. (4)]. The
spin-interchange X12 	σX12 = 	σ ′ and vice versa is realized by
operator X12 = 1

2 (1 + 	σ · 	σ ′) [39]. The spectrum of X12 con-
sists of single −1 (singlet state) and three +1 (triplet states)
eigenvalues. Thus H′

k,n in the eigenbasis of X12 becomes block
diagonal with one block being 1×1 and the other being 3×3.
Therefore we can define a topological Z2 invariant based on
the sign of the matrix element of the 1×1 block. It changes
at the gap closing lines defined by Eq. (4) so that it takes the
form

νn = 1
2 {1 + sign [m − mn]}. (7)
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We conclude that the full topological description the SSG
model is given by a vector {ν, ν1, ν2, . . . , ν�Ly/2�} because
changes of these invariants coincide with all the gap clos-
ing lines in the phase diagram. Each hidden symmetry n =
1, 2, . . . , �Ly/2� exists only if condition (5) is satisfied.
Therefore, it is possible to connect phases with different
νn without closing the bulk gap by choosing a path in the
parameter space which goes outside the region where the
hidden symmetry exists [see Fig. 3(c)], distinguishing the
hidden-symmetric topological phases from the ones protected
by structural symmetries. Note that in the two-dimensional
limit where tx = ty and the system is periodic in both di-
rections the hidden symmetries become a mirror symme-
try with respect to the x̂ + ŷ line, but the hidden sym-
metries can exist even if the mirror symmetry is absent
(see Appendix C).

After establishing topological properties of the SSG ribbon
we now turn our attention to the bulk-boundary correspon-
dence. In Ref. [37] it was argued that a NS chiral Z2 invariant
does not generically support end states in one dimension
because the boundary necessarily breaks the Sk symmetry.
This however does not exclude a special type of smooth DWs
from having zero energy bound states. To obtain analytical
insights we can develop a continuum model for odd Ly by
expanding Hk around the gap closing point at k = π and get

Heff = vδkσx − mσy (v > 0). (8)

Now we create a DW of width w in the real space

m(x) = m2 + m1

2
+ m2 − m1

2
tanh

x

w
(9)

between regions with positive mass m1 = m0 and negative
mass m2 = −m0 (m0 > 0), separating phases with ν = 1 and
ν = 0 [Figs. 2(b) and 4(a)], and we find that a zero-energy
eigenstate of Heff exists in a form

ψ (x) =
[

0

(
cosh

x

w

)−m0w/v]T

/N , (10)

where N is a normalization factor. This however does not
take into account the fact that the chiral symmetry of Heff

becomes NS if one goes beyond linear order in δk. Therefore,
we implemented numerically such a DW, for which |m| is
constant within a unit cell as follows from Eq. (8), and
calculated the energy of the DW state as a function of w

[Figs. 2(c), 2(d), and 4(a)]. This way we find that the energy of
the topological DW state approaches zero as 1/w whereas the
energies of the other bound states scale as 1/

√
w. This means

that the topological DW state can be distinguished from other
bound states based on the scaling behavior because its energy
approaches zero faster than the energies of the other states.
We emphasize that the scaling of the energy to zero as 1/w

or faster is a robust property of these topological DW states.
In the continuum model this state would have zero energy
and the lattice effects can give maximally a correction propor-
tional to 1/w. The robustness against perturbations preserving
the NS chiral symmetry is demonstrated in Appendix D. On
the other hand, in Appendix E we show that the DW state is
exponentially localized around the center of the DW, i.e., such
position x = x0 that m(x0) = 0, and the localization length
decreases with increasing w, as one could expect. The 1/

√
w
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FIG. 4. Scaling of the energy of the topological DW state E0 and
the lowest energy of the nontopological states Eg for a multimode
SSG model as a function of the DW width w. (a), (b) DW between
phases with m1 = 0.12tx and m2 = −0.12tx distinguished by NS
chiral invariant ν. Here we have chosen td = 0.4tx . (c), (d) DW
between phases with m1 = 0.7tx and m2 = 0.1tx distinguished by
the hidden symmetry protected invariant νn. Here we have chosen
td = 0.25tx . Insets show the phases which are separated by the DWs.
The other parameters are ty = tx , Ly = 7, and Lx = 10 000.

scaling of the bulk gap can be understood as well. By inserting
an expansion m(x) � m0

x
w

around x = 0 to Hamiltonian Heff

and eliminating ψ1 we obtain a Harmonic oscillator equation
for ψ2

−v2ψ ′′
2 (x) + m2

0

w2
x2ψ2(x) =

(
E2 + m0v

w

)
ψ2(x). (11)

The energies of this problem are given by

En =
√

2nm0v

w
, n = 0, 1, 2, . . . . (12)

The n = 0 solution gives the topological DW state and the
energies of the other states scale as 1/

√
w. We have just

shown that the in-gap state at the DW between two topo-
logically distinct domains follows from the continuum-limit
model and adiabatic evolution of the states when DW is
sufficiently smooth. This is quite a different case to the one
discussed in [40] where a surface state also appears in the
presence of a NS symmetry but it also requires a surface
potential.

We find even more striking bulk-boundary correspondence
for phases described by νn invariants. In Figs. 2(d), 4(c), and
4(d) we show the scaling of energies of the topological DW
states and the nontopological states as a function of w when
the masses m1 and m2 are chosen so that the DW separates
two different νn phases. The energies of the nontopological
states behave in the same way as before, scaling as 1/

√
w,

but the energies of the hidden-symmetry protected topological
DW states scale as e−w/ξ . By expanding Hamiltonian around
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microscopic details of the DW. (a) E0 for a DW between phases
distinguished by ν invariant can show exponential scaling if the
masses in the two sublattices vary as tanh 2i−1

2w
and − tanh 2i

2w
, where

i is a position of the unit cell along the chain. Notice that in our
default DWs, where the 1/w scaling is obtained, the mass terms are
given by ± tanh i

w
. The other parameters are m1,2 = ±tx and Ly = 1.

(b) E0 for a DW between phases distinguished by νn invariant can
show 1/w scaling if the masses vary as ± tanh i+ j

w
, where j labels

the chains stacked in the y direction. The other parameters are ty = tx ,
Lx = 10 000.

the gap closing points ±kn we get two similar bound state
solutions as for k = π . However, these solutions do not give
zero-energy states even in the continuum model because the
gap closes at two different momenta so that these bound
states hybridize leading to nonzero energy. Nevertheless, in
Appendix G we show using the properties of the Schwartz
functions that in the continuum model their overlap vanishes
exponentially fast with w which allows the possibility of the
exponential scaling. Nevertheless, the lattice effects could
lead to 1/w corrections also in this case. Therefore, we
have studied more carefully how the scaling of the energies
depends on the details of the DW. We find that for a specific
type of DW it is possible to obtain an exponential decay of
energy e−w/ξ also in the case of the DWs separating different
ν phases, and conversely it is possible to obtain 1/w scaling
for a DW separating different νn phases (see Fig. 5). In this
way, by manipulating the details of the DWs, we are able to
see that the behavior of both types of DW states are equivalent.
This leads to a robust conclusion that the energies of the DW
states scale as 1/w or faster. While the 1/w scaling is expected
to be generic based on the analytical arguments given above,
the faster exponential scaling, which we numerically find in
some specific circumstances, means that the 1/w corrections
are not always present. The analytical model-independent
theoretical understanding of the conditions for the exponential
scaling is an interesting direction for future research. By
setting m1 and m2 is such a way that all the gap closing
lines are crossed on the way from m1 to m2 we can always
obtain an extensive number of DW states Ly both for even and
odd Ly.

An interesting property of the SSG model is that when
the width of the DW w increases a single state separates
from the bulk spectrum and tends to zero from above or
below [Fig. 2(c)]. This asymmetric spectral flow needs to
be taken into account when calculating the charges for soli-
tons and antisolitons (see Appendix H). For Ly = 1 we ob-
tain q0 = ±1−δ

2 , ±1+δ
2 for solitons and antisolitons depend-

ing on whether the zero-energy state is occupied or empty.

Here δ = ζ2−ζ1

2 ,

ζi = 2

π

mi√
m2

i + 4t2
x

K

(
4t2

x

m2
i + 4t2

x

)

are the differences of the bulk filling factors of the two
sublattices in the region with mass m1 > 0 and m2 < 0, and
K (x) is the complete elliptic integral of the first kind. The
DWs between different hidden-symmetric topological phases
carry charges qn = 0,±1, so that for a general DW the
charge is the sum of q0 and the charges qn contributed by
the transverse modes supporting transitions between different
hidden-symmetric topological phases.

To summarize, we have analytically described the topolog-
ical properties of the SSG model and propose it as a paradig-
matic model for NS chiral-symmetric topological phases.
We have shown that a smooth DW supports zero energy
state(s) if the DW separates regions with different NS chiral
invariant ν or different hidden-symmetry invariants νn. In
addition to engineered artificial lattices [16,18–24,26–29] our
findings are also relevant in the context of low-dimensional
binary compounds supporting surface atomic steps. In these
systems the surface steps lead to one-dimensional topo-
logical modes and the system obeys NS chiral symme-
try, so that DWs between topologically distinct phases can
support DW states [41], providing a possible explanation
for the zero-bias conductance peak observed in the recent
experiment [42].
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APPENDIX A: HAMILTONIAN AND ITS SYMMETRIES

The SSG Hamiltonian on a square lattice has a form

H = tx
∑

	j
(c†

	j c	j+x̂ + H.c.) + ty
∑

	j
(c†

	j c	j+ŷ + H.c.)

+ td
∑
s=±1

∑
	j

(−1) jx+ jy+1(c†
	j c	j+x̂+sŷ + H.c.)

+ m
∑

	j
(−1) jx+ jy+1c†

	j c	j, (A1)

where m is the mass term, tx and ty are hopping amplitudes
along the x and y directions, and td is the diagonal hopping
amplitude. The k-space form is given by

Hk = − mσzτz + 2tx cos
k

2

(
cos

k

2
σx − sin

k

2
σy

)

+ tyτx + 2td cos
k

2

(
sin

k

2
σx + cos

k

2
σy

)
τy, (A2)

235113-5



WOJCIECH BRZEZICKI AND TIMO HYART PHYSICAL REVIEW B 101, 235113 (2020)

where τα operators are given by matrices

τx =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1
0 0 1 0
...

...
. . .

⎞
⎟⎟⎟⎟⎠,

τy =

⎛
⎜⎜⎜⎜⎝

0 −i 0 0 · · ·
i 0 i 0 · · ·
0 −i 0 −i
0 0 i 0
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (A3)

and

τz =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 · · ·
0 −1 0 0 · · ·
0 0 1 0
0 0 0 −1
...

...
. . .

⎞
⎟⎟⎟⎟⎠,

τa =

⎛
⎜⎜⎜⎜⎝

· · · 0 0 0 1
· · · 0 0 1 0

0 1 0 0
1 0 0 0

. .
. ...

...

⎞
⎟⎟⎟⎟⎠. (A4)

Here we defined additional matrix τa which is needed to
construct some of the symmetry operators.

Depending on system width Ly being even or odd the
system has different symmetry properties. However, some
symmetries are common for both cases. The one which is
most relevant here is the nonsymmorphic (NS) chiral sym-
metry defined as Sk = sin k

2σxτz + cos k
2σyτz which satisfies

SkHkS−1
k = −Hk . The k dependence in Sk is intrinsic and

follows from the half lattice translation that is needed to go
from one sublattice to the other. We also have a time-reversal
symmetry for spinless particles T HkT −1 = H−k , where T =
K is complex conjugation. Finally, for any Ly we have a
symmetry with respect to a mirror line perpendicular to the x
direction, passing through a lattice site, taking a form of Mx =
cos k

2 − i sin k
2σz and acting as MxHkM−1

x = H−k . Despite the
k dependence this is a symmorphic symmetry. By shifting a
mirror line to cut a middle of a bond we can also get a chiral
mirror symmetry Mx = σyτz yielding relation MxHkM

−1
x =

−H−k .
For odd Ly we have another mirror symmetry with respect

to a line perpendicular to the y direction MyHkM−1
y = Hk ,

where My = τa. For even Ly mirror My does not exist but
we have a particle-hole symmetry C = iKσzτaτz and inversion
symmetry I = σxτa, yielding relations CHkC−1 = −H−k and
IHkI−1 = H−k .

It is important to notice that in the eigenbasis of Sk the
mirror symmetry operator Mx operator transforms to identity.
This is possible because if we put eigenvectors of Sk in the
columns of unitary matrix Uk then Mx is transformed as M̃x =
U†

−kMxUk . Note that this is not similarity transformation so
the spectrum of Mx is not left invariant. The form of transfor-
mation is dictated by the mirror-symmetry relation with the

Hamiltonian in the new basis. Denoting H̃k = U†
k MxUk we get

that M̃xH̃kM̃−1
x = H̃−k .

APPENDIX B: HIDDEN SYMMETRIES

To see the hidden symmetries we first transform Hk to
H′

k = R†
k/2HkRk/2 using Rk/2 = exp(i k

4σz ) to get

H′
k = −mσzτz + 2tx cos

k

2
σx + 2td cos

k

2
σyτy + tyτx. (B1)

The eigenfunctions of τx corresponding to eigenvalues εn

are ψn( j) =
√

2
Ly+1 sin n jπ

Ly+1 , where j labels sites in the y

direction and n labels modes ( j, n = 1, 2, . . . , Ly). We can use
these transverse modes to construct a new basis |φ2n−1〉 =
(|ψn〉 + |ψLy+1−n〉)/

√
2 and |φ2n〉 = (|ψn〉 − |ψLy+1−n〉)/

√
2

for n = 1, 2, . . . , �Ly/2� and if Ly is odd |φ0〉 = |ψ
Ly/2�〉. In
this basis τx, τy, and τz have block-diagonal forms with �Ly/2�
diagonal blocks given by

τx,n = εnσ
′
x, τy,n = εnσ

′
y, τz,n = σ ′

z,

where σ ′
α is a new set of Pauli matrices, and for odd Ly the

block n = 0 is given by τx,0 = τy,0 = 0 and τz,0 = 1. Thus the
Hamiltonian has a block-diagonal form

H′
k,n = − mσzσ

′
z + 2tx cos

k

2
σx + 2tdεn cos

k

2
σyσ

′
y + tyεnσ

′
x

(B2)

supporting the hidden symmetries discussed in the main text.

APPENDIX C: HIDDEN SYMMETRIES
IN A TWO-DIMENSIONAL LIMIT

In the case when the system is periodic both in the x and y
direction it can be described by a k-space Hamiltonian written
in a form of

H	k = − mσzτz + 2tx cos
kx

2

(
cos

kx

2
σx − sin

kx

2
σy

)

+ 2ty cos
ky

2

(
cos

ky

2
τx − sin

ky

2
τy

)

+ 4td cos
kx

2
cos

ky

2

(
sin

kx

2
σx + cos

kx

2
σy

)

×
(

sin
ky

2
τx + cos

ky

2
τy

)
, (C1)

where σα and τα are the Pauli matrices describing the unit
cell along x and y directions. Similarly as before, to see the
hidden symmetries we transform H	k to H′

	k = R†
	kH	kR	k using

R	k = exp( i
4 [kxσz + kyτz]) to get

H′
	k = − mσzτz + 2tx cos

kx

2
σx + 2ty cos

ky

2
τx

+ 4td cos
kx

2
cos

ky

2
σyτy. (C2)

Obviously H′
	k (and already H	k) is invariant under interchange

of σ and τ operators if

tx cos
kx

2
= ty cos

ky

2
. (C3)
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The spin-interchange X12 	σX12 = 	σ ′ and vice versa is realized
by operator X12 = 1

2 (1 + 	σ · 	τ ). Coming back to the original
basis of Eq. (C1) we find that X12 operator gives rise to two
different symmetry operations,

Mxy ≡ Rky,kx X12R†
kx,ky

= 1
2 (1 + 	σ · 	τ ), (C4)

X	k ≡ Rkx,kyX12R†
kx,ky

= 1

2

(
1 + cos

kx − ky

2
[σxτx + σyτy]

+ sin
kx − ky

2
[σxτy − σyτx] + σzτz

)
. (C5)

The first one is the mirror symmetry with respect to the x̂ + ŷ
line. One can verify that if tx = ty then

MxyHkx,ky M
−1
xy = Hky,kx . (C6)

Therefore Mxy commutes with H	k for kx = ky. Note that this
also holds for a finite periodic system where Lx �= Ly, when
the discretized quasimomentum satisfies kx = ky. On the other
hand, the hidden symmetry operator X	k satisfies

Xkx, f (kx )Hkx, f (kx )X−1
kx, f (kx ) = Hkx, f (kx ), (C7)

as long as condition (C3) holds which means that

ky = f (kx ) = 2 arccos

(
tx
ty

cos
kx

2

)
. (C8)

Note that this does not require that tx = ty. Hence, the hidden
symmetry is a different operator than the mirror symmetry
Mxy even though it originates from the same X12 operator in
the R	k-transformed basis. It can be regarded as an interchange
of longitudinal and transverse modes in the system. Note that
condition (C3) trivially generalizes to the condition found for
a multimode wire.

APPENDIX D: ROBUSTNESS OF THE DW STATES

To check whether the DW states protected by the NS chiral
symmetry are indeed topologically protected we consider a
single-mode SSG wire. An arbitrary perturbation that preserve
the NS chiral symmetry Sk has a form of

Vk = akσz + bk

(
cos

k

2
σx − sin k

2σy

)
, (D1)

where k-dependent coefficients should have such form that Vk

is 2π periodic in k. Hence we have

ak = p0 +
r∑

i=1

(p2i−1 sin(ik) + p2i cos(ik)),

bk =
r∑

i=1

(
q2i−1 sin

(2i − 1)k

2
+ q2i cos

(2i − 1)k

2

)
, (D2)

where r is the range of hoppings involved in Vk .
In Fig. 6 we show the scaling of the energy of the DW state

between two regions of opposite masses for a single-mode
wire in the presence of perturbation Vk . We choose r = 10
and we pick random pn and qn coefficients from the uniform
distribution over the interval [−0.1tx, 0.1tx]. The masses are
chosen as m1,2 = ±tx so that such perturbation does not close
the bulk gap. As we can see in Fig. 6(a) the energy E0 of the
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(a) (b)

FIG. 6. Scaling of the energy of the topological DW state E0

of a single-mode SSG model as a function of the DW width w in
linear and logarithmic scales (insets). (a) We have added a generic
perturbation that preserves NS chiral symmetry. (b) We have added a
perturbation that breaks NS symmetry with δ = 0.1. The parameters
are m1,2 = ±tx and Lx = 10 000.

DW state still scales to zero as 1/w. On the other hand, if
we add a perturbation that breaks the NS chiral symmetry, for
instance Vk = δσx, the DW state should converge to a nonzero
energy. In Fig. 6(b) we see that this is indeed the case for our
single-mode wire E0 scales like 1/w to δ.

APPENDIX E: LOCALIZATION OF THE DW STATES

In Fig. 7 we show the spectral flow and the local density
of states for a DW state in a representative multimode chain
with Ly = 7 for increasing width w of a domain wall between
two domains with different NS Z2 invariant. We note that
the DW state is exponentially localized around the center of
the domain wall at x = x0 [defined by m(x0) = 0] and the
localization length decreases with increasing w.

APPENDIX F: FERMI VELOCITY AT DIRAC
POINTS k = ±kn

We notice that the Hamiltonian H′
k,n given by Eq. (B2)

commutes with P = σxσ
′
x. The bands that cross at k = ±kn

can be found in the block P = −1 of the Hamiltonian that

FIG. 7. (a) Spectral flow of the DW states for multimode SSG
chain as function of the DW width w for Ly = 7, Lx = 1000, and ty =
tx . DW separates regions with masses m1 = 0.2tx and m2 = −0.4tx

and td = 0.4tx . (b) Evolution of local density of states for the DW
state for increasing w, x is the position along the chain (lines are
continuously interpolated between the chain’s sites as a guide for the
eye) and x0 is the center of the DW defined by m(x0 ) = 0. Horizona
axis is renormalized by w and vertical by 1/w. (c) The linear-log
version of plot (b).
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takes the form,

H′
k,n,− = − 4 sin

k + kn

4
sin

k − kn

4
(txσx + tdεnσz )

− (m − mn)σz. (F1)

The remaining P = +1 block is related by a shift of 2π

in the k space and unitary transformation, namely H′
k,n,+ =

σzH′
k+2π,n,−σz. Consequently, the Fermi velocity at the Dirac

points is given by

vn = ±tx

√(
1 − t2

y

4t2
x

ε2
n

)(
1 + t2

d

t2
x

ε2
n

)
. (F2)

APPENDIX G: OVERLAP OF TWO
DOMAIN-WALL FUNCTIONS

We assume that the functional form of m(x) is such that it
only depends on parameter x/w. In analogy to the domain
wall solution for a gap closing point at k = π we get two
solutions for k = ±kn gap closings in a form (we ignore the
spinor structure which would change as a function momentum
and the normalization factor which is not important for the
statements below)

ψ±(x) = exp

[
±iknx − v−1

n

∫ x

0
m

(
x′

w

)
dx′

]
. (G1)

Their overlap is

〈ψ−|ψ+〉 =
∫ +∞

−∞
exp

[
2iknx − 2v−1

n

∫ x

0
m

(
x′

w

)
dx′

]
dx

(G2)

and substituting x = yw we get

〈ψ−|ψ+〉 = w

∫ +∞

−∞
exp

[
2iknwy − 2wv−1

n M(y)
]
dy, (G3)

where M(y) = ∫ y
0 m(y′)dy′. Assuming that M(y) > 0,

m(∞) > 0 and m(−∞) < 0 as we expect from a domain
wall, we notice that f (y) = exp [−2v−1

n wM(y)] is a Schwartz
function. This property does not depend on the details of the
model (even if one goes beyond the linear order expansion in
momentum) or the shape of the DW as long as the solutions
ψ± are smooth functions decaying exponentially (or faster)
far away from the DW. The Fourier transform of a Schwartz
function is also a Schwartz function and therefore the overlap
〈ψ−|ψ+〉 must vanish quicker than any power of 1/(knw).

To see the exponential dependence explicitly we can as-
sume for example m(x/w) = m0x/w. Then we obtain

〈ψ−|ψ+〉 = w

∫ +∞

−∞
exp

[
2iknwy − wm0v

−1
n y2

]
dy

= w

√
πvn

wm0
exp

[−wk2
nvn

/
m0

]
. (G4)

APPENDIX H: CHARGE OF A DOMAIN WALL

To understand the charge of the DW we start by calculating
the charge appearing at the end of single-mode SSG chain

with open boundary conditions

H =

⎛
⎜⎜⎜⎜⎝

−m t 0 0 · · ·
t m t 0 · · ·
0 t −m t · · ·
0 0 t m
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠. (H1)

Assuming even number of sites L = 2N the Hamiltonian can
be Block diagonalized into 2×2 blocks similarly as in Ap-
pendix B, and the eigenstates can be found by diagonalizing
these blocks. This way we find that the eigenenergies are
(n = 1, 2, . . . , N)

En± = ±En, En =
√

m2 + 4t2 cos2

(
nπ

2N + 1

)
. (H2)

The eigenstate corresponding to En− at lattice site j is

ψn,−( j) =
sin

(
n jπ

2N + 1

)
√

2(2N + 1)

[
[1 − (−1) j]

√
1 + m

En

− [1 + (−1) j]
√

1 − m

En

]
. (H3)

The total end charge qend at lattice sites j = 1, . . . , 2ξ (rela-
tive to the corresponding bulk charge ξ ) is

qend = 2

2N + 1

N∑
n=1

2ξ∑
j=1

sin2

(
n jπ

2N + 1

)[
1 − (−1) j m

En

]
− ξ

= 1

2N + 1

N∑
n=1

2ξ∑
j=1

(−1) j cos

(
n j2π

2N + 1

)
m

En

= −ζ

4
+ 1

2

1

2N + 1

N∑
n=1

cos
[(

2ξ + 1
2

)
n2π

2N+1

]
cos

[
1
2

n2π
2N+1

] m

En

= sign(m) − ζ

4
, (H4)

where

ζ (m) = 2

2N + 1

N∑
n=1

m

En
= 2

2π

∫ π

0
dk

m√
m2 + 4t2 cos2(k/2)

= 2

π

m√
m2 + 4t2

K

(
4t2

m2 + 4t2

)
(H5)

is the difference of the bulk filling factors of the two sublat-
tices and

K (x) =
∫ π/2

0
dθ

1√
1 − x sin2(θ )

(H6)
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is the complete elliptic integral of the first kind. Here we
have used

1

4π

∫ π

0
dk

m cos
[(

2ξ + 1
2

)
k
]

√
m2 + 4t2 cos2

(
k
2

)
cos

[
1
2 k

] = sign(m)

4
, (H7)

which is valid up to corrections which decay exponentially
with increasing ξ . At the other end of the chain there is a
charge −qend.

Let’s now consider a sharp DW between regions with mass
mi and mj . If we first assume that we turn off the hopping
connecting these two regions, we find that the region with
mass mi gives rise to the charge −qend,i and the region with
mass mj gives rise to a charge qend, j at the DW so that the
total charge is

qDW = sign(mj ) − sign(mi )

4
− δ ji

2
, (H8)

where we have defined

δ ji = ζ (mj ) − ζ (mi )

2
. (H9)

This charge is exponentially localized at the DW and therefore
when the hopping connecting the regions is turned on it causes
only a local perturbation in the Hamiltonian (slightly redis-
tributing the charge density locally) but does not influence the
total charge localized at the DW. If both mi and mj have the
same sign the regions are in the same topological phase and
the qDW = −δ ji/2. If the signs of the masses are different we
have DW between two topologically distinct phases. We now
consider two possible DWs: (i) Soliton where mass changes
from m1 > 0 to m2 < 0 as a function of increasing x and (ii)
antisoliton where mass changes from m2 < 0 to m1 > 0 as a
function of increasing x (see Figs. 1 and 2 in the main text).
We denote δ = δ21.

(i) In the case of soliton the sharp DW carries a charge
qDW = −(1 + δ)/2. By increasing the width of the DW we
find that the spectral flow is such that a state will approach
zero energy from positive energies (see Fig. 2 in the main
text). This means that if this zero-energy state is unoccupied
the charge of the DW is qDW and if it is occupied the charge
is qDW + 1. Thus we can summarize that the possible charges
for soliton are

qDW = ±1 − δ

2
. (H10)

(ii) For antisoliton the charge of the sharp DW is qDW =
(1 + δ)/2. By increasing the width of the DW we find that
the spectral flow is such that a state will approach zero energy
from negative energies. This means that if this zero-energy
state is unoccupied the charge of the DW is qDW − 1 and if it
is occupied the charge is qDW. Thus we can summarize that
the possible charges for antisoliton are

qDW = ±1 + δ

2
. (H11)

In the case of multimode SSG system we can separate the
transverse modes n as discussed in Appendix B. We consider
the cases (a) Ly even and (b) Ly odd separately.

(a) When Ly is even the Hamiltonian can be decomposed
into 4×4 blocks given by Eq. (B2). Each of these blocks n =
1, . . . , Ly/2 supports symmorphic chiral symmetries Cyz =
σyσ

′
z and Czy = σzσ

′
y. Therefore using the argument given in

Ref. [43] we find that each transverse mode n carries possible
charges qn = −Nn/2, . . . , Nn/2, where Nn is the number of
zero-energy states at the DW supported by transverse mode
n and the value of charge qn is determined by the number of
occupied zero-energy states. In the case of smooth DWs each
transverse mode supports Nn = 2 zero-energy states if νn is
different on the two sides of the DW so that qn = −1, 0, 1
(with two possible states corresponding to qn = 0). If νn is the
same on both sides then Nn = 0 and qn = 0. The total charge
of the DW is

qDW =
Ly/2∑
n=1

qn. (H12)

(b) When Ly is odd the Hamiltonian can be decomposed
into �Ly/2� 4×4 blocks obeying the same symmorphic chi-
ral symmetries. Each of these modes carries charges qn =
−1, 0, 1 (n = 1, . . . �Ly/2�). Additionally there exists one
transverse mode n = 0 which is similar as the one studied
in the case of single-mode SSG chain. Thus, this transverse
mode carries a charge q0 = (±1 − δ)/2 in the case of solitons
and q0 = (±1 + δ)/2 in the case of antisolitons. The total
charge of the DW is

qDW =
�Ly/2�∑

n=0

qn. (H13)
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in an Entangled SU(2) ⊗ XY Spin-Orbital Ring, Phys. Rev.
Lett. 112, 117204 (2014).

[40] A. Topp, R. Queiroz, A. Grüneis, L. Müchler, A. W. Rost,
A. Varykhalov, D. Marchenko, M. Krivenkov, F. Rodolakis,
J. L. McChesney, B. V. Lotsch, L. M. Schoop, and C. R.
Ast, Surface Floating 2D Bands in Layered Nonsymmorphic
Semimetals: ZrSiS and Related Compounds, Phys. Rev. X 7,
041073 (2017).

[41] W. Brzezicki, M. M. Wysokiński, and T. Hyart, Topological
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