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We studied several aspects of the Mott metal-insulator transition in the disordered case. The model on which
we based our analysis is the disordered Hubbard model, which is the simplest model capable of capturing
the Mott metal-insulator transition. We investigated this model through statistical dynamical mean-field theory
(statDMFT). This theory is a natural extension of dynamical mean-field theory (DMFT), which has been used
with relative success in the past several years with the purpose of describing the Mott transition in the clean case.
As is the case for the latter theory, statDMFT incorporates the electronic correlation effects only in their local
manifestations. Disorder, on the other hand, is treated in such a way as to incorporate Anderson localization
effects. With this technique, we analyzed the disordered two-dimensional Mott transition, using the quantum
Monte Carlo algorithm to solve the associated single-impurity problems. We found spinodal lines at which the
metal and insulator ceased to be metastable. We also studied spatial fluctuations of local quantities, such as
self-energy and local Green’s function, and showed the appearance of metallic regions within the insulator and
vice versa. We carried out an analysis of finite-size effects and showed that, in agreement with the theorems of
Imry and Ma [Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975).], the first-order transition is smeared in
the thermodynamic limit. We analyzed transport properties by means of a mapping to a random classical resistor
network and calculated both the average current and its distribution across the metal-insulator transition.
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I. INTRODUCTION

A phase transition at T = 0 as a function of some ex-
ternal parameter is called a quantum phase transition. It is
characterized by a singular change in the ground state of the
system. Although zero temperature is impossible to achieve,
the effects of this quantum phase transition at T = 0 are felt
at finite temperatures. Hence the importance of studying these
transitions. A quantum phase transition of great importance is
the metal-insulator transition. The distinction between metal-
lic behavior and insulating behavior is only well defined at
zero temperature: while the resistivity of an insulator diverges
as T → 0, this transport property approaches a constant value
in the case of a metal. At finite temperatures, the resistivity
is finite in both cases. As a result, one could imagine that
the metal-insulator transition is necessarily a quantum phase
transition. However, several systems exhibit an abrupt jump of
resistivity, by several orders of magnitude, at finite tempera-
ture. It is therefore natural to extend the concept of the metal-
insulator transition to the case of finite temperatures. The
metal-insulator transition has been observed in several phys-
ical systems such as (i) doped semiconductor systems (e.g.,
Si:P,B [1,2]), (ii) two-dimensional electron systems in metal-
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oxide-semiconductor field-effect transistors [3]) and semicon-
ductor heterostructures (GaAs/AlGaAs) [4,5], (iii) transition
metal compounds (V2O3, VO2, NiSSe, Nb) [6,7], and (iv)
organic conductors, e.g., κ-(BETD TTF)2Cu[N(CN)2Cl] [8].
Many of these systems are not pure, displaying intrinsic or
extrinsic disorder.

State-of-the-art imaging techniques have enabled re-
searchers to investigate systems undergoing metal-insulator
transitions with nanoscale resolution [9]. This has opened
a new window into the transport properties of disordered
strongly correlated systems. Thus, it has become clear that
beneath the total resistance of a sample, the usual indicator of
the metal-insulator transition, lurks in fact an intricate inho-
mogeneous landscape. Indeed, in many cases, the insulating
behavior appears as poorly conducting puddles nucleate and
grow within the metallic host and vice versa. Observation
of this phenomenon was made in VO2 films on sapphire
substrate by means of scattering near-field infrared scanning
spectroscopy [10,11]. Stripy puddles were also observed in
microcrystals of the same system as O’Callahan et al. [12] as
well as in films [13] with a unidirectional substrate-induced
strain, revealing that the electronic degrees of freedom are
strongly coupled to the lattice ones. These studies reveal
that such a nonuniform state is induced by various inhomo-
geneities such as defects, strains, surfaces, cracks, etc. It is
clear that a theoretical description incorporating these features
in a strongly correlated setting is called for. This is what we
propose to do in the present work.
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There are some known mechanisms capable of transform-
ing a metal into an insulator. In the absence of interactions,
a sufficiently large level of disorder leads to the localization
of the wave functions of a particle, the so-called Anderson
localization [14]. A great deal is known about this mechanism.
In particular, a successful scaling theory [15] has shown that
all states of a particle are localized in the presence of any level
of disorder in dimensions d � 2 (considering only the case of
potential scattering and ignoring the cases of potentials with
spin-orbit interaction). When d > 2, you must add a minimal
amount of disorder for the metal to become an insulator. This
transition is known as the Anderson metal-insulator transition.
Alternatively, Mott proposed that, even in the absence of
disorder, the electron-electron interactions may in some cir-
cumstances induce a metal-insulator transition [16]. Although
the original Mott mechanism was essentially based on the
long-term character of the Coulomb interaction, a model with
interactions of short range proposed by Hubbard [17–19] can
also exhibit a metal-insulator transition for sufficiently strong
electronic interactions when there is one electron per site
of the crystal lattice. Because of these initial proposals, this
transition induced by the interactions is known as the Mott
or Mott-Hubbard transition. The problem of understanding
the conjunction of disorder and interactions [20–23], despite
some progress, is still an essentially open problem.

Theoretically, several techniques have been developed to
describe the Mott transition. One of the first was made by
Hubbard himself in a series of works [17–19]. His approach
consists essentially of starting with the limit in which the
electron-electron interaction is much larger than the kinetic
energy of the system (the insulator), and gradually reducing
the value of this interaction. The characteristic gap of the Mott
insulator, separating two bands of excitations called Hubbard
bands, finally closes at a critical value of the interaction
U = UcHubb and the system is metalized. An opposite point
of view is due to Brinkman and Rice [24]. Using a varia-
tional wave function proposed by Gutzwiller [25–27], they
analyzed how the correlated metal is destroyed by the increase
of electronic interactions. In this case, at a certain critical
value of the interaction U = UcBR, the strongly correlated
quasiparticles of the Fermi liquid disappear and the system
becomes an insulator. While Hubbard’s description does not
adequately describe the quasiparticles of the correlated metal,
the Brinkman and Rice [24] approach cannot correctly predict
the presence of the Hubbard bands. Both characteristics can be
observed, for example, in optical conductivity measurements,
which indicate the incompleteness of these two approaches.

The advent of the dynamical mean-field theory (DMFT)
[28,29] enabled a description of the Mott transition that unifies
the views of Hubbard and Brinkman-Rice. DMFT is able
to incorporate, for intermediate values of the interaction U ,
both the quasiparticles of the Fermi liquid at low energies
and the incoherent Hubbard bands at high energies. In this
description, the Mott transition is a first-order transition,
characterized by the disappearance of the quasiparticles and
leaving behind only the finite energy excitations of the Hub-
bard bands. The transition is characterized by the existence of
a region of coexistence between the metallic and the insulating
phases, as in the case of supercooling and superheating in the
liquid-gas transition. Also as in the case of that transition,

the first-order phase transition line in the temperature T versus
the interaction U phase diagram ends at a second-order critical
point at (Tc, Uc). Below Tc, the resistivity exhibits a jump
as a function of U . This jump decreases with increasing
temperature and disappears at the critical point.

The disordered Hubbard model was studied previously
with several methods: exact diagonalization [30], finite-
[31–33] and zero-temperature [34,35] quantum Monte Carlo
techniques, the Hartree-Fock method [36–38], variational
wave functions [39], DMFT [40–43], and typical medium
theory [44–49]. We should mention also the related prob-
lem of the disordered Coulomb liquid [50,51]. All of these
approaches, with their strengths and weaknesses, focus on
different aspects and shed some light on this difficult problem,
yet no final picture has emerged.

In the present work, we employ an extension of the DMFT
picture of the Mott transition that is able to incorporate
nontrivial disorder effects, the so-called statistical dynamical
mean-field theory (statDMFT) [52]. The most important fea-
tures of this method are (i) the incorporation of all Anderson
localization effects (in fact, the method is exact in the nonin-
teracting limit), which affects the properties of single-particle
states, and (ii) the incorporation of local interaction effects,
such as in the original DMFT. Nonlocal interaction effects
are absent in this approach. We therefore used this method
to study the effects of disorder on the Mott transition in a
two-dimensional lattice model with randomness. As in the
DMFT, a method is required for the solution of the auxiliary
single-impurity problems. We used a quantum Monte Carlo
method (the Hirsch-Fye algorithm [53]) to solve these single-
impurity problems. Related DMFT approaches to other types
of nonhomogeneous systems have been also used in diverse
contexts [54–64].

Our results show that adding disorder to the system keeps
the first-order character of the transition for finite-sized sys-
tems, including the coexistence of both metallic and insulating
solutions, although the position of the transition fluctuates
spatially. The average hysteresis loops, however, are shifted
to larger values of the interaction. Furthermore, for a given
disorder realization, we observe how increasing (reducing) the
electron-electron interaction in a metallic (insulating) system
induces the the nucleation and growth of insulating (metallic)
“bubbles,” in striking similarity to the near-field imaging
results on VO2. As expected for a two-dimensional system,
however, as the system size increases, there is a proliferation
of both metallic and insulating bubbles, signaling the smear-
ing of the first-order transition in the thermodynamic limit.
Finally, we show how we can employ a classical random-
resistor model to describe the transport on a microscopic
level, thus offering a means to analyze these highly complex
inhomogeneous states.

II. THE MODEL

We focus on the site-disordered Hubbard model in a
two-dimensional square lattice with first and second nearest-
neighbor hopping, as defined by the following Hamiltonian:

H = H0 + HW + HU , (1)

235112-2



TWO-DIMENSIONAL DISORDERED MOTT … PHYSICAL REVIEW B 101, 235112 (2020)

FIG. 1. The clean noninteracting density of states of our model.
Note that the van Hove singularities occur away from the band center.

where
H0 = −

∑
〈i, j〉σ

t (c†
iσ c jσ + H.c.)

−
∑

〈〈i, j〉〉σ
(t∗c†

iσ c jσ + H.c.), (2)

HW =
∑

iσ

εiniσ , (3)

and

HU = U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
. (4)

Here, c†
iσ creates an electron with spin projection σ at

site i and niσ = c†
iσ ciσ is the number operator. The lattice

parameter is set to a = 1 and a purely imaginary second
nearest-neighbor hopping t∗ is introduced in order to move the
van Hove singularity away from the middle of the clean non-
interacting band while at the same time maintaining particle-
hole symmetry. We fix it to be t∗ = 0.5it . The particle-hole
symmetric Hubbard U term accounts for a local Coulomb
repulsion. Particle-hole symmetry is destroyed only by the
diagonal disorder term ε j which is distributed according to a
uniform probability distribution of the total width W centered
at zero, which can be taken as a measure of the disor-
der strength. The clean noninteracting dispersion relation is
εk = −2t (cos kx + cos ky + sin kx sin ky) and the correspond-
ing density of state is shown in Fig. 1. The half bandwidth is
D =

√
2+1
2 t ≈ 1.207t , which we take as our energy unit.

III. THE STATISTICAL DYNAMICAL MEAN-FIELD
THEORY

The spirit of single-site dynamical mean-field theory and
its descendants is to treat exactly on-site correlations. This is
achieved by assuming a local albeit frequency-dependent self-
energy. In the context of a disordered lattice, this amounts to
the following approximation to the full self-energy:

�i j (iωn) → δi j�i(iωn), (5)

here written in its Matsubara version. Note that, although
local, the self-energy �i(iωn) varies from site to site. The
self-energy is calculated within a self-consistent scheme as
follows. Under the assumption of Eq. (5), the local dynamics

of a generic site i is governed by the effective action

S(i)
eff = −

∑
σ

∫∫
c†

iσ (τ )g(i)−1
0 (τ − τ ′)ciσ (τ ′)dτdτ ′

+U
∫ [

ni↑(τ ) − 1

2

][
ni↓(τ ) − 1

2

]
dτ, (6)

where

g(i)−1
0 (iωn) = iωn − εi − �i(iωn), (7)

and �i(iωn) is the “cavity” function describing single-particle
hopping to and from site i. The local interacting Green’s
function, obtained by solving the effective action in Eq. (6)
and defined by

Gi(τ − τ ′) = −〈T [ciσ (τ )c†
iσ (τ ′)]〉, (8)

is related to the self-energy through

G−1
i (iωn) = g(i)−1

0 (iωn) − �i(iωn). (9)

From the set of equations Eqs. (6)–(9) an iterative calcula-
tional scheme can be devised. Given a finite L × L realization
of the disordered lattice, we start from an initial guess for
the L2 “cavity” functions �i(iωn), which define L2 effective
actions as given by Eqs. (6) and (7). We then use some
standard impurity solver to calculate the L2 local interacting
Green’s functions from Eq. (8) and then find the L2 local self-
energies from Eq. (9). This ensemble of local self-energies
now has to be used to generate updated cavity functions. This
is achieved by focusing on the single-particle lattice Green’s
function, which can be easily written as a resolvent in the
lattice site basis (matrices in this basis are denoted by a hat)

Ĝlat (iωn) = 1

iωn̂1 − Ĥ0 − ĤW − �̂(iωn)
, (10)

where 1̂ is the unitary matrix and �̂(iωn) is the diagonal ma-
trix with elements �i(iωn)δi, j . Physically, the renormalization
introduced by interactions are encoded in a “shift” of the site
energies by a frequency-dependent self-energy:

εi → εi + �i(iωn). (11)

As usual in single-site DMFT-based approaches, this renor-
malization only describes local, single-particle processes. The
lattice Green’s function Ĝlat (iωn) of Eq. (10) is obtained by
a frequency-by-frequency numerical inversion of the non-
Hermitian operator in the denominator. The latter can be
efficiently implemented in the site basis and the numerical in-
version performed with standard linear algebra routines. In the
site basis, the diagonal elements of Ĝlat (iωn) are the updated
local Green’s functions G(new)

i (iωn) of Eq. (9). Therefore, the
updated cavity functions can be obtained from

�
(new)
i (iωn) = iω − εi − G(new)−1

i (iωn) − �i(iωn), (12)

which is then used to generate a new set of L2 effective
actions, thus closing the self-consistency loop. The full self-
consistent scheme has been dubbed the statistical dynamical
mean-field theory (statDMFT). The great advantage of the
method lies in its ability to track full distributions (typi-
cally numerically) of local quantities, instead of focusing
on average, either algebraic (as in the infinite-dimensional
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DFMT limit) or geometric (as in the “typical medium the-
ory”) [44–49]. Evidently, when interactions are turned off, the
method represents the exact diagonalization of the noninter-
acting disordered problem.

It should be mentioned that originally the DMFT of clean
systems was introduced by invoking its exactness in the
infinite-dimensional limit of Metzner and Vollhardt [28]. In-
deed, the infinite coordination suppresses fluctuations in the
same way as in the mean-field treatment of spin systems.
DMFT’s subsequent popularization and widespread use in
finite-dimensional systems, however, has come from the re-
alization that many strongly correlated systems are well de-
scribed within a local treatment of correlations. In this sense,
DMFT and its descendants represent the optimal implementa-
tion of this local program. This has become especially clear in
the description of the clean Mott-Hubbard transition endpoint
of Limelette et al. [8]. Of course, other low-temperature
instabilities (like magnetism) are especially sensitive to a
finite, low dimensionality. Thus, our use of the method in
a two-dimensional case can be justified in two ways: (a)
we work close to the second-order endpoint of the clean
transition, and (b) most of our focus is on the particularity
of two spatial dimensions, where the Imry-Ma effect destroys
the clean first-order transition line, as is explained later.

We have implemented the statDMFT approach to study the
disordered Mott transition in the two-dimensional Hubbard
model at half filling. We have focused on three different
temperatures with the following choice of parameters: T =
0.028D, T = 0.024D, and T = 0.02D, and the value of dis-
order was fixed at W = 0.52D. Since we focus on finite
temperatures, the issue of antiferromagnetic order, which only
occurs at T = 0 in two dimensions is not important here.
In our calculations, we have used the quantum Monte Carlo
algorithm of Hirsch and Fye [53] as an impurity solver. The
discretization of the imaginary time axis was set at �τ =
0.55. At each run of the impurity solver, the number of sweeps
used to obtain the converged results was 100 000. The number
of iterations needed to reach the full self-consistency of the
statDMFT equations was less than 50 for well-defined metal-
lic or insulating solutions, but increased closer to the critical
points, where it could range from 200 to 500 interactions.

IV. THE MOTT-HUBBARD PHASE TRANSITION AND THE
EFFECTS OF DISORDER

Theoretical and experimental studies indicate that the Mott
transition belongs to the same universality class of the liquid-
gas phase transition and the Ising model [65]. The clean
Hubbard model Hamiltonian in the presence of a chemical
potential reads

H = H0 + HU − ∑
iσ

μniσ . (13)

For values of the local interaction U > Uc, the system dis-
plays insulating behavior when the mean occupancy number
〈n〉 = 1. For values of 〈n〉 �= 1, the system is metallic. The
phase diagram of the transition corresponds to a first-order
transition at n = 1, culminating at a second-order critical
point at Tc, as shown in Fig. 2. This figure also shows the
dependence of n on the chemical potential μ for T = 0.

FIG. 2. T -n phase diagram for the Mott transition and the occu-
pation number as a function of chemical potential at T = 0 in the
Hubbard model.

Note that there is a plateau at n = 1, since the presence of
the Mott gap makes the system incompressible (dn/dμ = 0).
We would like to emphasize that this phase diagram stands
in complete analogy with the phase diagram of the Ising
model in an external (longitudinal) field h when we make the
correspondences (n − 1) → m (where m is the magnetization
density) and μ → h.

Based on the above behavior, it is clear that the diagonal
disorder HW = ∑

iσ εiniσ acts as a “local” chemical potential
by doping the insulator and making it metallic in a given
region for sufficiently large values of |εi|. By reasoning
analogous to the Ising model with random fields [66], if the
fluctuations of |εi| are sufficiently large in a certain region, the
insulator is unstable with respect to the formation of a metallic
region. If N is the number of sites within the region, then the
fluctuations are such that

�ε =

√√√√ ∑
ε2

i
i

N − 1

{
� �εc remains insulating,
� �εc local metallization, (14)

where �εc ∼ U when T = 0. Therefore, the region remains
insulating if the size of fluctuations is less than a critical value,
above which we have local metallization. This is analogous
to the effect of the random field on the Ising model. We
should mention that a careful scaling analysis of the near-field
imaging results of Ref. [10] gave strong support to a picture
of the metal-insulator transition in VO2 based on the random-
field Ising model universality class [66,67].

There is a crucial dimension dependence to this phe-
nomenon, however. Indeed, the same considerations as used
by Imry and Ma [68] in their analysis of the random-field
Ising model lead us to conclude that disorder destroys the
two-dimensional metal-insulator transition in the thermody-
namic limit. This is because below and at two dimensions the
interface energy between metal and insulator is not able to
hinder the proliferation of metallic regions in the insulator or
insulating regions in the metal. Therefore, the system breaks
into various metal and insulating regions, and the phase tran-
sition is smeared. The first-order phase transition line on the
left-hand side of Fig. 2 is destroyed in this two-dimensional
case. This is the generalization of the Imry and Ma theorem
[68] to the Mott transition case.

Finally, we need to explain how we determine whether a
certain region belongs to an insulating or a metallic bubble.
The local density of states (DOS) might be a good indicator.
In a clean system, it can be obtained through the value of the
local Green’s function at a particular value of the imaginary
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time [69]:

Gi

[
τ = 1

2kBT

]
. (15)

This approach, however, assumes that the local DOS does
not vary appreciably with the frequency on the scale of
the temperature. This is a reasonable assumption in a clean
Hubbard model, in which the only energy scales are U
and D. In a disordered Hubbard model, however, the local
on-site energies fluctuate in the range [−W/2,W/2], thus
generating a continuum of small energy scales over which
the local DOS varies and invalidating this procedure. Another
option would be the local self-energy at low real frequencies,
since

Re	i(ω) →
{

0 metal,
∞ insulator. (16)

This indicator would require the analytical continuation from
Matsubara to real frequencies, a notably difficult task. Since
this must be performed at every lattice site, we tried to create
an automated algorithm to do this, using the usual maximum
entropy and Padé techniques. However, this proved to be very
unreliable. In the end, we opted for the value of the imaginary
part of the local self-energy at the first Matsubara frequency
Im	i(iω1), since it reflects the same tendency of Eq. (16),
being large in the insulator and small in the metal:

Im	(iω1) ∼
{

iω1 → 0 as T → 0 metal,
1/iω1 → 0 as T → 0 insulator. (17)

V. TRANSPORT PROPERTIES

It would be useful to use the data from Im	i(iω1) as a
means to access the transport properties within statDMFT.
This is possible at T = 0 in the noninteracting case by means
of the Landauer formalism [70], through the calculation of
the transmission matrix between the edges of the system.
This formalism was later extended to interacting systems and
finite temperatures by Meir and Wingreen [71], enabling a full
statDMFT calculation of transport properties. Nonetheless,
when the transport occurs without quantum coherence at any
length scale due to the strong inelastic scattering, it is possible
to make a classical description of the resistivity. We show
that at the temperatures and interactions in which we work,
transport is completely incoherent and we thus use a network
of classical resistors to calculate the relative resistance values
of the system.

From many-body theory, there is a relation between the
value of self-energy at zero (real) frequency and wave vector
on the Fermi surface and the inelastic half-life of the particle
[72]:

Im	(|�k| ∼ kF , ω � 0) ∼ 1

τin(�k)
. (18)

If τin(�k) is approximately isotropic τin(�k) → τin, the Kubo
formula gives us the conductivity and, therefore, the resistivity
as

ρ ∼ 1

τin
∝ Im	(|�k| ∼ kF , ω � 0). (19)

FIG. 3. Square resistor network in which each resistor couples
two neighboring sites.

In fact, from the Drude formula,

ρ = m

ne2τ
, (20)

in accordance with Eq. (19) if the transport is completely
dominated by inelastic processes. In this case, we define the
free inelastic mean free path as being

lin = vF τin, (21)

where vF is the Fermi velocity. For l � lin the transport is
incoherent because inelastic scattering destroys the “memory”
of the quantum phase of the electronic wave function. At
these scales, we can describe the transport classically. We
can estimate the Fermi velocity by vF ∼ EF

kF
, where EF is the

Fermi energy. In the Hubbard model, EF can be taken as the
half-bandwidth D in the case of half-filling. Finally, using
kF ∼ 1/a, where a is the lattice parameter, we have vF ∼ aD.
Therefore, from Eqs. (19) and (21) we obtain

lin = vF τin = aD

Im	
⇒ lin

a
= D

Im	
. (22)

As we show later, for the temperatures we are focusing on
here, lin � a and the transport is completely incoherent, thus
allowing for a classical description.

Supposing now we are in the regime where lin ∼ a, let
us now describe how we can replace the interacting electron
system by a network of classical resistors. First, each site in
the original network gets associated with a local resistivity
value, ρi = Im	i(ω1) ∼ 1/τin(i). The bond between the two
nearest neighbors i and j is then replaced by a resistor whose
value is the average value of the resistivities of the two sites
ρi and ρ j :

Ri j = 1
2 (ρi + ρ j ), (23)

as shown in Fig. 3.
The various resistors are connected through the geometry

of the network. At the ends of the network external resistors
are placed that are connected to external voltages φi. These
external resistor values are given by the resistivities at the edge
sites. The external voltages are fixed as φ0 at the left edge
and φ at the right edge. The network of resistors has the form
shown in Fig. 4 for the particular case of a 3 × 3 network. The
internal voltages and currents which pass through each resis-
tor are unknown and need to be determined using electrical
circuit theory.

In general, for a network with L × L sites, the total number
of nodes is 2L + L2, with L2 being the internal nodes and 2L
the external nodes. The total number of resistors is 2L2. We
need to find the 2L2 currents Ii j that cross the resistors and the
L2 voltages at each internal node. In all, therefore, there are
3L2 unknowns. The current at the inner nodes is conserved
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FIG. 4. Resistors associated with a 3 × 3 square network.

(Kirchhoff’s law) providing L2 equations∑
j

Ii j = 0. (24)

For each resistor, we apply Ohm’s law,

Ii j = Vi − Vj

Ri j
, (25)

which gives us 2L2 equations. We therefore have a total of
3L2 equations for 3L2 unknowns. We found the solutions
numerically.

VI. RESULTS AND DISCUSSION

To describe the Mott transition in two dimensions we
use the Hubbard Hamiltonian in the two-dimensional square
lattice given in Eq. (1). Several studies of the clean case have
established the first-order nature of the transition at finite tem-
peratures below Tc, with the corresponding coexistence region
and associated hysteresis [73–76]. For a finite-size system, we
expect the hysteresis to survive. Therefore, we have to allow
for the convergence of both stable and metastable solutions
to the statDMFT equations. We thus start from the initial
U values which are safely outside the coexistence region,
in either the metallic or the insulating phase. For a given
interaction value U0, the values of Gi(iωn) are found once
convergence has been achieved. The results of Gi(iωn) for
U0 are used as an initial guess for Gi(iωn) at U1 = U0 + �U
(going from the metal to the insulator) or U1 = U0 − �U
(going from the insulator to the metal). The new results for
Gi(iωn) are used to generate the Gi(iωn) results corresponding
to the next value U2 and thus consecutively doing a scan of U
values from the metal to the insulator or from the insulator to
the metal.

As U is scanned an abrupt jump is observed in ImG(ω1).
We define Uc1 to be this critical jump value when going from
the insulator to the metal and Uc2 to represent the value when
going from the metal to the insulator. These are the so-called
spinodals. The difference of paths traveled going from the
metal to the insulator and from the insulator to the metal
defines the hysteresis curves, such as shown in Fig 5, for
the clean case. The region that is contained between Uc1 and
Uc2 is the coexistence region, in which one of the solutions
is only metastable. In the coexistence region, for a value

FIG. 5. Hysteresis curves for different temperature values, below
the critical point of the clean Mott transition. As the temperature
increases, the hysteresis loops become smaller.

of U , it is possible to find the two behaviors, metallic and
insulating.

The disordered case is shown in Fig. 6. Note that, since
Gi(iωn) now fluctuates spatially, we have shown all the L2

curves for −ImGi(iω1). Although there are many curves, a
clear hysteretic behavior is apparent, especially at the lowest
temperatures. Besides, adding disorder causes a shift in the
hysteresis curves to higher interaction values and the coexis-
tence region shrinks in size.

Let us now focus on the vicinity of the Mott transition. For
each value of U in a scan of values where �U = 0.008D,
a map is obtained representing the spatial behavior of the
imaginary part of the Green’s function at the first Matsubara
frequency. Figure 7 shows these results for T = 0.024D going
from the metal to the insulator. (Results for other values
of temperature can be found in the Supplemental Material
[77].) The color scale is organized so that the largest value
of −ImG(ω1) corresponds to red and the smallest values
correspond to blue. As the value of the local interaction
changes, the spatial configuration in the lattice changes. The
system, which initially was a metal with significant spa-
tial homogeneity, begins to show bubbles corresponding to
insulating regions. Finally, these coalesce to form a rather
homogeneous insulator. Similarly, starting with high local
electron-electron interaction it is observed that, as the value of
the local interactions decrease, metallic bubbles appear until
the lattice becomes metallic, as shown in Fig 8. Comparing

FIG. 6. Hysteresis curves for different values of temperature.
Notice how the disorder shifts the hysteresis curve to higher values
of interaction energy, while the coexistence region shrinks.
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FIG. 7. Imaginary part of the Green’s function at the first Matsubara frequency for each site of the square lattice with T = 0.024D in the
neighborhood of the Mott transition when going from the metal to the insulator. See video mi.avi in the Supplemental Material [77].

the same intermediate values of U in the two figures, we can
easily distinguish the two coexisting solutions.

A. Critical behavior of the Mott transition

We now focus on the correlations between the fluctuations
of the bare disorder and the local order parameter of the Mott

transition. Figure 9 shows the spatial patterns of the local or-
der parameter −ImGi(iω1) for four different disorder realiza-
tions at W = 0.52D, U = 2.27D, and T = 0.024D. The range
of variations for each disorder realization is between 0.20 <

[−ImG(ω1)]D < 0.57. The red color represents the regions
with greater metallic behavior and blue regions represent the
insulator. For convenience, let us define an essentially metallic

FIG. 8. Imaginary part of the Green’s function at the first Matsubara frequency for each site of the lattice for T = 0.024D and a scan of
values of U in the neighborhood of the Mott transition going from the insulator to the metal. See video im.avi in the Supplemental Material
[77].
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FIG. 9. For four different realizations of disorder, we show ImGi(ω1) via a color scale. The red color represents the lattice sites that have
metallic behavior. Insulating behavior corresponds to blue regions. We used W = 0.52D, U = 2.27D, and T = 0.024D.

region as one in which the condition [−ImG(ω1)]D > 0.45
is satisfied. Analogously, essentially insulating regions are
defined as those in which [−ImG(ω1)]D < 0.27. In each of
these regions we calculate the relative local fluctuation of the

disorder �ε/�εdistr , where we take ε̄ = 0 and �ε =
√∑N

i=1ε
2
i

N−1 ,
and the standard deviation of the bare distribution is �εdistr =√

W 2

12 = 0.15D.
Table I shows the results for �ε/�εdistr for each one

of the regions. In the insulating regions, where 0.20 �
[−ImG(ω1)]D � 0.27, the values of �ε/�εdistr are always
smaller than 1. The values �ε/�εdistr in the metallic regions,
where 0.45 < [−ImG(ω1)]D < 0.57, on the other hand are
all larger than 1. There is a strong correlation between small
(large) values of �ε and insulating behavior (metallic). In the
regions with intermediate behavior �ε � �εdistr . These re-
sults are in qualitative agreement with the analysis of Ref. [67]
of the insulating and metallic puddles of VO2, which showed
that the observed scaling behavior is best described by the
critical random-field Ising model. Unfortunately, we cannot
access very large lattice sizes in order to be able to do a full
scaling analysis of the puddle sizes.

B. Finite-size effects

The Mott transition is smeared in the thermodynamic limit
in d = 2, since there is a proliferation of metallic and insulat-
ing regions when L → ∞. Let us now study how our results
change as we increase L.

Figure 10 shows a set of hysteresis curves for different
lattice sizes, at T = 0.024D and W = 0.52D. It is observed

TABLE I. Fluctuations of �ε for the insulating, metallic, and
intermediate regions, corresponding to the different disorder realiza-
tions of Fig. 9. Here A = 0.20 � [−ImG(ω1)]D � 0.27, B = 0.27 <

[−ImG(ω1)]D < 0.45, and C = 0.45 � [−ImG(ω1)]D � 0.57.

Insulator Intermediate regime Metal

Intervals A B C
Number 1 �ε/�εdistr 0.79 0.88 1.28
Number of sites 7 273 120
Number 2 �ε/�εdistr 0.75 0.93 1.36
Number of sites 75 262 63
Number 3 �ε/�εdistr 0.81 0.90 1.33
Number of sites 74 264 62
Number 4 �ε/�εdistr 0.73 0.93 1.30
Number of sites 76 264 60

that the U/D values at which the Mott transition occurs are
the same independently of the lattice size, while the values of
[−ImG(ω1)]D remain between 0.2 and 0.8. Note that in the
case where we have a square lattice of 10 × 10 sites, the size
of the coexistence region is larger than that for larger lattice
sizes. Furthermore, the first-order Mott transition becomes
a “rounded” transition as L → ∞, in accordance with the
generalized Imry and Ma theorem [68] for the disordered
Hubbard model. Unfortunately, it is computationally very
difficult to obtain results for L > 20.

Now we focus on a particular Coulomb interaction value of
U = 2.27D and we analyze the spatial pattern of ImGi(iω1),
as shown in Fig. 11 for T = 0.024D, in the upper branch
of the hysteresis loop (for other temperature values see the
Supplemental Material [77]). Notice how, as the size of the
lattice increases, the metallic regions persist at the same
positions, but also note the appearance of insulating bubbles.
In the thermodynamic limit we have the proliferation of
metallic and insulating regions and the complete smearing of
the transition. Again, we note that both the inhomogeneous
state with coexisting bubbles and the accordance with the
Imry-Ma theorem are in agreement with the picture of the
transition in VO2 as being in the same universality class as
the random-field Ising model [67].

At this point, let us make some remarks regarding the
difference between the clean and the disordered cases. In the
clean Hubbard model close to the Mott transition, thermal
fluctuations also generate metallic and insulating bubbles
[78–80]. Their frequency and size are determined by a Boltz-
mann factor. In the disordered case, however, the bubbles
are nucleated by the interplay of both temperature and local
fluctuations of the disorder potential, with the latter playing a
dominant role. That can be roughly gleaned from the persis-
tence of the bubble landscape as the temperature is varied with
a fixed disorder realization (see Fig. 1 of the Supplemental
Material [77]). Furthermore, the correlation between the size
of the site-energy fluctuations and the nature of the bubbles
(Table I) corroborates this conclusion. Finally, in the 2D case
we focus on here, the first-order transition is destroyed by
disorder. We conclude that the nature and the features of the
bubbles are very different in the clean and the disordered
cases.

C. Transport in the lattice

To study the transport properties we analyzed the quantity
lin = D

Im	
as described in Eq. (22) through statDMFT. The

lowest frequency that can be used in this case is the first
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FIG. 10. Hysteresis loops for different lattice sizes, below the critical point of the Mott transition. As the temperature increases, the
hysteresis loops become smaller.

Matsubara frequency. Thus, we use 	i(iω1) as an estimate
of 	i(ω → 0). Figure 12 depicts the value Im	(iω1 )

D , for T =
0.024D and W = 0.52D, for each site of the lattice and the
value of interaction U , in the vicinity of the Mott transi-
tion. Notice that 0.98 � Im	(iω1 )

D � 5.09, or 0.2 � D
Im	(iω1 ) �

1. According to Eq. (22) from Sec. V, this corresponds to
lin � a. Therefore, we can describe transport classically at all
scales.

Using Eq (23) to find the values of the equivalent resistors
in the square lattice and Eq. (25) to calculate Ii j between the
nodes, it is possible to find the mean value of the current in
each node I (i) = 	 j |Ii j |

Ns
, where Ns is the number of resistors

that are connected to a given node. In Fig. 13 we present
the results of the spatial mapping of the current at T =
0.024D and W = 0.52D, in the vicinity of the Mott transition.
(The Supplemental Material [77] shows solutions for other
temperatures.) The red color represents regions in which the
current presents higher values. Low values of the current
are represented by the blue color and are associated with
insulating behavior. We note that the current is not uniform in
the system and has spatial fluctuations. However, its variations
are mild and the values decrease with increasing U .

After calculating the value of the average current for each
of the lattice sites, we can find the average value over the
complete network for each interaction value U in the vicinity
of the Mott transition (Fig. 14). The variation of the mean
current is large for the case of T = 0.02D (see Supplemental
Material [77] for more details). As the temperature increases,
the current in the transition region still presents a noticeable
change, but it is much milder than in the case of T = 0.02D.
Since the external potentials used in the calculations are

fixed, the average current is a measure of the conductance
G = I

(�−�0 ) . We note that, although the conductance has a
strong dependence on temperature in the metallic regime, it
is almost independent of T in the insulating regime. This is
a consequence of the fact that ImGi(iω1) cannot capture the
exponential dependence with the temperature that comes from
the presence of the Mott gap.

VII. CONCLUSIONS

Using DMFT, in the clean case, and statDMFT, in the
disordered case, it was possible to analyze the Mott transition
in the Hubbard model in a square lattice. In finite-sized
lattices, disorder does not destroy the first-order character
of the transition with the accompanying hysteresis loop and
coexisting metallic and insulating solutions. Since the local
Green’s function now has spatial fluctuations, however, there
is a different hysteresis loop on each site. The bundle of loops
shows an overall shift towards higher values of interactions
when compared with the clean case. The spatial pattern found
shows clearly the coexistence in each solution of metallic
as well as insulating bubbles. As the system size increases,
these different bubbles proliferate and point to a complete
smearing of the first-order transition in the thermodynamic
limit, in complete agreement with the Imry-Ma theorem. The
statistics of local bare disorder fluctuations correlate also
reasonably well with the metallic or insulating nature of
the inhomogeneities, which strengthens the link between the
metal-insulator transition in the disordered Hubbard model
and the one of the random-field Ising model. Such a link
had been previously emphasized in a scaling analysis of the

FIG. 11. Finite-size effects: Spatial pattern of ImGi(iω1) for different sizes of the square lattice. Metallic and insulating bubbles proliferate
as the lattice increases at U = 2.27D in the upper branch of the hysteresis loop.
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FIG. 12. Imaginary part of self-energy for the first Matsubara frequency for T = 0.024D.

experimental results on the metal-insulator transition in VO2

[67]. Finally, we performed the calculation of transport prop-
erties within the statDMFT. This was possible only because
the analyzed system is a highly incoherent one, where kF lin ∼
a, and the calculation could be done through a mapping of
the system onto a random network of classical resistors. After
this mapping, the global resistance could be calculated and
the temperature dependence in the metal is in agreement with
expectations. The same description fails in the insulating case,
however, where we expect to see an activated temperature
dependence.

Our work offers a powerful theoretical perspective on
spatial inhomogeneities of disordered strongly correlated sys-
tems. In this sense, it is a welcome contribution to the descrip-
tion of the detailed experimental results coming from recent
nanoimaging techniques. Besides the interplay of disorder and
Mott physics explored in this work, we envisage important
directions for future work. In the particularly well-studied
example of VO2 [13,81] as well as in other compounds [82],
the coupling between electronic and structural degrees of
freedom is probably important and could be incorporated. The
inhomogeneous nanoscale patterns of systems with competing

FIG. 13. Spatial mapping of the current in the vicinity of the Mott transition for T = 0.024D.
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FIG. 14. Average current as a function of the Coulomb potential
in the transition region of Mott for different temperature values.

orders, such as high-Tc cuprates [83] and iron-based super-
conductors [84], would also benefit from the kinds of insights
gained from our approach. As these experimental techniques
mature, we expect more examples will be found where our
approach may prove useful.
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