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Topological band structure transitions and goniopolar transport in honeycomb antimonene
as a function of buckling
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The electronic band topology of monolayer β-Sb (antimonene) is studied from the flat honeycomb to the
equilibrium buckled structure using first-principles calculations and analyzed using a tight-binding model and
low-energy Hamiltonians. In flat monolayer Sb, the Fermi level occurs near the intersection of two warped Dirac
cones, one associated with the pz orbitals, and one with the {px, py} orbitals. The differently oriented threefold
warping of these two cones leads to an unusually shaped nodal line, which leads to anisotropic in-plane transport
properties and goniopolarity. A slight buckling opens a gap along the nodal line except at six remaining Dirac
points, protected by symmetry. Under increasing buckling, pairs of Dirac points of opposite winding number
annihilate at a critical buckling angle. At a second critical angle, the remaining Dirac points disappear when the
band structure opens a gap. Spin-orbit coupling and edge states are discussed.
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I. INTRODUCTION

Since the discovery of graphene [1], the world of 2D
atomically thin materials keeps expanding. Of special interest
are the elemental 2D materials, such as silicene, germanene,
and the recently realized and earlier theoretically predicted
antimonene and arsenene [2–8]. Unlike their isovalent analog
phosphorene (monolayer black phosphorus) [9], which has
a more complex buckled structure with fourfold symmetry,
monolayer Sb and As are found to prefer the buckled honey-
comb structure, known as β-Sb, which is also found in silicene
and germanene [10,11]. Interestingly, an almost completely
flat honeycomb form was reported to be stabilized epitaxially
on a Ag(111) substrate [12]. Thus flat monolayer Sb and As
may be the closest analog to graphene but with the interesting
difference that there is one additional valence electron which
places the Fermi level in between the usual pz derived Dirac
point at K (as in graphene) and a higher lying {px, py} derived
Dirac point.

The electronic structure studies thus far report an indirect
band gap for equilibrium buckled β-Sb but which undergoes a
transition to a semimetallic state under tensile in-plane strain
[13,14]. It is related to a transition from a trivial to a nontrivial
band gap inversion at �. Topological aspects of the band
structure of various group-IV and V systems were studied
by Huang et al. [15] and were also studied in few-layer Sb
films as function of thickness [16–18]. Flat honeycomb Sb
was shown by Hsu et al. [19] to be a topological crystalline
insulator. Very recently, Schindler et al. [20] determined the
topological classification of antimonene as a function of strain
from the flat to the buckled form and identified two transitions,
which agrees with the present study.
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Unlike most of these previous works, we here start from
the completely flat honeycomb Sb monolayer and explore
systematically how its band structure and topology change
as the buckling angle is gradually increased. We will show
that the Fermi level position near the intersection of two Dirac
cones leads to a number of interesting topological features,
from a uniquely shaped nodal line to several new Dirac points
which are allowed to move as buckling increases and can
mutually annihilate in pairs beyond a critical buckling angle.

Our study is carried out using first-principles density func-
tional theory (DFT) and quasiparticle many-body perturbation
theory (MBPT) calculations, with details given in the compu-
tational methods. A nearest-neighbor tight-binding model is
used to analyze the results and effective low-energy Hamilto-
nians describing the band features of interest are presented.

Although our predictions here are theoretical, we note that
the possibility of stabilizing monolayer Sb in its flat form
by epitaxy on Ag(111) has already been demonstrated [12].
In Appendix A, we show using DFT calculations that the
flat honeycomb form of monolayer Sb and As is indeed a
metastable phase but also show that the band structure features
of Sb can still be readily recognized when Sb is placed on
top of Ag.

II. COMPUTATIONAL METHODS

The calculations of the structural stability and band struc-
ture were performed using density functional theory in the
Perdew-Becke-Ernzerhof (PBE) [21] generalized gradient ap-
proximation (GGA). Band structures were also calculated
using the quasiparticle self-consistent QSGW many-body per-
turbation theory method [22,23]. Here, GW stands for the one-
electron Green’s function and W for the screened Coulomb
interaction [24,25]. All calculations were performed using
the full-potential linearized muffin-tin orbital (FP-LMTO)
method [26,27] using the QUESTAAL package, which is fully
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FIG. 1. (a) Symmetry labeled GGA band structure (in eV) of slightly buckled flat monolayer Sb; blue bands indicate bands dominated by
pz, red px , green py (or their mixture), light grey in bottom two bands s; the bands of completely flat Sb (dark grey) differ only near the points
were we see avoided crossings for the buckled case notably between bands 6 and 7 along �-K and �-M and the slight deviations of bands 4
and 5 near M; (b) Contour plots of two Dirac cones and their intersection (on log scale) in DFT (top) and low-energy effective hamiltonian
(bottom); yellow is high, blue is low, explanation in text; (c) schematic of cone intersection (d) 3D view of (DFT) intersecting Dirac cones and
(e) nodal line

described in Ref. [28] and available in Ref. [29]. Convergence
parameters were chosen as follows: basis set spdf -spd spher-
ical wave envelope functions plus augmented plane waves
with a cutoff of 3 Ry, augmentation cutoff lmax = 4, k-point
mesh, 12 × 12 × 2. The monolayer slabs were separated by
a vacuum region of 3 nm. In the GW calculations, the self-
energy � is calculated on a k mesh of 5 × 5 × 2 points and
interpolated to the above finer mesh and the bands along
symmetry lines using the real space representation of the
LMTO basis set. The diffusive conductivity tensor σ/τ (apart
from the unknown relaxation time) was calculated using the
equation

σαβ (E )/τ = e2
∑

n

∫
d3k

4π3
δ(E − En(k))vαvβ (1)

with vα = ∂En(k)/∂kα The conductivity and Seebeck coeffi-
cients are then obtained from

σαβ/τ = e2
∫

dEσαβ

(
− ∂ f

∂μ

)
≈ σαβ (μ)

(2)

Sαβ = − π2k2
BT

e

d ln σαβ (E )

dE

∣∣∣∣
E=μ

with μ = EF the Fermi energy. The nearest-neighbor tight-
binding model used to analyze the results and to obtain the
nanoribbon edge states is described in Appendix C.

III. RESULTS

A. Symmetry labeled band structure in (nearly) flat antimonene

We start our discussion with the band structure of flat and
slightly buckled monolayer Sb, as shown in Fig. 1(a) and

obtained in the generalized gradient approximation (GGA)
to DFT. The symmetry labeling of the bands is crucial to
our understanding of the protection of the Dirac cones to be
discussed. To make this symmetry labeling unambiguous, it is
necessary to describe the symmetry operations and character
tables in detail, which is done in Appendix B. The pointgroups
of k applying along each symmetry line in the flat and
buckled (labels in parentheses) case are given at the bottom
of Fig. 1(a).

Before proceeding with our study of the topological fea-
tures of interest, we first point out some similarities and
differences of the Sb band structure with the well known band
structure of graphene. We immediately recognize the Dirac
point at K , here labeled E ′′ corresponding to the pz-derived
bands (shown in blue) with z perpendicular to the layer. In
graphene, the Fermi level falls at this point but here, because
of the additional valence electron, it lies higher in energy
shown as the dash-dotted line and chosen as our reference
energy. Another important difference with graphene is that the
s orbitals form a separate set of bands at lower energy rather
than forming strongly hybridized sp2 σ bands. This results
from a larger Ep − Es atomic energy difference relative to the
hopping interactions between the sites. Nonetheless, we can
see a little bit of p contribution in the upper s-band from its
slightly reddish color.

The {px, py} derived bands form a separate set of bands
(indicated in red (px), green (py) and their mixture) with
another Dirac cone E ′ at K above the Fermi level. The band
structure of {px, py} derived bands on the honeycomb lattice
was discussed by Wu and Das Sarma [30] in a tight-binding
approximation relevant to optical lattices where only the σ

interaction is non zero. Here, both the Vσ and Vπ matter. While
in a tight-binding model of each set of bands separately, the
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energy band derived from s, pz and {px, py} are symmetric
in energy with respect to their atomic energy band center,
a feature usually referred to as particle-hole symmetry, the
interaction with the higher lying Sb-d bands here breaks this
simplification.

The important point is that the Fermi level lies close to
the intersection points of the pz derived and {px, py} derived
Dirac cones, one of which lies a little above EF along �-K
and the other a little below EF along �-M. We can see that
the bands crossing at these points have different symmetry
both in the flat and in the slightly buckled case and are thus
protected by symmetry. Our symmetry analysis shows that it
is a twofold rotation along the �-K direction which is main-
tained both along �-K and along K-M even after buckling
and protects the existence of these band crossings on the high-
symmetry lines. On the other hand, it is the horizontal mirror
plane symmetry that protects the nodal line in the flat case.

B. Dirac cones and nodal line

The Dirac cones around K are shown in Figs. 1(b) and
1(c). In the top row of the contour plots, we present the
DFT results and below it the corresponding results from an
effective low-energy Hamiltonian based on symmetry and
a nearest-neighbor tight-binding model, which is described
in full detail in Appendix C. In Figs. 1(b)–1(d), by valence
(conduction) band we mean bands 5 (6) at each k-point
numbered in order of increasing energy without regard to
band crossings or the nature of the band. Thus, close to K ,
the conduction band is the empty E ′ {px, py} derived band,
whereas the valence band is the E ′′ pz derived band. These
respective cones have trigonal symmetry and are seen as
the triangular contours in the center of each figure. Beyond
the crossing of the cones, the roles of conduction and valence
band are reversed. The yellow (high value) regions in the
“valence band” are at the intersection of the bands along K-�
while the dark blue (low value) in the CB correspond to the
flat pz derived band along K-M. We can see that in the center
the contours have a triangular shape but are rotated by 30◦
from each other as is further shown in the schematic sketch
(c). This is also shown in a 3D view in part (d) and leads to
a nodal line (e) with the Lissajous like shape, where again
the blue surface corresponds to the valence band and the
brown one to the conduction band. The triangular warping
of the energy surfaces results from the terms of order q2 in
an expansion around the point K and can be derived fully
analytically from the tight-binding Hamiltonian for the pz
derived bands as is shown in the Appendix C. The linear
terms of the Dirac cones are isotropic. Because pz ({px, py})
orbitals are odd (even) with respect to the horizontal mirror
plane, they are derived from a separate 2 × 2 and 4 × 4
Hamiltonian matrix. Both of these can be further reduced to
the eigenvalues of a 1 × 1 and 2 × 2 matrix because of the
“particle-hole” symmetry within this model and analytical
expressions can be derived for them at �, K , and near K . The
threefold symmetry around K is expected from the pointgroup
of K which is D3h. The Dirac cone states can thus be written

Ez = �z ± vzq ± q2

mz
cos (3φ),

(3)

Ex,y = �x,y ± vx,yq ± q2

mx,y
cos (3φ)

FIG. 2. (a) Fermi surface portions around each point K , (b) DOS
and σ (E )/τ (arb. units), (c) angular dependence of diffuse conduc-
tivity σ (EF )/τ, and (d) absolute value of thermopower with sign
indicated by color (red < 0, blue > 0).

Here, �z and �x,y are the centers of the (E ′′, E ′) Dirac cones
at K , vz and vx,y are the Dirac linear dispersion velocities, and
mz and mx,y are effective mass parameters. The actual effective
masses depend on the direction of q represented by its
azimuthal angle φ from the x axis (�-K direction) leading to a
warping of the constant energy lines with threefold symmetry,
while the velocity is isotropic. The opposite sign of the mass
parameter for the two cones leads to their relative rotation by
30◦ and is found to be responsible for the interestingly shaped
nodal line. Within the tight-binding model (Appendix C) the
sign of mx,y is found to be controlled by the ratio of the Vσ and
Vπ interactions. The situation here is reminiscent of that in
AA bilayer graphene but with the difference that here the two
Dirac cones have different velocities and warping terms. As a
result their intersection is not a simple circular nodal line.

C. Consequences for transport

This unique shape of nodal ring gives rise to an equally
interestingly shaped 2D Fermi surface as shown in Fig. 2(a)
(obtained from the effective mass Hamiltonian). The Fermi
surface can be seen to consist of electron and hole pockets at
60◦ from each other and exhibits electron hole contact points
(EHCP) where discontinuities occur in the band velocity. This
figure shows that the carrier type changes from electron to
hole type every 60◦ as we go around the Fermi surface, an
effect that has been named goniopolarity [31]. Furthermore,
depending on the precise location of the Fermi energy, which
could in principle be varied by doping or gating, the electron
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or hole transport could be larger or smaller as the direction
is changed in-plane. This situation is somewhat similar to the
case of a tilted nodal line in a 3D k space, where interesting
effects on the frequency dependent conductivity result from
the cyclide geometry of the resulting Fermi surface [32].

Here, we have calculated the static diffuse longitudinal
conductivity σ (EF , φ)/τ apart from the, at this point un-
known, relaxation time τ as function of azimuthal angle
φ and the thermopower (or Seebeck coefficient) which is
proportional to d ln σ (E , φ)/dE |E=EF and whose sign reflects
the charge of the carriers. These are shown in Figs. 2(c) and
2(d) and show that the conductivity has modest anisotropy at
the ∼14% level but the thermopower changes discontinuously
from positive to negative at the EHCPs. Interestingly, it is pos-
itive for the directions corresponding to electron transport be-
cause dσ/dE |EF < 0. This is because the conductivity varies
rapidly with energy near EF and the Fermi energy occurs just
above a peak in the σ (E , φ) related to a logarithmic singu-
larity in the density of states (DOS) resulting [see Fig. 2(b)]
from the saddle-point band structure at the point B1u at M.
Inserting an order of magnitude estimate of τ = 10−13s would
give a resistivity of order 0.2 μ
 cm and a thermopower of
order 5 μV/K, which is relatively high due to the Fermi
level’s occurrence near a peak in the DOS. The unique feature
here however is the discontinuous angular dependence of the
thermopower. Numerous other opportunities in the optical
conductivity and magnetotransport related to this unique 2D
nodal line remain to be explored. While we pointed out the
goniopolarity here for the completely flat system which hosts
a nodal line, this property is expected to hold up even after
somewhat buckling the system, so for less strong in-plane
tensile strains, as long as some thermal excitation or doping
provides carriers in the corresponding slightly gapped bands.

D. Changes in topology due to buckling

Next, we address the changes in band structure due to
buckling. The buckling leads to an interaction between the
pz and {px, py} derived energy bands because the horizontal
mirror plane symmetry no longer applies. We assume here
that the bond-lengths between Sb atoms stays the same but the
in-plane lattice constant shrinks as the buckling is increased.
This is qualitatively consistent with the relaxation results [15]
showing a decrease in vertical distance between the Sb atoms
d as function of in-plane lattice constant a. Thus in our tight-
binding model the Vσ and Vπ interactions stay the same but
their relative contribution to the hopping integrals changes.
Within the tight-binding model (Appendix C) the interaction
terms between pz on the one hand and {px, py} on the other
hand are proportional to (Vσ − Vπ ) and to sin (2θ ) where θ is
the buckling angle. For small buckling, the coupling is thus
linear in θ . The symmetry labeled band structure shows that
in the six high-symmetry directions around K the crossing
is protected by symmetry and thus the interaction needs to
go to zero every 60◦. Hence by symmetry, the low-energy
Hamiltonian describing the behavior near these Dirac cones
can be written

Hbuckled
K+q =

[
�x,y + q2 cos (3φ)

mπ
− qvx,y Aθ sin (3φ)

Aθ sin (3φ) �z + q2 cos (3φ)
mz

+ qvz

]

(4)

with A some constant and a sin (3φ) behavior of the off-
diagonal coupling. Figure 3 shows the effect of buckling on
the nodal line around K by plotting the difference between
conduction and valence band in a logariphmic plot and verifies
the existence of six Dirac points.

Increasing the buckling either in the DFT or in the tight-
binding model, we find that the Dirac touching points around
K move closer toward M along the K-M-K ′ line and closer to
� along the K-� line. At some critical angle, the two Dirac
points along K-K ′ annihilate each other when they reach M.
This is shown in Fig. 3(b) In the DFT results, this occurs for
about θc ≈ 7◦.

The reason why they can annihilate is that they have op-
posite winding number +1 and −1. The winding number was
calculated either from the effective low-energy Hamiltonian
or by calculating the Berry curvature in the tight-binding
model (see Appendix D) The winding number, which can be
thought of as a topological charge, is a conserved quantity
[33]. Thus the only possible way to remove Dirac cones is
to merge and annihilate them. The reason for the merging
of the Dirac cones is related to time reversal symmetry,
which guarantees that there is an equivalent and oppositely
charged Dirac cone at −k for every Dirac cone at k. Thus by
symmetry, these Dirac cones of opposite sign come together
and annihilate at the two types of time reversal invariant points
� and M.

Montambaux et al. [34] have analyzed the merging of 2D
Dirac points in terms of a universal Hamiltonian, which shows
that near such a point the bands correspond to a massive
dispersion in one of the in-plane directions and a massless one
in the orthogonal in-plane direction, which leads to an unusual√

E onset of the density of states [35], which leads also to
interesting changes in Landau levels [36]. The behavior of the
energy surfaces near the merging is shown in Fig. 3(d).

After the merging of the Dirac points at M, upon further
buckling, the Dirac points along K-� keep moving closer to
�. When they reach � at a second critical angle of about 27◦,
they annihilate in pairs and the gap at � beyond this buckling
first closes and then reopens, indicating a band inversion
between bands of different symmetry label. The evolution of
the bands in the tight-binding model is shown in more detail
in Appendix C. The E ′ and E ′′ points splitting increases sig-
nificantly with increasing buckling. With increasing buckling
the distinction between pz and {px, py} becomes less and less
meaningful and a new type of hybridization between all three
bands forming a bonding set of bands and antibonding set
of bands emerges for the fully buckled ground state of the
system. The opening of the gap corresponds to the transition
from a topologically nontrivial to a trivial gap at �, which was
studied earlier in literature [15] starting from the equilibrium
large buckling by reducing the buckling under a tensile in-
plane strain. We should clarify here that by nontrivial we
mean in the sense of a topoligical insulator (TI) protected by
time reversal. The system even in its fully buckled form has
nontrivial topoligal crystal insulator (TCI) character [37].

E. Spin-orbit coupling effects

Turning on spin orbit coupling (SOC), a gap opens up at
each of the Dirac points. We can see that it is larger for the
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FIG. 3. (a) Nodal line gap opening and formation of six Dirac points in slightly buckled honeycomb, (b) Berry flux around each of the
Dirac cones surrounding each K point, (c) movement and merging of Dirac cones as buckling angle increases, and (d) corresponding behavior
of constant energy surfaces around M (red dot).

upper E ′ point (0.56 eV) than at the lower E ′′ point (0.17 eV)
and intermediate at the Dirac points near EF . The nontrivial
nature of the band crossings leads to topologically required
edge states when the gap is opened by SOC. For the nearly
flat case, these were studied in Ref. [19]. However, we need
to keep in mind how the gaps at the K-M and �-K Dirac
points are placed energetically relative to each other. While up
to this point, we considered mostly generic properties which
are topologically invariant, we now need to worry about the
accuracy of the band structure and in particular the correct
slope and placement of the different Dirac points relative to
each other. To this end, we perform the band structures in
the QSGW approach which is known to give much more
accurate single particle excitations than DFT in a semilocal
approximation. We can see that this affects the band velocities
of the Dirac cones and the energy difference of the E ′, E ′′
Dirac points at K . For the fully buckled equilibrium system
QSGW gives a gap of 2.9 eV, significantly larger than the
1.3 eV obtained in GGA and somewhat larger than the 2.28 eV
from hybrid functional calculations [38]. In Fig. 4, we can
see that the highest VBM at the Dirac point along �-K lies
at the same energy as the lowest conduction band at the
Dirac point along K-M. So, the system is an indirect zero
gap semiconductor. Because the SOC is weaker in arsenene,
there is then a nonzero indirect overlap between the occupied
and empty bands at different Dirac points (see Appendix E).
The unique feature of this band structure is that it should
have a topologically spin polarized edge state associated with
these SOC induced spin-texture inverted gaps at specific k
points, even though the overall gap of the system is zero
or slightly negative. Such a situation has been labeled a
gapless topological insulator (GTI). It has been proposed
to possibly occur due to electron-electron interaction effects
[39] but is here found even in the independent particle
approximation.

F. Topological edge states

As is well known, topological features in the band structure
are closely related to protected edge states. The tight-binding
model allows us to study the formation of these edge states
explicitly in a finite nanoribbon. We choose to cut the honey-
comb lattice along the zigzag direction and keep it periodic
in the direction perpendicular to it but with a width of 60 unit
cells. As further confirmation, Fig. 5(b) shows a smaller 6 unit
cell nanoribbon, calculated at the DFT level with the resulting

FIG. 4. QSGW band dispersion for the low-buckled system with-
out (top) and with (bottom) SOC and the corresponding conical
energy surfaces. Energies in eV.
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FIG. 5. (a) Folding of 2D Brillouin zone onto 1D Brillouin zone in nanoribbon indicating schematically the Dirac points linked by edge
states and their motion under increased buckling; (b) six unit cell side nanoribbon with surface state from DFT; (c) band structure of nanoribbon
in tight-binding model indicating the topologically protected edge states (in red) associated with Dirac point pairs labeled as in (a) for two
buckling angles, one before and one after the merging of Dirac cones at M; and (d) 2D tight-binding band structure for the low buckling case.

edge state. The Brillouin zone folding is shown in Fig. 5(a).
The Dirac points are color coded according to their winding
number and linked by lines for the pairs that will be connected
by corresponding edge states. These connections found here
explicitly from the numerical calculations are consistent with
the theoretical considerations of Ryu and Hatsugai [40] and
with explicit calculation of the Zak phase along different
sections of k‖ showing that the edge states occur in the region
where the Zak phase is π and hence nontrivial. Note that this
depends not only on the type of edge but also on the symmetry
type of orbital involved in these bands. For instance, the edge
states emanating from the pz derived Dirac cone at K at about
−2 eV extends between K̄ and K̄ ′ as is the case in graphene.
However, the edge state in the gap near the Fermi level,
marked (b) in the right panel of Fig. 5(c), connects the Dirac
point with �̄ and continues in the next Brillouin zone back
to the periodically repeated Dirac point. This difference from
graphene results from the different type of orbitals involved
and the region where the Zak-phase is nontrivial.

The main part of the figure shows the 1D band structures
indicating the edge states in red labeled to identify them with
particular Dirac point pairings in the Brillouin zone figure
following the same labeling. We here focus mainly on the
Dirac cones near the Fermi level but other ones can be seen at
energies farther away from the Fermi level. These are related
to other linear band crossings and the �-point degenerate
levels (marked by ×) which can be seen to occur in the
tight-binding band structure for the 2D periodic band structure
at energies farther removed from the Fermi surface. In the
low-buckling case, from top to bottom, the edge states are
related to the E1u state at �, the E ′ state, the connection
between �-K and K-M Dirac points, the E ′′ Dirac point and
the E2g state at �, with the latter two interacting along K̄-K̄ ′.
Finally, an edge state connected to the lowest energy Dirac

crossings along �-K can be seen along K̄-�̄. The edge states
associated with the low-energy crossing along �-M cannot
be seen in this nanoribbon because the �-M direction is the
one along which we fold the bands. Because various of these
edge states connect Dirac points not along a high-symmetry
direction, one expects them to be present for other cut-outs of
the 2D lattice in arbitrary directions.

IV. CONCLUSIONS

In summary, in this paper we have shown that monolayer
Sb and As in the honeycomb structure exhibit a rich behavior
in terms of topological features. The system evolves from a
unique type of nodal line in the flat case to a series of six
symmetry protected Dirac points surrounding each K point
which move and annihilate first in pairs of opposite winding
number at a first critical buckling angle and subsequently
undergo a second topological transition when a trivial gap
opens at �. These result from the changing contribution
of σ and π interactions between the orbitals as function
of buckling. The nodal line is here predicted to lead to
a highly anisotropic in-plane Seebeck coefficient reflecting
goniopolarity. A multitude of edge states are predicted as well
as a gapless topological insulator behavior when spin-orbit
coupling is included which results from the energy straddling
of the small gaps opening at the symmetry protected Dirac
states in the system.

Finally, the reader may ask himself if this is a purely
theoretical exercise. As mentioned, while the equilibrium
structure of monolayer Sb is buckled and already in the region
where the gap is fully opened. Nonetheless the flat form can
be stabilized by tensile in-plane strain, as for example occurs
in an epitaxial situation on Ag [12]. We realize that it is
not trivial at all to gradually change this epitaxial strain in
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FIG. 6. Fully relaxed total energy per two-atom unit cell as function of in-plane lattice constants for Sb (left) and As (right).

experiment. However, it is not entirely inconceivable that one
could construct suspended monolayer Sb membranes in which
the tensile strain could be controlled by nano mechanical
means. One could for example bend the substrate to increase
the strain. Or one may at least envision to control different
amounts of in-plane strain in different samples by chemically
modifying the underlying substrate and thus achieve different
strain states in each of the regimes we describe in our paper.
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APPENDIX A: STABILITY AND METASTABILITY OF
FLAT AND BUCKLED 2D MONOLAYERS

Here we discuss the stability of flat vs. buckled forms of 2D
monolayer Sb and As in the β structure. In Fig. 6, we show the
results of first-principles density functional calculations using
the PBE-GGA functional for the total energy as function of in-
plane lattice constant of the honeycomb lattice. In the buckled
case, the structure for a given a is allowed to fully relax,
leading to a relative high buckling angle of ∼33◦ defined by
tan θ = √

3d/a with d the vertical distance between Sb atoms
along the z axis and a the in plane lattice constant. We can
see that a nearly flat structure, with higher in-plane lattice
constant, exists as a second metastable minimum.

The dynamical stability of monolayer honeycomb Sb was
studied by Zhao et al. [18] by means of phonon calculations
in the harmonic approximation. It shows that up to a 19%
in-plane tensile strain, the system is dynamically stable while

beyond this critical strain, imaginary phonon modes appear
around K and near �. We have confirmed these results using
the QUANTUM ESPRESSO code [41] and also found that the
flat form shows imaginary modes. However, at finite tem-
perature anharmonic terms in the potential could still keep
the system from becoming unstable. Typically a dynamic
symmetry breaking instability of this type only occurs below
a critical temperature because, at higher displacement, fourth
order terms become dominant. Secondly, what one needs to
consider here is not the stability of the free-standing flat
form of Sb but the flat form under an applied tensile in-
plane strain. This would actually require one to check the
positive definiteness of ∂H/∂ui∂u j where H = U − V η · σ

with U , the internal energy, η the strain and σ the stress
and V the volume, as function of atomic displacements in
the cell ui. Such anahrmonic calculations and including the
strain explicitly in the formulation are not at all trivial [42].
Fortunately, they are not needed because the experiment
has already confirmed the stability of the material in flat
form [12].

Finally hydrogenating the structure with H on top or below
the Sb on alternating Sb, is seen to lower the energy of the flat
Sb structure significantly although it still has higher energy
than the equilibrium structure. Similar results are found for
As. In the this paper, we have not studied the hydrogenated
form. In that case the Fermi level lies at the {px, py}-derived
E ′ Dirac point at K . This case was studied in Refs. [43,44]

Although free standing monolayer Sb in the β structure
clearly has a high buckling angle, it has unambiguously
been demonstrated experimentally that the flat or nearly flat
structure can be stabilized by epitaxial in-plane tensile strain
by putting the Sb on a Ag(111) structure [12]. The band
structure of free standing flat monolayer Sb is discussed in the
main paper. For comparison, we here show the band structure
of a ten-layer-thick Ag layer with a monolayer of Sb on
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FIG. 7. Band structure of a Ag (111) slab with Sb monolayer
adsorbed.

top in Fig. 7. The structure was relaxed with DFT before
calculating the band structure. The bands weighted by their
Sb contribution are shown in red. This shows that the features
of monolayer Sb can still be recognized clearly on top of
the Ag background, especially in the important region near
the Dirac crossings and Fermi energy where the Ag density
of states is low. This confirms the x-ray photemission (XPS)
investigations by Shao et al. [12] indicating a weak interaction
between substrate and monolayer, which could maintain at

least approximately its relevant properties while providing the
required in-plane tensile strain to stabilize the flat form.

This shows that there is a route forward to experimentally
investigate the band structure aspects studied in the main
paper by means of epitaxial stabilization and the investigation
of monolayer Sb under high tensile strain in a flat or nearly
flat form is not just a theoretical exercise but could poten-
tially be realized experimentally by adjusting the coupling
to the underlying substrate or varying the lattice constant
of the substrate. Of course, for topologically induced effects
on the transport, one would then also have to consider scat-
tering to and from the underlying Ag band structure and
the effects of the substrate symmetry breaking. Nanoscale
mechanical systems can potentially also be designed for free
standing membranes suspended over a hole in the substrate as
is currently done for graphene, black phosphorous etc. What
level of strain can be sustained in such systems is not yet clear
but 2D systems are known to be able to sustain larger strains
than 3D systems. Alternative substrates, like h-BN with van
der Waals type interactions might also be considered as a way
to maintain the required tensile strain while at the same time
minimizing the interactions so as to preserve the properties
of flat monolayer Sb [19]. In any case, the properties studied
here for free-standing flat monolayer Sb should serve as a
well-defined theoretical limit of the physically realizable flat
Sb on a suitable substrate with sufficiently weak interactions.
The perturbations caused by such interactions would have to
be considered in future work.

APPENDIX B: SYMMETRY ANALYSIS

Here we present the details of the symmetry labeling of the
band structure. Flat monolayer Sb in the honeycomb structure
has the same space group and point group as graphene.
Several prior papers have addressed the symmetry labeling of
the bands in graphene [45–47] but still some confusion exists
because of the nonuniqueness in specifying the symmetry
operations and irreducible representations. The point group of
the crystal is D6h and this is also the point group at �. The
character table is given in Table I. Note that in D6h there are

TABLE I. Character table of D6h.

D6h E C2 2C3 2C6 3U2 3U ′
2 i σh 2S6 2S3 3σv 3σ ′

v

�+
1 A1g 1 1 1 1 1 1 1 1 1 1 1 1

�+
2 A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1

�+
4 B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

�+
3 B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1

�+
6 E2g 2 2 −1 1 0 0 2 2 −1 1 0 0

�+
5 E1g 2 −2 −1 1 0 0 2 −2 −1 1 0 0

�−
1 A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

�−
2 A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1

�−
4 B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1

�−
3 B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1

�−
6 E2u 2 2 −1 1 0 0 −2 −2 1 −1 0 0

�−
5 E1u 2 −2 −1 1 0 0 −2 2 1 −1 0 0
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TABLE II. Character table of D3h.

D3h E 2C3 3U ′
2 σh 2S3 3σv

K1 A′
1 1 1 1 1 1 1

K2 A′
2 1 1 −1 1 1 −1

K6 E ′ 2 −1 0 2 −1 0

K3 A′′
1 1 1 1 −1 −1 −1

K4 A′′
2 1 1 −1 −1 −1 1

K5 E ′′ 2 −1 0 −2 1 0

two sets of twofold rotations lying in the plane. We choose U2

to pass through the atoms, while the U ′
2 pass through the bond

centers. In reciprocal space, this implies that U2 lies along the
�-M lines and U ′

2 lies along the �-K lines. The corresponding
mirror planes i ∗ U2 = σv and i ∗ U ′

2 = σ ′
v are perpendicular

to these axes, so σv goes through the bond centers and σ ′
v goes

through the atoms. We choose the lattice vectors as a1 = ax̂,
a2 = − 1

2 ax̂ +
√

3
2 aŷ and one of the points K in the Brillouin

zone thus lies along x and one of the points M lies along y.
The K points rotated by 60◦ we label K ′. We note points K
rotated by 120◦ are equivalent in that they are related by a
reciprocal lattice vector whereas K and K ′ are not. Likewise
we denote the M points rotated by 60◦, M ′ and rotated by 120◦
as M ′′. These are nonequivalent but rotating them by 180◦
gives equivalent M points.

The group D6h can be viewed as the direct product D6 ⊗ Ci

where Ci is the group consisting of the identity and the
inversion. (It could also be viewed as C6v ⊗ Ci or C6v ⊗ Cs

or D6 ⊗ Cs with Cs the group formed by {E , σh} and this is
the reason behind some of the discrepancies between previous
symmetry labelings.) The irreducible representations follow
the usual notation in which subscript g means even with
respect to inversion and u means odd with respect to inversion.
The corresponding labels of the Koster notation [48] are also
included. Although the symmetry aspects for graphene and Sb
are the same, a difference is that the s-p splitting is larger in
Sb relative to the hopping interactions and hence the s states
form separate bands from the atomic p-state derived bands.
The s states are even in the horizontal mirror plane and form
bonding an antibonding combinations on atoms A and B in the
unit cell: (sA + sB)/

√
2 and (sA − sB)/

√
2. The operations C2,

C6, U ′
2, i, S6, σv change sublattices A to B and vice versa. Thus

it is clear that the bonding state belongs to A1g and the anti-
bonding state to B1u. The pz states are odd vs. the σh and are
thus decoupled by symmetry from the s and px, py. Again they
form bonding and antibonding states (pzA + pzB)/

√
2 and

(pzA − pzB)/
√

2 which are now respectively of symmetry A2u

and B2g. The px and py build the representations E2g and E1u.
Now, the group of k, Gk, consists of those operations

that turn k into itself up to a reciprocal lattice vector.
For point K , which we choose along the x-axis, these are
{E , 2C3, 3U ′

2, σh, 2S3, 3σv}, which build the group D3h. At
M, the group GkM consists of {E ,C2,U2,U ′

2, i, σh, σv, σ
′
v}

building the group D2h. The character tables of these groups
are given in Tables II and III. Note that in the group D3h

representations labeled by superscript ′ are even with respect
to the σh and ′′ are odd. In D2h note that which irrep is called

TABLE III. Character table of D2h.

D2h E C2 U2(y) U ′
2(x) i σh σv(xz) σ ′

v(yz)

M+
1 Ag 1 1 1 1 1 1 1 1

M+
3 B1g 1 1 −1 −1 1 1 −1 −1

M+
2 B2g 1 −1 1 −1 1 −1 1 −1

M+
4 B3g 1 −1 −1 1 1 −1 −1 1

M−
1 Au 1 1 1 1 −1 −1 −1 −1

M−
3 B1u 1 1 −1 −1 −1 −1 1 1

M−
2 B2u 1 −1 1 −1 −1 1 −1 1

M−
4 B3u 1 −1 −1 1 −1 1 1 −1

B2g or B3g depends on the choice of U2 or U ′
2 being chosen as

first or second set of twofold axes in the xy plane. We added
another label to indicate specifically which axes are chosen
for the M lying along y.

Along the �-K = T axis the symmetry operations remain-
ing are {E ,U ′

2(x), σh, σv(xz)} building the group C2v . The irreps
of this group depend on which of the mirror planes one
chooses as first. We here choose σh as first mirror plane.
Along �-M = �, the group is also C2v but now the symmetry
elements remaining are {E ,U2(y), σh, σ

′
v(yz)}. Finally along the

line M-K the group is the same as along �-K . The character
tables used are given in Table IV.

Next, we consider the modifications that occur upon buck-
ling. In this case, the mirror planes through the atoms remain
but the twofold rotation through the atoms is no longer valid.
Similarly, the rotation axis through the bond center remains
but the mirror plane through the bond axis is no longer valid.
The sixfold rotations also are no longer valid but the inversion
remains. The corresponding changes from flat to buckled in
the groups Gk are given in Table V. The resulting group is D3d

and its character table is given in Table VI.
We can thus easily convert the labels from the D6h case to

the D3d case according to Table VII. The same holds for the
odd versus inversion irreps labeled by the u subscript.

Now at K , the group becomes D3 because we loose the
inversion. The character table thus consist just of the upper
left block in Table VI. The irreps stay the same as at � but
without the g, u subscripts. At M we now have the group C2h

consisting of {E ,U ′
2(x), i, σ ′

v(yz)}. Its character table is given in
Table VIII.

Along the line �-K the group is C2 consisting of {E ,U ′
2(x)}.

The same applies to the line M-K . The character table is

TABLE IV. Character table of C2v .

� − K E U ′
2(x) σh σv(xz)

C2v � − M E U2(y) σh σ ′
v(yz)

(T, �)1 A1 1 1 1 1

(T, �)3 A2 1 1 −1 −1

(T, �)2 B1 1 −1 1 −1

(T, �)4 B2 1 −1 −1 1

235111-9



RADHA AND LAMBRECHT PHYSICAL REVIEW B 101, 235111 (2020)

TABLE V. Groups Gk for flat and buckled cases.

� �-M M M-K K K-�

D6h C2v D2h C2v D3h C2v
Flat

{E ,U2(y), σh, σ
′
v(yz)} {E ,U ′

2(x), σh, σv(xz)} {E ,U ′
2(x), σh, σv(xz)}

D3d Cs C2h C2 D3 C2
Buckled

{E , σ ′
v(yz)} {E ,U ′

2(x)} {E ,U ′
2(x)}

given in Table IX. Along �-M, the group is Cs consisting of
{E , σ ′

v(yz)} with characters given in Table X.
We may also consider a flat structure but making the A and

B atoms different. This would apply to the case of monolayer
h-BN. Then starting from D6h we loose the inversion but we
keep the horizontal mirror plane. The group at � in that case
is D3h consisting of {E , 2C3, 3U2, σh, 2S3, 3σ ′

v}. The group at
K in that case is the group C3h consisting of {E , 2C3, σh, 2S3}.
At M, the group becomes C2v consisting of {E ,U2, σh, σ

′
v}.

Along the lines �-K and M-K the group is Cs consisting of
{E , σh} and along �-M it is the same as at M.

Finally, making the system both buckled and breaking
the inversion. Then the group at � is only D3, containing
{E , 2C3, 3U2}. At K, it becomes C3 at M and along �-M it
becomes C2 with only elements {E ,U2} along �-K and M-K
there is no symmetry left at all.

The character table of C3 is given in Table XI. We note
that in the group C3, Koster et al. [48] labels the two irreps
which cannot be made real as two separate irreps while in the
’chemical’ notation, they are both labeled E . This is because
if one ignores spin these two irreps are each other’s complex
conjugate and become degenerate by time reversal. They form
a Kramers doublet. However, taking into account the spin 1/2
no degeneracy between the two occurs because time reversal
takes spin up into spin down. Adding the horizontal mirror
plane just adds another label ′ or ′′ for even or odd under that
operation. Thus we can see that that the degenerate levels E
in the buckled case or E ′ and E ′′ would be allowed to split
and open a gap. This is well known to open the gap in the
honeycomb BN case.

APPENDIX C: TIGHT-BINDING MODEL

In this section, we construct a nearestins-neighbor tight-
binding Hamiltonian for the Sb-p derived orbitals. The struc-
ture is shown in Fig. 8. For the bands near the Fermi level,
one can ignore the contribution of s states as they occur at
much lower energy as seen in the previous section. Separating
the orbitals according to their sublattice A, B, the Hamiltonian

TABLE VI. Character table for D3d .

D3d E 2C3 3U ′
2 i 2S6 3σ ′

v

�+
1 A1g 1 1 1 1 1 1

�+
2 A2g 1 1 −1 1 1 −1

�+
3 Eg 2 −1 0 2 −1 0

�−
1 A1u 1 1 1 −1 −1 −1

�−
2 A2u 1 1 −1 −1 −1 1

�−
3 Eu 2 −1 0 −2 1 0

takes the block form:

H =
( A B

A �̄ + μAI3×3 H̄

B H̄∗ �̄ + μBI3×3

)
. (C1)

Here,

�̄ =
⎡
⎣�x,y

�x,y

�z

⎤
⎦ (C2)

gives the energy shift of the atomic p orbitals from the zero
reference energy. We included here the fact that the on-site
diagonal energy for pz orbitals may be different from that of
{px, py} orbitals. We can also switch on a different potential
(μA, μB) on each sublattice and examine which band cross-
ings open up as a gap in response. The off-diagonal AB blocks
involve the Bloch sum over the three nearest neighbors:

H̄ = T1(Vπ ,Vσ , θ )eik·δ1 + T2(Vπ ,Vσ , θ )eik·δ2

+ T3(Vπ ,Vσ , θ )eik·δ3 , (C3)

where

δ1 = (− cos θ
√

3/2, cos θ/2, sin θ )a/
√

3,

δ2 = (cos θ
√

3/2, cos θ/2, sin θ )a/
√

3, (C4)

δ3 = (0,− cos θ, sin θ )a/
√

3

in terms of the lattice constant a as shown in Fig. 8. The side
of the hexagon is a/

√
3. Here T1, T2, T3 can be expressed in

terms of the Vπ and Vσ components of the nearestins-neighbor
hopping interaction using the Koster-Slater two-center ap-
proximation [49]. We assume here that under buckling, the
bond distance a is kept fixed and the buckling angle just
changes the relative contributions of Vπ and Vσ to the hopping
integrals. We chose the Vπ/Vσ ratio to be −0.275. This value
is close to Walter Harrison’s universal ratio [50]. Together
with the �x,y − �σ parameters, they were chosen to present
a similar band structure to the DFT results of the main paper.
However, a detailed fit was not attempted because the actual
band structure is affected by interaction with nearby d and s
bands and the main purpose of our tight-binding model is to
study the generic behavior of the bands as function of buckling
angle and mostly the topological features.

TABLE VII. Compatibility between D6h and D3d group irreps.

D6h A1g A2g B1g B2g E2g E1g

D3d A1g A2g A2g A1g Eg Eg
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Each Ti is a 3 × 3 matrix in the basis of the pm, m = (x, y, z) orbitals.

T1(Vπ ,Vσ , θ ) =

⎡
⎢⎢⎣

Vπ

( − 3 cos2 θ
4 + 1

) + Vσ
3 cos2 θ

4 (Vπ − Vσ )
√

3 cos2 θ
4 (Vπ − Vσ )

√
3 sin θ cos θ

2

(Vπ − Vσ )
√

3 cos2 θ
4 Vπ

( − cos2 θ
4 + 1

) + Vσ
cos2 θ

4 (Vσ − Vπ ) sin θ cos θ
2

(Vπ − Vσ )
√

3 sin θ cos θ
2 (Vσ − Vπ ) sin θ cos θ

2 Vπ cos2 θ + Vσ sin2 θ

⎤
⎥⎥⎦, (C5)

T2(Vπ ,Vσ , θ ) =

⎡
⎢⎢⎣

Vπ

( − 3 cos2 θ
4 + 1

) + Vσ
3 cos2 θ

4 (Vσ − Vπ )
√

3 cos2 θ
4 (Vσ − Vπ )

√
3 sin θ cos θ

2

(Vσ − Vπ )
√

3 cos2 θ
4 Vπ

( − cos2 θ
4 + 1

) + Vσ
cos2 θ

4 (Vσ − Vπ ) sin θ cos θ
2

(Vσ − Vπ )
√

3 sin θ cos θ
2 (Vσ − Vπ ) sin θ cos θ

2 Vπ cos2 θ + Vσ sin2 θ

⎤
⎥⎥⎦, (C6)

T3(Vπ ,Vσ , θ ) =

⎡
⎢⎣

Vπ 0 0

0 Vπ sin2 θ + Vσ cos2 θ (Vπ − Vσ ) sin θ cos θ

0 (Vπ − Vσ ) sin θ cos θ Vπ cos2 θ + Vσ sin2 θ

⎤
⎥⎦. (C7)

It is insightful to first understand the unbuckled case
(θ = 0). In that case, the pz orbitals are decoupled from the
px, py orbitals because the former are odd with respect to the
horizontal mirror plane and the latter are even.

The z part of the Hamiltonian becomes the well-known

Hz(k) =
[

�z Vπg0(k)

Vπg∗
0(k) �z

]
(C8)

with

g0(k) =
3∑

j=1

eik·δ j (C9)

giving the purely π -bonded bands. At � we find E (k� ) =
�z ± 3Vπ with eigenvectors pzA∓pzB√

2
. At K , we have eik·δ1 =

e−i2π/3, eik·δ2 = ei2π/3 eik·δ1 = 1 and g0(k) = 0 giving the
doubly degenerate eigenvalue �z. This is the Dirac point E ′′.

The xy part of the Hamiltonian has the off-diagonal part

H̄xy =
[

3Vσ +Vπ

4 g+(k) + Vπeik·δ3

√
3(Vπ −Vσ )

4 g−(k)
√

3(Vπ −Vσ )
4 g−(k) 3Vπ +Vσ

4 g+(k) + Vσ eik·δ3

]

(C10)

with g±(k) = eik·δ1 ± eik·δ2 . At �, the g−(k�) = 0 and we
obtain two degenerate eigenvalues �x,y ± (Vσ + Vπ )3/2 with
eigenstates (pxA ∓ pxB)/

√
2 and (pyA ∓ pyB)/

√
2. At K , the

matrix can still be diagonalized analytically. The off-diagonal
part here takes the form

H̄xy(kK ) =
[
− 3

4 (Vσ − Vπ ) i 3
4 (Vσ − Vπ )

i 3
4 (Vσ − Vπ ) 3

4 (Vσ − Vπ )

]
(C11)

TABLE VIII. Character table of C2h.

C2h E U ′
2(x) i σ ′

v(yz)

M+
1 Ag 1 1 1 1

M+
2 Bg 1 −1 1 −1

M−
1 Au 1 1 −1 −1

M−
2 Bu 1 −1 −1 1

The Hamiltonian then has a double degenerate eigen-
value E = �π with eigenvectors πA = (pxA + ipyA)/

√
2 and

π∗
B = (pxB − ipyB)/

√
2, the Dirac point E ′, and two nonde-

generate eigenvalues �x,y + (Vπ − 3Vσ )/2 with eigenvector
(π∗

A − πB)/
√

2 �x,y − (Vπ − 3Vσ )/2) with eigenvector (π∗
A +

πB)/
√

2. In other words, it can be diagonalized in the basis of
the πA, π∗

A , πB and π∗
B orbitals [30].

We now examine the band surfaces in 3D, in particular the
intersection of the down pointing Dirac cone derived from the
px, py orbitals and the upward pointing Dirac cone derived
from the pz orbitals. To further study this crossing analytically
we expand the tight-binding Hamiltonian around K , i.e., for
k = kK + q for small q = (q cos φ, q sin φ). The azimuthal
angle φ of the q is measured from the X direction for the K
point along x and q = |q|.

The eigenvalues are symmetric about the �z and �x,y and
given by

Ez = �z ± vzq ± q2

mz
cos (3φ),

(C12)

Ex,y = �x,y ± vx,yq ± q2

mx,y
cos (3φ).

Here, vz and vx,y are the Dirac linear dispersion velocities
and mz and mx,y are an effective mass parameter. The actual
effective masses depend on the direction of q leading to a
warping of the constant energy lines with threefold symme-
try, while the velocity is isotropic. For the pz Hamiltonian,
one finds in our nearest-neighbor tight-binding Hamiltonian,
vz = √

3πVπ and m−1
z = −Vππ2/2. Thus both are completely

determined by the Vπ -interaction between pz orbitals. On the
other hand, one may also keep mz and vz as independent
parameters to make the effective low-energy Hamiltonian and
eigenvalues applicable beyond the tight-binding model. Their
form is dictated by symmetry.

TABLE IX. Character table of C2.

C2 E U ′
2(x)

T1 A 1 1

T2 B 1 −1
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TABLE X. Character table of Cs.

Cs E σ ′
v(yz)

�1 A′ 1 1

�2 A′′ 1 −1

For the {px, py} derived bands, the eigenvalues of the tight-
binding Hamiltonian are also found to be symmetric about
�π and are found by diagonalizing Heff = H̄xyH̄xy

† and taking
±√

λ of its eigenvalues λ. These eigenvalues were worked
out by Wu et al. [30] for the special case that Vπ = 0, which
applies to optical lattices. In that case, two bands are found to
be flat, and two are Dirac cone like and have exactly the same
shape as for the pz orbitals. With a mixture of both Vσ and
Vπ , the expressions of the expansion in q become too complex
to be useful but the important finding is that by choosing the
mx,y of opposite sign as the mz orbitals the warping is found
to be rotated by 30◦. In the DFT band structure in the main
paper we can see that the particle-hole symmetry about �x,y

which is the E ′ value above the Fermi level, no longer holds.
This is because of the interactions with the higher lying bands
which are derived from the Sb-d orbitals and not included in
the model. Therefore it is not that useful to find expressions
for the velocity and mass parameter of this Dirac cone in
terms of the tight-binding model because the latter has only
limited validity. What matters is that both Dirac cone bands
near K and extending up to the region of their intersection can
be described by Eq. (C12), which represents two trigonally
warped Dirac cones and that in the DFT results these cones
are found to be rotated 30◦ with respect to each other.

Examining the bands in Fig. 1 in the main paper one
can see that the upper band of the pz derived Dirac cone
deviates upward from the linear behavior and thus has positive
mz which agrees with the Vπ < 0. The lower band of the
px,y derived Dirac cone can be seen to bend down and thus
has the opposite mass mx,y < 0. Note that the direction K-�
corresponds to φ = π . and the direction K − M corresponds
to φ = 2π/3.

Both of the Dirac cones can be obtained from an effective
low Hamiltonian of the form

Heff =
[

�z qvz + q2 cos (3φ)
mz

qvz + q2 cos (3φ)
mz

�z

]
(C13)

with a similar one for the px,y case.
To illustrate the behavior of the Dirac cone warping, we

show in Fig. 9 contour plots obtained in the tight-binding
Hamiltonian for different choices of Vσ ,Vπ for the pz derived
and {px, py} derived cones. One can see that while for the

TABLE XI. Character table of C3, ω = e2iπ/3.

C3 E C3 C−1
3

K1 A 1 1 1
K2 E 1 ω ω∗

K3 E 1 ω∗ ω

FIG. 8. Lattice of low buckled antimonene. Shaded and dark
circles represent the Sb at different height. Inset shows the definition
of buckling used in the paper along with the corresponding 1st BZ .

pz derived ones the corners of the triangular contours around
K are point in the K-M-K ′ direction and the shape does not
depend on Vσ because these bands only involve Vπ . In contrast
the {px, py} derived cones for the first choice of Vσ ,Vπ param-
eters which best matches the DFT bands and are used in the
main paper, the cones are rotated by 30◦ with respect to the pz

cone. The flat edge of the triangle is now along the K-M-K ′
direction. However, as we change the Vσ ,Vπ these cones can
become almost circular (middle case) or their warping rotated
the same as for pz as Vσ is increased. Thus the rotated warping
of the pz relative to the {px, py} derived cones is sensitive to
the relative values of Vσ and Vπ and this is what is ultimately
responsible for the shape of the nodal line and the occurrence
of six Dirac points after buckling.

FIG. 9. Contour plot of valence pz (top) and conduction {px, py}
(bottom) bands for various values of (Vπ ,Vσ ). From left to right,
(Vπ ,Vσ ) = (−0.66, 2.4), (−0.66, 3.6), (−0.66, 4.44) eV. K and K ′

points are marked. The � point occurs at each of the corners of the
reciprocal unit cell spanned by b1 and b2.
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FIG. 10. Evolution of band structure(in eV) at different buckling angles θ . From left to right) 0◦, 5◦, 7.34◦, 20◦, 36◦. In this figure, the
energy units are eV and Vσ = 2.4 eV and Vπ = −0.66 eV. The red-dashed line at 0 energy is the Fermi energy in the flat case but is kept fixed
in the later figures without adjusting the Fermi energy. In the before last panel, the Fermi energy lies exactly at the degenerate band touching
at �.

The effects of buckling in our model are incorporated
through the θ dependence. As already explained in the main
text, when θ �= 0 the off-diagonal terms between the pz block
and {px, py} blocks are turned on. The resulting 6 × 6 matrix
is readily diagonalized numerically but analytic expressions
are no longer possible. Instead in the main text we then focus
on the effective low energy Hamiltonian near the nodal line,
which explains its breaking up into six separate Dirac points.

In Fig. 10, we show the tight-binding bands of the 6 × 6
p-orbital derived Hamiltonian for various buckling angles.
The leftmost figure for the flat case can be compared with
the DFT results given in Fig. 1(a) of the main paper. The Vσ ,
Vπ and �x,y, �z parameters were chosen to give about the
correct ratios of the splitting of the two Dirac points E ′, E ′′
at K , the splitting of the outermost eigenvalues A′

2, A′
1 [see

labeling of Fig. 1(a) in main paper] of the {px, py} derived
bands at K and the splitting of the pz derived bands at �. Note
that both the {px, py} derived bands and pz derived bands are
‘particle-hole’ symmetric about their center of gravity, the E ′
and E ′′ Dirac points at K , which are displaced from each other
by �x,y − �z for the flat case. We can see that the lower band
levels A2u, E2g at � are then close to each other while the upper
band levels at �, B2g and E1u are more separated and inverted
from the DFT bands. We are not trying to reproduce the DFT
bands exactly because these upper bands are influenced by the
interaction with the Sb-d bands in the DFT results. Our main
goal here is just to see the qualitative evolution of the bands
under buckling. We can see the Dirac points move toward M,
disappear at M and then the remaining ones move closer to �

and finally the full gap opens.

APPENDIX D: WINDING NUMBER

One can calculate the winding number of the Dirac cones
around a contour C around the Dirac point given by [33]

Wc = 1

2π

∮
C

∇qφ�q · dq (D1)

where φ�q is the relative phase between the two coefficients
in the eigenvector tan(φ�q) = u2

u1
of the 2 × 2 effective Hamil-

tonian near the Dirac point [Eq. (4) in the main paper].
Alternatively, in the tight-binding model, we can open up
a gap at each of these Dirac cones by adding the μA, μB

parameters giving a different on-site energy to the A and B
atoms in the unit cell. Once a small gap is opened up, the Berry

curvature [51,52], i.e., the curl of the Berry connection, is
calculated numerically on a fine k mesh and for each occupied
state. Summing these gives the total winding number as shown
in Fig. 3(b) in the main part of the paper. Finally, also in the
tight-binding model, we can calculate the accumulated Berry
phase along a small contour around the Dirac point. We have
verified that these different procedures agree with each other.

APPENDIX E: RESULTS FOR ARSENENE

While the main paper is mostly focused on antimonene
(Sb), very similar results hold for arsenene (As). The relative
stability of the flat and buckled honeycomb structure was
already shown in Fig. 6. The band structure at the GGA level
is shown in Fig. 11 both with and without spin-orbit coupling.
We can see that the Fermi level again occurs near the crossing
of the two Dirac cones centered at K . The crossings of these
cones along �-K and K-M are again tilted with respect to each
other. The spin-orbit coupling opens a gap at all the Dirac
points. We can see that as in Sb, the spin-orbit opened gap
is larger for the upper E ′ {px, py} derived Dirac point at K
than for the lower E ′′ pz derived Dirac point. At the new
Dirac points along �-K and K-M, the splitting is intermediate.
The main point is that the gaps opened here at the Dirac
points near EF are straddled with respect to each other so
that the system remains overall metallic, in contrast with the
Sb case in the main paper Fig. 3, where a zero indirect gap
situation emerges.

FIG. 11. Band structure of arsenene (As) with (black) and with-
out (red) SOC at the GGA level.
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