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We analyze in depth an S3-invariant nearest-neighbor quantum chain in the region of a U (1)-invariant
self-dual multicritical point. We find four distinct proximate gapped phases. One has three-state Potts order,
corresponding to topological order in a parafermionic formulation. Another has “representation” symmetry-
protected topological (RSPT) order, while its dual exhibits an unusual “not-A” order, where the spins prefer to
align in two of the three directions. Within each of the four phases, we find a frustration-free point with exact
ground state(s). The exact ground states in the not-A phase are product states, each an equal-amplitude sum over
all states where one of the three spin states on each site is absent. Their dual, the RSPT ground state, is a matrix
product state similar to that of Affleck-Kennedy-Lieb-Tasaki. A field-theory analysis shows that all transition
lines are in the universality class of the critical three-state Potts model. They provide a lattice realization of a
flow from a free-boson field theory to the Potts conformal field theory.
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I. INTRODUCTION AND PHASE DIAGRAM

Recent years have seen an explosion of interest in “exotic”
phases of quantum matter, to the point where many phases for-
merly viewed as exotic appear quite naturally. The venerable
quantum Ising chain is now understood to provide a funda-
mental example of topological order in its Majorana fermion
form [1]. The Haldane phase of spin-1 antiferromagnet chains
[2,3], with its special point analyzed by Affleck, Kennedy,
Lieb, and Tasaki (AKLT) [4,5], now provides the archetype
of symmetry-protected topological (SPT) order [6–9]. The
AKLT ground state is one of the canonical examples of a
matrix product state [10]. Another major line of development
is in analyzing systems invariant under a Zn symmetry. These
“parafermion” systems exhibit a rich variety of interesting be-
havior, in particular providing a possible avenue to universal
topological quantum computation [11].

The aim of this paper is to analyze in depth a model dis-
playing much of this interesting physics. We study a nearest-
neighbor S3-invariant quantum chain near a U (1)-invariant
critical point [12] and show that four distinct phases meet
at this multicritical point. One phase has three-state Potts
order, which in the parafermionic formulation is topological
order. Another has what we call “representation” SPT (RSPT)
order protected by the S3 permutation symmetry. Such order is
protected by the symmetry if the Hilbert space is not changed
but is destroyed if a spin-1/2 degree of freedom is coupled to
the end of the chain. A third phase exhibits an unusual “not-A”
order, where the ground states prefer to avoid one of the three
spin states at each site. The fourth phase is a disordered one,
dual to the Potts ordered phase.

Our model provides a unified way of studying interrela-
tions between RSPT, topological, and ordered phases. One
feature of our model is that the RSPT phase has nice behavior
under Kramers-Wannier duality. Namely, RSPT order is dual
to that of the not-A order, and the duals of the exact RSPT
state are product states. Another unifying feature is that all the
phase transition lines are in the same universality class, that of
the critical three-state Potts model. One is a direct transition
between the ordered Potts phase and RSPT phase.

The Hamiltonian of our quantum chain [(11) below] is
the linear combination of the Hamiltonian at the multicritical
point with the usual three-state Potts Hamiltonian. We display
our results for the two-parameter phase diagram in Fig. 1. The
multicritical point is at the center, and four continuous phase
transition lines meeting there separate the four phases.

A number of the features of this phase diagram can be
seen in an effective field-theory description, simple enough
to present here before doing the detailed analysis in Sec. V.
After the spatial averaging needed for the continuum limit,
we find that the three-state system at each site of our quantum
chain is described by a real bosonic field �(x). The three
states correspond to � taking values 0, 2π/3, and 4π/3, and
we need to “compactify” the boson by identifying the values
� ∼ � + 2π . The Z3 symmetry then corresponds to shift-
ing � → � + 2π/3, while the charge-conjugation symmetry
sends � → −�. The Euclidean (imaginary-time) action of
our model valid near the multicritical point is written in terms
of � and its dual field �̂. It is∫

d2x[g(∇�)2 + v cos 3� + v̂ cos 3�̂] , (1)
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FIG. 1. The phase diagram surrounding the multicritical point,
where the axes are defined via J = α + β, f = α − β, and λ =
1 − α. The multicritical point is at the center, with the points having
(matrix) product ground states labeled by (M)PS. The duality f ↔ J
is a reflection about the line β = 0. The horizontal line is self-dual
(red), while the U (1) and dual U (1) (dotted black) symmetric lines
are at 45 degree angles to it. “Northeast” and “northwest” hatch-
ings denote the ordered and disordered phases, respectively, while
crosshatching shows the RSPT phase. The second-order transitions
are along the solid lines, with the locations of the not-A/RSPT
and Potts order-disorder transitions known exactly from duality. The
other transitions are located numerically, as explained in Sec. VI,
with the blue line an interpolation.

where g, v, and v̂ are couplings. As the notation indicates,
duality exchanges the latter two terms, while leaving the
quadratic term invariant. Less obviously, we show in Sec. V B
that duality requires g = 3/(4π ).

The multicritical point v = v̂ = 0 in (1) is described by a
free gapless bosonic field theory familiar in conformal field
theory [13,14] and in condensed-matter physics [15,16]. Here
Z3 shift symmetry is promoted to a full U (1) symmetry
generated by � → � + a for any 0 � a < 2π . Moreover, the
self-duality requires dual U (1) invariance under �̂ → �̂ + â
for any 0 � â < 2π .

Letting v vary while keeping v̂ = 0 gives the gapped sine-
Gordon field theory [17]. The S3 symmetry is spontaneously
broken, because minima of the potential occur away from
� = 0. These ordered phases can be characterized by the
magnetization Mg ≡ 〈g|ei�|g〉 in an S3-breaking ground state
|g〉. The symmetry requires M3

g to be real and independent
of g.

The physics depends crucially on the sign of v. For v > 0,
the values of � corresponding to lattice spin direction are
minima of the potential. One expects, and our results confirm,
conventionally ordered ground states with M3

g > 0. For v <

0, these ground states are instead maxima of the potential,
requiring the symmetry breaking to take a very different form,
with M3

g < 0. We find that each of the three ground states

prefers to exclude one of the three spin states at each site,
while involving equal densities of the other two. Since we
label the spin states as A, B, and C, we dub this phase the
not-A phase.

By duality, the gap also occurs with v = 0 and nonzero
v̂. The order parameter given by replacing � with �̂ in Mg

must be nonvanishing. There can be no local order parameter,
as along the v = 0 line the full U (1) symmetry is preserved
by the Mermin-Wagner theorem. Indeed, e±i�̂ are nonlocal in
the original field �, as in the two-dimensional classical field
theory, they create and annihilate vortex configurations in �.

Both phases at v̂ = 0 are disordered by the conventional
definition. Nonetheless, they can be distinguished. For v̂ > 0
vortices dominate, giving the Potts disordered phase. For v̂ <

0 they are not as strongly favored, so different forms of long-
range order are more likely. One of our central results is that
this phase, the dual of the not-A phase occurring at v̂ < 0, has
RSPT order. One way this form of long-range order manifests
itself is by the presence of nontrivial degeneracies in the open
chain.

The action (1) describes a gapped model in general. How-
ever, when |v| = |̂v|, it instead gives a field-theory description
[18] of a flow from the free-boson field theory to the three-
state Potts conformal field theory (CFT), a flow discovered
by using exact scattering matrices and perturbed CFT [19,20].
Our model therefore gives explicit lattice realizations of this
flow. The self-dual case v = v̂ is the horizontal red line in
Fig. 1. This Potts CFT thus describes not only the usual fer-
romagnetic Potts order/disorder transition, but the transition
between not-A order and the RSPT phase. Moreover, the field
theory is independent of the signs of v and v̂, so the same CFT
must also describe the RSPT/Potts order and not-A/disorder
transitions. These transition lines, however, cannot be exactly
located in the lattice model, as it is not self-dual when v = −v̂.

The field-theory approach thus gives a good qualitative
picture of the phase diagram. The purpose of this paper is
to give a quantitative one by analyzing the lattice model in
detail. A key result is that at four points, one in each phase,
we find exact ground states typifying the corresponding phase.
An intriguing observation is that the eight exact ground states
at these four points (three in each of the ordered phases, one
in the disordered phase, and one in the RSPT phase), are
precisely the eight possible conformal boundary conditions in
the critical two-dimensional classical three-state Potts model
[21,22].

We start in Sec. II by giving the Hamiltonian and show
that it is the most-general short-range Hamiltonian with the
desired symmetries. The exact ground states are found in
Sec. III, and the results extended to the full phases in Sec. IV,
including a detailed analysis of the RSPT ground state and
its relation to the AKLT state. The field-theory action (1) is
derived in Sec. V, with the arguments summarized here in the
introduction explained in more depth. Section VI describes
numerics completing the picture.

II. THE MODEL

Throughout this paper we study a quantum spin chain with
three states for each of the L sites. The Hamiltonian and
the symmetry operators acting on the 3L-dimensional Hilbert
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space are conveniently expressed in terms of the operators
σ j and τ j for j = 1, 2, . . . L, with σL+1 ≡ σ1. Each operator
acts nontrivially on only one site j, e.g., σ j = 1 ⊗ 1 · · · 1 ⊗
σ ⊗ 1 · · · 1, so operators with different indices commute. We
define

σ 2
j = σ

†
j , σ 3

j = 1, τ 2
j = τ

†
j , τ 3

j = 1, σ jτ j = ω τ jσ j,

(2)

where ω = e2iπ/3. In a basis where τ is diagonal the resulting
matrix representation is

σ =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, τ =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ . (3)

Symmetries. We consider a two-parameter nearest-
neighbor Hamiltonian invariant under the S3 permutation
group. This symmetry is generated by Z3 generator S and
charge conjugation C. Their actions do not commute, and the
fact that S3 is non-Abelian has interesting consequences.

Charge conjugation obeys C2 = 1. It acts on the operators
as Cσ jC = σ

†
j and Cτ jC = τ

†
j . Cyclic permutations are gener-

ated by S = ∏
j τ j = ωQ, where

Q =
L∑

j=1

Sz
j, Sz

j = i√
3

(τ †
j − τ j ) . (4)

They obey S†σ jS = ωσ j , while commuting with τ j . These
permutations act diagonally in the basis (3), while in the
sigma-diagonal basis they shift all spins. Since S3 = 1, the
eigenvalues of S are ωs, where s = 0, 1,−1.

In some important special cases, the Z3 symmetry is en-
hanced to a full U (1) symmetry generated by Q. Operators
having nice commutation relations with Q are

S+
j = 1

3 (2 − ωτ j − ω2τ
†
j )σ †

j , S−
j = (S+

j )†. (5)

The corresponding single-site operators S± are proportional
to the usual spin-1 SU (2) raising and lowering operators and
are given in the τ -diagonal basis (3) by

Sz =
⎛
⎝0 0 0

0 1 0
0 0 −1

⎞
⎠,

S+ =
⎛
⎝0 0 1

1 0 0
0 0 0

⎞
⎠, S− =

⎛
⎝0 1 0

0 0 0
1 0 0

⎞
⎠.

They therefore satisfy[
Sz

j, S±
j

] = ±S±
j , (6)

as of course can be derived directly from the algebra (2).
We impose two more discrete symmetries, as well as

translation symmetry. One is parity, which simply exchanges
the operators at j and L + 1 − j: σ j → σL+1− j, τ j → τL+1− j .
The other is time reversal, which is antiunitary and sends
σ j → σ

†
j but leaves τ j invariant. This antiunitary operation

also sends any constant to its complex conjugate.
Duality. A very important property of our models is

Kramers-Wannier duality, originally developed for the 2d
classical Ising model [23]; see, e.g., Ref. [24] for its action in

the Potts models. In our Hamiltonian setting with translation
invariance and periodic boundary conditions, we can take
duality to act on the operators as

τ j → σ
†
j σ j+1 , σ

†
j σ j+1 → τ j+1 . (7)

The charge Q is therefore not invariant under duality, and
so the dual of any Hamiltonian commuting with Q must
commute with the charge

Q̂ = i√
3

∑
(σ jσ

†
j+1 − σ

†
j σ j+1). (8)

The Hamiltonians. The three-state Potts model is the best-
known S3-invariant chain. With periodic boundary conditions,
its Hamiltonian is

HP = −
L∑

j=1

[ f (τ j + τ
†
j ) + J (σ †

j σ j+1 + σ jσ
†
j+1)] . (9)

It is critical at the ferromagnetic and antiferromagnetic self-
dual points, J = f > 0 and J = f < 0, respectively [24].
The former separates an ordered phase J > f � 0 from the
disordered phase f > J � 0.

The other basic nearest-neighbor S3 invariant Hamiltonian
is much less known. It is

H0 =
L∑

j=1

[
3
(
S+2

j S−2

j+1 − S+
j S−

j+1 + H.c.
) − τ j − τ

†
j

]
. (10)

This Hamiltonian obeys all the symmetries of HP. In addition,
[Q, H0] = 0, so the Z3 symmetry generated by S is enhanced
to a U (1) here. Moreover, H0 is self-dual, as made apparent
by the alternate form (15) given below. It is a special case of
the integrable spin-1 XXZ chain [25,26] and can be obtained
from the anisotropic limit of the classical 19-vertex model
[27]. Since it is both self-dual and commutes with Q, it must
commute with Q̂ as well. It therefore possesses a large non-
Abelian symmetry algebra generated by Q and Q̂ known as
the Onsager algebra. As detailed in our earlier work [12], one
of a number of interesting consequences is that the spectrum
of H0 has large degeneracies.

In this paper we analyze the host of interesting physics
coming from combining the two Hamiltonians via

H (J, f , λ) = λH0 + HP(J, f ) + (2λ − f − J )L . (11)

We focus on the region around H0, taking λ � 0. In compan-
ion work [28,29], we consider the equally interesting physics
arising for λ negative.

At J = 0, our Hamiltonian has a U (1) symmetry generated
by Q, while at f = 0, it has a U (1) symmetry generated by Q̂.
In the phase diagram in Fig. 1 we scale out an overall constant
by parametrizing J = α + β, f = α − β, and λ = 1 − α. The
point in the center of the diagram is H0, where f = J = α =
β = 0. The self-dual line is the horizontal line, while the U (1)
lines are at 45 degree angles to it, with all meeting at H0.

Temperley-Lieb generators. Expressing the Hamiltonian in
terms of projection operators gives several useful insights. The
basic Hermitian operators are defined as

p2 j−1 ≡ 1 + τ j + τ
†
j , p2 j ≡ 1 + σ

†
j σ j+1 + σ jσ

†
j+1. (12)
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They obey pa pb = pb pa for |a − b| > 1, and it is straightfor-
ward to show that

(pa)2 = 3pa , pa pa±1 pa = 3pa . (13)

These relations, known as the Temperley-Lieb algebra [24],
are ubiquitous in the study of integrable lattice models and
knot invariants. We have used an unconventional normaliza-
tion (the usual being ea = pa/

√
3). The duality (7) simply

amounts to sending p j → p j+1, consistent with the fact that
(13) holds for all a, despite the different definitions for a even
and odd.

The Potts Hamiltonian obviously can be written as

HP = L( f + J ) −
L∑

j=1

[ f p2 j−1 + J p2 j] . (14)

Less obviously,

H0 = −2L −
2L∑

a=1

(pa pa+1 + pa+1 pa + 3pa) . (15)

Although the latter expression obscures the U (1) symmetry of
H0, it makes its self-duality apparent. The Hamiltonian (15)
for general Temperley-Lieb generators [(ea)2 = nea for gen-
eral n] has been studied in depth in a different representation
[30] with different physics.

H as a sum over projectors. The expressions (14), (15) are
very useful in finding exact ground states at special points.
The operator

Pa,a+1(γ ) = γ pa + 3γ −1 pa+1 − pa pa+1 − pa+1 pa (16)

is proportional to a projector for any γ . Namely, it follows
from the Temperley-Lieb algebra (13) that it obeys

(Pa,a+1(γ ))2 = 3(γ + 3γ −1 − 2)Pa,a+1 . (17)

We then define

Hγ ,γ̂ ≡
L∑

j=1

[P2 j−1,2 j (γ ) + P2 j,2 j+1(γ̂ )] . (18)

Using the expression (15) of H0 in terms of the pa gives

Hγ ,γ̂ = H0 + 2L +
L∑

j=1

[(γ + 3γ̂ −1 − 3)p2 j−1

+ (γ̂ + 3γ −1 − 3)p2 j].

With an appropriate definition of couplings, the last terms here
are simply the Potts Hamiltonian (14) up to a shift. Thus,
fixing γ and γ̂ via

f = λ(3 − γ − 3γ̂ −1) , J = λ(3 − γ̂ − 3γ −1) , (19)

our Hamiltonian (11) is rewritten as a sum over projectors as

H (J, f , λ) = λ Hγ ,γ̂ . (20)

Requiring that the Hamiltonian be Hermitian means that either
both γ and γ̂ are real or γ γ̂ ∗ = 3.

When a Hermitian Hamiltonian can be written as a sum
over projectors with positive coefficients, all energies are
non-negative. For the λ positive case of interest here, the
energies are thus non-negative when both γ > 0 and γ̂ > 0,

as is apparent from (17). Moreover, any state annihilated by
all the projectors is a ground state with energy zero.

Other perturbations. Any other Hamiltonians preserving
these symmetries are longer range in the following senses.
The only other nearest-neighbor terms obeying charge con-
jugation, time-reversal, and parity will involve p2 j−1 p2 j+1,
whose dual is the next-nearest neighbor operator p2 j p2 j+2.
Moreover, any such terms are longer range in the parafermion
picture. Parafermions [31] are a generalization of Majorana
fermions useful for, among other things, understanding topo-
logical edge modes and their potential experimental applica-
tions [11]. Defining

ψ2 j−1 = σ j

j−1∏
k=1

τk , ψ2 j = ωσ j

j∏
k=1

τk , (21)

we see that

τ j = ω2ψ
†
2 j−1ψ2 j, σ

†
j σ j+1 = ω2ψ

†
2 jψ2 j+1 , (22)

so that the Potts chain is range two in terms of parafermionic
operators, containing ψ†

a ψa+1 and its square. The U (1) invari-
ant H0 is range three, containing terms ψ†

a ψa+2, ψaψa+1ψa+2

and their squares. Any other nearest-neighbor terms involving
both τ j and τ j+1 are range four, involving terms like ψ†

a ψa+3.
Such terms are thus longer range when written in terms of the
parafermions or the pa.

The U (1)-invariant H0 is therefore the only other nearest-
neighbor self-dual three-state Hamiltonian with all the sym-
metries of the Potts chain. This fact, along with the perturbed
conformal-field-theory arguments given in Sec. V, strongly
suggest that all relevant operators obeying the desired symme-
tries are already included in the Hamiltonian defined in (11).

III. EXACT GROUND STATES

To start our exploration of the phase diagram, in this
section we analyze four special points where the exact ground
states can be found. Happily, one such point occurs in each of
the four phases, giving a great deal of insight into the types of
ordering.

A. Potts ordered and disordered points

Setting J = λ = 0, f > 0 gives the Hamiltonian

HDP = − f L − f
L∑

j=1

(τ j + τ
†
j ). (23)

The model is trivially solvable, with any state in the τ -
diagonal basis an eigenstate. We denote the three eigenstates
of τ j by |0〉, |+〉, and |−〉, with eigenvalues 1, ω, and ω2,
respectively. The unique ground state is simply

|00...0〉 . (24)

No local symmetry is spontaneously broken, and the model is
gapped and completely disordered at this point.

Another trivially solvable point in the phase diagram
occurs at the dual value f = λ = 0, J > 0, where the
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Hamiltonian is simply

HOP = −JL − J
L∑

j=1

(σ †
j σ j+1 + σ jσ

†
j+1) . (25)

Any state in the σ -diagonal basis is an eigenstate of HOP. We
denote the three eigenstates of σ j on each site by |A〉, |B〉, and
|C〉, with eigenvalues 1, ω, and ω2, respectively. The three
ground states of energy −3L are then

|AAA . . . 〉 , |BBB . . . 〉 , |CCC . . . 〉 . (26)

The Z3 symmetry cyclically permutes these states and so is
spontaneously broken. Rewritten in terms of parafermions,
this point is the simplest example of a Z3 topological
phase [11].

The ordered Potts point and the phase surrounding it are
thus ordered and gapped. The most useful order parameter
characterizing such a phase is the magnetization

Mg = 〈g|σ j |g〉 (27)

in an S3-breaking ground state |g〉. [We give an order parame-
ter independent of ground state in (55) below.] As long as the
ground state is translation invariant, Mg will be independent of
j. The three ground states (26) at the ordered point H = HOP

have

MA = 1 , MB = ω , MC = ω2 . (28)

At the completely disordered point, the magnetization van-
ishes, as it must for any S3-invariant ground state.

B. Nontrivial exact ground states

Two more special points possess exact ground states. These
models are not trivially solvable like the Potts ordered and dis-
ordered points and are not integrable. Knowing these ground
states leads to a nice way of characterizing the phases on the
left-hand side of the phase diagram in Fig. 1.

We find these exact zero-energy ground states by utilizing
the sum over projectors given in (18), (20). Since the opera-
tors Pa,a+1 do not all commute with each other, zero-energy
ground states do not occur for generic couplings. To find
special points where they do, we note that having some of
the projectors commute greatly simplifies the task of finding
states annihilated by all the Pa,a+1. A little algebra shows that

[Pa,a+1(γ0), Pa+1,a+2(γ ′
0)] = 0 , (29)

when

γ0 = 3/2 , γ ′
0 = 2 .

Both Hamiltonians H3/2,2 and H2,3/2 do indeed have exact
ground states as we show next.

The “not-A” state. Setting γ = γ0 and γ̂ = γ ′
0 in the

Hamiltonian translates to f = 0 and λ = −J > 0, as follows
from (19). Writing out the Pa,a+1 in the σ -diagonal basis
allows one to see that H3/2,2 has three exact ground states
given by product states. Consider the nine states on the two
sites j, j + 1. Then

|AA〉 − |BA〉 − |CA〉

is an eigenstate of P2 j−1,2 j (γ0) with nonzero eigenvalue (9/2
in our normalization). The two other states given by cyclic
permutations under the action of the Z3 symmetry genera-
tors (i.e., all A → B → C → A) are necessarily eigenstates
with the same eigenvalue P2 j−1,2 j (γ0). The other six states
on the two sites are annihilated by P2 j−1,2 j (γ0). Likewise,
P2 j,2 j+1(γ ′

0) projects onto

|AA〉 − |AB〉 − |AC〉
and its cyclic permutations. The state

|BB〉 + |BC〉 + |CB〉 + |CC〉 ≡ 2|Ā〉 ⊗ |Ā〉 (30)

is thus annihilated by P2 j−1,2 j (γ0) + P2 j,2 j+1(γ ′
0), as are its

cyclic permutations. We have denoted

|Ā〉 = 1√
2

(|B〉 + |C〉) ,

with |B̄〉 and |C̄〉 given by cyclic permutations.
Each term in the Hamiltonian H3/2,2 thus annihilates the

product states

|ĀĀ...Ā〉, |B̄B̄...B̄〉, |C̄C̄...C̄〉 . (31)

The ground state |ĀĀ . . . Ā〉 is the equal-amplitude sum over
all states not including A on any site, and so we dub it the “not-
A” state. Acting with the Z3 symmetry generators gives the
not-B and not-C states, while charge conjugation exchanges
not-B and not-C. The S3 symmetry is therefore spontaneously
broken as in the Potts ordered phase. The magnetizations are
indeed nonvanishing, taking the values

MĀ = − 1
2 , MB̄ = − 1

2ω, MC̄ = − 1
2ω2. (32)

The MPS state. An exact ground state also arises at the
dual values γ̂ = γ0 = 3/2 and γ = γ ′

0 = 2, corresponding to
J = 0 and λ = − f > 0. Here the Hamiltonian is particularly
simple, as using (10) and (11) gives

H2, 3
2

= 3L + 3
L∑

j=1

[S+
j S−

j+1(S+
j S−

j+1 − 1) + H.c.]. (33)

As is manifest, this Hamiltonian is U (1) invariant.
The zero-energy ground state of H2,3/2 is a matrix product

state (MPS) of bond dimension 2. We group states at site j
into the matrix

R( j) =
( |0〉 |+〉

|−〉 |0〉
)

. (34)

Using the form (33), it is simple to check that

(P2 j−1,2 j (γ
′
0) + P2 j,2 j+1(γ0))R( j) ⊗ R( j + 1) = 0 ,

where the tensor product

R( j) ⊗ R( j + 1) =
(|00〉 + | + −〉 |0+〉 + | + 0〉

| − 0〉 + |0−〉 | − +〉 + |00〉
)

is given by multiplying the two matrices. The full Hamiltonian
therefore annihilates the state

|ψMPS〉 = Tr(R(1) ⊗ R(2) ⊗ . . . R(L)) , (35)

where the trace is in the (suppressed) matrix indices (the
“auxiliary” space), not in the Hilbert space.
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TABLE I. The behavior of the order parameter M3 and the
ground-state degeneracy with open boundary conditions in the four
gapped regions.

Phase M3 Degeneracy

Ordered Potts >0 3
Disordered Potts 0 1
RSPT 0 4
not-A <0 3

This zero-energy ground state |ψMPS〉 is invariant under
the S3 symmetry and so has vanishing magnetization. It is
straightforward to check that it is the unique ground state of
H2,3/2 for periodic boundary conditions. For open boundary
conditions, however, there are four ground states, suggesting
the existence of an SPT phase. We explain in Sec. IV how
it is not quite an SPT but a less robust variation called a
representation SPT.

C. Connection to conformal boundary conditions

We have found eight exact ground states at these four
points, three in each of the ordered phases, and one in each
of the other two. We here point out an intriguing connection
to the eight conformal boundary conditions in the three-state
Potts conformal field theory (the very same CFT that describes
the phase transitions in our model). Conformal boundary
conditions do not introduce a length scale and so preserve
(half of) the conformal symmetry. The boundary of a 2d model
can be treated as a 1d state, and on the lattice, the space of all
possible boundary conditions forms a vector space like the
Hilbert space of our quantum chain. Powerful CFT tools [21]
allow boundary states corresponding to conformal boundary
conditions to be characterized and classified.

For the three-state Potts CFT, Refs. [21,22], found the eight
conformal boundary states and gave intuition into them using
of the two-dimensional classical Potts model at its critical
point. Remarkably, these eight states are precisely our ground
states. The three states |AAA . . . 〉, |BBB . . . 〉, and |CCC . . . 〉,
are the three fixed boundary conditions in the 2d model. The
state |000 . . . 〉 is an equal-amplitude sum over all states in the
σ -diagonal basis and corresponds to free boundary conditions
in the classical model. Three more states are called “mixed”.
In each mixed state, one of the three spin values is forbidden,
just as in our not-A states. The eighth conformal boundary
state was uncovered in Ref. [22] and named “new”. It proved
more difficult to characterize on the lattice but was shown
to be the dual of the not-A states. Thus it is precisely our
MPS (35).

IV. THE PHASES

In the preceding Sec. III, we found four points with exact
ground states, two ordered and two disordered. In this section
we show that each is indicative of a distinct phase, and so our
phase diagram must have at least four phase transition lines
separating them. The distinct characteristics of each phase are
summarized in Table I.

A. The ordered phases

The two special points with ordered ground states both
occur when f = 0. The perfectly ordered Potts ground states
(26) occur at λ = 0, while three ground states of “not-A”
type in (31) occur at J = −λ. All transform nontrivially under
the S3 symmetry and have nonvanishing magnetization, given
in (28) and (32). Since the Hamiltonian is always invariant
under the S3 symmetry, we expect that this symmetry remains
spontaneously broken even when the couplings are deformed
away from these special points. The Potts order therefore
persists in the region around f = λ = 0, while the not-A order
remains in the region around f = 0, J = −λ.

As the couplings are deformed away from the special
points, the ground states deform, and the magnetization with
them. How they transform under the S3 symmetry, however,
can only change if there is a phase transition. In finite size
the degeneracy between the three ground states is split by
corrections exponentially small in L. These three states are
linear combinations of states |�A〉, |�B〉, |�C〉 deforming
those in (26), still satisfying

S|�A〉 = |�B〉, S|�B〉 = |�C〉,
C|�B〉 = |�C〉, C|�A〉 = |�A〉,

as the corresponding product states do. It follows using the
definition (27) that MA is real and that

MB = ωMA, MC = ω2MA. (36)

Analogously, near the not-A product state MĀ remains real and

MB̄ = ωMĀ, MC̄ = ω2MĀ . (37)

By continuity, M3
g remains real and independent of g while

it is nonvanishing. The only way to deform between posi-
tive and negative values then requires that the magnetization
must vanish at some coupling where the S3 symmetry is not
spontaneously broken. We thus have an unambiguous way of
distinguishing between the two phases: For any symmetry-
breaking ground state in the Potts ordered phase, M3

g > 0,
while for any symmetry-breaking ground state in the not-A
phase, M3

g < 0. The phases are separated by a phase transition
with vanishing magnetization. As neither the RSPT phase nor
the disordered Potts phase has local order, M3

g vanishes in
these phases.

When written in terms of parafermions, the ordered Potts
phase becomes a topological phase [11]. With open boundary
conditions, the three ground states can be thought of as arising
from the parafermionic excitations being localized at the edge.
It is worth noting though that because of the presence of
time-reversal and parity symmetries, this degeneracy between
states only holds for the ground state.

B. The RSPT phase

The magnetization vanishes both at the Potts disordered
point and at the MPS point. Distinguishing between the two
phases therefore requires a subtler analysis than that needed
for the ordered phases. Here we do this analysis, showing
that the MPS point is part of a phase with representation
symmetry-protected topological (RSPT) order.
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The matrix-product ground state |ψMPS〉 in (34) is similar
to the famous AKLT ground state of a spin-1 SO(3)-invariant
chain [4,5]. Both the corresponding Hamiltonians are special
cases of a more general model with exact ground states
[32,33], whose Hamiltonian is

HMPS =
L∑

j=1

[
h2

j + β(h jg j + g jh j ) + β ′g j (1 + g j )

+ α2g2
j + α3h j + α4

((
Sz

j

)2 + (
Sz

j+1

)2) + α0
]
,

where h j = S+
j S−

j+1 + S−
j S+

j+1, g j = Sz
jS

z
j+1, and the cou-

plings are related as α0 = a2 − 2, α2 = a2 − 2|β + a|, α3 =
a + β, α4 = |a + β| + 1 − a2. For any choice of a, β, β ′,
these have a zero-energy ground state of the two-channel MPS
form (35), where

R( j) =
( |0〉 −√

a|1〉√
a|2〉 −sign(β + a)|0〉

)
. (38)

Our Hamiltonian corresponds to setting (a, β, β ′) =
(−1, 0, 1/2), and the ensuing factors of ±i in (38) can
be gauged away. The AKLT Hamiltonian corresponds
to (a, β, β ′) = (2, 1, 3). The most significant distinction
between the AKLT ground state and ours is the minus
signs. These signs, however, can be removed by the unitary
transformation HMPS → UHMPS U−1 with U = ∏

j ei jπSz
j ,

which sends a, β, β ′ to −a,−β, β ′.
The AKLT model provides the canonical example of

an SPT phase stable against various kinds of symmetry-
preserving perturbations [6,7]. As long as a dihedral D2

symmetry of π rotations about all three orthogonal axes x,
y, and z is preserved, the SPT order protects this “Haldane”
phase as long as the gap does not close. One consequence
is the four ground states in the presence of open boundary
conditions persist throughout this phase. This SPT phase also
is protected by either a time-reversal or parity symmetry [6,7].

Owing to the similarity of the AKLT state to our MPS
ground state, it is natural to expect analogous behavior in
the surrounding phase. However, none of the symmetries
protecting the Haldane phase persists in our Hamiltonian.
The D2 symmetry comes closest. It is generated by charge
conjugation C along with the Z2 symmetry (−1)Q. Hence it
is preserved on the U (1)-invariant line but not otherwise as
in general our model preserves only ωQ. The time-reversal
symmetry protecting the Haldane phase is distinct from ours,
and is not present here, as it is broken by the perturbation
σ

†
j σ j+1 + σ jσ

†
j+1. Parity symmetry is still a symmetry, but

both it and our time-reversal symmetry have trivial represen-
tations for the edge states. Thus SPT order apparently survives
in our model only along the J < 0 part of the U (1) line.

The S3 symmetry, however, is enough to guarantee the
stability of the phase in our model. We demonstrate the
ensuing order by studying the ground states of the open-chain
Hamiltonian

Hγ ,γ̂ ≡
L−1∑
j=1

[P2 j−1,2 j (γ ) + P2 j,2 j+1(γ̂ )] . (39)

At the MPS point with γ = 2 and γ̂ = 3/2, this Hamiltonian
has four ground states given by the entries of the matrix

product(|uu〉 |ud〉
|du〉 |dd〉

)
≡ (R(1) ⊗ R(2) ⊗ . . . R(L)) , (40)

i.e., (35) without the trace. Since the system is gapped, the
edges of the system can be treated as uncorrelated. Thus one
can intuit that in the ground state, each edge belongs to one of
two possible states, labeled by u and d in (40). Choosing one
of the two for each edge gives the four ground states. A key
observation of the work on SPT phases is that analyzing the
effect of global symmetries on the ground states allows one to
not only make this notion precise but to show how such phases
are robust under perturbations.

The generators of the S3 group C and S obey

C2 = 1 , S3 = 1 , CS2 = SC , S2C = CS . (41)

The action of C and S on the MPS ground states amounts to
replacing the matrix (34) with( |0〉 |−〉

|+〉 |0〉
)

,

( |0〉 ω|+〉
ω−1|−〉 |0〉

)
, (42)

respectively. These actions can be recast as operations in the
MPS auxiliary space using

UC =
(

0 1
1 0

)
, US =

(
ω−1 0

0 ω

)
. (43)

Then taking R( j) → UCR( j)U †
C and R( j) → USR( j)U †

S im-
plements the symmetries on the ground states.

When implementing the symmetry on the four MPS
ground states via these unitaries, all the operations cancel
except at sites 1 and L. These states therefore transform under
the S3 via matrix multiplication at the edges, e.g., under a
charge conjugation(|uu〉 |ud〉

|du〉 |dd〉
)

−→
(

0 1
1 0

)(|uu〉 |ud〉
|du〉 |dd〉

)(
0 1
1 0

)

=
(|uu〉 |du〉

|ud〉 |dd〉
)

. (44)

The unitary operators UC and US obey the same relations as
(41) and form an irreducible two-dimension representation of
the S3 symmetry group. The same goes for their Hermitian
conjugates U †

C and U †
S . Therefore each edge transforms as

this two-dimensional representation of the symmetry group.
In SPT states, the analogous matrices form instead projective
representations of the symmetry group [8,9]. As we explain,
this distinction is why our phase is not quite as strongly
protected.

The key to distinguishing the ordered phases was demon-
strating that the ground states in the Potts ordered and not-A
phases could not be deformed into each other without closing
the gap. An analogous but subtler argument applies in the
disordered phases. Deforming the couplings away from the
MPS state, the ground states must also transform as in (44)
and the analog for S . Moreover, since the Hamiltonian is local,
the edges remain uncorrelated (up to exponentially small
finite-size corrections). Then each edge must still transform
in the doublet of S3 as long as the gap does not close. The
four ground states persist in a region around the MPS state
as long as the S3 symmetry is preserved. For any boundary
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conditions, the Potts disordered state has a unique ground state
transforming trivially under the S3. It is thus distinct from the
“RSPT” phase in the upper left of Fig. 1.

The “R” in RSPT is for representation, as the fact that the
edges transformed nontrivially under a non-Abelian represen-
tation of S3 was crucial in characterizing the phase. However,
the RSPT phase is not as robust as an SPT. In the preceding
analysis, we considered only deformations that left the Hilbert
space unchanged. Full SPT order remains robust even if other
degrees of freedom are coupled in a symmetry-preserving
fashion, a consequence of each edge individually transforming
as a projective representation (both edges together give a
conventional representation, as they must). No symmetry-
preserving local perturbation can break the degeneracies in an
SPT phase. However, even though our non-Abelian symmetry
is strong enough to protect the order under deformations of the
original chain, it is still local. Coupling the edge to an added
two-state system can destroy the order, as one might expect.
Namely, define

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
, (45)

as the operators acting on the extra two-state system, which
we take to transform as a doublet under the S3 symmetry.
Coupling it to the edge spin via

Hbreak = λbreak(S+
L σ− + S−

L σ+) (46)

then leaves all our symmetries intact. It is easy to check
numerically that the degeneracies are split in two for λ = 0.
Coupling the analogous term to the other edge then removes
the edge degeneracy entirely, leaving a unique ground state.
S3 symmetry is no longer sufficient to protect the edge
degeneracy.

The other irreducible representations of S3 are one dimen-
sional, and their tensor product with a doublet still leaves a
doublet. A three-state spin transforming under S3 in the usual
way described in Sec. II is comprised of a doublet and a one-
dimensional representation. The latter means that coupling
an added three-state spin to the edge spin need not split the
edge degeneracy. The edge-spin degeneracy is thus stable
to all S3 deformations preserving the Hilbert space and to
those coupling edge spins to one-dimensional representations.
This is still rather robust behavior, and so we prefer the
name representation SPT (RSPT) to that of a “fragile” SPT
sometimes used in a similar context [34].

V. THE PHASE TRANSITIONS

We have shown that there are at least four phases in our
phase diagram in the regions surrounding each of the points
with exact ground states. The phases with spontaneously
broken S3 symmetry are in the upper right and lower left of
Fig. 1, while the RSPT order is in the upper left. The goal of
this section is to understand the phase transitions separating
the four and to rule out any other nearby phases.

To this end, we use a field-theory analysis. The continuum
limits of both H0 and the self-dual Potts model HP(J, J )
(J > 0) are given by two-dimensional conformal field theories
(CFTs) [13,14]. The symmetries of the lattice Hamiltonian
allow the field theories describing various perturbations to

U(1)

dual U(1)

self-dual
c = 4/5c = 4/5

FIG. 2. RG flow about the c = 1 (central) and c = 4/5 points,
with axes as in Fig. 1. The dotted black and solid red (horizontal)
lines are exact, as symmetry constrains the flow to be along the red
line when self-duality is imposed and along the dotted lines for U (1)
or dual U (1). The other critical flows starting at the c = 1 CFT must
start out vertically but no lattice symmetry constrains them to stay
that way; numerics given in Sec. VI indicate the curves shown.

be identified precisely. Combining these observations with a
known renormalization-group flow between these two confor-
mal field theories [18–20] allows us to show that the model
must have four distinct phases separated by phase transitions
in the three-state Potts universality class. These flows are
derived in this section and summarized in Fig. 2.

Such calculations are possible because of the very strong
constraints of conformal invariance in two spacetime dimen-
sions. These constraints, along with other symmetries, are
sufficient to determine all possible scaling dimensions in both
the CFTs here [35,36]. Conformal transformations here can
be split into holomorphic and antiholomorphic parts, acting
independently on the z and z complex coordinates. In the
Hilbert-space (i.e., real-time) approach, the Hamiltonian can
be split into the corresponding left and right-moving parts:

HCFT = 2π

L

(
L0 + L0 − c

12

)
. (47)

The operators L0 and L̄0 commute with each other, while
the universal number c is called the central charge. States
therefore can be labeled in terms of these eigenvalues as
|h, h̄〉, where L0|h, h̄〉 = h|h, h̄〉, L̄0|h, h̄〉 = h̄|h, h̄〉 . An oper-
ator creating any state |h, h̄〉 from the ground state has scaling
dimension h + h̄.

A. Flows near the three-state Potts CFT

The three-state Potts CFT describing the continuum limit
of HP with f = J has been understood for quite some time
[37,38]. It has central charge c = 4/5, and a list of all the
relevant operators and their symmetries can be found in
Ref. [39]. Only one relevant operator is invariant under the
S3 symmetry and both parity and time-reversal symmetries.
It is known as the energy operator ε(x), where x denotes the
spatial coordinate in the continuum. The energy operator has
(h, h̄) = (2/5, 2/5) and is odd under the duality. These facts
imply that the anti-self-dual lattice operator

τ j + τ
†
j − σ

†
j σ j+1 − σ jσ

†
j+1 −→ ε(x)

in the continuum limit [37]. Taking f = J in HP corresponds
to perturbing the self-dual critical point by precisely this
lattice operator, indeed the reason ε(x) is named the energy
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operator. The corresponding perturbed CFT is thus

HPotts + ( f − J )
∫

dx ε(x) .

This relevant perturbation of the critical point results in the
vertical flows near HP in Fig. 2. This perturbed CFT is
integrable and gapped [40], and no nontrivial fixed point
results from this flow for either sign of f − J . Indeed, the
Potts completely ordered and disordered Hamiltonians HPO

and HPD treated in Sec. III A are gapped with correlation
length zero.

Perturbing the Potts Hamiltonian by the U (1)-invariant
self-dual operator H0 is a different matter entirely. Thinking
of H0 as an operator in the Potts CFT, it has all the symmetries
of HP plus the U (1) symmetries generated by Q and Q̂. There
is no relevant self-dual operator in the three-state Potts CFT
invariant under parity or time-reversal symmetry (although
there is a chiral self-dual one [41]). Thus perturbing HP by
H0 should result in a flow back into HP, as illustrated by the
horizontal self-dual line near HP in Fig. 2. The least irrelevant
operator invariant under all the appropriate symmetries has
dimensions (7/5, 7/5), and so the flow back into HP should
be via this operator.

B. The U (1)-invariant CFT

Since H0 has more symmetry than HP, it is natural to expect
that along the self-dual line f = J there is a flow from H0

to HP. We find that this indeed is what happens for λ > 0,
with a beautiful continuum picture [18,19]. (Such a flow,
however, does not occur from −H0 to HP, where λ is negative;
other phases intervene [28].) To utilize the continuum picture,
however, we must first identify the CFT describing H0, and
find the properties of its operators under duality and the
symmetries.

Since H0 has U (1) symmetries, the simplest possible con-
formal field theory describing its continuum limit is that of
a free compact boson with central charge c = 1. In order to
make contact with the conformal field theory literature, we
use a different normalization of the field as compared to the
field � in the introduction. We define a compact bosonic field
φ to take values on a circle of radius r, so that φ is identified
with φ + 2πr. Just like the Hamiltonian (47) can be split into
two commuting pieces, the field can be as well:

φ(z, z̄) = ϕ(z) + ϕ(z̄) , (48)

with action in Euclidean spacetime

SB = 1

2π

∫
d2z[(∂ϕ)2 + (∂̄ϕ)2] . (49)

The action and Hamiltonian are thus invariant under inde-
pendent shifts ϕ → ϕ + b and ϕ → ϕ + b̄ and so has two
U (1) symmetries. It is customary to call the conserved charge
arising from shifts in φ the electric charge, while the magnetic
charge arises from shifting the dual field φ̂ = ϕ − ϕ, the
names stemming from the Coulomb-gas approach to critical
phenomena [42]. The model has two Z2 symmetries given
by sending ϕ → −ϕ or ϕ → −ϕ. Doing both thus sends
φ → −φ, while doing the latter exchanges φ with φ̂, and so
is electric-magnetic duality.

All the possible scaling dimensions for a compact boson
are contained in the partition function

Z (q, q̄) = Tr(qL0−c/24q̄L̄0−c/24) . (50)

One can think of Z (q, q̄) as a partition function on a torus
labeled by modular parameter τ , with q = exp(2π iτ ) and
q̄ = exp(−2π iτ̄ ). This definition generalizes the usual finite-
temperature partition function, as using (47) gives

Tr e−HCFT/T = Z (e−2π/(LT ), e−2π/(LT ) ) .

For the two-dimensional free boson, Z (q, q̄) can be computed
directly [13,14] for any boson radius r, yielding

Z (r) = 1

ηη̄

∑
m,n∈Z

q
1

8r2 (m+2r2n)2

q̄
1

8r2 (m−2r2n)2

(51)

with m and n the electric and magnetic charges, respec-
tively, while η is the Dedekind η function defined as
η ≡ q1/24 ∏∞

n=1(1 − qn). We have adopted the normaliza-
tion convention [13] that the operators e±imφ/r have elec-
tric charge ±m, vanishing magnetic charge, and dimensions
(m2/8r2, m2/8r2). Likewise, e±2inrφ̂ have magnetic charge ±n
and are of dimension (n2r2/2, n2r2/2). From these expres-
sions it is apparent that interchanging m and n leaves the
partition function invariant when r → 1/(2r) as well.

By using the constraints coming from integrability, the pre-
cise conformal field theory corresponding to the continuum
limit of H0 was identified long ago [43]. It is indeed that of
a compact boson, with radius r = √

3/2. From the partition
function (51), one can identify the left and right scaling
dimensions of all operators in the theory simply by reading
off powers of q and q̄ appearing in its expansion. Setting
r = √

3/2 gives the scaling dimensions of all the operators
appearing in the continuum limit of H0 to be

(h, h̄) =
(

(m + 3n)2

12
+ a,

(m − 3n)2

12
+ ā

)
, (52)

where a and ā can be any non-negative integers.
The next task is to identify the relevant operators and their

symmetry properties. Charge-conjugation symmetry can be
identified with the φ → −φ, φ̂ → −φ̂ symmetry of the CFT.
Since C does not commute with Q and φ → −φ does not
commute with shifts of φ, the electric charge m must be the
eigenvalue of Q in the field-theory limit. The Z3 charge is thus
ωm, and the magnetic charge n is the eigenvalue of Q̂. The
Kramers-Wannier duality of the lattice model then becomes
the electric-magnetic duality in the CFT. Indeed, under both
lattice and CFT dualities a state with charges (m, n) is mapped
to one with charge (n, m).

In fact, the only boson radius consistent with these sym-
metries and the action of duality is r = √

3/2. Our derivation
exploits the fact that Kramers-Wannier duality on the torus
mixes symmetry sectors with various boundary conditions
(see, e.g., Refs. [24,42,44]). For example, in two-dimensional
classical lattice models duality is proved by showing that
the high-temperature graphical expansion is equivalent to the
low-temperature expansion in terms of domain walls (oriented
in our three-state case). The latter expansion only allows for
certain domain-wall configurations to be wrapped around a
cycle of the torus, whereas the former is not restricted, and
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so establishing equalities between such partition functions
requires some care. One finds with a more detailed calculation
[44], that for H0 with periodic boundary conditions, only
the sector with trivial Z3 charge is invariant under duality.
The other sectors instead transform to sectors with twisted
boundary conditions.

Thus the CFT partition function restricted to electric charge
a multiple of 3, i.e. m = 3m′, is self-dual, while the full Z (r)
is not. We therefore require

Zs−d(r) = 1

ηη̄

∑
m′,n∈Z

q
1

8r2 (3m′+2r2n)2

q̄
1

8r2 (3m′−2r2n)2

to be self-dual, i.e., unchanged by m′ ↔ n with r fixed. This
forces 2r2 = 3 and hence r = √

3/2. Analogous c = 1 points
occur in models with N states per site [12], and the same
duality argument can be used to show that these have boson
radius rN = √

N/2.

C. Flows from the U (1)-invariant CFT

The S3 symmetry of our Hamiltonian H tightly constrains
the field theory describing its continuum limit in the region
around H0. Since the Z3 part is generated by ωQ, the U (1)
charge modulo 3 is still preserved. Thus any perturbed CFT
description of our Hamiltonian can include only operators
that have m = 3m′ for integer m′. Moreover, the charge-
conjugation symmetry means they must also be invariant in
sending m → −m and n → −n.

From (52) it is thus apparent that only two relevant opera-
tors are both S3 and chirally invariant, both with dimensions
(3/4, 3/4). The operator cos

√
6φ violates electric charge by

±3 and preserves magnetic charge, while cos
√

6 φ̂ preserves
electric charge but violates magnetic charge. To fix the field
theory precisely, note that duality corresponds to exchanging
the two terms, whereas the lines f = 0 and J = 0 preserve
Q and Q̂, respectively. Ignoring all irrelevant operators, the
general perturbed CFT action describing the continuum limit
of H is therefore

S = SB + �

∫
d2z[ f cos

√
6 φ + J cos

√
6 φ̂] , (53)

where � is a nonuniversal constant symmetric in f , J . We
thus have derived the action (1) in the introduction with the
rescaling φ = r�.

The field theory corresponding to setting either f = 0
or J = 0 is a well-known one, the sine-Gordon model; for
a review see, e.g., Ref. [17]. It is integrable and gapped,
so the flows along the U (1)-preserving lines do not reach
nontrivial fixed points. In Fig. 1, these are along the lines
α = ±β. Thus all the models with exact ground states are
gapped. As described in the introduction, one can compute the
magnetization along the J = 0 line directly in the field theory,
in harmony with the lattice results derived above.

For | f | = |J|, the field theory remains gapped in general.
However, something very special happens along the self-dual
line f = J . It was convincingly argued [18,20] that this field
theory describes an integrable flow [19] from this particular
free-boson field theory with c = 1 to the Potts conformal field
theory with c = 4/5 [45]. In the case f = J > 0, this flow
very naturally appears in our phase diagram: adding HP to H0

is relevant and causes a flow between the two critical points.
Adding H0 to HP is indeed irrelevant, as we have shown.

The field theory is independent of the signs of f and of J ,
because either can be flipped by redefining φ and/or φ̂ by a
shift of π

√
2/3. The flow is therefore the same for all | f | =

|J|, and so occurs for all four of these perturbations of H0.
There are thus c = 4/5 critical lines emanating from H0 in
both vertical and horizontal directions in Figure 2.

While this field theory analysis makes these flows clear,
in the lattice model only the self-dual f = J > 0 case seems
immediately apparent, in that perturbing around H0 gives a
relevant self-dual perturbation flowing to HP. In the self-dual
case f = J < 0, the couplings in HP are antiferromagnetic,
but the field theory still predicts the transition between the
RSPT and not-A phases is that of the ferromagnetic three-state
Potts model.

Even more striking is what happens when f = −J . While
duality relates two phases on the bottom of Figs. 1 and 2 to
their reflection on top, the field-theory perturbation in the ver-
tical direction is anti-self-dual. The critical phase transition in
the Potts universality class still occurs as illustrated in Fig. 2,
but since no lattice symmetry protects the location of these
lines, they need not stay vertical. The numerics discussed
below in Sec. VI are needed to locate the transition precisely.
Finding a continuous transition from the not-A phase to the
disordered phase perhaps is not so surprising. However, the
transition from the ordered Potts phase with spontaneous
symmetry breaking directly into the RSPT phase is much
more unusual—the local order parameter of the former is quite
different from the nonlocal order parameter of the latter.

VI. THE FULL PHASE DIAGRAM

We have found four distinct phases of our Hamiltonian H
in the region of H0. We also have shown by the perturbed
CFT analysis that four critical lines in the three-state Potts
universality class terminate at the multicritical point H0 and
that these lines separate the different phases, as indicated in
the flow diagram in Fig. 2. The simplest and most natural way
of putting this information together is in the phase diagram
displayed in Fig. 1.

In this section we present numerics strongly supporting
this picture and indicating that there are no other phases in
this region. We also locate the vertical critical lines describing
the ordered/RSPT and disorder/not-A transitions. We use the
density matrix renormalization group (DMRG) with ITensor
[46]. For the order parameter, a lattice length of L = 200 and
bond dimension χ = 300 is used, while for the ground states
a bond dimension χ = 800 is chosen.

We determine the location of the phase transition by com-
puting the bipartite entanglement entropy of a periodic chain
using the DMRG. For a periodic system of length L, the lead-
ing contribution to the entanglement entropy of a CFT scales
as S(L) = c

3 log(L) + const, where c is the central charge
of the CFT [47]. For a gapped system, the entanglement
entropy tends to a constant by the area law [48,49], and so the
coefficient of the log term vanishes. This computation thus
both allows us to find critical points and characterize them
precisely.
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FIG. 3. The effective central charge c at β = 0.75 from the
DMRG for −0.3 � α � −0.42. We extract it from (54) for consecu-
tive L1, L2 in the list 8,12,16,20,30,40,50,60,70,80. For α ≈ −0.36
the data show ceff → 0.8, while for smaller and larger values it
decays to 0 with increasing L.

By finding the effective central charge at different α, β, we
can locate the transition. We extract effective central charges
for each α at a given β using

ceff = 3
S(L2) − S(L1)

log(L2/L1)
. (54)

We give an example for β = 0.75 in Fig. 3, plotting ceff

against 2(1/L1 + 1/L2)−1. The phase transition is clearly
apparent here for α ≈ −0.36, and the central charge c = 4/5
at the transition predicted by the field theory is confirmed.
We plot various transition values by the green crosses in
Fig. 1. We note that the field theory argument indicates that the
transition line should be vertical right at the origin, but since
the numerics become rather difficult near the multicritical
point, we were unable to confirm this prediction.

We analyze several properties of the phases themselves by
tuning the couplings along the circle α2 + β2 = 1 = ( f 2 +
J2)/2, so as to go through all the phases. In Fig. 4 two different
gaps are plotted as a function of θ , defined by α = cos θ ,
β = sin θ . We label energies by Ek

s , where s is the Z3 charge
ωs of that state, while the superscript k = 0, 1, . . . labels
which the states in that sector in order of increasing energy.
In the figure we plot both E0

1 − E0
0 and E1

0 − E0
0 . We take
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/
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2

E
-E

G
S

FIG. 4. The energy gaps to the lowest-energy state in the s = 1
sector (E 0

1 − E 0
0 , magenta crosses) and to the first excited state in the

s = 0 sector (E 1
0 − E 0

0 , green circles) for open boundary conditions
from DMRG, as a function of coupling, where α = cos θ , β =
sin θ . The positions of the phase transitions on the self-dual and
numerically determined lines are given by the red and blue dashed
lines, respectively.
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/
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FIG. 5. The order parameter M3, plotted vs θ as in Fig. 4.

open boundary conditions so that we can observe the multiple
ground states in the phase around the MPS ground state.

The region between the first two vertical dashed lines is
the ordered Potts phase, where E0

1 = 0 but E1
0 > 0 and hence

there are three degenerate ground states (charge-conjugation
symmetry means that the spectra in the s = −1 and s = 1
sectors are identical). Between the transitions denoted by the
dashed lines at θ/π ≈ 0.65 and θ = π , we find both gaps
vanishing, up to exponentially small corrections. Thus the
data display the fourfold degeneracy throughout the phase,
as predicted by our RSPT analysis. The not-A phase is like
the Potts ordered phase, with a threefold degeneracy among
ground states, as the symmetry analysis predicts. Finally,
there is a lone ground state throughout the disordered phase.
Moreover, we find the spectrum above the ground state(s) is
clearly gapped away from the phase transitions.

In Fig. 5 we plot the magnetization M3 defined by

M3 = lim
| j−k|,|k−l|,| j−l|→∞

Gjkl ;

Gjkl ≡ 〈g|σ jσkσl |g〉. (55)

This definition coincides with the earlier definition up to
finite-size effects, with the advantage that Gjkl is S3 invariant
and so independent of ground state |g〉. Our DMRG numerics
find that it is indeed nonvanishing with the predicted sign
throughout the Potts ordered and not-A phases and vanishes
elsewhere.

VII. CONCLUSIONS

We have studied a nearest-neighbor S3-invariant spin chain
and found four distinct gapped phases meeting at a multi-
critical point. The phase diagram is given in Fig. 1. Whereas
two of these phases are the well-studied ordered/topological
and disordered phases of the three-state Potts model, two of
them do not seem to have been analyzed in detail before.
One is an RSPT phase protected by the non-Abelian S3

symmetry. The ground state at a special point in this phase
is a matrix-product state similar to that of AKLT but slightly
simpler: It is an equal-amplitude sum, with no factors of

√
2

and no minus signs. More strikingly, it behaves very nicely
under duality, transforming to a product state we dubbed the
not-A state, with a Hamiltonian that remains nearest neighbor.
The corresponding not-A order spontaneously breaks the S3

symmetry, with each ground state favoring two of the three
spin directions. The two ordered phases can be distinguished
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by positive and negative values of the local order parameter,
the magnetization cubed.

By an RG analysis, supported by numerical checks, we
showed that the phase transition lines are all of the critical
three-state Potts universality class, including a transition from
the RSPT phase to the Potts ordered phase. Our model thus
gives four distinct lattice realizations of the flow between
free-boson and c = 4/5 conformal field theories [18,19]. The
two along the self-dual line require no further tuning, as
opposed to a two-dimensional lattice model exhibiting this
flow [20,50].

The special point (33) in the RSPT phase with an exact
MPS ground state has another remarkable feature. It possesses
exact excited states [51] as does its cousin, the AKLT chain
[52–54]. The findings include a hierarchy of such states that
do not seem to have an analog in AKLT. Moreover, the duality
yields a few exact excited states at the not-A completely
ordered point as well.

The interesting phases of our Hamiltonian are not ex-
hausted by the four studied here. In a companion paper [28],
we analyze this model along the self-dual line in different
parameter regimes. Our findings include a tricritical point
generalizing that found for a two-state system [55,56], a self-
dual gapped phase, and an unusual critical but not conformally
invariant phase. We find it remarkable that such rich structure
occurs in a nearest-neighbor three-state model.
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