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Emergence of d ± ip-wave superconducting state at the edge of d-wave superconductors mediated
by ferromagnetic fluctuations driven by Andreev bound states
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We propose a mechanism of spin-triplet superconductivity at the edge of d-wave superconductors. Recent
theoretical research on d-wave superconductors predicted that strong ferromagnetic (FM) fluctuations are
induced by a high density of states due to edge Andreev bound states (ABSs). Here, we construct a linearized gap
equation for the edge-induced superconductivity and perform a numerical study based on a large cluster Hubbard
model with a bulk d-wave superconducting (SC) gap. We find that ABS-induced strong FM fluctuations mediate
the d ± ip-wave SC state, in which the time-reversal symmetry is broken. The edge-induced p-wave transition
temperature Tcp is slightly lower than the bulk d-wave one Tcd , and a Majorana bound state may be created at the
end point of the edge.
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I. INTRODUCTION

In cuprate high-Tc superconductors, spin fluctuations in-
duce various kinds of interesting phenomena. For example,
d-wave superconductivity is mediated by antiferromagnetic
(AFM) fluctuations [1–6]. Non-Fermi-liquid transport phe-
nomena such as T -linear resistivity, Curie-Weiss behavior of
the Hall coefficient, and the modified Kohler rule between the
magnetoresistance and the Hall angle [�ρ/ρ0 ∝ (σxy/σxx )2]
are understood as the effects of strong AFM fluctuations on
the Fermi liquid state [7–13]. Moreover, a recently discov-
ered axial and uniform charge density wave (CDW) [14–17]
has been theoretically understood as a spin-fluctuation-driven
charge density wave due to the Aslamazov-Larkin vertex
correction mechanism [18–23].

In addition, by introducing real-space structures such as
surfaces and impurities, interesting nontrivial critical phenom-
ena emerge in correlated electron systems. In cuprate super-
conductors, nonmagnetic impurities enhance the spin fluctua-
tions around them [24–32]. In the two-dimensional Hubbard
model with a (1,1) edge, ferromagnetic (FM) fluctuations
develop along the edge [33]. These phenomena are caused by
the Friedel oscillation in the local density of states (LDOS)
since the high-LDOS sites near the real-space structure drive
the system toward magnetic criticality.

In contrast, in superconducting (SC) states, studies of
the effects of real-space structures on the electron correla-
tion were limited until recently. Recently, several interesting
impurity-induced [34,35] and surface-induced [36] critical
phenomena have been analyzed theoretically. The key ingre-
dient is the edge-induced Andreev bound state (ABS) in d-
wave superconductors [37–42], which is observed in scanning
tunneling microscopy experiments as a zero-bias conductance
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peak [43–46]. In a previous paper [36], the present authors
revealed that the huge edge density of states due to the ABS
triggers very strong FM fluctuations around the (1,1) edge, by
carrying out the site-dependent random-phase approximation
(RPA) and modified fluctuation-exchange (FLEX) approxi-
mation. In this case, strong FM fluctuations may induce exotic
phenomena such as triplet superconductivity [47–51].

As is well known, the emergence of a surface- or interface-
induced SC state that is not realized in the bulk has been
studied very actively. Near the (1,1) edge of the dx2-y2 -wave su-
perconductor, s-wave superconductivity can emerge by using
the ABS, and a d ± is-wave SC state is realized [52–58]. In
this case, time-reversal symmetry is broken and the zero-bias
conductance peak splits. In addition, the edge current flows
along the edge. This emergence of time-reversal-breaking
superconductivity at the domain wall is also discussed with
regard to the polycrystalline YBa2Cu3O7−x (YBCO) [59–61]
and twined iron-based superconductor FeSe in the nematic
phase [62]. However, the site dependence of the pairing
interaction has not been taken into consideration, although
FM fluctuations are strongly enhanced near the edge of the
Hubbard model. Recently, the emergence of fractional vor-
tices and a supercurrent near the (1,1) edge has been proposed
[63,64]. In this case, the ABS is shifted to a finite energy and
the time-reversal symmetry is broken.

In this paper, we theoretically predict the emergence of
triplet superconductivity near the (1,1) edge of d-wave su-
perconductors. The origin of the triplet gap is the strong FM
fluctuations triggered by the ABS due to the sign change in the
d-wave SC gap. We first develop a linearized gap equation for
the edge superconductivity and apply it to a two-dimensional
cluster Hubbard model with a (1,1) edge in the bulk d-wave
SC state. A site-dependent pairing interaction is obtained
based on microscopic calculation by the RPA or GV I -FLEX
[36]. We reveal that the phase difference between the edge
triplet gap and the bulk d-wave gap is π/2 in k space. That is,
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FIG. 1. (a) Fermi surface in the bulk YBCO tight-binding model
at filling n = 0.95. (b) Square lattice with a (1,1) edge. (c) One-site
unit-cell square lattice with a (1,1) edge. To simplify the calculation,
we actually use the square lattice shown in (c) instead of (b). (d) T
dependence of αS in the RPA. Inset: T dependence of the bulk d-
wave gap given in (4). We set the transition temperature of the d-
wave superconductivity at Tcd = 0.04. At T = TM , αS reaches unity.

an exotic edge-induced d ± ip-wave SC state is expected to
be realized at T = Tcp, which is slightly lower than the bulk
d-wave transition temperature Tcd . The present study may
offer an interesting platform for realizing exotic SC states.

II. THEORETICAL METHOD OF THE TRIPLET GAP
EQUATION

To study edge-induced triplet superconductivity, we con-
struct a two-dimensional square lattice Hubbard model with a
(1,1) edge in the bulk d-wave SC state,

H =
∑
i, j,σ

ti, jc
†
iσ c jσ + U

∑
i

ni↑ni↓ +
∑
i, j

(�↑↓
i, j c†

i↑c†
j↓ + H.c.),

(1)

where ti, j is the hopping integral between site i and site j.
We set the nearest, next-nearest, and third-nearest hopping
integrals as (t, t ′, t ′′) = (−1, 1/6,−1/5), which correspond
to the YBCO tight-binding model. c†

iσ and ciσ are creation and
annihilation operators of an electron with spin σ , respectively.
U is the on-site Coulomb interaction, and �

↑↓
i, j = −�

↓↑
i, j ≡

�i, j is the bulk d-wave SC gap. Figure 1(a) shows the Fermi
surface of the periodic tight-binding model at filling n = 0.95.
In this model, AFM fluctuations develop in the bulk due to
the nesting Q ≈ (π, π ). Figure 1(b) shows the original square
lattice with the (1,1) edge. If we analyze the original square
lattice along the X and Y axes, there are two sites in a unit
cell, and it makes the analysis complicated. For convenience,
we analyze an equivalent (1,1) edge model with the one-site
unit-cell structure shown in Fig. 1(c). y = 1 corresponds to
the (1,1) edge layer. This model is periodic along the x
direction, whereas the translational symmetry along the y
direction is violated. Thus, we perform the following analysis
in the (kx, y, y′) representation obtained by Fourier transfor-
mation only in the x direction. Here, we represent the Fourier

transformation of the first term in (1) as follows:

H0 =
∑

kx,y,y′,σ

H0
y,y′ (kx )c†

kx,y,σ
ckx,y′,σ . (2)

Next, we assume that �i, j is real and nonzero only between
nearest-neighbor sites and set it as �i, j = �/2(δx,x′+1δy,y′+1 +
δx,x′−1δy,y′−1 − δx,x′δy,y′+1 − δx,x′δy,y′−1). By performing the
Fourier transformation in the x direction, we obtain its
(kx, y, y′) representation as

�y,y′ (kx, T )

= �(T )

{
e−ikx − 1

2
δy,y′+1 + eikx − 1

2
δy,y′−1

}
, (3)

�(T ) = �0 tanh

(
1.74

√
Tcd

T
− 1

)
, (4)

where �(T ) is the temperature-dependent d-wave gap and
�0 ≡ �(T = 0). Note that �(k, T ) = �(T )(cos kx − cos ky)
in a bulk d-wave superconductor. Tcd is the transition temper-
ature of the d-wave superconductivity. Here, we confirm the
relations of the bulk d-wave gap. Due to the anticommutation
relation of the fermion, the SC gap satisfies

�y,y′ (kx ) ≡ �
↑↓
y,y′ (kx ) = −�

↓↑
y′,y(−kx ). (5)

The definition of the singlet gap is

�
↑↓
y,y′ (kx ) = −�

↓↑
y,y′ (kx ). (6)

Using (5) and (6), the singlet gap satisfies

�
↑↓
y,y′ (kx ) = �

↑↓
y′,y(−kx ). (7)

Since we set �i, j without loss of generality, the present real
d-wave gap given by (3) satisfies

�
↑↓
y,y′

∗
(−kx ) = �

↑↓
y,y′ (kx ). (8)

Hereafter, we introduce Ny × Ny matrix representations of the
d-wave gap function �̂(kx ), which is defined as {�̂(kx )}y,y′ =
�y,y′ (kx ).

We also define Ny × Ny Green functions in the d-wave SC
state Ĝ, F̂ , and F̂ † as(

Ĝ(kx, εn) F̂ (kx, εn)

F̂ †(kx, εn) −Ĝ(kx,−εn)

)

=
(

εn1̂ − Ĥ0(kx ) −�̂(kx )

−�̂(kx ) εn1̂ + Ĥ0(kx )

)−1

, (9)

where εn = (2n + 1)π iT is the fermion Matsubara frequency.
F̂ and F̂ † are anomalous Green functions, which are finite
only in the bulk d-wave SC state. Since the d-wave gap
satisfies (6), the anomalous Green function F̂ satisfies the
relation

F̂↑↓ = −F̂↓↑ ≡ F̂ . (10)

In this model, we can obtain the enhancement in the FM
fluctuations at the edge by the RPA or GV I -FLEX approxi-
mation [36].

235103-2



EMERGENCE OF d ± ip-WAVE SUPERCONDUCTING … PHYSICAL REVIEW B 101, 235103 (2020)

In these analyses, we define the irreducible susceptibilities
as

χ0
y,y′ (qx, ωl ) = −T

∑
kx,n

Gy,y′ (qx + kx, ωl + εn)

× Gy′,y(kx, εn), (11)

ϕ0
y,y′ (qx, ωl ) = −T

∑
kx,n

Fy,y′ (qx + kx, ωl + εn)

× F †
y′,y(kx, εn), (12)

where ωl = 2lπ iT is the boson Matsubara frequency. ϕ̂0 is
finite only in the SC state. The site-dependent spin suscepti-
bility χ̂ s is calculated using χ̂0 and ϕ̂0 as

χ̂ s(qx, ωl ) = �̂(qx, ωl ){1̂ − U �̂(qx, ωl )}−1, (13)

�̂(qx, ωl ) = χ̂0(qx, ωl ) + ϕ̂0(qx, ωl ). (14)

The spin Stoner factor, αS , is defined as the largest eigenvalue
of U �̂(qx, ωl ) at ωl = 0. It represents the spin fluctuation
strength, and the magnetic order is realized when αS � 1.
Figure 1(d) shows the T dependence of the Stoner factor
αS in the RPA. The inset shows the T dependence of the
bulk d-wave gap given by (4). In the d-wave SC state, αS

drastically increases as T decreases due to the development
of the ABS. In this case, the static spin susceptibility along
the (1,1) edge layer χ s

1,1(qx, 0) has a large peak at qx = 0.
This edge FM correlation is consistent with the bulk AFM
correlation. At T = TM , αS reaches unity and edge FM order
is realized.

Next, we analyze edge-induced triplet superconductivity in
the presence of a bulk d-wave SC gap. Here, we represent the
triplet SC gap in the (kx, y, y′) representation as φ

↑↓
y,y′ (kx ). In

this study, we do not consider the spin-orbit interaction. Then
we can set the d vector as d̂(kx ) = (0, 0, φ̂(kx )) without losing
generality. In this case, we consider only φ

↑↓
y,y′ (kx ) and φ

↓↑
y,y′ (kx ).

Due to the anticommutation relation of the fermion, the SC
gap satisfies

φy,y′ (kx ) ≡ φ
↑↓
y,y′ (kx ) = −φ

↓↑
y′,y(−kx ). (15)

The definition of the triplet gap is

φ
↑↓
y,y′ (kx ) = φ

↓↑
y,y′ (kx ). (16)

From (15) and (16), the triplet gap follows

φ
↑↓
y,y′ (kx ) = −φ

↑↓
y′,y(−kx ). (17)

Here, we introduce the Ny × Ny matrix representation φ̂(kx ),
which is defined as {φ̂(kx )}y,y′ = φy,y′ (kx ). To determine the
edge-induced SC state, we must obtain the phase difference
between the bulk d-wave gap and the edge triplet gap. Al-
though we can use the Bogoliubov–de Gennes equation, we
have to perform heavy self-consistent calculations at various
temperatures. To make the theoretical analysis much more
efficient, we develop the linearized gap equation for the edge
triplet superconductivity, by linearizing the Bogoliubov–de
Gennes equation only for φ̂ and φ̂†. We set the eigenvalue of
the linearized equation as λ. When λ � 1, triplet superconduc-
tivity emerges and coexists with the bulk d-wave supercon-
ductivity. In this method, by just performing diagonalization,

FIG. 2. Diagram of the linearized triplet SC gap equation in the
presence of the bulk d-wave SC gap. The wavy lines are pairing
interactions of the triplet superconductivity. The line with a single
arrow represents the Green function Ĝ and the line with double
arrows represents anomalous Green functions F̂ and F̂ †.

we can address the emergence of triplet superconductivity
by the temperature dependence of the eigenvalue. We show
the details of the derivation of the linearized equation in
Appendixes A and B. We use relations (10) and (16) in the
derivation of the linearized gap equation, and it is given as

λφy,y′ (kx ) = −T
∑

k′
x,Y,Y ′,n

Vy,y′ (kx − k′
x, εn − ε0)

×{Gy,Y (k′
x, εn)φY,Y ′ (k′

x )Gy′,Y ′ (−k′
x,−εn)

− Fy,Y (k′
x, εn)φ†

Y,Y ′ (k′
x )FY ′,y′ (k′

x, εn)}, (18a)

λφ
†
y,y′ (kx ) = −T

∑
k′

x,Y,Y ′,n

Vy,y′ (k′
x − kx, εn − ε0)

×{GY,y(−k′
x,−εn)φ†

Y,Y ′ (k′
x )GY ′,y′ (k′

x, εn)

− F †
y,Y (k′

x, εn)φY,Y ′ (k′
x )F †

Y ′,y′ (k′
x, εn)}, (18b)

V̂ (qx, ωl ) = U 2
( − 1

2 χ̂ s(qx ) − 1
2 χ̂ c(qx )

)
C(ωl , ωd ), (19)

where V̂ (qx, ωl ) is the site-dependent pairing interaction for
triplet superconductivity. χ̂ s(c)(qx ) is the static spin (charge)
susceptibility in the d-wave SC state obtained by the RPA
or GV I -FLEX approximation. Here, ωl = 2lπ iT is the bo-
son Matsubara frequency. C(ωl , ωd ) = ω2

d/(|ωl |2 + ω2
d ) is a

cutoff function, where ωd is the cutoff energy, and we set
ωd = 0.5. We then solve the gap equation, (18), under the
restriction (17). Note that the first and second terms in the
gap equation have different signs due to relation (10). This
fact greatly affects the phase difference between the bulk gap
function and the edge one.

Figure 2 is a diagrammatic expression of the gap equation,
(18). The undulating lines are pairing interactions V̂ . The di-
agrams with GG correspond to the conventional gap equation
in the normal state. The diagrams with FF are newly added
to describe the effect of the bulk d-wave SC gap on the edge
superconductivity. Since φ̂ and φ̂† are mixed in the present
gap equation developed, Eq. (18), the phase of φ̂ is uniquely
determined. From the viewpoint of the Ginzburg-Landau the-
ory, the diagrams with GG and those with FF in Fig. 2,
respectively, give rise to the fourth-order terms |�|2|φ|2 and
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FIG. 3. kx dependence of the obtained px-wave SC gap φy,y(kx )
for �0 = 0.09 at T = 0.0375. The pairing interaction is calculated
by the RPA. y = 1 and y = 32 correspond to the edge and bulk,
respectively. We normalize the gap as max

kx ,y
|φy,y(kx )| = 1.

Re{�2φ∗2} in the free energy. The latter Ginzburg-Landau
term determines the phase difference between �̂ and φ̂.

III. NUMERICAL RESULT OF THE TRIPLET GAP
EQUATION

In this section, we analyze the linearized triplet gap equa-
tion, (18). The kx mesh is Nx = 64, the site number along the
y direction is Ny = 64, and the number of Matsubara frequen-
cies is 1024. The transition temperature of the bulk d-wave
superconductivity is Tcd = 0.04. The Coulomb interaction is
U = 2.25 in the RPA and U = 2.65 in the GV I -FLEX. Here,
the unit of energy is |t |, which corresponds to ∼0.4 eV in
cuprate superconductors. In addition, we define �max as the
maximum value of the d-wave gap on the Fermi surface. In
the present model, �max = 1.76�0 for n = 0.95. Experimen-
tally, 4 < 2�max/Tcd < 10 in YBCO [65,66]. Therefore, in
the RPA, we set �0 = 0.06 or 0.09, which corresponds to
�max = 5.28 or 7.92 for Tcd = 0.04.

A. d ± ip-wave SC state

First, we analyze the linearized triplet gap equation for the
pairing interaction calculated by the RPA. Figure 3 shows kx

dependence of the obtained triplet gap in the same layer y.
This is the px-wave gap with a node at kx = 0. It can emerge
at the edge because there are finite LDOS values and large
triplet pairing interactions due to the ABS.

Next, we discuss the phase difference between the d- and
the p-wave gap. The triplet SC gap in real space φx,y,y′ is
represented by the Fourier transformation in the x direction
of φy,y′ (kx ). By using (17), we obtain

φx,y,y′ = −
⎧⎨
⎩

∑
kx

φ
†
y,y′ (kx )eikxx

⎫⎬
⎭

∗

. (20)

The relation holds for the general triplet SC gap. On the other
hand, the obtained p-wave gap satisfies

φy,y′ (kx ) = −φ
†
y,y′ (kx ) (21)

in the present numerical study. Therefore, the obtained p-wave
gap is a real function in real space φx,y,y′ = φ∗

x,y,y′ . In this
case, the phase difference is ±π/2 in k space, and this is
the d ± ip-wave SC state. We find that the edge d ± ip-wave
SC state is stabilized by the coexistence of bulk d-wave
superconductivity and edge-induced triplet superconductivity.

The reason for this phase difference ±π/2 is understood
by evaluating the contribution from the second term in (18).
Since the triplet pairing interaction Vy,y′ (kx − k′

x, εn − ε0) has
a large value only at the edge (y = 1) and �i, j is a real
function, we can approximately evaluate the contribution to
φ1,1(kx ) from the second term in (18a) by setting Y = Y ′ = 1:

second term in (18a)

≈ −T
∑
k′

x,n

|V1,1(kx − k′
x, εn − ε0)||F1,1(k′

x, εn)|2φ∗
1,1(k′

x ).

(22)

Here, Vy,y′ (kx − k′
x, εn − ε0) has a large peak at kx = k′

x.
Therefore, the triplet superconductivity is stabilized when
φ∗

1,1(kx ) = φ
†
1,1(kx ) = −φ1,1(kx ), and it is actually confirmed

by numerical calculations.
In the d ± ip-wave SC state, the time-reversal (TR) sym-

metry is broken. To verify this, we apply the time-reversal
operator � = −iσ yK to the present gap functions:

�
↑↓
y,y′ (kx ) + φ

↑↓
y,y′ (kx ) −→

TR
−�

↓↑
y,y′

∗
(−kx ) − φ

↓↑
y,y′

∗
(−kx ). (23)

By using conditions (6), (8), (16), and (22), we confirm
that the d + ip–wave gap changes to a d − ip–wave gap. In
Appendix C, we calculate the LDOS in the d ± ip-wave SC
state. The LDOS for up-spin electrons and that for down-spin
electrons are separated since the time-reversal symmetry is
broken in the d ± ip-wave SC state.

B. Temperature dependence of λ

Next, we examine the T dependence of the eigenvalue
of the edge p-wave superconductivity. λ and λ(n) denote the
eigenvalue in the d-wave SC state and normal state, respec-
tively. Figure 4 shows the T dependence of the eigenvalue
based on the RPA. λ(n) hardly increases and does not reach
unity. On the other hand, λ increases drastically as T decreases
and exceeds unity below Tcp � Tcd . At these temperatures, the
d ± ip-wave SC state is realized. Note that the edge FM order
is realized at TM � Tcp. For �0 = 0.09 (2�max/Tcd = 7.92),
the increase in λ is more drastic than that for �0 = 0.06
(2�max/Tcd = 5.28) due to the stronger development of the
FM fluctuations as shown in Fig. 1(d).

To examine the effect of FM fluctuations on the increase in
λ, we analyze two types of gap equations, (i) and (ii), from
which the effect of the d-wave gap is partially subtracted.
In (i), we use the pairing interaction in the normal state
V̂normal instead of V̂ in the d-wave SC state and λ′ denotes
the eigenvalue. In (ii), we replace the Green functions Ĝ, F̂ ,
and F̂ † with those in the normal state, Ĝ0 and F̂ = F̂ † = 0.
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FIG. 4. T dependence of λ for the pairing interaction by the
RPA. The red and green lines represent λ for �0 = 0.06 and 0.09,
respectively. The blue line shows λ(n) in the normal state (�0 =
0). Below Tcp, p-wave superconductivity emerges. At T = TM , αS

reaches unity in the RPA.

λ′′ denotes the eigenvalue. Figure 5 shows the T dependence
of λ′ and λ′′. We see that λ′ is strongly suppressed, and it does
not reach unity. On the other hand, λ′′ is almost equal to λ and
exceeds unity at T � Tcp. Therefore, the drastic increase in λ

under Tcd is mainly due to the ABS-driven FM fluctuations.

C. Result of the GV I-FLEX approximation

In this study, we analyze the linearized triplet gap equa-
tion for the pairing interaction calculated by the GV I -FLEX
approximation in the (1,1) edge cluster model [36]. In the
conventional FLEX, the negative feedback effect on spin
susceptibility near an impurity is overestimated since the ver-
tex corrections for the spin susceptibility are not considered
[32]. In the modified FLEX, cancellation between negative
feedback and vertex corrections is assumed, and then reliable
results are obtained for the single-impurity problem [32].

FIG. 5. T dependence of λ′ and λ′′. We set �0 = 0.09 The dotted
red line and solid blue line represent λ and λ(n) in the d-wave SC state
and normal state, respectively.

FIG. 6. T dependence of λ for the pairing interaction by GV I -
FLEX. �0

∗ is the renormalized gap by the self-energy. We obtain
�0

∗ = 0.058 for �0 = 0.08 and �0
∗ = 0.087 for �0 = 0.12.

�0
∗ is the renormalized gap by the normal self-energy. We

obtain �0
∗ ≈ 0.087 and 2�max

∗/Tcd ≈ 7.69 for �0 = 0.12
and �0

∗ ≈ 0.058 and 2�max
∗/Tcd ≈ 5.11 for �0 = 0.08. To

simplify the analysis, the normal self-energy is not included
in the Green functions in the gap equation.

Figure 6 shows the T dependence of λ based on the GV I -
FLEX. λ increases as T decreases also in the GV I -FLEX. In
the case of �0 = 0.08, λ exceeds unity at T ≈ 0.02. For �0 =
0.12, the increase in λ is sharper than that for �0 = 0.08
because of the stronger development of the FM fluctuations.
The increase in λ becomes milder than that by the RPA due to
the negative feedback effect of self-energy. However, we ob-
tain the emergence of a d ± ip-wave superconductivity even
if the self-energy is considered. Note that the T dependence
of λ based on the RPA and GV I -FLEX is comparable when
(2�max/Tcd )RPA ≈ (2�max

∗/Tcd )FLEX.

D. Effect of finite d-wave coherence length on edge-induced
triplet superconductivity

In this section, we discuss the emergence of p-wave su-
perconductivity when the d-wave gap is suppressed for the
finite range 1 � y � ξd , where ξd is the coherence length of
the d-wave superconductivity. We set the y dependence of the
d-wave gap as follows:

�y,y′ (kx, T )

(
1 − exp

(
y + y′ − 2

2ξd

))
. (24)

If the SC FLEX approximation [4] is applied to the edge
cluster model, the obtained d-wave gap is expected to be
suppressed for y � ξd . Instead, we set ξd as a parameter to
simplify the analysis. From the experimental results [67–70],
we can estimate ξd to be three sites for T � Tcd . For T � Tcd ,
ξd � 3 because of the relation ξd ∝ (1 − T/Tcd )−1/2 in the
Ginzburg-Landau theory. Thus, we set ξd = 3 and 10 in the
present analysis.

Figure 7(a) shows the site dependence of the d-wave gap
expressed by (24). Figure 7(b) shows the obtained LDOS. At
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FIG. 7. (a) Site dependence of the d-wave gap suppressed near
the edge over ξd . Inset: Nearest-neighbor bonds corresponding to
|�x=0,y+1;x=0,y|. We set �0 = 0.08 and calculate at T = 0.032. (b) ε

dependence of LDOS at the (1,1) edge for the d-wave gap with finite
ξd . Inset: LDOS in the bulk (y = 400).

the (1,1) edge, the LDOS has a large peak at ε = 0 due to
the ABS. Although the height of the peak becomes lower, the
peak structure due to the ABS still exists for finite ξd . The
inset illustrates the LDOS in the bulk, and it shows a V-shaped
ε dependence since the d-wave gap has line nodes. In our
previous paper, we confirmed that αS increases as T decreases
for finite ξd .

Then we analyze the gap equation based on the RPA for
finite ξd . Figure 8 shows the T dependence of λ. For �0 =
0.09, λ increases as the temperature decreases and exceeds
unity even for finite ξd . On the other hand, the increase in
λ is mild for �0 = 0.06 and ξd , and λ ≈ 0.68 even at T =
0.03. Therefore, the strong increase in λ is realized under the
conditions 2�max/Tcd � 6 and ξd � 10. These conditions are
satisfied in real cuprate superconductors.

IV. CANCELLATION OF THE EDGE SUPERCURRENT IN
THE d ± ip-WAVE SC STATE

In the time-reversal-breaking SC state, there is a possibility
of the emergence of an edge supercurrent. In this section,
we calculate the edge supercurrent in the d ± ip-wave SC
state. The current operator for the σ -spin electron along the

FIG. 8. T dependence of λ for (a) �0 = 0.06 and (b) �0 = 0.09
with finite ξd . The pairing interaction is calculated by the RPA for
finite ξd .

FIG. 9. y dependence of the edge supercurrent 〈Jx
y 〉 in the d + ip–

and d + is–wave SC state. We set �0 = 0.09 and max
i, j

|φi, j | = 0.09.

We set the size of the edge s-wave gap as �s = 0.09.

x direction is given as [71]

Jx
y,y′ (kx ) = ∂

∂kx
H0

y,y′ (kx ). (25)

Note that Jx
y,y′ (kx ) does not include the SC gaps. The sponta-

neous supercurrent between layer y and layer y′ is〈
Jx

y,y′
〉 = − e

2

∑
kx

{
Jx

y,y′ (kx )nσσ
y,y′ (kx ) + (y ↔ y′)

}
, (26)

where nσσ
y,y (kx ) is given as

nσα
y,y′ (kx ) = 〈c†

kx,y,σ
ckx,y′,α〉

=
∑

b

U(yσ ),b(kx )U ∗
(y′α),b(kx )

×
{

T
∑

n

ReGb(kx, εn) + 1

2

}
. (27)

Û is the unitary matrix to diagonalize the Bogoliubov–de
Gennes Hamiltonian in the d ± ip-wave SC state and Gb is
the Green function in the band representation. We explain the
Green function in the d ± ip-wave SC state in Appendix A.
Here, we define the edge current though layer y as〈

Jx
y

〉 =
∑

y′

〈
Jx

y,y′
〉
. (28)

Then the total supercurrent is given by 〈Jx〉 = ∑
y〈Jx

y 〉.
Figure 9 shows the obtained y dependence of the edge

current in the d + ip– and d + is–wave SC state. We set the
edge s-wave gap as i�sδy,y′=1 and �s = 0.09 for simplicity.
In the d + ip–wave SC state, the time-reversal symmetry is
broken. Nonetheless, no edge current flows. On the other
hand, the current flows along the edge in the d + is–wave SC
state as pointed out in Ref. [53].

To explain why the spontaneous edge current cancels in
the d + ip–wave SC state, we consider the Green function
G↑↑

y,y′ (kx, εn), which corresponds to the transfer process of
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an up-spin electron from site y′ to y. Here, we evaluate an
example of its second-order term in proportion to �φ†:

δG↑↑
y,y′ (kx, εn) = −G0

y,y1
(kx, εn)�↑↓

y1,y2
(kx )

× G0
y3,y2

(−kx,−εn)φ↑↓
y3,y4

†
(kx )G0

y4,y′ (kx, εn),

(29)

where G0
y,y′ (kx, εn) is the Green function in the normal state.

Then the inverse transfer process from (29) contributing to
G↑↑

y′,y(−kx, εn) is given by

δG↑↑
y′,y(−kx, εn)

= −G0
y′,y4

(−kx, εn)φ↑↓
y4,y3

(−kx )

× G0
y2,y3

(kx,−εn)�↑↓
y2,y1

†
(−kx )G0

y1,y(−kx, εn). (30)

Note that Ĝ0 satisfies G0
y,y′ (kx, εn) = G0

y′,y(−kx, εn). In
addition, by using (7), (8), (17), and (22), we ob-
tain δG↑↑

y,y′ (kx, εn) = δG↑↑
y′,y(−kx, εn). Therefore, nσσ

y,y′ (kx ) =
nσσ

y′,y(−kx ) holds and thus the current does not flow.

V. SUMMARY

In this paper, we demonstrate that the d ± ip-wave SC
state is realized at the (1,1) edge of d-wave superconductors
due to the ABS-induced strong FM fluctuations. We study
the two-dimensional cluster Hubbard model with the edge
in the presence of the bulk d-wave SC gap. To analyze the
edge-induced SC gap, we construct a linearized triplet SC
gap equation in the presence of the bulk d-wave SC gap. The
site-dependent pairing interaction is calculated using the RPA
or GV I -FLEX. The obtained phase difference between the
bulk d-wave gap and the edge p-wave gap is π/2 in k space,
and it is the d ± ip-wave SC state in which the time-reversal
symmetry is broken. Next, we examine the T dependence of
the eigenvalue λ for the edge-induced SC state. Below the
bulk d-wave transition temperature Tcd , λ for the triplet state
increases drastically as T decreases, and it exceeds unity at
T = Tcp. Therefore, the d ± ip-wave SC state is realized at
Tcp � Tcd . In the d ± ip-wave SC state, the edge current does
not flow irrespective of the time-reversal symmetry braking.

We expect that the d ± ip-wave SC state is also realized
when the direction of the edge is near the (1,1) edge for the
following reason: The present edge p-wave SC is mediated by
ABS-induced strong FM fluctuations, and the formation of the
ABS is confirmed for other edges by numerical calculations
[38,54,55]. For a small deviation from the (1,1) edge, FM
fluctuations should develop and the emergence of the d ± ip-
wave SC state is expected.

The uniqueness of the linearized edge gap equation, (18),
is that only the edge-induced gap is linearized, while the effect
of the bulk SC gap is included unperturbatively. This equation
is very useful for analyzing interesting edge-induced super-
conductivity in bulk superconductors. An interesting d ± ip-
wave state is naturally obtained owing to the interference
between the bulk and the edge gap functions.

In the present study, the edge layer can be regarded as
a one-dimensional p-wave superconductor since the d-wave
gap vanishes in the edge layer. In Ref. [72], the emergence of

a Majorana fermion at the end point of the one-dimensional
p-wave superconductor is proposed. Therefore, the formation
of a Majorana fermion is expected at the end point of the (1,1)
edge. Thus, the present study of the edge-induced novel su-
perconductivity induced by an ABS-driven strong correlation
may offer an interesting platform for SC devices. Finally, we
note that the emergence of the p-wave SC and Majorana edge
state has been discussed at the interface between a bulk s-wave
superconductor and magnetic material [73,74].
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APPENDIX A: NAMBU REPRESENTATION FOR THE
COEXISTING SC STATE IN THE (kx, y, y′ )

REPRESENTATION

In this Appendix, we explain the Nambu representation in
the (kx, y, y′) representation. We assume that the bulk d-wave
gap �y,y′ (kx ) ≡ �

↑↓
y,y′ (kx ) defined in (3) and the edge triplet

gap φy,y′ (kx ) ≡ φ
↑↓
y,y′ (kx ) are both finite. First, we consider the

Hamiltonian

H =
∑

k,y,y′,σ

H0
y,y′ (kx )c†

kx,y,σ
ckx,y,σ

+ 1

2

∑
kx,y,y′,σρ

{
Dσρ

y,y′ (kx )c†
kx,y,σ

c†
−kx,y′,ρ + H.c.

}
, (A1)

where Dσρ

y,y′ (kx ) is the total gap function, which includes both
the singlet d-wave gap and the triplet gap. σ and ρ represent
the spin index. In this study, we ignore the spin-orbit interac-
tion, so we can set the d vector as d̂(kx ) = (0, 0, φ̂(kx )), where
a hat indicates the Ny × Ny matrix of sites. Then the total gap
is given by

D̂(kx ) = id̂0(kx )σ2 + id̂(kx ) · σσ2

=
(

0 �̂(kx ) + φ̂(kx )

−�̂(kx ) + φ̂(kx ) 0

)
, (A2)

where σ = (σ1, σ2, σ3) is the Pauli matrix for spin space. Then
we obtain the 2Ny × 2Ny Nambu representation as

H =
∑

kx

(t ĉ†
kx,↑,t ĉ−kx,↓)

(
Ĥ0(kx ) D̂↑↓(kx )

{D̂↑↓(kx )}† −Ĥ0(−kx )

)

×
(

ĉkx,↑
ĉ†
−kx,↓

)
, (A3)

where ĉkx,↑ and ĉ†
−kx,↓ represent the Ny-component column

vector of sites. The corresponding Nambu Green function is
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FIG. 10. ε dependence of the LDOS at the (1,1) edge in the
d + ip–wave SC state. We set �0 = 0.09 and max

i, j
|φi, j | = 0.05. The

dashed red line and dotted blue line represent the LDOS for up and
down spin, respectively. The solid green line shows the sum of spins.

given as(
Ĝ↑↑(kx, εn) F̂↑↓(kx, εn)

F̂†
↑↓

(kx, εn) −t Ĝ↓↓(−kx,−εn)

)

=
(

εn1̂ − Ĥ0(kx ) −D̂↑↓(kx )

−{D̂↑↓(kx )}† εn1̂ + t Ĥ0(−kx )

)−1

. (A4)

Ĝ, F̂ , and F̂† are the Ny × Ny Green functions in the coexist-
ing SC state. The Green function in the band representation
Gb in Sec. IV is obtained by using the superconducting gap
equation expressed as the unitary matrix Û in (A4). In this
study, we do not consider the frequency dependence of the gap
function. Then the total gap is represented by the anomalous
Green function as

D↑↓
y,y′ (kx, εn) = T

∑
k′

x,n
′,σ

V ↑↓σ σ̄

y,y′ (kx − k′
x, εn − ε′

n)Fσ σ̄
y,y′ (k′

x, ε
′
n),

(A5)

where V triplet
y,y′ (qx, iωn) is the pairing interaction. σ̄ represents

the opposite spin to σ . In the analysis in the text, we do not
consider the frequency dependence of the gap function.

APPENDIX B: DERIVATION OF THE LINEARIZED
TRIPLET GAP EQUATION

In this Appendix, we derive the linearized triplet gap equa-
tion in the presence of the bulk d-wave gap. First, we extract
the triplet component φy,y′ (kx ) from (A5) by considering the

relation φy,y′ (kx ) = {D↑↓
y,y′ (kx ) + D↓↑

y,y′ (kx )}/2. Then we obtain
the equation for the triplet gap φy,y′ (kx ) as

φy,y′ (kx ) = T
∑
k′

x,n

V triplet
y,y′ (kx − k′

x, εn − ε0)F triplet
y,y′ (k′

x, εn),

(B1)

where F triplet
y,y′ (kx, εn) ≡ {F↑↓

y,y′ (kx, εn) + F↓↑
y,y′ (kx, εn)}/2 is the

triplet part of the anomalous Green function in the coexisting
SC state. V triplet

y,y′ (qx, iωn) ≡ V ↑↓↑↓
y,y′ (qx, iωn) + V ↑↓↓↑

y,y′ (qx, iωn)
is the pairing interaction for the triplet SC, which corresponds
to (20). Here, we derive the linearized triplet gap equation
in the presence of a finite d-wave gap from (B1). For this
purpose, we expand the full Nambu Green function in (A4)
with respect to φ̂ and φ̂†, using the identity

(A4) =
{(

Ĝ F̂
F̂ † − ˆ̄G

)−1

−
(

0 φ̂

φ̂† 0

)}−1

=
(

Ĝ F̂
F̂ † − ˆ̄G

)

+
(

Ĝφ̂F̂ † + F̂ φ̂†Ĝ −Ĝφ̂ ˆ̄G + F̂ φ̂†F̂

F̂ †φ̂F̂ † − ˆ̄Gφ̂†Ĝ −F̂ †φ̂ ˆ̄G − ˆ̄Gφ̂†F̂

)

+ higher-order terms of φ and φ†, (B2)

where Ĝ ≡ Ĝ(kx, εn), F̂ ≡ F̂ (kx, εn), F̂ † ≡ F̂ †(kx, εn), and
ˆ̄G ≡ t Ĝ(−kx,−εn) are the Green functions in the pure d-wave
SC state introduced in (9) in the text. On the right-hand side
of Eq. (B2), the first and the second terms corresponds to
the zeroth-order and the first-order terms with respect to φ̂

or φ̂†, respectively. Since F̂ satisfies the relation in (10), we
obtain the relation F̂ triplet = −Ĝφ̂ ˆ̄G + F̂ φ̂†F̂ . By substituting
it into (B1), we obtain the linearized triplet gap equation in
the presence of a bulk d-wave gap, Eq. (18a). We obtain the
Eq. (18b) in the same way. The triplet gap becomes finite
when the eigenvalue λ in Eqs. (18a) and (18b) reaches unity.

APPENDIX C: LDOS IN THE d ± ip-WAVE SC STATE

Here, we discuss the LDOS in the d + ip–wave SC state.
We assume that the d vector of the p-wave superconductivity
is normal to the xy plane. We use the p-wave gap obtained by
numerical analysis. The LDOS is given by

Dy(ε) = 1

π

∑
kx,σ

ImGσ,σ
y,y (kx, ε − iδ). (C1)

We set δ = 0.01 in the numerical calculation. Figure 10
shows the LDOS obtained at the edge. The LDOS for up-spin
electrons and that for down-spin electrons are separated since
the time-reversal symmetry is broken in the d ± ip-wave SC
state.
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