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We present a robust algorithm that computes (maximally localized) Wannier functions without the need of
providing an initial guess. Instead, a suitable starting point is constructed automatically from so-called local
orbitals which are fundamental building blocks of the basis set within (linearized) augmented plane-wave
methods. Our approach is applied to a vast variety of materials such as (semi)metals, bulk and low-dimensional
semiconductors, and complex inorganic-organic hybrid interfaces. For the interpolation of electronic single-
particle energies, an accuracy in the meV range can be easily achieved. We exemplify the capabilities of our
method by the calculation of the joint density of states in aluminum, (generalized) Kohn-Sham and quasiparticle
band structures in various semiconductors, and the electronic structure of β-Ga2O3, including electron and hole
effective masses.
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I. INTRODUCTION

In the past two decades, maximally localized Wannier
functions (MLWFs) became a well-established tool in solid-
state calculations. Due to their localized nature they are
superior to the equivalent Bloch representation in terms of
chemical interpretation. They provide inexpensive access to
both single-particle eigenvalues and eigenfunctions at any
point in reciprocal space in terms of the so-called Wannier
interpolation scheme. Typically, the starting point for the cal-
culation of MLWFs for a quantum mechanical system is a set
of single-particle Kohn-Sham (KS) wave functions obtained
from density-functional theory (DFT). The nowadays most
commonly used approach to MLWFs in solids is based on
works by Marzari and Vanderbilt [1] (MV) and Souza and
co-workers [2]. Given a set of single-particle orbitals, the
MV algorithm approaches a set of MLWFs by an iterative
minimization of the target functional �, measuring the spread
of the Wannier functions (WFs). In general, this optimization
problem is nonlinear and high dimensional. Consequently,
the result may strongly depend on the starting point for the
minimization, and the algorithm can be easily trapped in
false local minima unless a sufficiently good starting point
is provided. The latter is usually done by specifying a set
of projection functions that approximate the sought WFs. In
many cases, however, it is not easy to find a reasonable guess
for the projection functions. This is particularly difficult when
it comes to the construction of WFs from wide energy ranges
of entangled bands, in systems with complex geometries or
when the states are strongly hybridized. Although a recent
study has proposed methods that are not based on projection
[3], the MV algorithm is still the standard approach in the con-
struction of MLWFs. A great improvement of the projection
method has been made by Mustafa and co-workers [4] who
have introduced an algorithm that automatically constructs
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a set of optimized projection functions (OPFs) from a large
pool of localized trial orbitals. For the valence bands of many
materials such as SiO2 and Cr2O3, the spread � of the initial
guess obtained from the OPF method was shown to be just a
few percent larger than the aimed global minimum [4].

Among the various ways of solving the KS equations
of DFT, the full-potential linearized augmented plane-wave
(LAPW) method, is considered to be the most accurate one.
Highest numerical precision can be reached by selectively
adding so-called local orbitals (LOs) to the LAPW basis set.
The LOs are strongly localized atomiclike functions. Hence,
it is natural to employ the LOs in the construction of WFs
within the LAPW + LO method. In this work, we combine the
well-established MV approach [1,2] with the more recent OPF
technique [4]. We employ the latter to automatically construct
suitable initial guesses to MLWFs from a set of LOs. We
demonstrate that this approach is capable to robustly construct
MLWFs in a vast variety of materials without the need of man-
ually providing a starting point. We apply the obtained WFs
to study chemical bonding in a series of elemental and binary
semiconductors. Further, electronic properties are calculated
for more complex bulk and two-dimensional semiconductors
as well as a hybrid organic-inorganic interface by the use
of WFs based on (generalized) KS states and quasiparticle
energies, respectively. We demonstrate that Wannier interpo-
lation is capable to easily provide electronic energies with an
accuracy in the meV range over the entire Brillouin zone.

II. METHODOLOGY

A. Theory of Wannier functions

Here, we briefly discuss the basic steps in the construction
of MLWFs and their application to interpolation. For an ex-
tensive overview over the MV approach, we refer to Ref. [5].

Let ψn,k(r) be a set of single-particle Bloch wave functions
describing a quantum-mechanical system as they may be ob-
tained from a DFT calculation or any other method providing

2469-9950/2020/101(23)/235102(14) 235102-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6402-4157
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.235102&domain=pdf&date_stamp=2020-06-01
https://doi.org/10.1103/PhysRevB.101.235102


TILLACK, GULANS, AND DRAXL PHYSICAL REVIEW B 101, 235102 (2020)

single-(quasi)particle eigenstates. In solids, the description of
a quantum state in terms of Bloch functions is the natural
choice, and the quantum numbers n and k label an energy
band and a wave vector in the first Brillouin zone (BZ),
respectively. The Bloch formalism, however, is not the only
way to describe quantum states in solids, and WFs provide
an alternative representation. The transformation between a
Bloch function φn,k and a WF wn,R reads as [6]

wn,R(r) = 1

Nk

∑
k

e− ik·R φn,k(r), (1)

where R is a real-space lattice vector labeling a unit cell
within a supercell conjugate to the k-point grid. Equation
(1) holds for Bloch functions describing an isolated energy
band. In solids, typically only deep-lying (semi)core states
form isolated bands. Therefore, it is desirable to generalize
this transformation to a multitude of bands. To this end, we
first consider an isolated group of energy bands, i.e., a group
of J bands that remains separated from all other bands by a
finite energy gap throughout the BZ. The states ψn,k within
this group span a subspace of the full space of solutions to the
single-particle problem. Thus, they can be mixed according to
some unitary transformation U k. The mixed states

φn,k(r) =
J∑

m=1

U k
mnψm,k(r) (2)

form an equally valid basis of the considered subspace and
so do the WFs constructed according to Eq. (1). The unitary
J × J matrix U k reflects a generalization of the phase freedom
of a single state and can be chosen freely. This freedom
allows for the construction of WFs that are maximally local-
ized according to some localization criterion. From another
perspective, the matrices U k define a gauge and are chosen
such that the mixed states φn,k are as smooth in k as possible,
and consequently the Fourier transform in Eq. (1) results
in spatially well-localized WFs. Although the valence bands
in insulating or semiconducting materials usually form such
isolated groups, the conduction bands or the bands in metals
often do not. In the case of such entangled bands, first, at each
k point a J-dimensional subspace

ψ̃m,k(r) =
Jk∑

μ=1

Uk
μmψμ,k(r) (3)

has to be disentangled from the Jk � J bands that fall inside
a given (outer) energy window. This subspace is described
by a rectangular Jk × J matrix Uk which is semiunitary
(i.e., Uk†Uk = 1J ). Here, J is the number of WFs one aims
to construct from the bands inside an energy window of
interest, and the ψμ,k are single-particle wave functions whose
eigenvalues fall inside that window. Furthermore, a second
(inner) energy window can be introduced within which the
states ψ̃m,k in the disentangled subspace remain unchanged
(i.e., Uk

μm = δμm for all states μ, m inside the inner window).
Once the J-dimensional subspace is found, the construction of
MLWFs is equivalent to the case of isolated bands with ψm,k
replaced by ψ̃m,k in Eq. (2).

The MLWFs obtained from the above procedure form an
excellent tight-binding basis which makes them suitable for

an effective reciprocal-space interpolation in terms of a Slater-
Koster interpolation [7]. This Wannier interpolation scheme
is based on the inversion of Eq. (1) at an arbitrary point q in
reciprocal space for which an interpolation is needed:

φm,q(r) =
∑

R

e iq·R wm,0(r − R). (4)

Equation (4) describes the classical tight-binding approach
and diagonalizing the Hamiltonian matrix

Hq
mn = 〈φm,q|Ĥ|φn,q〉 (5)

gives rise to the single-particle eigenvalues ε
q
n and eigen-

functions ψn,q at q expressed in terms of the auxiliary basis
φm,q. The reason for the efficiency of this approach is that
Hq is easy to construct and typically much smaller than the
Hamiltonian expanded in the original first-principles basis in
which the states ψn,k are expressed. Hq has the dimension J
(the number of bands under consideration) and therefore is
easily diagonalized using standard linear-algebra routines.

B. (L)APW + LO method

The approach described in detail below has been imple-
mented into the full-potential all-electron code exciting [8]
which is a realization of the (L)APW + LO method. This
package implements DFT and many-body perturbation theory
(MBPT). The latter is used to compute quasiparticle energies
within the G0W0 approximation.

The APW method employs a partitioning of the unit cell
into so-called muffin-tin spheres (nonoverlapping spheres
centered at the nuclei) and an interstitial region (space be-
tween the muffin-tin spheres). The basis functions are plane
waves in the interstitial region which are smoothly augmented
into the muffin-tin spheres by atomiclike functions. The latter
are expanded in terms of spherical harmonics around the nu-
clei. The corresponding radial functions ul (r; El ) are solutions
of the radial Schrödinger equation and parametrically depend
on the energy El . In principle, the parameters El have to be set
to the band energies. In practice, however, these are not known
a priori, and the basis itself would depend on the solution of
the KS equations resulting in a nonlinear eigenvalue equation.
In order to linearize the eigenvalue problem, El is set to a fixed
value typically chosen to lie inside the respective band. In
order to add more variational flexibility, the energy derivatives
u̇(r; El ) = ∂u(r; El )/∂El can be added to the radial functions
resulting in LAPWs.

This basis set can be further extended by the addition of so-
called local orbitals (LOs). These functions are nonvanishing
only inside one particular muffin-tin sphere at the atomic site
RαL , where they are given by

φL(r) =
⎡⎣∑

ξ

aL
ξ uαL

lL,ξ
(|rαL |; ElL )

⎤⎦YlLmL (r̂αL ), (6)

with rαL = r − RαL . The coefficients aL
ξ are chosen such that

φL is normalized and continuous at the muffin-tin boundary.
The radial functions uαL

lL,ξ
(r; E ) are solutions of the radial

Schrödinger equation with a spherically symmetric potential
inside the muffin-tin sphere, and the parameter ξ denotes the
linearization order (order of the derivative with respect to
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the energy parameter El ). The addition of LOs results in a
highly flexible and tunable basis set and allows for a smaller
plane-wave cutoff.

Whenever high numerical precision is demanded, the full-
potential (L)APW + LO method is considered the gold stan-
dard approach to first-principles calculations based on DFT
and allows for the most precise numerical treatment of both
ground-state [9] and excited-state properties [10].

C. Wannier functions from local orbitals

The MV approach aims to find a set of unitary matrices U k

that minimizes the WF spread

� =
∑

n

[〈wn,0|r2|wn,0〉 − 〈wn,0|r|wn,0〉2]. (7)

In order to ensure a convergence of the iterative minimiza-
tion of � and to minimize the risk of becoming trapped in
false local minima, a good starting point is indispensable. In
our implementation, we avoid to manually provide suitable
projection functions by the use of the OPF method [4]. We
find J suitable projection functions as a linear combination of
M � J localized trial orbitals hi(r) such that they minimize
an approximate spread � [see Eq. (40) of Ref. [4]]. Then, this
guess is taken as the starting point for the MV approach. In the
original work of Mustafa and co-workers [4], the OPF method
was introduced to construct MLWFs for isolated groups of
bands. This, however, is no conceptual limitation and we
demonstrate in this work that it can also be successfully
applied to entangled states. The OPF technique is capable of
finding WFs that are already very close to the result of the MV
approach for isolated valence bands. The guess from OPFs
usually is not as good for conduction bands, but our goal is to
find a suitable initial guess for the MV approach rather than
MLWFs directly. We show that the construction of OPFs can
be automatized, which is particularly useful for systems where
it is difficult to use physical intuition for constructing suitable
projection functions. We construct OPFs from a pool of LOs.
The choice of LOs as trial functions is appealing for several
reasons: (i) They are already well localized by definition
(nonzero only inside one muffin-tin sphere). (ii) They fit any
specific problem at hand since they depend on the actual
potential in the system. (iii) All integrals needed are already
available within the (L)APW + LO method. In practice, we
proceed as follows. For each atom α, we construct LOs in the
form

φL(r) = [a0 unl,0(|rα|; Enl )

+ aξ unl,ξ (|rα|; Enl )]Ylm(r̂α ). (8)

The principal quantum number n and the angular quantum
number l are varied according to the Aufbau principle to
obtain a specified number of projection functions per atom.
The order of energy derivatives ξ is limited to 1 or 2. If LOs
with ξ > 1 are included, it may happen that some of them
become linearly dependent. In this case, we remove linearly
dependent LOs from the pool. A set built this way may
contain LOs that are not included in the (L)APW + LO basis
set in which the self-consistent potential was computed. As
discussed in Ref. [4], it may be advantageous to also include
projection functions centered at atoms in neighboring unit

cells to cover all possible bonds. In all examples presented in
this work, we find that this is not necessary and all calculations
are performed including projectors in the “home” unit cell
only. For the simple compounds presented in Sec. III A, the
inclusion of neighboring unit cells leads to the equivalent set
of WFs, possibly just centered at another equivalent bond.

The OPF method provides a guess to the searched MLWFs.
In order to fulfill the orthonormality constraint of WFs, also
the set of localized trial orbitals hi needs to be orthonormal.
We construct such a set by finding those linear combinations

hi(r) =
∑

L

CLi φL(r) (9)

that maximize the projection onto the considered J-
dimensional (disentangled) subspace. To this end, we mini-
mize the functional

P = J −
∑

i

〈hi|P̂|hi〉 +
∑
i, j

�i j[〈hi|h j〉 − δi j], (10)

where P̂ = 1/Nk
∑

n,k |�n,k〉 〈�n,k|, and the second term de-
scribes the orthonormality constraint with Lagrangian mul-
tipliers �i j . With this definition, P = 0 would correspond
to the case where the set of LOs fully spans the con-
sidered subspace (which in practice will not be reached
since LOs are strictly zero in the interstitial region). Using
Eq. (9), the above-described optimization problem is equiv-
alent to solving the generalized eigenproblem PC = SC�

with PLL′ = 〈φL|P̂|φL′ 〉, SLL′ = 〈φL|φL′ 〉, and �LL′ = λLδLL′ .
The eigenvalues are positive, and P = J − ∑

L λL � 0. We
use only the eigenvectors C:i associated to eigenvalues λi that
are larger than a specified threshold in order to reduce the
total number of trial orbitals hi and thus the computational
cost of constructing OPFs, which usually amounts for only a
small fraction of the entire cost for constructing the WFs. The
most demanding task is still the computation of the overlaps
Mk,b = 〈uk|uk+b〉 (see, e.g., Ref. [1] for further details) and
the final optimization. The time needed to find the OPFs is
usually one to two orders of magnitude smaller. As a rule of
thumb, the entire cost for finding well-localized WFs is small
compared to a DFT calculation with (semi)local exchange-
correlation functional and negligible compared to hybrid or
GW calculations.

III. RESULTS

A. Construction and chemical analysis

The localized nature of WFs and their formal exactness
make the Wannier representation superior to the Bloch rep-
resentation in terms of interpretation and chemical analysis.
As an example for the chemical interpretation of MLWFs, we
consider various group IV and III–V compounds crystallizing
in the diamond or zinc-blende structure. All 16 considered
materials (listed in Table I) are semiconductors and exhibit
similar electronic properties. In particular, they form an iso-
lated group of four distinct valence bands with hybridized
sp3 character for which we construct a set of four MLWFs.
They transform into one another under symmetry operations,
and each of them corresponds to one of the four tetrahedral
bonds that each atom in these systems forms. The results
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TABLE I. WF spreads � and shifts σ of the WF centers calcu-
lated for the valence bands in 16 group IV and III–V compounds in
the diamond (D) and zinc-blende (ZB) structures. The given lattice
constants a are adopted from Ref. [11].

� (Å2) σ

a (Å) This work Ref. [11] This work Ref. [11]

Si D 5.431 8.200 8.232 0.000 0.000
Ge D 5.658 10.078 10.116 0.000 0.000
Sn D 6.490 13.752 13.801 0.000 0.000
BP ZB 4.540 5.532 5.479 0.034 0.032
BAs ZB 4.777 6.207 6.211 0.048 0.052
GaSb ZB 6.100 11.390 11.527 0.146 0.154
InSb ZB 6.480 12.484 12.251 0.202 0.220
GaP ZB 5.450 8.071 7.637 0.220 0.240
GaAs ZB 5.650 9.266 8.871 0.222 0.236
AlSb ZB 6.140 10.275 10.135 0.234 0.228
InP ZB 5.870 9.370 8.492 0.274 0.308
InAs ZB 6.060 10.730 10.138 0.274 0.302
SiC ZB 4.360 4.741 4.651 0.302 0.308
AlAs ZB 5.660 8.197 8.090 0.310 0.310
AlP ZB 5.460 7.250 7.146 0.312 0.314
BN ZB 3.620 2.857 2.820 0.314 0.316

are depicted in Fig. 1 for the bonding states. Indeed, the
corresponding WFs have the character of a bonding σ orbital,
i.e., they are formed by a linear combination of the two sp3-
hybridized orbitals from both bonding atoms [1]. From visual
inspection of these orbitals, qualitative information about the
bond character can be gained. For purely covalently bound

systems (e.g., Ge) the WFs are symmetric and centered right
in the middle of the bond while for more ionic bonds (e.g.,
c-BN) they are asymmetric and pushed toward the more elec-
tronegative atom (nitrogen in this example). Built upon this
observation, Abu-Farsakh and Qteish [11] proposed a first-
principles parameter-free ionicity scale based on the position
of the WF centers 〈r〉n = 〈wn,0|r|wn,0〉. For 32 compounds
of the type AN B8−N (N = 1, . . . , 4), they defined the bond
ionicity based on the parameter σ , describing the shift of the
WF center away from the bond center (σ = 0) toward the
anion (σ = 1). We use their findings to check our automated
construction of MLWFs against an existing implementation
for the 16 compounds studied here. As far as possible, the
numerical parameters (lattice constants, k grids for obtaining
the density and WFs, xc type) are adopted from Ref. [11]. The
results are shown in Fig. 2. In all examples, our implementa-
tion finds the global minimum of the spread �. It is worth
noting that for this class of materials with bond-centered
WFs the choice of LOs (which are strictly atom centered and
even vanish along the bond direction) as projection functions
seems counterintuitive. Indeed, we find that the use of mere s-
and p-like LOs as projection functions can result in a local
minimum of the spread � corresponding to atom-centered
WFs. However, this issue is fully resolved by employing
suitable linear combinations of LOs obtained by the use of
the OPF method. In Table I we present both the spread �

and the shift σ for all 16 materials. With a relative deviation
� of at most 10%, both quantities are in good agreement
with Ref. [11] (top of Fig 2). We attribute these discrepancies
to different approximations in the underlying first-principles
calculation resulting in different densities and wave functions.

FIG. 1. MLWFs corresponding to the (bonding) valence and lowest (antibonding) conduction bands in 16 group IV and III–IV compounds
in the diamond and zinc-blende structures. The white sphere on the central-bond axes illustrates the WF center. All functions are real valued, and
surfaces for the same positive (negative) isovalue are shown in red (green). The isovalue is chosen such that the squared modulus integrated over
the enclosed volume is 0.9 (0.5) for the bonding (antibonding) WFs. The antibonding orbitals marked with an asterisk are linear combinations
of the four corresponding WFs (see also Fig. 3).
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FIG. 2. Spread � of the WFs (left) and shift σ of their centers
(right) for 16 group IV and III–V compounds. The results obtained
within this work are compared against Ref. [11]. For both quantities,
the relative deviation � = (A − Aref )/Aref (A = �, σ ) is within 10%
(top). One purely covalent system (Ge) and the most ionic compound
(c-BN) are highlighted by a red square and a yellow diamond,
respectively.

While we employ a full-potential all-electron approach within
the (L)APW + LO basis, in Ref. [11] pseudopotentials and
plane waves were used.

In contrast to the valence bands, the conduction bands do
not form isolated groups, and the disentanglement procedure
needs to be employed. For all 16 compounds, we disen-
tangle four WFs from the lowest conduction bands. Due to
the differences in the band dispersion among the materials,
there is no single meaningful energy window that would fit
all systems. Thus, the energy windows need to be selected
individually. In all cases, the lower boundary of the window
is set to the conduction band minimum (CBM). The upper
boundary is set to the lowest possible energy such that at each
k point there are at least four bands contained in the window.
Similar as for the valence bands, the algorithm converges to a
set of four equivalent bond-centered WFs for each material.
The character of the corresponding WFs is now that of an
antibonding σ ∗ orbital (see Fig. 1) which is in accordance
with the findings for Si in Ref. [2]. In Table II we compare
both the total spread � and its gauge-independent component
�I as well as the position of the WF centers for the valence
and the lowest conduction bands. As expected, the spread �

for the conduction bands is considerably larger than for the
valence bands. Further, the fraction of the total spread that
comes from the gauge-independent part is smaller for the
conduction bands which is mainly due to a relative increase in
the off-diagonal term �OD (see, e.g., Ref. [1] for the decom-
position of the total spread �). For the elemental group IV
materials, the antibonding WFs are symmetric and centered
right in the middle of the bond. For the binary compounds,
however, we notice a change in the position of the WF centers.
While for the valence bands it is located closer to the more
electronegative atom, the opposite behavior is found for the
conduction bands in most materials (expressed by negative

TABLE II. WF spreads � and shifts σ of the WF centers calcu-
lated for the valence and conduction bands in 16 group IV and III–V
compounds.

Valence Conduction

� (Å2) �I (Å2) σ � (Å2) �I (Å2) σ

Si 8.200 7.696 0.000 29.565 25.893 0.000
Ge 10.078 9.527 0.000 29.333 26.395 0.000
Sn 13.752 12.963 0.000 38.297 34.488 0.000
BP 5.532 5.023 0.034 19.011 16.592 0.290
BAs 6.207 5.742 0.048 19.553 17.294 0.159
GaSb 11.390 10.721 0.146 33.812 30.257 −0.208
InSb 12.484 11.836 0.202 37.727 33.490 −0.249
GaP 8.071 7.533 0.220 28.081 24.215 −0.201
GaAs 9.266 8.687 0.222 28.754 25.424 −0.276
AlSb 10.275 9.593 0.234 34.635 30.492 −0.347
InP 9.370 8.731 0.274 30.056 26.076 −0.350
InAs 10.730 10.010 0.274 30.868 27.084 −0.381
SiC 4.741 4.140 0.302 16.067 13.438 −0.203
AlAs 8.197 7.549 0.310 29.111 25.236 −0.352
AlP 7.250 6.557 0.312 30.920 23.793 −0.272
BN 2.857 2.481 0.314 9.113 7.572 −0.245

values for the shift σ ). The magnitude of σ , however, is not
anymore directly related to the ionicity based on the shift of
the valence band WFs, i.e., a material that is more polar than
another one may show a σ that is smaller in magnitude. In
our calculations, SiC, AlAs, and AlP stand out from the rest.
For these highly polar materials we obtain a set of four WFs
which differ from the σ ∗-type orbitals but turn out to be linear
combinations of them instead (see Fig. 3).

Disentanglement is required also in another scenario,
namely, the case of metals and semimetals. First, we consider
single-layer graphene. We carry out a DFT calculation within
the local-density approximation (LDA) using a 21 × 21 × 1 k
mesh and disentangle a set of five WFs. They correspond
to the three occupied and the two partially occupied bands.
These bands are fixed inside the inner window up to the onset
of the parabolic free-electron bands. As in Ref. [5], we obtain
a set of three bonding σ -like WFs corresponding to the occu-
pied bands and two atom-centered pz-like WFs corresponding
to the partially occupied bands. While in Ref. [5] the initial
guess was obtained from projection onto atom-centered pz

and sp2 orbitals (based on physical intuition), no such manual

FIG. 3. One of four symmetry-equivalent WFs corresponding to
the four lowest conduction bands in AlAs (left) and one of four
corresponding antibonding σ ∗ orbitals (right). Both sets can be
expressed as linear combinations of one another. The same behavior
is found in SiC and AlP.
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FIG. 4. (a) Two of six σ -like WFs (left orbitals) and two of four
pz-like WFs (right orbitals) in two-layer graphene. The isovalue is
chosen such that the squared modulus of the WFs integrated over
the enclosed volume is 0.9. (b) DFT band structure (solid line) and
Wannier interpolated bands (red circles). The outer window for the
calculation of WFs is set to the energy range displayed in the lower
panel. The gray shaded area represents the inner energy window. The
upper panel magnifies the highest 10 eV of the inner window.

input is required in the present implementation. Our initial
guess from OPFs obtained from eight trial orbitals according
to Eq. (9) yields a total spread of 3.92 Å2 which is already
very close to the total minimum of 3.88 Å2 obtained from a
subsequent minimization. The individual WFs have a spread
of 0.62 and 1.01 Å2 for the σ and pz orbitals, respectively.
The same set of WFs would be obtained by treating the fully
and partially occupied bands separately. We repeat the same
procedure for two- and three-layer graphene in AB and ABA
stacking, respectively, with an interlayer distance of 3.35 Å.
As a result, we obtain an equivalent set of three σ and two pz

orbitals for each additional layer. Again, the initial guess of
the spread obtained from OPFs (given in parentheses) is very
close to the total minimum of 7.81 Å2 (7.83 Å2) and 11.74 Å2

(11.78 Å2) for two- and three-layer graphene, respectively. In
Fig. 4 we show both the WFs and the band structure in two-
layer graphene. The interpolated bands (red circles) perfectly
match the DFT bands (solid line).

In the other applications demonstrated in the following
part of this work, we are more interested in WFs as an
efficient tight-binding basis rather than their actual shape and
chemical interpretation. In such cases, we are interested in
obtaining a set of well-localized WFs accurately describing
single-particle states over a potentially wide energy range.
This task leads to the question how to define appropriate
energy windows. First, we fix the inner energy window to an
interval in which we wish to obtain an accurate description

FIG. 5. Total spread � (blue circles) and its components (red
squares, triangles, and crosses) of 40 WFs in GaP obtained for
different choices of the inner energy window. The outer window
is fixed to the displayed energy region covering between 43 and
51 bands (right vertical axis, gray hatched area) including the four
valence bands (blue shaded area) and conduction bands (red shaded
area) up to 50 eV above the CBM. Each data point corresponds to
a different upper boundary of the inner window, whereas the lower
boundary is kept fixed at the bottom of the valence bands. The gray
bars display the number of bands (range over all k points) that fall
inside the inner window.

of electronic states in terms of localized WFs. This range
may vary between different materials and also depends on
the quantities of interest. Once the inner window is set, both
the outer window and the number of WFs to be disentangled
must be chosen. The latter must not exceed the minimal
number of bands in the outer window and must not be smaller
than the maximum number of bands in the inner window
(minimum/maximum over all k points).

To investigate the influence of the energy windows on
the localization of the WFs, we disentangle 40 WFs from a
manifold of both valence and conduction bands in GaP. We fix
the outer energy window such that it covers between 43 and 51
bands including the four valence bands and conduction bands
up to 50 eV above the CBM (see Fig. 5). The lower boundary
of the inner window is fixed at the bottom of the valence bands
and we vary the upper boundary. If the upper boundary is at
0 eV, the inner window contains only the four valence bands.
The upper considered limit of 42.5 eV corresponds to the
inner window containing between 35 and 40 bands. A further
increase of the upper boundary is not meaningful because the
inner window must not contain more bands than the number of
requested WFs (set to 40 in this example). Figure 5 shows that
the gauge-independent part of the spread �I which is the result
of the disentanglement procedure smoothly decreases with a
decreasing width of the inner window. This is a result of an
increasing variational freedom in finding an optimal subspace
and comes from the fact that less bands are forced to be
part of that subspace. However, although the number of states
that are fixed in the inner window decreases almost linearly
with the width of the inner window, �I quickly converges
toward a constant value and does not further decrease by
releasing more bands from the inner window. The diagonal
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FIG. 6. Electron band structure in GaP from DFT (solid line) and
Wannier interpolation for different inner energy windows. The outer
window ranges from the bottom of the valence bands up to 50 eV
above the CBM. The inner window spans the four valence bands (red
right open circles) and additionally conduction bands up to 25 eV
(blue left open circles), respectively.

and off-diagonal parts of the spread and hence the total
spread show a similar behavior. From this observation, we
conclude that well-localized WFs can be constructed over
a wide energy range and that the energy interval in which
they accurately describe electronic states can exceed the inner
window (in which the Wannier bands are pinned down to the
exact energies) by far. Indeed, we find no noticeable difference
between Wannier band structures obtained with the upper
inner-window boundary set to 0 and 25 eV. Moreover, both
match the DFT band structure very well (see Fig. 6).

We derive the following criteria for the construction of
well-localized WFs suitable for accurate interpolation pur-
poses over wide energy ranges: (1) The number of WFs
that are to be disentangled should be as close as possible to
the number of full bands inside the outer window. (2) The
difference between the inner and the outer windows should
be as small as possible. (3) In practice, often the first two
criteria must be loosened to some extent for the sake of con-
vergence, i.e., to allow for enough variational freedom in the
disentanglement procedure to eventually obtain a sufficiently
smooth subspace. Otherwise, the following minimization of
the spread may fail to converge. If we strictly obey (1) and
(2), there will be many k points at which all states must be part
of the disentangled subspace leaving not much to disentangle
and making the following minimization prone to failure. On
the other hand, if we have a large difference between the inner
and the outer windows and set the number of WFs close to
the middle between both windows, we will have maximal
freedom in the disentanglement, which will lead to a very
strong reduction of �I. However, the resulting WFs may be
too localized in the sense that they will lead to unphysically
flat bands inside the outer window which will also negatively
influence the interpolation inside the inner window close to
the window boundaries.

B. Interpolation of energy eigenvalues

The most obvious application of WFs is the interpolation
of single-particle eigenenergies. For an arbitrary point q in
reciprocal space, the corresponding energies ε

q
n are given as

the eigenvalues of the Hamiltonian matrix from Eq. (5). In
practice, q is usually a point along a path connecting high-
symmetry points in the BZ, when it comes to the calculation
of band structures, or a point on a grid which is denser than
the original grid on which the first-principles calculation was
carried out. Such dense grids are often used to approximate
integrations over the BZ by a discrete sum over a finite set
of points. One key quantity of interest that involves such a
BZ integration is the density of states (DOS). We use our
implementation to investigate the joint DOS (JDOS) in alu-
minum. The JDOS is the phase-space contribution to optical
excitations and can be calculated as

JDOS(ω) =
∫

BZ

∑
o,u

δ[εu(k) − εo(k) − ω] dk, (11)

where o and u denote the occupied and unoccupied states for a
given k, respectively, and ω is the excitation energy. Note that
the JDOS divided by ω2 is proportional to the independent-
particle optical spectrum with constant transition matrix ele-
ments. The spectrum of metals such as Al can be described
well within the independent-particle picture since excitonic
effects play a minor role due to the effective screening. Earlier
calculations of optical spectra in Al showed that very dense
integration grids containing several thousand irreducible k
points are needed to obtain convergence of the spectra [12,13].
In particular, also a strong dependence of the peak positions
was observed [13]. To investigate the influence of the BZ
grid on the JDOS in Al, we perform a DFT calculation
within the generalized gradient approximation (GGA) using
the PBE xc functional [14] on a 12 × 12 × 12 k mesh. From
an outer (inner) energy window of −15 to 80 eV (−15 to
40 eV) 25 MLWFs are constructed using the disentanglement
procedure. Hereby, the zero-energy point corresponds to the
Fermi level. The OPFs are obtained from 34 trial orbitals. The
structural and computational parameters used in this and all
other calculations can be found in Tables III and IV, respec-
tively. We interpolate the eigenvalues on different uniform
integration grids by the use of MLWFs, and the improved
tetrahedron method [15] is employed to evaluate the integral
in Eq. (11). The resulting JDOS is shown in Fig. 7. We observe
both a redshift and a significant sharpening of the two major
peaks in the investigated energy region. Both peaks eventually
converge at around 0.6 and 1.6 eV for 1203 and 803 k points,
respectively. We notice that it is more difficult to achieve
convergence in the low-energy region. For energies below
0.4 eV grids with more than 2003 uniformly spaced points
are needed (solid red line). The position of the two peaks
around 0.6 and 1.6 eV in the converged curve are in excellent
agreement with earlier calculations of the JDOS [12,16] as
well as calculations [12,13,16] and measurements [16] of
optical spectra. The redshift and sharpening with increasing
grid densities was also found in calculations of optical spectra
[13], where obviously the ratio of the peak heights differs
from the optical spectra since transition probabilities are not
taken into account in the JDOS.
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TABLE III. Structural parameters for all materials investigated in Secs. III B–III E.

Lattice parameters Lattice Space

Compound a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) type group Atoms in unit cell

Al 2.838 2.838 2.838 60 60 60 Cubic Fm-3m 1Al
Ga2O3 6.302 6.302 5.807 76.6 103.4 152.1 Monoclinic C2/m 4Ga, 6O
TiO2 4.638 4.638 2.969 90 90 90 Tetragonal P4(2)/mnm 2Ti, 4O
ZrS2 3.66 3.66 20.128 90 90 60 Hexagonal P3m1 1Zr, 2S
Py@ZnO 6.310 6.310 23.284 90 90 112.3 Triclinic P1 5C, 5H, 1N, 16Zn, 16O

C. Accuracy of energy interpolations

The claim that the WFs constructed according to Eq. (1)
form an equivalent description of the subspace spanned by the
Bloch states ψn,k under consideration only holds rigorously
for isolated groups and in the limit of an exact BZ integral. In
practice, however, the BZ is sampled by a finite set of points.
As a result, the computed WFs become periodic with respect
to a supercell conjugate to the BZ grid. This can lead to a
nonvanishing overlap between a WF and its periodic images
in neighboring supercells and ruins the exactness of the tight-
binding basis from Eq. (4) which is given in the limit of an
exact BZ integral. In turn, the interpolated eigenvalues at some
point q that does not belong to the original first-principles
grid deviates from the exact solution. Note that exact is meant
within the limitations of the first-principles calculations, i.e.,
the interpolated energy deviates from the result one would
obtain by directly performing the calculations at the point
q. MLWFs associated with isolated bands are reported to be
exponentially localized [17]. This claim was proved for in-
sulators with time-reversal symmetry [18]. As a consequence,
we expect the overlap with supercell images and thus the error
in the interpolation to decay exponentially with increasing
grid size. To investigate this behavior for the materials studied
in this work, we proceed as follows. We consider a set of
different grids {k}1, . . . , {k}n (ordered with increasing grid
density) for which we want to predict the accuracy of inter-
polated eigenenergies. First, we compute the self-consistent
KS potential and electron density on the densest grid under
consideration {k}n. This self-consistent density serves as a
starting point for further calculations. We use it to obtain the
eigenvalues ε̂

q
n on a much denser interpolation grid {q} by

a non-self-consistent diagonalization of the KS Hamiltonian.

The dense interpolation grid is chosen to be shifted to ensure a
sampling on inequivalent points. This set of energies ε̂

q
n forms

the reference to which we compare the interpolated energies.
Now, for each of the grids {k}1, . . . , {k}n−1 both wave func-
tions and eigenenergies are calculated non-self-consistently
starting from the density obtained on the grid {k}n. Lastly, for
all grids {k}1, . . . , {k}n MLWFs are constructed and used to
interpolate the eigenvalues onto the dense shifted interpolation
grid {q}. The interpolated energies are denoted by ε

q
n . For

each grid, we compute the interpolation error as the root-
mean-square deviation of the interpolated energies from the
calculated reference energies:

δεRMS =
√

1

JNq

∑
n,q

(
ε

q
n − ε̂

q
n
)2

. (12)

In order to compare BZ samplings for systems with different
unit-cell size and dimensionality, we introduce the linear k-
point density which is given by (Nk/VBZ,d )1/d , where Nk is the
total number of nonreduced k points, d is the dimensionality
of the system, and VBZ,d is the volume of the corresponding
d-dimensional BZ.

We carry out DFT calculations for various materials using
the PBE xc functional and follow the procedure described
above. The results are presented in Fig. 8. The graphs indicate
that an exponential decay of the interpolation error is an over-
all suitable assumption for most of the systems studied within
this work. It is even found for the interpolation of entangled
bands (empty circles, dashed lines) although there is no rea-
son to assume an exponential localization of WFs obtained
from the disentanglement procedure. The exponential decay
is observed particularly well in the case of β-Ga2O2 for both
the valence and the conduction bands. For TiO2, however, the

TABLE IV. Computational parameters for the construction of OPFs and MLWFs in all materials investigated in Secs. III B–III E.

Wannier Trial Angular character Unoccupied states
Compound Occupation Method functions orbitals of LOs per atom

Al Occupied + unoccupied Disentangle 25 34 s, p, d, f , g 20
TiO2 Occupied Isolated 12 30 s, p, d 10

Unoccupied Isolated 10 26 s, p, d 10
Unoccupied Disentangle 148 454 s, p, d, f 10

Ga2O3 Occupied Isolated 18 60 10
Unoccupied Disentangle 37 90 10

ZrS2 Occupied Isolated 6 21 s, p, d 10
Unoccupied Disentangle 3 18 s, p, d 10
Unoccupied Disentangle 27 34 s, p, d, f 10

Py@ZnO Unoccupied Disentangle 60 159 s, p, d 10
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FIG. 7. Joint density of states for aluminum obtained from Wan-
nier interpolation on different BZ integration grids ranging from
20 × 20 × 20 to 230 × 230 × 230.

behavior differs considerably from a pure exponential decay.
Similar investigations have been performed before for a set
of isolated bands in lead and for entangled bands in lithium
[19]. There, the same behavior of a decreasing rate of decay
for increasing grid densities (as it is clearly visible for TiO2

in our calculations) was observed. Further, it was shown for
one-dimensional (1D) systems that the localization of energy
matrix elements follows a power law times an exponential
[17]. Such a model also fits well to our results obtained for
two- and three-dimensional systems. For all systems studied,
an interpolation accuracy in the meV regime can be reached
with manageable grid densities. Going to higher accuracies,
however, will require higher grid densities than presented in
Fig. 8 which may be feasible for KS-DFT eigenvalues but be-
come rather cumbersome for the interpolation of generalized

FIG. 8. Wannier interpolation error as a function of the k-grid
density. The filled (empty) circles mark the error of interpolated
eigenvalues obtained from MLWFs representing isolated (entangled)
bands in various systems for both valence (v) and conduction
(c) bands. The lines serve as guides to the eye.

KS eigenvalues obtained from hybrid xc functionals or quasi-
particle energies obtained from the GW approach.

D. Effective masses and band extrema

The accurate and inexpensive energy interpolation using
WFs allows for a systematic search for band extrema. In
semiconductors, the most interesting extremal points of the
energy dispersion εn(k) typically are the highest occupied
state (valence band maximum, VBM) and the lowest unoc-
cupied state (conduction band minimum, CBM) determining
the band gap and its type (direct or indirect). Finding their
position is challenging when they are not located at a high-
symmetry point in the BZ. In this case, they are usually
not contained in the uniform BZ sampling employed in the
DFT calculation. We use our implementation to determine
the exact position of the VBM and CBM in β-Ga2O3 [20],
focusing on the effect of different xc treatments and levels
of theory. To this extent, the KS equations are solved within
the LDA parametrized by Perdew and Wang [21], GGA using
PBEsol [22], and the nonlocal hybrid functional PBE0 with
25% of Hartree-Fock exchange [23]. Furthermore, quasipar-
ticle self-energy corrections to the PBEsol eigenvalues are
computed using the G0W0 approximation. The (generalized)
KS calculations are carried out using 8 × 8 × 4 k points in the
full BZ. In the G0W0 calculation, a 4 × 4 × 4 k mesh and all
empty states are used following the prescription in Ref. [10].
The set of 18 valence bands is transformed into MLWFs using
the algorithm for isolated groups. The spread � of the initial
guess obtained using the OPF method is only 1% larger than
the final minimum for all xc treatments. The WFs describing
the conduction bands are obtained by the disentanglement
procedure using an outer (inner) energy window of 30 eV
(20 eV) above the Fermi level which was set to the middle
of the band gap.

The CBM in β-Ga2O3 is known to be located at the zone
center �. This is confirmed by our calculations. The position
of the VBM, however, is not at one of the high-symmetry
points in the BZ. It was reported to be on the line connecting
the high-symmetry points L and I [24] [see Fig. 9(a)] which is
in accordance with our findings. In Fig. 9(b), we show the
highest valence band and the position of the VBM for the
different theoretical approaches. We find a weak dependence
of the exact position of the VBM on the used xc treatment.
Although the position is nearly the same for LDA and PBEsol,
it is slightly closer to L for the hybrid functional and the G0W0

calculation. The exact values are reported in Table V by the
parameter β varying from 0 to 1 between the points L and I.

Further in Table V, we present the resulting band gaps.
A comparison of the �-� gap with the experimental gap of
about 4.9 eV [25,26] reveals that the nonlocal hybrid func-
tional yields the best agreement with a direct gap of 5.0 eV.
As expected, the (semi)local functionals LDA and PBEsol
severely underestimate the gap. Also, the quasiparticle gap of
4.5 eV is underestimated. However, none of the theoretical
values consider band renormalization effects due to electron-
phonon interaction which makes a direct comparison with
experimental results difficult. In all cases, the indirect gap is
about 30 meV smaller than the �-� gap.
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FIG. 9. (a) Brillouin zone of β-Ga2O3. The line on which the
valence band maximum (VBM) is found is highlighted in yellow.
(b) Highest valence band in β-Ga2O3 along the high-symmetry lines
�-L and L-I for different theoretical approaches. The Fermi level is
set to the VBM. Inset: region around the VBM. The parameter β

describes its position between the high-symmetry points L (β = 0)
and I (β = 1).

TABLE V. Position of the band extrema, effective masses (in
units of m0), and fundamental band gaps (in eV) in β-Ga2O3 for
different xc treatments determined analytically using Wannier inter-
polation. The parameter β describes the position of the VBM along
the line between the high-symmetry points L (β = 0) and I (β = 1).

LDA PBE PBE0 G0W0@PBE

VBM
β 0.2132 0.2136 0.2081 0.1953
m∗

xx 2.94 2.95 2.97 3.20
m∗

yy 3.15 3.14 2.90 3.41
m∗

zz 4.30 4.39 4.73 3.02
m∗

xz 0.232 0.258 0.572 0.089
CBM
m∗

xx 0.238 0.234 0.275 0.294
m∗

yy 0.263 0.263 0.280 0.333
m∗

zz 0.253 0.251 0.273 0.280
Eg (eV)
Indirect 2.271 2.290 5.009 4.490
�-� 2.297 2.314 5.033 4.525

The simple form of the single-particle wave functions
expressed in the WF tight-binding basis [see Eq. (4)] allows
for an analytic expression of k-space derivatives since the
dependence on the wave vector only comes from the Fourier
phase factor while the set of WFs is the same for all k
points. Thus, the use of finite differences or numerical fitting
methods (which are usually used to calculate derivatives) can
be avoided. This analytical approach allows for the direct
calculation of the particle group velocity

vn(k) = ∇kεn(k) (13)

and the effective-mass tensor

m∗
n (k) = [∇k∇T

kεn(k)
]−1

. (14)

Note that atomic units are used in Eqs. (13) and (14), and ∇k
is a column vector. We follow the derivations by Yates and
co-workers [19] in order to evaluate the analytic expression
of the first and second k derivative of the band dispersion in
β-Ga2O3 to determine the effective masses at the CBM and
VBM. The results are given in Table V. We find m∗

CBM to
be almost diagonal and isotropic. The electron effective mass
varies from 0.237 to 0.333 electron rest masses depending
on the direction and the xc treatment. Again, there are no
noticeable differences between LDA and PBEsol. For the
hybrid functional PBE0 the CBM is more isotropic compared
to LDA and PBEsol, and the electrons are slightly heavier with
effective masses between 0.273 m0 and 0.280 m0. These val-
ues are in perfect agreement with the (almost isotropic) value
of 0.281 m0 previously reported for the hybrid functional
HSE06 [27]. The results for LDA and PBEsol are in good
agreement with values of around 0.23 m0 that were previously
obtained for LDA [28]. For the quasiparticles we find even
higher effective masses between 0.280 m0 and 0.333 m0.

At the VBM, the effective-mass tensor takes the following
form:

m∗
VBM =

⎛⎝m∗
xx 0 m∗

xz
0 m∗

yy 0
m∗

xz 0 m∗
zz

⎞⎠, (15)

where the m∗
xy and m∗

yz components do not vanish completely
but are about three orders of magnitude smaller than the di-
agonal components and therefore neglected. According to our
calculations, the VBM is more anisotropic. For LDA, PBEsol,
and PBE0, we obtain similar hole effective masses in the x
and y directions of around 3 m0 and values between 4.3 m0

(LDA) and 4.7 m0 (PBE0) in the z direction. The quasiparticle
calculation differs noticeably from the other three approaches
and suggests heavier holes in the x and y directions and lighter
holes in the z direction. Overall, our results are comparable
with those of Ref. [28] for the y and z directions but differ
noticeably in the x direction for which Ref. [28] reported a
hole effective mass of m∗

xx = 6.14 m0 which is about twice the
value we find. However, both the exact position of the VBM
and the band curvature are difficult to determine accurately
due to the very low dispersion in the valence band top region
and the occurrence of multiple maxima that differ only little
in energy. For instance, there is another maximum at � only
30 meV below the VBM (see Fig. 9). We are not aware of any
reports on experimental hole effective masses in β-Ga2O3 to
compare with.
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FIG. 10. Diagonal effective masses for electrons (blue, solid
lines) and holes (red, dashed lines) in β-Ga2O3 obtained from Wan-
nier interpolation on top of PBE as a function of the first-principles
k-grid density.

In order to estimate the accuracy of the determined ef-
fective masses, we perform a similar convergence test as it
is done in Sec. III C for the predicted energies. In Fig. 10
we present the diagonal entries of the effective-mass tensor
for electrons at the CBM (blue, solid lines) and holes at the
VBM (red, dashed lines) obtained from the analytic approach
starting from PBEsol calculations on different k grids. The
values presented in Table V (with the exception of G0W0)
are obtained on a grid corresponding to a linear k-point
density of about 4.8 Å. Figure 10 shows that for this grid
density the hole effective masses are almost converged and we
estimate an uncertainty of about 0.1 m0 (≈3%). In contrast,
the noticeably smaller electron effective masses are much
harder to predict accurately. They are not yet fully converged
in the studied range of k-point densities and thus we estimate a
larger relative uncertainty for the numbers in Table V of about
0.02 m0 (≈10%).

E. Interpolation of wave functions

The diagonalization of the Wannier-interpolated Hamilto-
nian Hq

mn gives also rise to the interpolated wave functions.
They are expressed in the form

ψn,q(r) =
∑

m

V q
mnφm,q(r), (16)

where V q
:n is the eigenvector of Hq corresponding to the eigen-

value ε
q
n , and φm,q is defined by Eq. (4). The analysis of these

wave functions offers deeper physical and chemical insights.
To this extent, we decompose ψn,q in particular atomic states
by an expansion in a series of spherical harmonics Ylm times
radial functions ϕα

n,q,lm(r) inside the individual muffin-tin
spheres α:

ψα
n,q(r) =

∑
l

l∑
m=−l

ϕα
n,q,lm(|r − Rα|)Ylm( ̂r − Rα ). (17)

Within the (L)APW + LO basis, this expansion is straight-
forward. Now, we calculate the contribution of the state

ψn,q to the number of electrons inside the muffin-tin
sphere α with radius Rα by integrating the partial density
ρn,q(r) = |ψn,q(r)|2:∫

MTα

ρn,q(r) dr =
∑

l

l∑
m=−l

∫ Rα

0
r2|ϕα

n,q,lm(r)|2 dr

=
∑

l

bα,l
n,q.

(18)

The second line of Eq. (18) defines the band character bα,l
n,q

which is interpreted as the contribution of electrons with
angular character l and wave vector q inside the muffin-tin
sphere α to the nth energy band.

We interpolate the band character for TiO2 in the rutile
structure and for a monolayer of the two-dimensional (2D)
material ZrS2. The calculation of TiO2 is carried out using
the hybrid xc functional PBE0 and a 6 × 6 × 9 k-point grid.
The 12 valence bands and the 10 lowest conduction bands
are transformed into MLWFs separately using the algorithm
for isolated bands. Again, the spread � of the initial guess is
only 1% and 2% off the final minimum for the two groups,
respectively. For the higher conduction bands, 148 WFs are
disentangled using an outer (inner) energy window of 8 to
130 eV (8 to 76 eV), which demonstrates the ability to find
localized WFs accurately describing electron states up to very
high energies. In the case of ZrS2, quasiparticle energies are
calculated within the G0W0 approximation on top of PBE
for 8 × 8 × 1 k points. The six valence bands are treated
as an isolated group. We disentangle the three Zr d-like
bands which intersect with higher-energy conduction bands
around the � point from the energy window between 0 and
4.75 eV. The initial guess for both the valence bands and
the three disentangled conduction bands is only 2% larger
than the final minimum. The remaining conduction bands are
represented by 27 WFs disentangled from an outer (inner)
energy window of 3.75 to 20 eV (4.75 to 10 eV). In the
top panels of Figs. 11 and 12, we present the interpolated
band structure and DOS for TiO2 and ZrS2, respectively. For
obtaining the DOS, the energies and the band characters are
interpolated on a grid of 60 × 60 × 90 and 300 × 300 × 1
points in the BZ for TiO2 and ZrS2, respectively. The bands
and the DOS are colored according to the band character, i.e.,
the contribution of electrons from different atom species and
with different angular character. Since the band character does
not account for contributions from the interstitial region, the
sum of the projected DOS (colored area) differs from the total
DOS (black solid line). In the case of TiO2, the 12 valence
bands almost entirely originate from oxygen p-like states.
The 12 symmetry-equivalent WFs corresponding to this group
of bands [one illustrated in Fig. 11(b)] clearly reflect this
character. The same holds for the isolated group of the 10
lowest conduction bands which exhibit dominantly titanium
d character with some admixture of oxygen p-like states.
Again, this is clearly reflected in the corresponding Wannier
functions [Fig. 11(c)]. A similar behavior can be found in
ZrS2. The valence bands show a strong sulfur p character
since the corresponding Wannier functions [Fig. 12(b)] are al-
most purely p like and centered at sulfur atoms. The Wannier
functions corresponding to the three zirconium d-like bands
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FIG. 11. Wannier interpolated band structure and DOS (a) for
TiO2 in the rutile structure calculated using PBE0. The Fermi level
is set to the middle of the gap. The different shades of colors display
the individual contributions of the wave functions at titanium (blue)
and oxygen (red) atoms with different angular character (l). MLWFs
corresponding the valence (b) and lowest conduction (c) bands. Note
that the MLWFs are real valued. Positive (negative) isosurfaces are
displayed in red (green).

in the lower conduction band region [Fig. 12(c)] clearly reflect
the dominant Zr d character but also show contributions from
sulfur p-like states.

Within the G0W0 approximation, a self-energy correction
to the KS eigenvalues is calculated in order to obtain the
quasiparticle energies. Often, these corrections (obtained on
a uniform k grid) are used to deduce a rigid scissors shift
from which the band structure is then obtained. This approach,
however, is not always justified, like for instance in hy-
brid inorganic-organic systems. The prototypical compound
shown here consists of pyridine molecules chemisorbed on
the (1010) surface of a ZnO slab with 43 atoms in the
unit cell (see bottom panel in Fig. 13). Using LDA KS
states and eigenenergies as the starting point, the quasiparticle
energies are computed non-self-consistently on 4 × 4 × 1 k
points corresponding to a linear k-point density of 3.9 Å.
See Ref. [29] for further computational details. From an outer
(inner) window of 13.6 eV (8.2 eV) above the Fermi level
60 WFs are disentangled to compute the quasiparticle band
structure and compare it to the KS band structure (Fig. 13).
Note that within the G0W0 approach the single-particle wave
functions remain unchanged and just a quasiparticle correc-
tion to the eigenenergies is obtained. Hence, the MLWFs are
also constructed from single-particle states. The quasiparticle
energies are used for the interpolation according to Eqs. (4)

FIG. 12. Same as Fig. 11 for a ZrS2 monolayer calculated using
the G0W0 approximation on top of PBE. The upper (lower) illustra-
tion of the MLWFs shows the side (top) view.

and (5). The so-obtained wave functions are not to be confused
with quasiparticle wave functions that one would obtain using
the GW formalism with some flavor of self-consistency. Using
the band character, we can attribute the individual energy
bands to the constituents of the system. Bands displayed in
blue are attributed to the organic molecule while red bands
originate from the inorganic ZnO slab. Hybridized bands
are colored in shades of green, yellow, and orange. In the
bottom of Fig. 13, KS orbitals at � are shown, attributed to
ZnO (red), pyridine (blue), and a hybridized state (yellow),
respectively. It is evident that the quasiparticle self-energy
correction has significantly different effects on the individual
energy bands depending on their origin. While all conduction
bands experience a general shift toward higher energies, the
two flat molecular bands (blue) are subject to a much stronger
upward shift with respect to the four parabolic ZnO bands
(red). In contrast, the strongly hybridized band (yellow) is
slightly shifted downward with respect to ZnO bands.

IV. CONCLUSIONS

We have presented an implementation of MLWFs
within the (L)APW + LO method. By combining the well-
established algorithm developed by Souza, Marzari, and Van-
derbilt [2] with the more recently presented OPF technique
[4], we are able to robustly construct MLWFs for various
classes of materials without the need of projection functions
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FIG. 13. Energy dispersion for the lowest KS and quasiparticle
conduction bands in a hybrid inorganic-organic system (top left and
top right, respectively). The bands are colored according to their
origin. Bands attributed to the inorganic ZnO slab and the organic
pyridine molecule are drawn in red and blue, respectively. The KS
wave function for a hybridized state (yellow dot) as well as for states
originating from ZnO (red dot) and pyridine (blue dot) are illustrated
in the lower part.

being selected by the user. We use LOs as projection functions
within the (L)APW + LO method. It is appealing due to
its simplicity although they are strictly atom centered and
vanishing in the interstitial region. This lack of flexibility can
be overcome reliably by the use of the OPF approach. By
automatically and systematically adding and selecting LOs
from the pool of projection functions, we are able to calculate

MLWFs for both isolated and entangled bands in 2D and bulk
semiconductors with small and medium sized unit cells, in
(semi)metals as well as in complex hybrid systems containing
an inorganic semiconductor and organic molecules.

This procedure gives access to accurate band structures
and DOS based on more sophisticated methods such as gen-
eralized hybrid KS-DFT or quasiparticle calculations which
otherwise would not be available due to the immense com-
putational cost these methods come with. The same holds for
other quantities that can be derived from the band structure
directly such as band gaps, group velocities, and effective
masses. According to our findings, a linear density of about
four k points per Å−1 in reciprocal space in the underlying
calculation suffices to predict electronic energies at an ar-
bitrary point with an accuracy in the meV range. A deeper
analysis of the interpolated wave function gives access to the
band character and allows for a detailed interpretation of band
structures and DOS. The results are in excellent agreement
with calculations carried out in the original basis indicating
that not just eigenenergies but also wave functions can be
predicted accurately.

Future applications may involve MLWFs as basis functions
in excited-state calculations using MBPT which often come
with high effort simultaneously requiring dense k grids. A
reduction of the basis size and the simple access to wave
functions and energies at arbitrary points in reciprocal space
may help to reduce the computational cost of these approaches
retaining the high precision of the (L)APW + LO method.

ACKNOWLEDGMENTS

This work was partially performed in the framework of
GraFOx, a Leibniz-ScienceCampus supported by the Leibniz
association. Parts of this work were funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) Project No. 182087777-SFB 951. All input and output
files can be downloaded from [30]. The LDA and G0W0

calculations of the Py@ZnO interface underlying our inves-
tigations were performed by O. Turkina, the G0W0 calculation
of β-Ga2O3 by D. Nabok. We thank them for providing the
data.

[1] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
[2] I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65,

035109 (2001).
[3] A. Damle, L. Lin, and L. Ying, J. Chem. Theory Comput. 11,

1463 (2015).
[4] J. I. Mustafa, S. Coh, M. L. Cohen, and S. G. Louie, Phys. Rev.

B 92, 165134 (2015).
[5] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.

Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).
[6] G. H. Wannier, Phys. Rev. 52, 191 (1937).
[7] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[8] A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone,

S. Rigamonti, S. Sagmeister, U. Werner, and C. Draxl, J. Phys.:
Condens. Matter 26, 363202 (2014).

[9] A. Gulans, A. Kozhevnikov, and C. Draxl, Phys. Rev. B 97,
161105(R) (2018).

[10] D. Nabok, A. Gulans, and C. Draxl, Phys. Rev. B 94, 035118
(2016).

[11] H. Abu-Farsakh and A. Qteish, Phys. Rev. B 75, 085201 (2007).
[12] K.-H. Lee and K. J. Chang, Phys. Rev. B 49, 2362 (1994).
[13] C. Ambrosch-Draxl and J. O. Sofo, Comput. Phys. Commun.

175, 1 (2006).
[14] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[15] M. Kawamura, Y. Gohda, and S. Tsuneyuki, Phys. Rev. B 89,

094515 (2014).
[16] F. Szmulowicz and B. Segall, Phys. Rev. B 24, 892 (1981).
[17] L. He and D. Vanderbilt, Phys. Rev. Lett. 86, 5341 (2001).

235102-13

https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1021/ct500985f
https://doi.org/10.1021/ct500985f
https://doi.org/10.1021/ct500985f
https://doi.org/10.1021/ct500985f
https://doi.org/10.1103/PhysRevB.92.165134
https://doi.org/10.1103/PhysRevB.92.165134
https://doi.org/10.1103/PhysRevB.92.165134
https://doi.org/10.1103/PhysRevB.92.165134
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1088/0953-8984/26/36/363202
https://doi.org/10.1088/0953-8984/26/36/363202
https://doi.org/10.1088/0953-8984/26/36/363202
https://doi.org/10.1088/0953-8984/26/36/363202
https://doi.org/10.1103/PhysRevB.97.161105
https://doi.org/10.1103/PhysRevB.97.161105
https://doi.org/10.1103/PhysRevB.97.161105
https://doi.org/10.1103/PhysRevB.97.161105
https://doi.org/10.1103/PhysRevB.94.035118
https://doi.org/10.1103/PhysRevB.94.035118
https://doi.org/10.1103/PhysRevB.94.035118
https://doi.org/10.1103/PhysRevB.94.035118
https://doi.org/10.1103/PhysRevB.75.085201
https://doi.org/10.1103/PhysRevB.75.085201
https://doi.org/10.1103/PhysRevB.75.085201
https://doi.org/10.1103/PhysRevB.75.085201
https://doi.org/10.1103/PhysRevB.49.2362
https://doi.org/10.1103/PhysRevB.49.2362
https://doi.org/10.1103/PhysRevB.49.2362
https://doi.org/10.1103/PhysRevB.49.2362
https://doi.org/10.1016/j.cpc.2006.03.005
https://doi.org/10.1016/j.cpc.2006.03.005
https://doi.org/10.1016/j.cpc.2006.03.005
https://doi.org/10.1016/j.cpc.2006.03.005
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.89.094515
https://doi.org/10.1103/PhysRevB.89.094515
https://doi.org/10.1103/PhysRevB.89.094515
https://doi.org/10.1103/PhysRevB.89.094515
https://doi.org/10.1103/PhysRevB.24.892
https://doi.org/10.1103/PhysRevB.24.892
https://doi.org/10.1103/PhysRevB.24.892
https://doi.org/10.1103/PhysRevB.24.892
https://doi.org/10.1103/PhysRevLett.86.5341
https://doi.org/10.1103/PhysRevLett.86.5341
https://doi.org/10.1103/PhysRevLett.86.5341
https://doi.org/10.1103/PhysRevLett.86.5341


TILLACK, GULANS, AND DRAXL PHYSICAL REVIEW B 101, 235102 (2020)

[18] C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N.
Marzari, Phys. Rev. Lett. 98, 046402 (2007).

[19] J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B
75, 195121 (2007).

[20] J. Furthmüller and F. Bechstedt, Phys. Rev. B 93, 115204
(2016).

[21] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[22] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E.

Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev.
Lett. 100, 136406 (2008).

[23] M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029
(1999).

[24] H. Peelaers and C. G. Van de Walle, Phys. Status Solidi B 252,
828 (2015).

[25] M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett.
77, 4166 (2000).

[26] C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R.
Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M.
Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. V.
de Walle, New J. Phys. 13, 085014 (2011).

[27] J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van de Walle,
Appl. Phys. Lett. 97, 142106 (2010).

[28] K. Yamaguchi, Solid State Commun. 131, 739
(2004).

[29] O. Turkina, D. Nabok, A. Gulans, C. Cocchi, and C. Draxl, Adv.
Theory Simul. 2, 1800108 (2019).

[30] See the NOMAD Repository, doi:
10.17172/NOMAD/2019.08.28-1.

235102-14

https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevB.75.195121
https://doi.org/10.1103/PhysRevB.75.195121
https://doi.org/10.1103/PhysRevB.75.195121
https://doi.org/10.1103/PhysRevB.75.195121
https://doi.org/10.1103/PhysRevB.93.115204
https://doi.org/10.1103/PhysRevB.93.115204
https://doi.org/10.1103/PhysRevB.93.115204
https://doi.org/10.1103/PhysRevB.93.115204
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1063/1.478401
https://doi.org/10.1063/1.478401
https://doi.org/10.1063/1.478401
https://doi.org/10.1063/1.478401
https://doi.org/10.1002/pssb.201451551
https://doi.org/10.1002/pssb.201451551
https://doi.org/10.1002/pssb.201451551
https://doi.org/10.1002/pssb.201451551
https://doi.org/10.1063/1.1330559
https://doi.org/10.1063/1.1330559
https://doi.org/10.1063/1.1330559
https://doi.org/10.1063/1.1330559
https://doi.org/10.1088/1367-2630/13/8/085014
https://doi.org/10.1088/1367-2630/13/8/085014
https://doi.org/10.1088/1367-2630/13/8/085014
https://doi.org/10.1088/1367-2630/13/8/085014
https://doi.org/10.1063/1.3499306
https://doi.org/10.1063/1.3499306
https://doi.org/10.1063/1.3499306
https://doi.org/10.1063/1.3499306
https://doi.org/10.1016/j.ssc.2004.07.030
https://doi.org/10.1016/j.ssc.2004.07.030
https://doi.org/10.1016/j.ssc.2004.07.030
https://doi.org/10.1016/j.ssc.2004.07.030
https://doi.org/10.1002/adts.201800108
https://doi.org/10.1002/adts.201800108
https://doi.org/10.1002/adts.201800108
https://doi.org/10.1002/adts.201800108
https://doi.org/10.17172/NOMAD/2019.08.28-1

