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We describe the inclusion of electrodynamic fields in time-dependent density functional theory (TDDFT) by
incorporating both the induced scalar and vector potentials within the time-dependent Kohn-Sham equation. The
Hamiltonian is described in both the Coulomb and Lorenz gauges, and the advantages of the latter are outlined.
Integral expressions are defined for the retarded potentials of each gauge and a methodological approach to
evaluate these nontrivial expressions with low computational cost is adopted. Various molecular structures of
relatively small sizes are studied, including water, benzene, and conductive carbon chains. Dipole strengths
resulting from both pulse and boost excitations suggest a preserved gauge invariance of the proposed formal
approach to TDDFT in the weak magnetic field limit.
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I. INTRODUCTION

The progress of nanoscale devices leads to a growing need
for the integration of electromagnetic models with atomistic
quantum simulations. Integrating the electromagnetic and
quantum realms is vital for the proper characterization of
electromagnetic phenomena at the nanoscale.

Time-dependent density functional theory (TDDFT) re-
liably predicts the optical and electronic properties of
molecules in the presence of external electric fields [1–3].
The unique mapping between the scalar potential and parti-
cle density, given an accurately defined exchange-correlation
functional, provides the means necessary to bypass the com-
plicated many-body wave function of Schrödinger’s equation.
One approach to solve the time-dependent Kohn-Sham equa-
tions is the linear response method [2–4]. Another approach
is that of direct time propagation, in which the single-electron
orbitals are marched forward in time using various propa-
gation schemes [2,3,5–7]. The advantage of linear response
methods is that they can get the entire optical response spec-
trum with a reasonable computational effort. The advantage of
real-time propagation methods is that they allow the descrip-
tion of nonlinear effects such as high harmonics and ionization
by strong lasers [8–12]. In addition, the expression for the
exchange correlation potential in the adiabatic approximation
can be used directly without the need to develop the exchange
correlation kernel.

The traditional assumption of null magnetic fields, un-
derlying the proof of the Runge-Gross theorem, providing
the formal basis of TDDFT, dwells within an electrostatic
regime. In such a frame of reference, only the scalar portion
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of the Coulomb gauge is preserved, suppressing the induced
magnetic fields and the retardation effects which follow. In ac-
counting for the presence of magnetic fields, time-dependent
current density functional theory (TDCDFT) [13] has been
introduced as a means of extending the one-to-one mapping of
TDDFT to the 4-vector potential and current density. While it
is possible to add magnetic field contributions into the TDDFT
Hamiltonian, it is impossible to formulate a gauge invariant
TDDFT Hamiltonian that can account for strong magnetic
fields using a local exchange-correlation functional [13]. This
is largely due to the a priori assumption of a null vector poten-
tial within the Coulomb gauge-fixed Hamiltonian of TDDFT.
Among its successes [14,15], TDCDFT has elegantly been
used to correctly characterize the static axial polarizability
of conjugate polymers [15] as a result of the highly nonlocal
nature of the Vignale-Kohn functional [16].

A successful approach [17] to include retardation ef-
fects is that of multiscale simulations, whereby TDDFT and
Maxwell’s equations are time propagated simultaneously at
small and large length scales, respectively. In a proceeding
work, Yamada et al. [18] solved Maxwell’s differential equa-
tions for the vector potential to exemplify the affect of ultra-
short pulses on thin films solely in the presence of normally
incident waves. Another successful approach was suggested
by Kootstra et al. [19] to study the dielectric properties of non-
metallic crystals. Here, the retardation resulting from induced
electromagnetic fields was considered macroscopically under
the assumption that microscopic retardation was negligible
and that the microscopic induced magnetic fields were not
present.

In this work, we study, as an approximation, the inclusion
of induced magnetic fields into the time-dependent Kohn-
Sham equation (TDKS) using both the Coulomb and Lorenz
gauge-fixing conditions. In the limit of weak magnetic fields,
such an approximation can be useful to observe classical
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electromagnetic retardation effects within quantum systems.
This may prove useful in the study of highly segregated
multidomain systems, whereby retardation effects can impact
the resulting dynamics of the whole system. While the formal
gauge invariance is not assured, we surmise that, in the
presence of relatively weak magnetic fields, gauge invariance
can be attained in practice.

We therefore foresee three possible regimes of interest:
(i) In the limit of strong magnetic fields, one must resort to
TDCDFT; (ii) in the presence of weaker magnetic fields, one
can attain gauge invariance in practice and, as a result, observe
physically meaningful classical electromagnetic retardation
effects; (iii) in the limit of very small system sizes, one can
expect that retardation effects are negligible and, as a result,
not only that gauge invariance exists in practice, but that the
traditional TDDFT assumption (of null magnetic field) also
coheres to the various gauges.

In this paper, we demonstrate the realization of regime
(iii). Our long term prospect is that the formal approach to
be presented suffices also for regime (ii), but demonstrating
this requires faster implementations for the calculation of
large enough systems. One practical realization with current
computational abilities would be to study classical retardation
effects associated with the electromagnetic interaction of mul-
tiple electronic structures partitioned into domains separated
by a fraction of the external electromagnetic field’s wave-
length. This could result in fascinating structures which could
be practically realized for various applications.

Although the Coulomb gauge is the commonly adopted
gauge-fixing condition in TDDFT, the Lorenz gauge is shown
to be just as effective in characterizing the response of elec-
tronic structures, bypassing the need for a projection scheme
of the current density, via Helmholtz decomposition. In a
large amount of previous works, retardation effects in the
induced potential are seldom considered. One possible reason
is that calculating retarded potentials can be computationally
costly. One alternative route to solving Maxwell’s differential
equations is in the use of the equivalent integral expressions.
In fully incorporating the scalar and vector potentials, a com-
putational bottleneck exists in evaluating retarded potentials
due to their intrinsic dependence on past densities. To over-
come this, highly efficient FFT-based integral methods are
employed.

In what follows, we start with a formal introduction to
the proposed theoretical framework for the incorporation
of retarded potentials for different gauge-fixing conditions.
Thereafter, a methodological approach to efficiently compute
the 4-vector potential is presented. We then exemplify the
formal approach on small molecules such as water, benzene,
and cumulene. Finally a discussion is held to interpret the
results and explore future prospects for the use of alternative
gauges within TDDFT.

II. THEORY

Runge and Gross [1] showed that a unique v-representable
particle density n(r, t ) exists for every pair of a time-
dependent external potential vext (r, t ) and an initial many-
body wave function �0. The time-dependent Kohn-Sham
orbitals ψα,σ , characterized by a collinear spin-index σ , must

then obey the single-particle time-dependent Kohn-Sham
(KS) equation:

i
∂

∂t
ψα,σ (r, t ) =

(
−1

2
∇2 + vs,σ [{nσ }](r, t )

)
ψα,σ (r, t ) (1)

vs,σ [{nσ }] = vext + vion + vind[n] + vxc,σ [{nσ }]. (2)

Here, {nσ } indicates both spin up and spin down densities,
where the sum of both spin densities is the total density n =∑

σ nσ , nσ = ∑Nσ

α=1 |ψα,σ |2. The effective potential vs,σ is
composed of the external vext, ionic vion, exchange-correlation
vxc,σ , and induced (Hartree) vind scalar potentials. In general,
vxc,σ can depend on the electronic density at the current time
and at all previous times. For the purpose of this paper, we
use the adiabatic local density approximation, where vxc,σ

depends only on the electron density at the current time (i.e.,
no memory effects in the exchange-correlation potential term
are taken into account).

The density-dependent induced scalar potential vind[n] is
defined in an electrostatic manner by solving the static Poisson
equation or evaluating the equivalent integral expression:

∇2vind(r, t ) = −4πn(r, t )

⇔ vind(r, t ) =
∫

n(r′, t )

|r − r′|dr′. (3)

The inclusion of only scalar potentials within the Kohn-Sham
Hamiltonian is known as the length gauge. Finally, the ionic
potential vion is assumed to be static and under the assumption
of the Born-Oppenheimer approximation.

In determining the α = 1, ..., Nσ single-electron orbitals
ψα,σ (r, t ), Eq. (1) can either be solved using linear response
theories or by propagating the equation of motion forward in
time, of which we adopt the latter. For small systems, the
external potential, vext, is typically defined using the dipole
approximation (DA), vext = r · Eext, for a spatially uniform,
time-dependent external electric field Eext. The DA, adopted
in such a manner, holds only to first order in the multipole
expansion and therefore, by virtue of the resulting uniform
electric field, disregards any contributions brought about by
magnetic fields B. Such an approximation suffices for systems
perturbed at relatively low frequencies and system sizes (small
size-to-wavelength ratios) but fails in the presence of spatially
varying electric fields. Beyond the DA regime, retardation
begins to play a dominant role and the full 4-vector potential
must be incorporated into the system Hamiltonian. The inclu-
sion of the vector potential, along with the scalar potential, is
better known as the velocity gauge. Irrespective of TDDFT,
it has been shown that the velocity and length gauges differ
substantially for strong-field photoionization processes [20]
and for the photodetachment of negative fluorine ions [21] in
small molecules. It is therefore important to identify the limits
of the length gauge and the formal structure of the velocity
gauge.

The velocity gauge is typically attained by applying
a gauge transformation to the field variable ψα,σ → exp
{−i�s,σ }ψα,σ , such that, when placed within the temporal and
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spatial derivatives, respectively, a gauge connection appears in
utilizing the shift theorem

i
∂

∂t
(e−i�s,σ ψα,σ ) →

(
i
∂

∂t
+ ∂�s,σ (r, t )

∂t

)
ψα,σ (4)

i∇(e−i�s,σ ψα,σ ) →
(

i∇ + ∇�s,σ (r, t )

)
ψα,σ , (5)

where −∂�s,σ /∂t and ∇�s,σ are hereon considered as gauge
transformations of the spin-dependent effective scalar vs,σ

and vector 1
c As,σ potentials, respectively. This transformation

translates to the gauge freedom of the scalar and vector
potentials. Within the Kohn-Sham approach, the dynamical
Hamiltonian Ĥdyn can then be written in the velocity gauge by
applying the above gauge transformation and closely follow-
ing the procedure outlined by TDCDFT [13]:

Ĥdyn = 1

2

(
i∇ + 1

c
(Aext(r, t ) + Aind[j](r, t )

+ Axc,σ [{jσ }](r, t ))

)2

+ vs,σ [{nσ }](r, t ). (6)

Here, a dynamical contribution has been added to the
Hamiltonian of Eq. (1). The vector potential includes three
terms: the external potential Aext, spin-dependent exchange-
correlation potential Axc,σ , and the newly introduced induced
vector potential Aind. The induced and exchange-correlation
vector potentials are both functionals of the total current
density. By applying the momentum operator (within the spin
current density jσ ) to the gauge transformed single-particle
orbitals of Eq. (5), we obtain:

jσ =
∑

α

1

2

[
ψ∗

α,σ

(
i∇ + 1

c
As,σ

)
ψα,σ

+ψα,σ

(
−i∇ + 1

c
As,σ

)
ψ∗

α,σ

]

=
∑

α

i

2
[ψ∗

α,σ∇ψα,σ − ψα,σ ∇ψ∗
α,σ ] + 1

c
nσ As,σ

= jp,σ + jd,σ . (7)

Here, the paramagnetic jp,σ and diamagnetic jd,σ current
densities are given by the first and second components, respec-
tively, of the second-to-last line. Only the sum of both prop-
erly satisfies the continuity equation ∇ · j = −∂n/∂t (where
j = ∑

σ jσ ). Unlike current density functional theory (CDFT)
[22], the variational principle of the time-dependent scenario
is no longer accompanied by a constant vector potential,
alleviating the need to minimize the total energy solely with
respect to the paramagnetic current density.

Within the velocity gauge, the preferred electromagnetic
gauge-fixing condition is a matter of choice. In defining the
gauge-fixing condition, two particular options of interest are
the Coulomb (∇ · As = 0) and Lorenz (∂tvs + 1

c ∇ · As = 0)
gauges. Brill et al. [23] analyzed the equivalence of the
two gauges and exemplified their differences in emphasizing
the additional projection operation j → P (j) = jT required
in dealing with the Coulomb gauge. The Coulomb gauge is
better suited in considering nonrelativistic canonical represen-
tations of quantum mechanics. Use of the Lorenz gauge within

canonical representations can prove difficult due to either the
need for: (1) an additional divergence operation of the vector
potential As; (2) an additional time derivative of the scalar
potential vs, retrieved via the Lorenz gauge-fixing condition.
Although the Coulomb gauge is typically used within TDDFT,
we argue that the Lorenz gauge has some major advantages
for the following reasons: (a) it does not require a projection
scheme to map the 3-vector (i.e., current density) to its trans-
verse field; (b) the Coulomb gauge typically leads to the need
for surface integral expressions, via the Helmholtz decompo-
sition [24,25], to satisfy boundary conditions. Such surface
integral expressions can be ignored if the current density is
small enough at the boundary; (c) the Lorenz gauge naturally
articulates the physical dynamic behavior of electromagnetic
fields. ‘Physical’ implies that it is not conceptually luring
to characterize time-dependent behavior of electromagnetic
fields in an electrostatic manner (without retardation), as is
typically done in the time-independent case.

It is important to emphasize that the proposed electromag-
netic excitation is purely classical and within the adiabatic
framework; there is no spontaneous emission of any kind. A
fully consistent treatment of the exchange-correlation vector
potential Axc,σ is typically performed within TDCDFT [16],
which we choose to temporarily ignore under the assumption
that these effects are negligible in the limit of weak magnetic
fields. This is in contradiction to what is typically done in
TDCDFT, whereby the induced vector potential is ignored
under the assumption that it is an order of 1/c less than the
exchange-correlation vector potential. At small length scales,
ignoring the exchange-correlation vector potential therefore
only suffices when the velocity and length gauges align. At
relatively larger length scales, one can anticipate that the
classical induced vector potential should eventually overcome
the quantum effects of the exchange-correlation vector poten-
tial so as to portray the classical electromagnetic phenomena
beyond the quantum regime. In this limit, gauge invariance
is effectively conserved. The resulting equation of motion for
the single-particle orbitals ψα,σ is:

i
∂

∂t
ψα,σ =

[
1

2

(
i∇ + 1

c
(Aext + Aind[j])

)2

+ vs,σ [{nσ }]
]
ψα,σ .

(8)

In applying the Coulomb gauge-fixing condition, the induced
scalar vind and vector Aind potentials take the form

vind(r, t ) =
∫

n(r′, t )

|r − r′|dr′ (9)

Aind(r, t ) = 1

c

∫
jT

(
r′, t − |r−r′ |

c

)
|r − r′| dr′. (10)

These expressions can easily be derived using the Coulomb
gauge-fixing condition (∇ · As = 0), gauge free relations, and
Maxwell’s equations (Appendix A). A projection scheme j →
jT is necessary to attain the transverse part of j. The projection
scheme used to attain the transverse component of the current
density j can more concretely be defined by the Helmholtz

235101-3



GABAY, YILMAZ, LOMAKIN, BOAG, AND NATAN PHYSICAL REVIEW B 101, 235101 (2020)

decomposition

j(r, t ) = 1

4π
∇2

∫
j(r′, t )

|r − r′|dr′

= − 1

4π

[
∇

[
∇ ·

∫
j(r′, t )

|r − r′|dr′
]

+∇ ×
[
∇ ×

∫
j(r′, t )

|r − r′|dr′
]]

= jL(r, t ) + jT (r, t ). (11)

Here, jL is the longitudinal current density and can be shown
to have a one-to-one correspondence to the electrostatic po-
tential vind, via the continuity equation

∇ · j = −∂n

∂t
∇

[∫ ∇ · j(r′, t )

|r − r′| dr′
]

= − ∂

∂t
∇

[∫
n(r′, t )

|r − r′|dr′
]

jL = jp,L

= 1

4π

∂

∂t
(∇vind). (12)

Here, it is assumed that the longitudinal current jL is null at the
boundary. Given that the vector potential is purely transverse
in the Coulomb gauge, ∇ · jd,L = 0, justifying the presumed
equality jL = jp,L. Unlike the longitudinal current density, the
transverse component jT is entirely independent of the density
and can more easily be evaluated in its spectral representation

∇ ×
[
∇ ×

∫
j(r′, t )

|r − r′|dr′
]

→ −k̂ × k̂ × j̃. (13)

Here, j̃ is the Fourier transformed current density and k̂ =
k/||k|| is the normalized coordinate vector in the spectral
domain. Applying this projection scheme at every iteration,
in propagating the single-particle orbitals in time, is a serious
complication which can be overcome by simply adopting a
different gauge. In particular, within the Lorenz gauge, retar-
dation is considered in both the scalar and vector potentials,
with no need for the aforementioned projection scheme

vind(r, t ) =
∫

n
(
r′, t − |r−r′ |

c

)
|r − r′| dr′ (14)

Aind(r, t ) = 1

c

∫
j
(
r′, t − |r−r′ |

c

)
|r − r′| dr′. (15)

In assuming the Lorenz gauge-fixing condition, the diver-
gence of the vector potential ∇ · As can no longer be elim-
inated. A thorough derivation of these integral expressions
is partially provided in Appendix B for completeness. Given
the potentials intrinsically determine the densities, via the
single-particle orbitals, the retarded potentials should natu-
rally subsume the retardation effects within the densities. An
interesting prospect then comes forth: In defining the density-
dependent potentials, such as that of the exchange correlation,
the history of densities may more easily be incorporated using
the proposed formal approach. Stepping away from the static
characterization of potentials may be necessary to venture
beyond the all-too familiar adiabatic regime. However luring,

accounting for such a history of densities can be computation-
ally tedious. For this reason, a methodology is proposed in the
following section to relieve the complexity of such integral
expressions.

III. METHODOLOGY

Calculating retarded potentials, via Eqs. (10), (14), and
(15), is a cumbersome task and fast computational techniques
are required to their make their evaluation tractable. Their
direct evaluation is too computationally prohibitive, partic-
ularly because they must be re-evaluated at every time step
in propagating the Kohn-Sham orbitals. For some component
ρ of the 4-vector current density, the corresponding induced
potential φ can be efficiently computed by more concretely
defining the retarded Green’s function within the integral
expression

φ(r, t ) =
∫

g(R, t ) ∗ ρ(r′, t )dr′. (16)

Here, R = |r − r′| is the radial separation and the asterisk de-
notes temporal convolution. The smoothed Green’s function
g(R, t ) takes the form

g(R, t ) =
⎧⎨
⎩

1
Rδ

(
t − R

c

)
R > d

gopt(R)δ
(
t − R

c

)
R � d

, (17)

where d is typically a distance of few grid separations and
gopt is the numerically optimized (NOPT) discrete Green’s
function kernel [26]. The NOPT kernel is simply an analyt-
ically approximated Green’s function which was numerically
optimized at the region of the Coulomb singularity to best
approximate the Poisson integral on a grid [26]. The same ker-
nel has been used for the fast evaluation of Poisson integrals
and screened Poisson integrals within hybrids and screened
hybrids functionals, respectively [27,28].

To evaluate the time dependent potentials, the charge and
current densities are sampled uniformly in space using Nv =
Nx × Ny × Nz grid points separated by �x = �y = �z = h
and uniformly in time using Nt time samples with a time-step
size of �t . The samples are interpolated in time at each grid
point n′ = 1, . . . , Nv using piecewise linear temporal basis
functions T [29]

ρ(rn′ , t ) � ρ0[n′] +
Nt∑

l ′=1

ρl ′[n
′]T (t − l ′�t ), (18)

where ρl ′ is a size Nv vector that stores the charge and current
density samples at time l ′�t . The initial density ρ0 simply
corresponds to the ground state solution of the electronic
structure.

Equation (16) is a convolution procedure which respects
the causal structure of space time. Its direct evaluation is
expensive, reaching O(Nt N2

v ), however, as in the static sce-
nario, it is possible to utilize FFT techniques to reduce the
computational complexity. Using a simple 3D FFT scheme
along each slice of time reduces the order of operations
to O[Nt Nv (Ng + log Nv )], where Ng is the number of saved
past densities. Such an approach typically suffices in the
study of small molecules and molecular chains with lengths
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reaching up to a few nanometers. Any larger electronic struc-
tures require more advanced methodologies, such as those
taking advantage of the Green’s function three-level block-
Toeplitz structure [30–32] to apply FFTs along the temporal
direction, further reducing the computational complexity to
O[Nt Nv (log Nv + log2 Ng)] (‘4D FFT’ algorithm).

IV. RESULTS

We use the Bayreuth version [7,8] real-time propagation
TDDFT code as part of the PARSEC real-space package
[33,34] as a starting point for our code implementation. In
the examples which follow, we checked our implementation
for small molecules such as water, benzene, and an elongated
carbyne molecule, C12H4. We use norm conserving pseudopo-
tentials [35] for carbon, hydrogen, and oxygen with cutoff
radii (a.u.) of 1.6/1.6, 1.39, 1.3/1.3, respectively, for s/p
orbitals throughout. The grid spacing used for the electronic
structures to follow is 0.4 a.u.. The single-particle orbitals
ψα,σ are propagated explicitly using a fourth-order Taylor
expansion of the unitary evolution operator, e−iH�t , with
a predictor-corrector scheme to assure proper convergence
[7,8]. The adiabatic local density approximation (ALDA) is
hereby adopted for all of the exchange-correlation functionals.

Two measures are used in comparing the dynamical behav-
ior of the individual gauges: (i) the dipole moment resulting
from the sine squared pulse of an external electric field;
(ii) the dipole strength resulting from a boost excitation in
attaining the response of the system. In the former (i), laser
wavelengths ranging from 800–1600 nm are adopted to assure
the weak magnetic field limit is satisfied. This guarantees
that the external electric field does not dramatically vary along
the molecular structure of interest, resulting in a near-null
magnetic field.

In the latter (ii), the response is attained using an approach
similar to that suggested by Yabana et al. [36,37]: A boost
excitation is applied, taking the form of a momentary impulse
with a specified amplitude I . The resulting dipole strength
S(ω) is then defined by the time derivative of the imaginary
part of the trace of the Fourier transformed polarizability
αμν (ω) [2]:

S(ω) = 2ω

3π
Im{Tr[αμν (ω)]}

αμν (ω) = 1

Ẽ ν
ext(ω)

∫ ∞

0
dt[eiωtDμ(t )] (19)

Dμ(t ) =
∫

xμ

∑
α

|ψα (x, t )|2d3x.

Here, Tr[·] and Im{·} denote the trace and imaginary parts,
respectively, of the bracketed terms. The indices μ and ν are
used to represent the spatial components of the vectors and
tensors. The density of the single-particle Kohn-Sham orbitals
are used to obtain the time dependent dipole moment Dμ(t ).
The Fourier transformed electric field Ẽ ν

ext contained within
the polarizability function αμν can be as simple as a constant
I , as in case (ii), or an arbitrary pulse. In (i), the Fourier

transformed dipole moment D̃z is studied

D̃z(ω) =
∣∣∣∣
∫ ∞

0
dt[eiωtDz(t )]

∣∣∣∣. (20)

Here, | · | denotes the absolute value and the resulting units
are Debye × Second [D · s]. In the corresponding figures, the
Fourier transformed electric field will be scaled to D̃z in
order to demonstrate the dipole moment’s alignment to the
excitation frequencies.

In the examples which follow, the external electric field
takes the form of a sine-squared pulse and is articulated in
the following manner

Eext(x, t ) = A� sin2

[
ωenvt − ωenv

c
x

]
sin

[
ωt − ω

c
x

]
ẑ.

(21)

Here, A�, ω, and ωenv are the intensity, radial frequency, and
radial envelope frequency of the pulse. The linearly polarized
external electromagnetic field is applied along the ẑ direction
and the electric field varies along the x axis, where r =
(x, y, z).

In the dipole approximation, we use the assumption of a
spatially uniform external electric field to integrate the scalar
potential φext = E · r into the Hamiltonian. Given we wish to
describe a spatially varying external electric field, a different
representation must be adopted. We instead use the gauge-
free relation under the assumption of a null external scalar
potential:

Eext(r, t ) = −1

c

∂Aext

∂t
. (22)

By then using a backward finite differencing technique, the
discrete form of Eq. (22) for a time-step �t takes the form

Aext(r, t ) = Aext(r, t − �t ) − �tcEext(r, t ). (23)

The external vector potential is then added to the Hamilto-
nian of Eq. (8).

A. Water

We first study the dipole strength of a water molecule by
applying independently a boost excitation along the x̂, ŷ, and
ẑ directions. The water molecule geometry contained an O-H
bond length of 2.02 a.u. and an H-O-H angle of 105.6◦, similar
to that of del Puerto et al. [38], with its atoms placed along
the xy plane. The oxygen atom is placed at the origin and the
(x, y) coordinates of the hydrogen atoms are (1.45,−1.12)
a.u. and (−1.45,−1.12) a.u. The domain size was a box of
dimensions 24 × 24 × 24 a.u. and included absorbing bound-
ary conditions (ABC) with a boundary layer of 4 a.u. on each
side along each spatial dimension. A damping coefficient is
carefully chosen to gradually transition the value of the orbital
functions to zero at the boundary of the grid. The response of
the water molecule required no more than 20 femtoseconds
(fs) and a time step of 0.5 attoseconds (as).

As is apparent in Fig. 1, the dipole strength of the length,
Lorenz, and Coulomb gauges align perfectly. Here, the im-
pulse excitation was applied along the x, y, and z directions
independently. The alignment of the Lorenz and Coulomb

235101-5



GABAY, YILMAZ, LOMAKIN, BOAG, AND NATAN PHYSICAL REVIEW B 101, 235101 (2020)

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

Energy [eV]

10-2

10-1

100

101

D
ip

ol
e 

S
tr

en
gt

h 
[e

V
-1

]

Length gauge
Lorenz gauge
Coulomb gauge
Linear Response
Exp.

FIG. 1. Dipole strength of water for a boost excitation as a
function of energy, calculated with the length (red), Lorenz (green),
and Coulomb (blue) gauges. Comparison is made to linear response
calculations, made with the NWCHEM [39] code, for the dimension-
less oscillator strength (purple vertical lines), and to the experimental
absorption cross section (black) of Yoshino et al. [40], given in
arbitrary units to fit the graph.

gauges suggests deep-lying invariance holds, at least on such
small scales.

The results were broadened using a Gaussian width of
0.3 eV, on the order of the vibrational energy of H2O. The ex-
citation energies obtained from the linear response procedure
seem to be shifted from the experimental results of Yoshino
et al. [40]. Furthermore, the low energy peak of the time-
propagation simulation, located at 6.56 eV in Fig. 1, align
perfectly with the linear response peak that was calculated
using the NWCHEM package [39]. These results also seem to
agree with the linear response results of del Puerto et al. [38].
The intensity of the peaks located at 8.74 eV and 9.93 eV also
nicely align with the NWCHEM linear response calculation.

In Fig. 2, the Fourier transform of the induced dipole
moment D̃z is shown in the presence of a sine-squared pulse
specified in Eq. (21). The field and the resulting induced
dipole are orthogonal to the plane of the atoms. The box size,
grid step, ABC, and time step were all specified in a similar
manner to the impulse excitation. The total simulation time
was reduced to 12 fs, with an envelope period of Tenv = 10
fs and a sine squared pulse amplitude of A� = 3.396 × 10−4

Ry/e/a0 (i.e.. intensity of 1.012 × 109 W/cm2). Clearly, H2O
is small enough for the various gauges to align as in Fig. 1.

B. Benzene

We next demonstrate that the benzene (C6H6) molecule’s
dipole strength is also invariant to the choice of gauge. The
benzene structure adopted here contains C-C and C-H bond
lengths of 2.64 a.u. and 2.05 a.u., respectively, with its atoms
placed along the xy plane. The benzene ring is oriented such
that two opposed carbon atoms are placed along the y axis
symmetrically around the origin. The domain was a box of
dimensions 31 × 31 × 31 a.u.. ABCs are adopted, as before,
but with an increased boundary layer of 5 a.u. on each side
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FIG. 2. Fourier transformed dipole moment of water for a sine
squared pulse as a function of energy, calculated with the length
(red), Lorenz (green), and Coulomb (blue) gauges. The Fourier
transformed external electric field (black) is scaled to the peak of
the maximal excitation energy of the dipole moment.

along each dimension. The electronic structure was evolved in
time for 60 fs at a time step of 1.0 attosecond using the same
fourth-order Taylor expanded predictor-corrector scheme to
ensure properly converged dynamics.

Figure 3 depicts the dipole strength of benzene for the
length, Lorenz, and Coulomb gauges, along with the exper-
imental results of Koch et al. [41] and real-space, real-time
results of Yabana et al [37]. The results were broadened
using a Gaussian width of 0.1 eV. The impulse excitation
was applied simultaneously along the x-y-z directions un-
der the assumption that, by symmetry considerations, the
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FIG. 3. Dipole strength of benzene for a boost excitation as a
function of energy, calculated with the length (red), Lorenz (green),
and Coulomb (blue) gauges. Real-time results of Yabana et al. [36]
(purple) and the experimental results of Koch et al. [41] (black) are
used for comparison.
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FIG. 4. Fourier transformed dipole moment of benzene for a sine
squared pulse along the z axis as a function of energy, calculated
with the length (red), Lorenz (green), and Coulomb (blue) gauges.
The Fourier transformed external electric field (black) is scaled to
the peak of the maximal excitation energy of the dipole moment.

cross-diagonal components of the polarizability tensor are
null. The different gauges all conform fairly well to one
another and the experiment, in particular, they all agree on
the π − π∗ state transition at 6.9 eV.

Figure 4 depicts the induced dipole moment D̃z of benzene
in response to the 800 nm sine squared pulse of Eq. (21), with
the direction of polarization along the z axis. The box size,
grid step, ABC, and time step were all specified in a similar
manner to the boost excitation. The total simulation time was
reduced to 12 fs, with an envelope period of Tenv = 10 fs, and a
sine squared pulse amplitude of A� = 3.396 × 10−4 Ry/e/a0

(i.e., intensity of 1.012 × 109 W/cm2). The external field
which is used for Fig. 4 is too narrow in energy to calculate
the dipole strength according to Eq. (19), however, we show
in the Supplemental Material (SM) [42] that if we take a wider
bandwidth signal, we get the same dipole strength for the
external field and the boost excitation.

C. Cumulene

We next calculated the response of a 1D carbon carbyne
chain in the cumulene form, H2(= C =)12H2, placed along
the z axis. The hydrogen atoms are placed along the yz
plane. The C-C and C-H bond lengths are 2.39 a.u. and 2.07
a.u., respectively. This form of carbyne has a zero gap at
the polymer limit [43] and can serve as a future candidate
in studying retardation effects in significantly longer carbon
chains.

In the bottom of Fig. 5, the dipole strength of C12H4 is
also shown to be gauge invariant. The results were broadened
using a Gaussian width of 0.25 eV. The impulse excitation
was simultaneously applied along the x-y-z directions under
the assumption that, by symmetry considerations, the cross
diagonal components of the polarizability tensor are null. The
elongated component of the carbon chain contains a sharp
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FIG. 5. Fourier transformed dipole moment and dipole strength
of C12H4 for a sine squared pulse (top) and impulse (bottom),
respectively, as a function of energy, calculated with the length (red),
Lorenz (green), and Coulomb (blue) gauges. In the top plot, the
Fourier transformed external electric field (black) is scaled to the
peak of the maximal excitation energy of the dipole moment.

excitation peak at ∼4 eV. In generating these results, a grid
of 22 a.u. along the cross sections and 48 a.u. in the elongated
direction was adopted. Once again, ABCs with a boundary
layer of 5 a.u. along each side of the box were used to remove
any reflections resulting from nonzero orbital functions at the
boundary. The dipole strength was attained by propagating
the single-particle orbitals for over 90 fs at a time step of 0.5
attoseconds.

Unlike the previous molecular structures, it took much
longer for the lower frequency peaks to appear after the
boost excitation was applied. In a similar manner, the top of
Fig. 5 depicts the dipole moment D̃z of the length, Lorenz,
and Coulomb gauges illuminated by an 800 nm external
electromagnetic field, as specified in Eq. (21). The box size,
grid step, ABC, and time step were all specified in a similar
manner to the boost excitation. The total simulation time was
reduced to 12 fs, with an envelope period of Tenv = 10 fs, and
the sine squared pulse amplitude was set to A� = 2.856 ×
10−4 Ry/e/a0 (i.e., intensity of 7.157 × 108 W/cm2). The
additional peak located at ∼4.0 eV is characteristic of a quan-
tum resonance. The location of the resonance comes as no
surprise in observing the analogous 4 eV excitation peak of
the aforementioned impulse response in the bottom of Fig. 5.
As in the impulse response, the gauge invariance is once again
numerically demonstrated. We show in the SM that we can
recover the dipole strength for a wider bandwidth external
field.

V. DISCUSSION & SUMMARY

In this work we have described how the Lorenz and
Coulomb gauges can be formally introduced, as an approxi-
mation, into the the TDKS Hamiltonian. We have also shown a
numerically efficient way to evaluate the electromagnetic inte-
gral expressions of the retarded potentials in both gauges. This
approach was demonstrated in real space for small molecules,
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such as water, benzene, and cumulene (C12H4), by propa-
gating single-particle orbitals in real time. We have further
demonstrated that the various gauges aligned with the results
of the length gauge for such molecular structures. While this
result may be trivial for small systems with weak retardation
effects, such a formal approach can be easily extended to
multidomain scenarios of interacting small systems.

The integration of faster propagators and better paralleliza-
tion schemes will enable the calculation of systems large
enough to have more significant retardation effects, while still
residing in the weak magnetic fields limit. The simultaneous
consideration of two gauges can help verify whether gauge
invariance is still achievable in practice. Reaching such larger
scales can further enable the consideration of nanodevices,
such as nanorectennas [44,45], which were, to our knowledge,
never studied numerically from first principles.

It should be emphasized that the velocity gauges studied
thus far bring about a much richer physical characterization
of the electronic structure then their length gauge counterpart.
The induced magnetic fields essentially play the role of allow-
ing classical solitons, created by the dynamical behavior of a
given local regime of the electronic structure, to affect another
distant local regime in a causal manner. This classical effect
can play an important role for large system sizes, even at a
fraction of the external electromagnetic field’s wavelength.

Induced magnetic fields can play a prior role in other
components of the Kohn-Sham Hamiltonian, particularly in
considering the noncollinear form of the spin. The induced
magnetic field within the Stern-Gerlach term of the Kohn-
Sham-Pauli equation [46] may be dramatically altered in char-
acterizing the spin dynamics of electronic structures, particu-
larly if they exceed the exchange-correlation magnetic fields
defined by the difference in spin-up and spin-down exchange-
correlation scalar potentials. Induced magnetic fields have
been considered within the two-spinor extension of TD-
CDFT [47], along with the zeroth order regular approximation
(ZORA) [48] in approximating the relativistic Hamiltonian of
the Dirac equation.

In this work, the Kohn-Sham Hamiltonian was extended
to include retarded potentials, as opposed to the sole consid-
eration of the electrostatic Hartree potential within TDDFT.
In incorporating the vector potential into the Kohn-Sham
equation, TDDFT is effectively extended to incorporate in-
duced electrodynamic fields. The nontrivial integral expres-
sions were evaluated using an accelerative scheme, making
the study of large electronic structures tractable. The Lorenz
and Coulomb gauge-fixing conditions were studied and gauge
invariance was exemplified in the weak magnetic field limit.
It was further proposed that, in studying dynamical properties,
adopting the Lorenz gauge may be formally simpler than its
Coulomb gauge counterpart.

An interesting prospect arises in considering alternative
gauges, particularly, the more natural characterization of the
dynamical behavior of scalar and vector potentials within the
Lorenz gauge. In considering the history of densities within
the exchange-correlation functionals, the intrinsically causal
structures of the Lorenz gauge-fixed potentials could make the
articulation of dynamical many-body effects formally simpler,
removing the need to deal directly with the unintuitive nature
of the transverse vector potential.
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APPENDIX A: COULOMB GAUGE - INTEGRAL
EXPRESSIONS

Integral expressions resulting from the Coulomb gauge
fixing condition are derived. This Appendix is provided for
the purpose of completeness. The gauge-free relations are

E = −∇v − 1

c

∂A
∂t

(A1)

B = ∇ × A. (A2)

In substituting the gauge free relation for the electric field into
Gauss’s law, followed by applying the Coulomb gauge-fixing
condition ∇ · A = 0, one obtains the well-known Poisson
equation for the scalar potential

∇ · E = −∇ ·
(

∇v + 1

c

∂A
∂t

)
= 4πn

∇2v = −4πn. (A3)

One can further obtain the wave equation for the vector
potential by substituting the gauge free relations of Eqs. (A1)
and (A2) into Ampere’s law

∇ × B = ∇ × ∇ × A = ∇(∇ · A) − ∇2A

= −∇2A = 4π

c
j −

(
1

c2

∂2A
∂t2

+ 1

c

∂

∂t
(∇v)

)
. (A4)

Further rearranging Eq. (A4), one arrives at(
1

c2

∂2

∂t2
− ∇2

)
A = 4π

c
j − 1

c

∂

∂t
(∇v)

= 4π

c
(j − jL ) = 4π

c
jT . (A5)

Here, the continuity equation was used to set the time deriva-
tive of the gradient of the scalar potential equal to the longitu-
dinal current density, as demonstrated in Eq. (12). Equations
(A3) and (A5) are the partial differential equations which fol-
low from the Coulomb gauge-fixing condition. The transverse
current density jT is attained via Helmholtz decomposition, as
specified in Eq. (11). The integral counterparts of Eqs. (A3)
and (A5) can then be articulated by convolving the source
density of each with its appropriate Green’s function

v(r, t ) =
∫

n(r′, t )gs(|r − r′|)dr′ (A6)

A(r, t ) = 1

c

∫
jT (r′, t ) ∗ g(|r − r′|, t )dr′. (A7)
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Here, the asterisk denotes temporal convolution. The scalar
and retarded Green’s functions are defined as

gs(|r − r′|) = 1

|r − r′| (A8)

and

g(|r − r′|, t ) = δ
(
t − |r−r′ |

c

)
|r − r′| , (A9)

respectively. As a result, one obtains the well-known expres-
sions of Eqs. (9) and (10).

APPENDIX B: LORENZ GAUGE - INTEGRAL
EXPRESSIONS

Integral expressions resulting from the Lorenz gauge-
fixing condition are derived. This Appendix is provided for
the purpose of completeness. In substituting the gauge free
relation of Eq. (A1) into Gauss’s law, the wave equation for
the scalar potential is attained

∇ · E = −∇ ·
(

∇v + 1

c

∂A
∂t

)

= 4πn

(
1

c2

∂2

∂t2
− ∇2

)
v = 4πn. (B1)

Here, the Lorenz gauge fixing condition ∇ · A = −c−1∂v/∂t
is applied to the first line. One can similarly derive the wave
equation for the vector potential by substituting the gauge free
relations for the electric and magnetic fields into Ampere’s
law, as in Eq. (A4), followed by applying the Lorenz gauge-
fixing condition. The resulting wave equation is(

1

c2

∂2

∂t2
− ∇2

)
A = 4π

c
j. (B2)

The integral expressions corresponding to Eqs. (B1) and (B2)
are then

v(r, t ) =
∫

n(r′, t ) ∗ g(|r − r′|, t )dr′ (B3)

and

A(r, t ) = 1

c

∫
j(r′, t ) ∗ g(|r − r′|, t )dr′, (B4)

respectively. Here, the retarded Green’s function g is the
same as that defined in Eq. (A9) of Appendix A. One then
naturally arrives at the well-known expressions of Eqs. (14)
and (15).

[1] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
[2] M. A. L. Marques, N. T. Maitra, F. M. S. Nogueira, E. K. U.

Gross, and A. Rubio, Fundamentals of Time-Dependent Density
Functional Theory, Lecture Notes in Physics (Springer, Berlin,
Heidelberg, 2012).

[3] C. A. Urlich, Time-Dependent Density-Functional Theory:
Concepts and Applications, Oxford Graduate Texts (Oxford
University Press, New York, 2012).

[4] M. E. Casida, in Recent Advances in Density Functional Meth-
ods: (Part I) (World Scientific, Singapore, 1995), pp. 155–192.

[5] A. Castro, M. A. L. Marques, J. A. Alonso, G. F. Bertsch, and
A. Rubio, European Phys. J. D 28, 211 (2004).

[6] A. Gomez Pueyo, M. A. L. Marques, A. Rubio, and A. Castro,
J. Chem. Theor. Comput. 14, 3040 (2018).

[7] M. Mundt, J. Theor. Comput. Chem. 8, 561 (2009).
[8] M. Mundt and S. Kümmel, Phys. Rev. B 76, 035413 (2007).
[9] S. K. Son and S. I. Chu, Phys. Rev. A 80, 011403(R) (2009).

[10] D. A. Telnov and S. I. Chu, Phys. Rev. A 80, 043412 (2009).
[11] E. Yahel and A. Natan, Phys. Rev. A 98, 053421 (2018).
[12] I. Floss, C. Lemell, G. Wachter, V. Smejkal, S. A. Sato,

X.-M. Tong, K. Yabana, and J. Burgdörfer, Phys. Rev. A 97,
011401(R) (2018).

[13] G. Vignale, Phys. Rev. B 70, 201102(R) (2004).
[14] J. A. Berger, P. L. de Boeij, and R. van Leeuwen, Phys. Rev. B

71, 155104 (2005).
[15] M. Van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger,

and J. G. Snijders, Phys. Rev. Lett. 88, 186401 (2002).
[16] G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996).
[17] K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, and G. F.

Bertsch, Phys. Rev. B 85, 045134 (2012).
[18] S. Yamada, M. Noda, K. Nobusada, and K. Yabana, Phys. Rev.

B 98, 245147 (2018).

[19] F. Kootstra, P. L. de Boeij, and J. G. Snijders, J. Chem. Phys.
112, 6517 (2000).

[20] J. H. Bauer, J. Phys. B - At. Mol. Opt. 41, 185003 (2008).
[21] H. Reiss, Phys. Rev. A 76, 033404 (2007).
[22] G. Vignale and M. Rasolt, Phys. Rev. Lett. 59, 2360 (1987).
[23] O. Brill and B. Goodman, Am. J. Phys. 35, 832 (1967).
[24] J. Jackson and L. Okun, Rev. Mod. Phys. 73, 663 (2001).
[25] J. Jackson, Am. J. Phys. 70, 917 (2002).
[26] D. Gabay, A. Boag, and A. Natan, Comput. Phys. Commun.

215, 1 (2017).
[27] N. M. Boffi, M. Jain, and A. Natan, J. Chem. Theory Comput.

12, 3614 (2016).
[28] D. Gabay, X. Wang, V. Lomakin, A. Boag, M. Jain, and

A. Natan, Comput. Phys. Commun. 221, 95 (2017).
[29] G. Kaur and A. E. Yilmaz, Microw. Opt. Techn. Let. 53, 1343

(2011).
[30] A. E. Yilmaz, D. S. Weile, B. Shanker, J.-M. Jin, and

E. Michielssen, IEEE Antennas Wirel. Propag. Lett. 1, 14
(2002).

[31] E. Hairer, C. Lubich, and M. Schlichte, SIAM J. Sci. Comput.
6, 532 (1985).

[32] A. E. Yilmaz, J.-M. Jin, and E. Michielssen, IEEE Trans.
Antennas Propag. 52, 2692 (2004).

[33] J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev.
B 50, 11355 (1994).

[34] L. Kronik, A. Makmal, M. L. Tiago, M. Alemany, M. Jain,
X. Huang, Y. Saad, and J. R. Chelikowsky, Phys. Status Solidi
(b) 243, 1063 (2006).

[35] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993
(1991).

[36] K. Yabana and G. F. Bertsch, Int. J. Quantum Chem. 75, 55
(1999).

235101-9

https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1140/epjd/e2003-00306-3
https://doi.org/10.1140/epjd/e2003-00306-3
https://doi.org/10.1140/epjd/e2003-00306-3
https://doi.org/10.1140/epjd/e2003-00306-3
https://doi.org/10.1021/acs.jctc.8b00197
https://doi.org/10.1021/acs.jctc.8b00197
https://doi.org/10.1021/acs.jctc.8b00197
https://doi.org/10.1021/acs.jctc.8b00197
https://doi.org/10.1142/S0219633609004915
https://doi.org/10.1142/S0219633609004915
https://doi.org/10.1142/S0219633609004915
https://doi.org/10.1142/S0219633609004915
https://doi.org/10.1103/PhysRevB.76.035413
https://doi.org/10.1103/PhysRevB.76.035413
https://doi.org/10.1103/PhysRevB.76.035413
https://doi.org/10.1103/PhysRevB.76.035413
https://doi.org/10.1103/PhysRevA.80.011403
https://doi.org/10.1103/PhysRevA.80.011403
https://doi.org/10.1103/PhysRevA.80.011403
https://doi.org/10.1103/PhysRevA.80.011403
https://doi.org/10.1103/PhysRevA.80.043412
https://doi.org/10.1103/PhysRevA.80.043412
https://doi.org/10.1103/PhysRevA.80.043412
https://doi.org/10.1103/PhysRevA.80.043412
https://doi.org/10.1103/PhysRevA.98.053421
https://doi.org/10.1103/PhysRevA.98.053421
https://doi.org/10.1103/PhysRevA.98.053421
https://doi.org/10.1103/PhysRevA.98.053421
https://doi.org/10.1103/PhysRevA.97.011401
https://doi.org/10.1103/PhysRevA.97.011401
https://doi.org/10.1103/PhysRevA.97.011401
https://doi.org/10.1103/PhysRevA.97.011401
https://doi.org/10.1103/PhysRevB.70.201102
https://doi.org/10.1103/PhysRevB.70.201102
https://doi.org/10.1103/PhysRevB.70.201102
https://doi.org/10.1103/PhysRevB.70.201102
https://doi.org/10.1103/PhysRevB.71.155104
https://doi.org/10.1103/PhysRevB.71.155104
https://doi.org/10.1103/PhysRevB.71.155104
https://doi.org/10.1103/PhysRevB.71.155104
https://doi.org/10.1103/PhysRevLett.88.186401
https://doi.org/10.1103/PhysRevLett.88.186401
https://doi.org/10.1103/PhysRevLett.88.186401
https://doi.org/10.1103/PhysRevLett.88.186401
https://doi.org/10.1103/PhysRevLett.77.2037
https://doi.org/10.1103/PhysRevLett.77.2037
https://doi.org/10.1103/PhysRevLett.77.2037
https://doi.org/10.1103/PhysRevLett.77.2037
https://doi.org/10.1103/PhysRevB.85.045134
https://doi.org/10.1103/PhysRevB.85.045134
https://doi.org/10.1103/PhysRevB.85.045134
https://doi.org/10.1103/PhysRevB.85.045134
https://doi.org/10.1103/PhysRevB.98.245147
https://doi.org/10.1103/PhysRevB.98.245147
https://doi.org/10.1103/PhysRevB.98.245147
https://doi.org/10.1103/PhysRevB.98.245147
https://doi.org/10.1063/1.481315
https://doi.org/10.1063/1.481315
https://doi.org/10.1063/1.481315
https://doi.org/10.1063/1.481315
https://doi.org/10.1088/0953-4075/41/18/185003
https://doi.org/10.1088/0953-4075/41/18/185003
https://doi.org/10.1088/0953-4075/41/18/185003
https://doi.org/10.1088/0953-4075/41/18/185003
https://doi.org/10.1103/PhysRevA.76.033404
https://doi.org/10.1103/PhysRevA.76.033404
https://doi.org/10.1103/PhysRevA.76.033404
https://doi.org/10.1103/PhysRevA.76.033404
https://doi.org/10.1103/PhysRevLett.59.2360
https://doi.org/10.1103/PhysRevLett.59.2360
https://doi.org/10.1103/PhysRevLett.59.2360
https://doi.org/10.1103/PhysRevLett.59.2360
https://doi.org/10.1119/1.1974261
https://doi.org/10.1119/1.1974261
https://doi.org/10.1119/1.1974261
https://doi.org/10.1119/1.1974261
https://doi.org/10.1103/RevModPhys.73.663
https://doi.org/10.1103/RevModPhys.73.663
https://doi.org/10.1103/RevModPhys.73.663
https://doi.org/10.1103/RevModPhys.73.663
https://doi.org/10.1119/1.1491265
https://doi.org/10.1119/1.1491265
https://doi.org/10.1119/1.1491265
https://doi.org/10.1119/1.1491265
https://doi.org/10.1016/j.cpc.2017.01.016
https://doi.org/10.1016/j.cpc.2017.01.016
https://doi.org/10.1016/j.cpc.2017.01.016
https://doi.org/10.1016/j.cpc.2017.01.016
https://doi.org/10.1021/acs.jctc.6b00376
https://doi.org/10.1021/acs.jctc.6b00376
https://doi.org/10.1021/acs.jctc.6b00376
https://doi.org/10.1021/acs.jctc.6b00376
https://doi.org/10.1016/j.cpc.2017.08.005
https://doi.org/10.1016/j.cpc.2017.08.005
https://doi.org/10.1016/j.cpc.2017.08.005
https://doi.org/10.1016/j.cpc.2017.08.005
https://doi.org/10.1002/mop.25960
https://doi.org/10.1002/mop.25960
https://doi.org/10.1002/mop.25960
https://doi.org/10.1002/mop.25960
https://doi.org/10.1109/LAWP.2002.802577
https://doi.org/10.1109/LAWP.2002.802577
https://doi.org/10.1109/LAWP.2002.802577
https://doi.org/10.1109/LAWP.2002.802577
https://doi.org/10.1137/0906037
https://doi.org/10.1137/0906037
https://doi.org/10.1137/0906037
https://doi.org/10.1137/0906037
https://doi.org/10.1109/TAP.2004.834399
https://doi.org/10.1109/TAP.2004.834399
https://doi.org/10.1109/TAP.2004.834399
https://doi.org/10.1109/TAP.2004.834399
https://doi.org/10.1103/PhysRevB.50.11355
https://doi.org/10.1103/PhysRevB.50.11355
https://doi.org/10.1103/PhysRevB.50.11355
https://doi.org/10.1103/PhysRevB.50.11355
https://doi.org/10.1002/pssb.200541463
https://doi.org/10.1002/pssb.200541463
https://doi.org/10.1002/pssb.200541463
https://doi.org/10.1002/pssb.200541463
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1002/(SICI)1097-461X(1999)75:1<55::AID-QUA6>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-461X(1999)75:1<55::AID-QUA6>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-461X(1999)75:1<55::AID-QUA6>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-461X(1999)75:1<55::AID-QUA6>3.0.CO;2-K


GABAY, YILMAZ, LOMAKIN, BOAG, AND NATAN PHYSICAL REVIEW B 101, 235101 (2020)

[37] K. Yabana, T. Nakatsukasa, J.-I. Iwata, and G. Bertsch, Phys.
Status Solidi (b) 243, 1121 (2006).

[38] M. Lopez del Puerto, M. L. Tiago, I. Vasiliev, and J. R.
Chelikowsky, Phys. Rev. A 72, 052504 (2005).

[39] M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma,
H. V. Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus, and
W. de Jong, Comput. Phys. Commun. 181, 1477 (2010).

[40] K. Yoshino, J. Esmond, W. Parkinson, K. Ito, and T. Matsui,
Chem. Phys. 211, 387 (1996).

[41] E.-E. Koch and A. Otto, Chem. Phys. Lett. 12, 476 (1972).
[42] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.101.235101 for the coherence of the dipole
strength for band limited and impulse excitations. We show that,
for both benzene and cumulene, the calculated dipole strengths,
arising from the different excitations, properly align.

[43] A. Calzolari, N. Marzari, I. Souza, and M. Buongiorno Nardelli,
Phys. Rev. B 69, 035108 (2004).

[44] E. Donchev, J. S. Pang, P. M. Gammon, A. Centeno, F. Xie,
P. K. Petrov, J. D. Breeze, M. P. Ryan, D. J. Riley, and N. M.
Alford, MRS Energy & Sustainability 1, E1 (2014).

[45] G. Slepyan, T. Gilad, and A. Boag, in Proceedings of the 2017
IEEE International Symposium on Antennas and Propagation
& USNC/URSI National Radio Science Meeting, San Diego, CA
(IEEE, Piscataway, NJ, 2017), pp. 1051–1052.

[46] S. Sharma, J. K. Dewhurst, C. Ambrosch-Draxl, S. Kurth,
N. Helbig, S. Pittalis, S. Shallcross, L. Nordström, and E. K. U.
Gross, Phys. Rev. Lett. 98, 196405 (2007).

[47] P. Romaniello and P. L. d. Boeij, J. Chem. Phys. 127, 174111
(2007).

[48] T. Saue, Chem. Phys. Chem. 12, 3077 (2011).

235101-10

https://doi.org/10.1002/pssb.200642005
https://doi.org/10.1002/pssb.200642005
https://doi.org/10.1002/pssb.200642005
https://doi.org/10.1002/pssb.200642005
https://doi.org/10.1103/PhysRevA.72.052504
https://doi.org/10.1103/PhysRevA.72.052504
https://doi.org/10.1103/PhysRevA.72.052504
https://doi.org/10.1103/PhysRevA.72.052504
https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1016/0301-0104(96)00210-8
https://doi.org/10.1016/0301-0104(96)00210-8
https://doi.org/10.1016/0301-0104(96)00210-8
https://doi.org/10.1016/0301-0104(96)00210-8
https://doi.org/10.1016/0009-2614(72)90011-5
https://doi.org/10.1016/0009-2614(72)90011-5
https://doi.org/10.1016/0009-2614(72)90011-5
https://doi.org/10.1016/0009-2614(72)90011-5
http://link.aps.org/supplemental/10.1103/PhysRevB.101.235101
https://doi.org/10.1103/PhysRevB.69.035108
https://doi.org/10.1103/PhysRevB.69.035108
https://doi.org/10.1103/PhysRevB.69.035108
https://doi.org/10.1103/PhysRevB.69.035108
https://doi.org/10.1557/mre.2014.6
https://doi.org/10.1557/mre.2014.6
https://doi.org/10.1557/mre.2014.6
https://doi.org/10.1557/mre.2014.6
https://doi.org/10.1103/PhysRevLett.98.196405
https://doi.org/10.1103/PhysRevLett.98.196405
https://doi.org/10.1103/PhysRevLett.98.196405
https://doi.org/10.1103/PhysRevLett.98.196405
https://doi.org/10.1063/1.2780146
https://doi.org/10.1063/1.2780146
https://doi.org/10.1063/1.2780146
https://doi.org/10.1063/1.2780146
https://doi.org/10.1002/cphc.201100682
https://doi.org/10.1002/cphc.201100682
https://doi.org/10.1002/cphc.201100682
https://doi.org/10.1002/cphc.201100682

