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Twisted bilayer graphene displays insulating and superconducting phases caused by exceptional flattening of
its lowest energy bands. Superconductivity with highest Tc appears near half filling of the valence band (n ≈ −2).
The data show that in the large part of the superconducting dome near n = −2, threefold lattice rotation symme-
try is broken in the superconducting phase, i.e., a superconductor is also a nematic. We perform a comprehensive
analysis of superconductivity in twisted-bilayer graphene within an itinerant approach and present a mechanism
for nematic superconductivity. We take as an input the fact that at dopings, where superconductivity has been
observed, the Fermi energy lies in the vicinity of twist-induced Van Hove singularities in the density of states. We
argue that the low-energy physics can be properly described by patch models with either six or twelve Van Hove
points. We obtain pairing interactions for the patch models in terms of parameters of the microscopic model for
the flat bands, which contains both local and twist-induced nonlocal interactions. We show that the latter give rise
to attraction in different superconducting channels. For six Van Hove points, there is just one attractive d-wave
channel, and we find chiral d ± id superconducting order, which breaks time-reversal symmetry but leaves the
lattice rotation symmetry intact. For twelve Van Hove points, we find two attractive channels, g and i waves,
with almost equal coupling constants. We show that both order parameters are nonzero in the ground state and
explicitly demonstrate that in this co-existence state the threefold lattice rotation symmetry is broken, i.e., the
superconducting state is also a nematic. We find two possible nematic states, one is time-reversal symmetric,
the other additionally breaks time-reversal symmetry. We apply our scenario to twisted bilayer graphene near
n = −2 and argue that it is applicable also to other systems with two (or more) attractive channels with similar
couplings as our reasoning for a nematic superconductivity is based on generic symmetry considerations.
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I. INTRODUCTION

Twisted hexagonal heterostructures recently joined the
family of condensed matter systems which display supercon-
ductivity with a yet unsettled pairing mechanism. Supercon-
ductivity (SC) has been observed in twisted bilayer graphene
[1–4], twisted double-bilayer graphene [5–7], and trilayer
graphene on boron nitride [8,9] under various tuning condi-
tions controlled by twist angle, pressure, filling, or external
field. This high degree of tunability holds the promise to
enlighten the pairing problem from many different angles and
thereby improve our understanding of superconductivity in
correlated electron systems. Like in several other correlated
systems, SC borders insulated phases, in which fermions
either get localized by Mott physics or develop a competing
order, which gaps excitations near the Fermi surface.

The occurrence of SC and insulating phases is ascribed
to an exceptional band flattening, which comes along with a
very large hexagonal moiré pattern in real space [10,11]. The
small bandwidth of the resulting isolated flat band increases
the relative strength of both electron-electron [12–15] and
electron-phonon [16,17] interaction and promotes correlation
effects [18]. In twisted bilayer graphene (TBG), insulating
and superconducting phases have been induced by adjusting
the band flatness either by changing the twist angle between
the two graphene layers to the so-called magic angle [11]
close to 1.1◦ or upon applying pressure in the vicinity of
the magic angle [1–4]. The most prominent insulating states

occur near half filling of either conduction or valence bands at
the density of two electrons or two holes per moiré unit cell
(near n = ±2 in the classification where n = 4 corresponds
to fully occupied and n = −4 to empty flat bands). Insulating
states have also been reported near other integer fillings [3,4].
Similarly, the SC state with the highest critical temperature
Tc ∼ 3 K [4] was detected close to half filling of the valence
band (n = −2). Further superconducting states with Tc �
0.65 K have been found near the half-filled conduction band
and in between other integer fillings. The suppression of
superconductivity by a small magnetic field points to spin-
singlet pairing [1].

The data indicate [19] that TBG with a twist angle near
the magic one lies in a regime of moderate coupling, where
the ratio of Coulomb interaction (reduced by the large spatial
scale of the moiré pattern) and the width of the flat band is of
order one (both are in the range of 10–20 meV). Consequently,
arguments have been made for both moderate coupling itiner-
ant approach and strong coupling Mott-type approach. Argu-
ments for the strong coupling approach have been rationalized
by the fact that insulating states have been detected not only
near n = ±2 but also near other integer fillings n = ±1 and
±3. Arguments for an itinerant approach are based on the
observations that even the highest superconducting Tc of 3 K is
much smaller than the bandwidth and that insulating behavior
is rather fragile—it disappears already for small T � 10 K
and for small fields H � 5 T, Refs. [2–4]. Within the itinerant
approach, insulating states are viewed as competing states
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with some type of order in the particle-hole channel, and
superconductivity and competing orders are largely based on
the notion that close to half filling [19,20] and, possibly, other
integer fillings, the chemical potential nearly coincides with
twist-induced Van Hove (VH) singularities in the density of
states, Ref. [21]. This generally amplifies the effect of interac-
tions both in particle-hole and particle-particle channels [22].

In our study, we analyze superconductivity within an itiner-
ant approach. Earlier studies considered both phonon [17,23–
26] and purely electronic pairing mechanisms [27–45]. The
works on the electronic mechanism often explored a scenario,
where the enhancement of the pairing in the doubly degen-
erate d-wave channel at densities near the VH singularities
leads to chiral d ± id superconductivity. A similar analysis
had been previously performed for a single layer of graphene
at high doping [46,47].

The primary goal of our study is to take a new look at
superconductivity in the presence of VH singularities near the
Fermi level in view of the recent experimental observations
that a discrete C3 rotational symmetry is broken in the su-
perconducting state of hole-doped TBG [48]. The breaking
of a lattice rotational symmetry is usually associated with
nematic order, and a state in which this symmetry is broken
below the superconducting Tc is called nematic superconduc-
tor. Nematic superconductivity has been earlier discussed for
LiFeAs (Ref. [49]) and doped topological insulator Bi2Se3

(Refs. [50–57]). In case of TBG, nematic fluctuations were re-
ported in the STM measurements in the normal state [19,58],
but no long range nematic order has been detected. The
authors of [48] analyzed the nature of a superconducting dome
centered near n = −2. The superconducting Tc in this dome
is higher than at other dopings, where superconductivity has
been detected. They found that for most doping levels within
the dome, C3 symmetry is broken below Tc, and they argued
that it is very likely caused by superconductivity. For a sliver
of dopings within the dome, C3 breaking was detected already
in the normal state. However, the direction of the nematic
order is different at dopings where nematicity is only seen
in the superconducting state and where it was detected in the
normal state, and also Tc drops when normal state nematicity
develops. This indicates that the two nematic orders compete
with each other, i.e., the nematicity in the normal state is not
the source of the nematic order that emerges below Tc. We
take these results as a motivation for our study and analyze a
possibility to obtain C3 breaking only in the superconducting
state. Out of superconducting states proposed for TBG, d ± id
superconducting order [32–35,38,39,41,44,45] breaks time-
reversal symmetry but preserves C3 rotational symmetry, and
s-wave superconductivity due to phonons also does not break
C3 symmetry. Here, we propose a novel scenario for pairing
in TBG, which gives rise to nematic superconductivity. We
argue that a combination of the geometry of VH points,
which can double in number to twelve, and the form of the
effective interaction, which was argued to possess both on-site
and nearest-neighbor components [13–15], gives rise to an
attraction in two pairing channels. Once both pairing conden-
sates emerge, we argue, based on symmetry, that the system
becomes a nematic superconductor. In the classification of the
lattice rotation group D3, appropriate for TBG, one of the
attractive channels is the doubly degenerate E channel and

the other is the single-component A2 channel. The d-wave
state, discussed in earlier works, belongs to E channel. Based
on the number of nodes along the Fermi surface, the SC
states that we found here correspond to doubly degenerate
“g wave” and “i wave,” respectively (each gap component in
the E channel changes sign eight times under a 2π rotation
around the center of the Brillouin zone, while the gap in the
A2 channel changes sign twelve times under a full rotation).
The presence of higher lattice harmonics in the superconduct-
ing gap structure of TBG was also discussed in Ref. [59].
We argue that the coupling constants in the two channels
are quite close, so in a wide temperature range below Tc

the system is in the coexistence state, where both SC orders
are present. Taken alone, each of the two states does not break
C3 symmetry: The order parameter in the E channel E1 ± iE2

(the g-wave analog of d ± id) breaks U (1) phase and Z2 time-
reversal symmetry, and the order parameter in the A2 channel
breaks U (1) phase symmetry. We show that in the coexistence
state, C3 symmetry is broken, along with the overall U (1)
phase symmetry. The breaking of C3 symmetry is due to the
presence of special coupling terms in the Landau free energy,
which are linear in the A2 order parameter and cubic in the
E order parameter. We found two coexistence states: in one
time-reversal symmetry is additionally broken, in the other
it is preserved. The time-reversal-symmetric state develops
if the special coupling between the two order parameters is
sufficiently strong. Otherwise, time reversal is broken in the
coexistence state. We show the corresponding phase diagrams
in Fig. 1 as a function of a tuning parameter αT , which
determines the nonlocal interaction strength and regulates
how close the two different SC states are in energy.

It is instructive to compare our findings with the earlier pro-
posals for nematic superconductivity in TBG. For spin-singlet
pairing, earlier works [27,60] focused on the two-component
E state, without an admixture of the A2 state. In this situation,
nematic superconductivity can develop if the solution for
the gap is nonchiral, (�E1 ,�E2 ) = �E (cos γ , sin γ ), and the
minima of the free energy are at three values of γ . We looked
into this possibility but found that for parameters extracted
from the microscopic model [13,14,61] that we use, the so-
lution for the E state is the chiral �E1 ± i�E2 , which breaks
time-reversal but preserves C3 lattice rotational symmetry. It
was suggested [60] that fluctuation corrections can potentially
change the free energy and make the nematic configuration
energetically favorable, if the nematic component of density
wave fluctuations is large in the normal state. In a similar
spirit, it was argued in Ref. [37] that fluctuation-induced
nematic superconductivity can develop in the vicinity of a
transition into a nematic orbital ferromagnet. We did not an-
alyze fluctuation corrections or preformed nematic phases in
our model. Instead, we focus on the superconductivity coming
already from the bare interaction. In Ref. [62] nematic su-
perconductivity in the triplet channel has been explored. This
work is likely applicable to twisted double-bilayer graphene,
where data suggest spin-polarized pairing [6]. In TBG, which
we consider, experiments point to spin-singlet pairing [1].

The doubling of the number of VH points as a function
of twist angle or pressure, and the difference in the number
of VH points in valence and conduction bands has been
considered for twisted bilayer graphene in Refs. [30,63] and

224513-2



NEMATIC SUPERCONDUCTIVITY IN TWISTED BILAYER … PHYSICAL REVIEW B 101, 224513 (2020)

T

T

U(1) 
U(1)× Z2 

C3×U(1)×Z2C3×U(1)×Z2 C3×U(1)

C3 is broken
T is broken

C3 is broken
T is broken

C3 is broken
T is preserved

Coexistence phase
, ,(                )

{C3 manifoldT

T

C3×U(1)× Z2 

U(1) U(1)× Z2 

C3 is broken, T is broken 

Coexistence phase
(                 ),,

+  1     2

C3 manifold {
+  1     2

{Z2

FIG. 1. A schematic phase diagram for the case when the pairing channels with E and A2 symmetry are nearly degenerate (i.e., the
attractive interaction in the two channels has almost the same magnitude). We use the strength of the nonlocal interactions αT as a parameter
to distinguish between the cases when the interaction in one of the channels is stronger than in the other. Immediately below the onset of the
pairing, SC develops in one of the two channels, and the gap symmetry is either g ± ig (E -channel, green shaded region) or i (A2-channel, blue
shaded region); both states are rotationally symmetric. At a lower temperature, a coexistence state develops (red shaded region). Depending
on the parameters in the Landau free energy, this state is either type I or type II. State of type I (left panel) evolves continuously between pure
A2 and pure E states. This state breaks C3 rotational symmetry, i.e., it is a nematic superconductor, and also breaks time-reversal symmetry.
For state of type II (right panel), there is an additional intermediate phase inside the coexistence region (purple region). In this intermediate
phase, C3 rotational symmetry is broken, but time-reversal symmetry is preserved. In both panels, the transition between the E state and the
co-existence state is first order (red dashed line), and the transition between the co-existence state and the A2 state is second order (solid
red line). The three states in the “bubble” in the middle of each panel are symmetry partners of the C3 manifold; time-reversal symmetry is
realized by exchanging E1 ↔ E2. The directions of blue, green, and brown arrows correspond to the phases of A2, E1, and E2 order parameters,
�i = |�i|eiφi , counted from the y axis. For definiteness, we set the A2 order parameter to be real.

for monolayer jacutingaite in Ref. [64]. In particular, Ref. [30]
analyzed Kohn-Luttinger superconductivity within the model
with twelve VH points and Hubbard interactions. They found
attraction in several channels, with the dominant one be-
ing spin-triplet and C3 symmetric. Our analysis differs from
Ref. [30] in two aspects. First, we argue that the nonlocal
component of the interaction gives rise to an attraction in more
that one channel already at the bare level, and, second, we
argue that, to find nematic superconductivity, one needs to
move below the highest Tc and analyze the coexistence phase.

The structure of our paper is as follows. In Sec. II we
introduce the patch models with six and twelve VH points and
extract the model parameters from the underlying microscopic
tight-binding model with local and nonlocal interactions. In
Sec. III we solve the corresponding linearized gap equation
and determine the symmetries of its solutions. We use the
result to derive the Landau free energy for spin-singlet super-
conductivity in TBG in Sec. IV. We analyze the free energy
in detail and present possible SC phase diagrams in the end.
We conclude in Sec. VI. Several details of the derivations
are presented in the Supplemental Material [65]. Before we
proceed, we present a brief summary of our results.

Summary of the results

We use as an input for our study the effective tight-binding
model for the flat bands, introduced in Refs. [13,14,61,66].
The precise form of the dispersion will not be essential to our
analysis, as we will only need the very fact that the dispersion
possesses VH points. We argue that the number of VH points

is six, if the dispersion is such that VH points are located along
one of the high-symmetry directions in the Brillouin zone and
twelve if VH points are located away from high-symmetry
directions (see Fig. 4). We consider fermionic densities at
which VH singularities are located near the chemical potential
and introduce patch models for fermions in hot regions near
the VH points. We study separately the cases of six and twelve
VH points. We argue that nematic superconductivity emerges
for the case of twelve VH points. We include all symmetry-
allowed interactions between hot fermions and extract their
values from the microscopic model of Ref. [13]. In this model
the interaction term has both local (Hubbard) and nonlocal
(nearest-neighbor) components, with comparable strength.

Within the patch models, we solve for spin-singlet pairing
in various channels. The pairing states can be classified ac-
cording to irreducible representations of the point group D3,
appropriate for TBG. This point group has three irreducible
representations: two one-dimensional representations A1, A2

and one two-dimensional representation E [67]. We find that
the interaction in some pairing channels is attractive, because
of the nonlocal component.

For the six-patch model, we find that the E channel (d
wave) is attractive, while the A1 channel (s wave) is repulsive.
The A2 channel ( f wave) does not contribute to spin-singlet
pairing. This is in accordance with earlier studies of the six-
patch model for TBG [28] and single-layer graphene [46]. The
corresponding SC order parameter can be represented by a
vector �E

6p with a number of components equal to the number
of patches. Because the E channel is two-dimensional, there
are two independent order-parameter vectors �E1

6p and �E2
6p,
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and the full SC gap is a linear combination �SC
6p = �E1�

E1
6p +

�E2�
E2
6p. The type of the superconducting order depends on

which linear combination minimizes the free energy. It is
determined by the sign of the coupling term between �E1

and �E2 : β2|�2
E1

+ �2
E2

|2. When β2 > 0, a chiral �E1 ±
i�E2 state develops, when β2 < 0 nematic SC develops with
(�E1 ,�E2 ) = �E (cos γ , sin γ ). For the microscopic model
that we use for TBG, we find β2 > 0, i.e. the SC state is
chiral �E1 ± i�E2 . This order breaks time-reversal symmetry
but preserves lattice rotational symmetry (the gap amplitude
is the same at all six VH points).

For the twelve patch model, we find that two channels, E
and A2, are attractive with nearly equal coupling constants.
Analogously to the six-patch case, the corresponding
order parameters are twelve-component vectors, which
can be expressed as �SC

12,E = �E1�
E1
12p + �E2�

E2
12p and

�SC
12,A2

= �A2�
A2
12p. The minimization of the free energy for

the E state taken alone again yields the chiral �E1 ± i�E2 state
that breaks time-reversal symmetry but preserves C3 lattice
rotation symmetry. The A2 state with a single gap amplitude
�A2 preserves both time-reversal and lattice rotation
symmetries. However, we show that new states emerge at low
temperatures, when both E and A2 gaps are nonzero. To study
the order parameter in the coexistence state, we derive the
Landau functional F [�E1 ,�E2 ,�A2]. The functional, taken
to quartic order in �i, contains regular mixed terms, quadratic
in �E1 ,�E2 , and in �A2 : γ1(|�E1 |2 + |�E2 |2)|�A2 |2 +
γ2((�2

E1
+ �2

E2
)�̄2

A2
+ c.c.), and the asymmetric term

δ�̄A2 [(�E1 − i�E2 )2(�̄E1 − i�̄E2 ) + (�E1 + i�E2 )2(�̄E1 +
i�̄E2 )]+ c.c. The coefficients γ1,2, β2, and δ are all expressed
via the parameters of the underlying microscopic model. The
asymmetric term is special in the sense that it is linear in �A2

and qubic in �E1,2 , yet it is invariant under all symmetry trans-
formations from the D3 space group on the hexagonal lattice,
as well as under time-reversal and U (1) gauge transforma-
tions. We argue that because of this term, the order parameter
in the coexistence state breaks C3 lattice rotational symmetry.

To illustrate the root of the C3 breaking, we analyze sep-
arately the special case when the asymmetric term is absent,
and the generic, proper case when it is present. In the special
case, we found that there are two coexistence states. Both
are highly degenerate, with order parameter manifold U (1) ×
U (1) × Z2 in one phase and U (1) × U (1) in the other. The
presence of two U (1)’s implies that there is an additional
continuous degeneracy besides the conventional U (1) overall
phase degeneracy. The extra Z2 in one phase is associated with
time reversal. In the other phase, time-reversal operation is a
part of the extra U (1) symmetry. In a generic case, when δ

is finite, we find that the additional U (1) gets discretized. For
small δ, we find that there exists a single coexistence phase
with order parameter manifold U (1) × C3 × Z2, where U (1)
is phase degeneracy, C3 is a discrete symmetry with respect to
lattice rotations, and Z2 is associated with time reversal. The
superconducting order breaks all three symmetries, including
C3 symmetry of lattice rotations. This implies that the coexis-
tence state is a nematic superconductor. For larger δ we find
that there appears a region within the coexistence state, where
the order parameter manifold is U (1) × C3. A SC order in this
range is again nematic, but it does not break time-reversal

symmetry. For the parameters of the microscopic model of
Refs. [13,14,61], the value of δ is close to the boundary where
the state with broken C3 and unbroken time-reversal symmetry
develops. We therefore cannot rigorously argue for or against
time-reversal breaking in the superconducting state of TBG.
Still, we emphasize that for any δ > 0, the SC state in our
twelve-patch model breaks C3 lattice rotational symmetry, i.e.,
the SC state is also a nematic state. This is consistent with the
experiments, which near n = −2 found a twofold anisotropy
of resistivity in the vortex state as a function of the direction
of the applied magnetic field [48,68].

II. EFFECTIVE PATCH MODELS FROM TIGHT BINDING

A. Fermiology of twisted bilayer graphene

While a brute-force microscopic description of TBG is ob-
structed by the huge unit cells of the moiré superlattice, low-
energy continuum [11,20,69–76] and tight-binding [10,77–
80] models that couple both layers have been very successful
in analyzing the electronic properties of TBG—including the
theoretical prediction of flat bands itself [11,69,72,78]. More
recent works derived effective tight-binding models for the
superlattice based on localized Wannier states exclusively for
the isolated flat bands [12,14,61,66]. These Wannier states
have a three-peak structure centered around sites of the
honeycomb lattices, which is dual to the triangular moiré
lattice where the local charge density is concentrated. Such
a structure gives rise to hopping between further neighbors.
To write down a tight-binding model exclusively for TBG flat
bands one has to overcome Wannier obstructions [81,82]. The
obstruction occurs if one implements symmetries at incom-
mensurate twist angles. These symmetries are not exact but
are assumed to emerge. To avoid the obstruction and construct
a tight-binding model for the flat bands only, one can either
consider commensurate structures near the magic angle with
well-defined bands [66], or sacrifice one of the approximate
symmetries [14]. The resulting model (the one we use below)
then has a threefold symmetry instead of a sixfold one.

In this work, we employ the model for the dispersion
proposed by Yuan and Fu [61] (see also Ref. [14]). We
start from writing down the tight-binding Hamiltonian for the
moiré superlattice in real space in terms of Wannier states

HT B = H (0)
T B + H (1)

T B (1)

H (0)
T B = −

∑
i

μc†
i ci +

∑
〈i j〉

t1[c†
i c j + H.c.]

+
∑
〈i j〉5

t2[c†
i c j + H.c.], (2)

H (1)
T B =

∑
〈i j〉5

t3[(c†
i × c j )z + H.c.]. (3)

Here, the sums go over the sites of the honeycomb lattice,
which are centered on the AB or BA regions of the moiré
pattern in TBG. The operators ci = (ci,x, ci,y )T annihilate
electrons with p-wave-like orbital index x and y, μ denotes
the chemical potential, t1, t2 are real hopping amplitudes be-
tween nearest- and fifth-nearest-neighbors, and 〈i j〉5 denotes
fifth-nearest neighbor (see Fig. 2). A fifth-nearest neighbor

224513-4



NEMATIC SUPERCONDUCTIVITY IN TWISTED BILAYER … PHYSICAL REVIEW B 101, 224513 (2020)

L1
L2

a3
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FIG. 2. The moiré honeycomb superlattice and translation vec-
tors relevant for the tight-binding Hamiltonian. Vectors ai correspond
to nearest-neighbor hopping, bi correspond to hopping between fifth
nearest neighbors [denoted by 〈i j〉5 in Eq. (1)], and Li are primitive
lattice vectors. Black and gray circles show A and B sublattice sites,
respectively.

is equivalent to a second-nearest neighbor within the same
sublattice. For simplicity, we suppressed a spin index.

The Hamiltonian H (1)
T B possesses an orbital and spin U (1) ×

SU (2) symmetry, D3 space symmetry of the TBG lattice,
and is symmetric under time reversal. It yields four spin-
degenerate bands with dispersions

E±
± = Td ± Tsd2 ±

√
|Tsd1|2, (4)

where

Td = −μ + 2t2(cos b1k + cos b2k + cos b3k), (5)

Tsd1 = t1

(
exp(ikx ) + 2 exp

(
− i

kx

2

)
cos

(√
3ky

2

))
, (6)

Tsd2 = 2t3(sin b1k + sin b2k + sin b3k). (7)

In Fig. 3 we show the calculated band structure for a
particular choice of hopping magnitudes. This band struc-
ture is in good agreement with previously published results
[11,61,66,73,76]. In particular, it reproduces the splitting of
the bands along the 	M line, obtained in first-principles
calculations [2,80,83,84] and effective low-energy models
[11,73,76]. The bands are orbitally-polarized in terms of
chiral orbitals c± = (cx ± icy)/

√
2. For our purposes, the key

feature of the band structure of Eq. (4) and Fig. 3 is that it
allows for Lifshitz transitions at both positive and negative
energies, and, hence, contains VH points. If such a VH point is
a saddle point of the dispersion, the density of states (DOS) is
logarithmically singular. The presence of VH points in TBG’s
band structure has been confirmed experimentally [21]. We
will focus on the regions near VH points because the large

En
er
gy

FIG. 3. Band structure for TBG for a particular set of hopping
parameters t1 = 1, t2 = −0.1, t3 = 0.08. The dashed lines show the
positions of VH singularities for electron doping (μ 	 1.716) and
hole doping (μ 	 −0.329). The details of the band structure depend
on the values of ti. However, in all cases there are either six or twelve
VH singularities.

DOS increases the tendency towards superconductivity. The
dashed lines in Fig. 3 mark the values of chemical potential at
which saddle-type VH points are located on the Fermi surface.
As we will be interested only in the states near the saddle-type
VH points, we avoid a subtle issue whether in the presence of
all symmetries of TBG, the tight-binding model of Eq. (4),
based on localized Wannier states exclusively for the isolated
flat bands (Refs. [14,61,66]), is adequate everywhere in the
Brillouin zone or if there exist special k points away from VH
regions, where one needs to invoke other bands to properly
describe excitations [81].

In general, the number of VH singularities in TBG has to
be either six or twelve due to the lattice rotation symmetry.
We consider both cases because the precise band structure
is not known. In particular, the number of VH singularities
in conduction and valence bands can differ, even with only a
weak particle-hole asymmetry present. The band structure in
Fig. 3 is one example, with six VH points upon electron and
twelve upon hole doping.

In Fig. 5 we show the evolution of the Fermi surface for
either hole or electron doping (negative or positive μ). We see
different behavior in the two cases. Upon electron doping, the
system reaches a Lifshitz transition with six VH singularities,
located away from the Brillouin zone boundary but along
high symmetry 	M directions. Upon hole doping, the first
Lifshitz transition creates additional pockets along the 	M
lines but does not give rise to VH singularities. The reason
is that VH points in this case are not saddle points but local
maxima of the band spectrum. As μ decreases further, the
system does undergo a Lifshitz transition accompanied by VH
singularities. In this last case, there are twelve VH points in
the Brillouin zone, each located away from the Brillouin zone
boundary and also away from high symmetry directions. We
show the Fermi surfaces with six and twelve VH singularities
separately in Fig. 4.

For other values of hopping integrals we found three other
scenarios: (a) Lifshitz transitions with six VH singularities
for both electron and hole doping, (b) six VH singularities at
a Lifshitz transition for hole doping and twelve for electron
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doping, and (ii) Lifshitz transitions with twelve VH sin-
gularities for both electron and hole doping. The observed
electron-hole asymmetry of the superconducting states in
TBG [1–4,48] could be a result of different numbers of VH
singularities in conduction and valence bands. We show in our
analysis below that the superconducting ground state in the
case with twelve VH singularities breaks the lattice rotation
symmetry, while the one with six does not. The appearance
of such a nematic superconducting state has recently been
suggested to occur near half filling of the valence band [48].
We also note in passing that as the twelve VH singularities at
the Lifshitz transition upon hole doping form six sets of pairs
with small separation within a pair, there is the intriguing pos-
sibility [63] that for fine-tuned hopping parameters, VH points
within each pair merge and create a set of six VH singularities,
each leading to a stronger (power-law) divergence of the DOS
[85]. We, however, will not study this special case.

B. An effective low-energy patch model

Below we analyze superconductivity near Lifshitz transi-
tions accompanied by singularities in the DOS. For this we fo-
cus on states near the VH points and introduce effective patch
models with either six or twelve patches. We first expand the
energies Eq. (4) around the VH points and approximate the
hopping Hamiltonian by

H =
Np∑

a=1

∑
τ=±

∑
σ=↑,↓

εa(k) f †
aτσ (k) faτσ (k) , (8)

where faτσ (k) annihilates an electron with momentum k in
the vicinity of patch a in band τ with spin σ . The patch
index runs through a = 1 . . . Np with Np = 3 (6) for the
six-patch (twelve-patch) model. The hyperbolic dispersion
relations for the different patch points εa(k) = αak2

x − βak2
y

with sgn(αa) = sgn(βa) are related by D3 and time-reversal
symmetry, inherited from the microscopic Hamiltonian of
Eq. (1). Thereby, half of the patch points belong to one of
the two bands crossing the Fermi energy at VH doping, while
the other half belongs to the other band. The patch points
belonging to the same band are related by a threefold rotation
symmetry, while the patches from different microscopic bands
are related by inversion. We show the location of patches in
Figs. 4, 5, and 6.

We next consider all symmetry-allowed coupling terms
between fermions in the patches. In general, there are four
types of allowed interactions. These are intrapatch and in-
terpatch density-density and exchange interactions. Umklapp
processes are not allowed because VH singularities do not
appear at momenta connected by a reciprocal lattice vector.
A simple bookkeeping analysis shows that there are 6 (18)
symmetry-allowed couplings for the six-patch (twelve-patch)
model without orbital-mixing terms and 9 (27) when these
terms are included. The orbital mixing terms were found to
be very small numerically in the microscopic model [13,14],
and we do not include them. The most general interacting
Hamiltonian for the six-patch model without orbital mixing
is [28]

HInt
6p =

3∑
a=1

∑
τ=±

[u0 f †
aτ faτ f †

aτ faτ + v0/2 f †
aτ faτ f †

aτ̄ faτ̄ + u1 f †
aτ faτ f †

a+1τ fa+1τ + v1 f †
aτ faτ f †

a+1τ̄ fa+1τ̄

+ j1 f †
aτ fa+1τ f †

a+1τ faτ + (g1/2 f †
aτ fa+1τ f †

aτ̄ fa+1τ̄ + H.c.)]. (9)

We introduced τ̄ = −τ and a labels half of the patches. We omitted spin indices for simplicity—the spin structure of each term
is

∑
σ,σ ′ f †

σ fσ f †
σ ′ fσ ′ .

For the twelve-patch model, the most general interaction Hamiltonian is

Hint
12p =

6∑
a=1

∑
τ=±

[u0 f †
aτ faτ f †

aτ faτ + v0/2 f †
aτ faτ f †

aτ̄ faτ̄ + u2 f †
aτ faτ f †

a+2τ fa+2τ + v2 f †
aτ faτ f †

a+2τ̄ fa+2τ̄ + u3 f †
aτ faτ f †

a+3τ fa+3τ

+ v3 f †
aτ faτ f †

a+3τ̄ fa+3τ̄ + j2 f †
aτ fa+2τ f †

a+2τ faτ + g2/2( f †
aτ fa+2τ f †

aτ̄ fa+2τ̄ + H.c.) + j3 f †
aτ fa+3τ f †

a+3τ faτ

+ g3/2( f †
aτ fa+3τ f †

aτ̄ fa+3τ̄ + H.c.) + u1+ f †
aτ faτ f †

a+(−1)aτ fa+(−1)aτ + u1− f †
aτ faτ f †

a−(−1)aτ fa−(−1)aτ

+ v1+ f †
aτ faτ f †

a+(−1)a τ̄ fa+(−1)a τ̄ + v1− f †
aτ faτ f †

a−(−1)a τ̄ fa−(−1)a τ̄ + j1+ f †
aτ fa+(−1)aτ f †

a+(−1)aτ faτ

+ g1+/2( f †
aτ fa+(−1)aτ f †

aτ̄ fa+(−1)a τ̄ + H.c.) + j1− f †
aτ fa−(−1)aτ f †

a−(−1)aτ faτ + g1−/2( f †
aτ fa−(−1)aτ f †

aτ̄ fa−(−1)a τ̄ + H.c.)]
(10)

with the patch index being defined modulo 6.
Below, we will need the subset of interactions relevant to

pairing, which are between fermions with opposite momenta.
In our model these fermions belong to different bands. The
pairing interactions then only involve fermions with patch
indices (a, τ ) and (a, τ̄ ) (see Fig. 6). This reduces the num-
ber of interaction terms relevant for SC to two, v0, g1, for
the six-patch model and to five, v0, g2, g3, g1+, g1−, for the

twelve-patch model. We sketch the interactions which will be
important for the pairing problem in Fig. 6.

To estimate the values of the couplings, we need to com-
pare Eqs. (9) and (10) with the corresponding interaction
terms in the microscopic model. A typical approximation for
the four-fermion interaction term for a system with screened
Coulomb interaction is to keep it local, i.e., approximate the
interaction by the on-site Hubbard density-density interaction.
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6 Van Hove points 12 Van Hove points

K' K'

FIG. 4. Fermi surfaces for the two bands (shown by different col-
ors) for μ = 1.716 (left) and μ = −0.329 (right). Circles indicate the
positions of VH singularities. For μ 	 1.716 (electron doping) there
are six VH singularities, located along 	M and symmetry-related
directions in the Brillouin zone. For μ 	 −0.329 (hole doping) there
are twelve VH singularities; neither is located along a high-symmetry
direction.

The case of TBG was argued to be different, because there
is substantial overlap between Wannier states localized at
neighboring sites [13,14]. This peculiar property leads to a
new form of the interaction Hamiltonian [13,14], in which
local density-density interactions and terms describing as-
sisted nearest neighbor hopping are of the same order and have
to be considered on equal grounds. We follow Kang and Vafek
[13] and write the interaction Hamiltonian in real space as

Hint = V0

∑
R

⎛
⎝∑

o=x,y

∑
σ=↑,↓

Oo,σ (R)

⎞
⎠

2

, (11)

where

Oo,σ (R) = 1
3 Qo,σ (R) + αT To,σ (R), (12)

FIG. 6. Sketch of the interactions in six-patch and twelve-patch
models. Blue and red dots mark patches around VH points. We show
only the interactions relevant for superconductivity.

Qo,σ (R) =
3∑

n=1

(c†
oσA(R + an)coσA(R + an)

+ c†
oσB(R − an)coσB(R − an)), (13)

To,σ (R) =
3∑

n=1

(c†
oσB(R − an)coσA(R + an)

− c†
oσA(R + an+1)coσB(R − an) + H.c.). (14)

Here, R runs over the centers of the honeycomb lattice cor-
responding to the triangular moiré pattern, A, B denote the
sublattice indexes, an are three translation vectors of the hon-
eycomb sites (see Fig. 2), and o is the Wannier orbital index,
inherited from the original valley degrees of freedom. There
are three types of interaction terms: QQ, T Q, QT , and T T
terms. The QQ term describes local (Hubbard) density-density
interactions within a single honeycomb, the T Q, QT terms

K'

FIG. 5. Evolution of the Fermi surfaces with doping for the same hopping parameters as in Fig. 3. Top: evolution upon electron doping
from charge neutrality (Dirac) point on the left to VH doping on the right. Bottom: same evolution upon hole doping.
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QQ

TT

TQQT

FIG. 7. Graphic representation of three types of interactions in
the Hamiltonian of Eq. (11). QQ (orange) are density-density inter-
actions, T Q and QT (blue) describe processes, in which an electron
interacts with a local density while hopping to a neighboring site, and
T T (green) describes pair hopping processes.

describe the processes, in which an electron interacts with a
local density while hopping to a neighboring site, and the T T
term describes the pair-hopping processes, in which electrons
interact with each other, while hopping to a neighboring site
(see Fig. 7). In momentum space, Hint becomes

Hint =
∑

k,q,k′,q′

∑
σ,σ ′,o,o′

δ(k − q + k′ − q′)

×
[

1

9

∑
v,v′

Fvv′v′vc†
oσvkc†

o′σ ′v′k′co′σ ′v′q′coσvq

+ αT

3

∑
v =v′

(Fvvvv′c†
oσvkc†

o′σ ′vk′co′σ ′vq′coσv′q

+ Fvvv′vc†
oσvkc†

o′σ ′vk′co′σ ′v′q′coσvq

+ Fvv′vvc†
oσvkc†

o′σ ′v′k′co′σ ′vq′coσvq

+ Fv′vvvc†
oσv′kc†

o′σ ′vk′co′σ ′vq′coσvq )

+ α2
T

∑
v =v′

(Fvv′vv′c†
oσvkc†

o′σ ′v′k′co′σ ′vq′coσv′q

+ Fvvv′v′c†
oσvkc†

o′σ ′vk′co′σ ′v′q′coσv′q)

]
, (15)

where v, v′ label the sublattice indexes A and B, Fvv′v′′v′′′

are coupling functions, which we present in Supplemental
Material, and αT measures the strength of nonlocal interac-
tions (the QQ, T Q, QT , and T T terms are O(1), O(αT ) and
O(α2

T ) terms, respectively). Kang and Vafek estimated αT to
be around 1/4. We will use αT as a parameter but keep it close
to 1/4.

We next transform Hint to the band basis and project it onto
the patches around VH points. We show the details in the Sup-
plemental Material and here present the results. For the inter-
actions relevant to SC, we obtain, in units of V0 from Eq. (11),

v0 = 1 g1 = 0.1 + 0.92α2
T (16)

for the six-patch model and

v0 = 1 g2 = 0.193 + 0.053α2
T g3 = 0.021 + 1.51α2

T

g1+ = 0.256 + 17.9α2
T g1− = 0.057 + 9.02α2

T (17)

for the twelve-patch model. Observe that the prefactors of the
α2

T terms are large numbers.
The interactions in Eqs. (16) and (17) are the bare ones.

The true interactions relevant to superconductivity are the
effective, fully irreducible ones, which includes all corrections
from particle-hole bubbles and also all renormalizations in the
particle-particle channel from fermions with energies above
the characteristic scale, which is, roughly, the largest of Tc

and the Fermi energy at the VH points. The flow of the
couplings upon integrating out fermions with higher energies
is often described within the renormalization group (RG)
approach [86–89]. These renormalizations are particularly
relevant when the bare interaction is repulsive in all pair-
ing channels, as renormalizations may overcome the bare
repulsion and make the interaction attractive in one or more
pairing channels, below certain energies. Physically, these
renormalizations make the effective interaction nonlocal, and
the growing nonlocal component eventually gives rise to a
sign change of the pairing interaction in certain channels.
In our case, the bare interaction is already nonlocal, and we
show in the next section that it is already attractive in one
channel for the six-patch model and in two channels for the
twelve-patch model. In this situation, the RG-type renormal-
ization of the bare interaction may affect the magnitudes of
the attractive couplings but will unlikely change qualitatively
the results obtained with the bare interactions. We therefore
proceed without including the RG flow of the couplings. We
emphasize that here we only focus on the pairing channel and
do not address the issue of competing orders. To study the
interplay between superconductivity and competing orders,
RG-type calculations are required.

We also note in passing that previous works did apply
RG to both six-patch models [28,33,34] and a twelve-patch
model [30] for TBG. However, these works considered the
cases when the RG flow of the couplings (or, at least, Kohn-
Luttinger renormalizations from particle-hole bubbles) is nec-
essary to overcome a bare repulsion and induce an attractive
pairing interaction.

III. GAP EQUATION

To study superconductivity, we introduce the gap function
as �στσ ′τ ′

a = 〈 faτσ faτ ′σ ′ 〉, where we remind that a labels the
patches, and τ and σ are band and spin indices. In the absence
of orbital mixing, spin-singlet and spin-triplet channels are
degenerate in TBG because direct exchange between patches
related by time inversion is absent [28]. A finite orbital mixing
splits spin-singlet and triplet channels. Depending on the sign
of the orbital mixing term, either spin-singlet or spin-triplet
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FIG. 8. Diagrammatic representation of a system of coupled gap
equations. Gray triangle is a fully renormalized superconducting
vertex; red and blue lines are Green’s functions of electrons from
the two bands. Summation over a is implied.

SC will be favored [28,32]. Experimentally, superconductivity
in TBG is destroyed by small magnetic fields [1], which is
consistent with spin-singlet pairing. We therefore will focus
on spin-singlet pairing. We assume that the orbital mixing
term is smaller than the other interaction terms. In this situa-
tion, the Cooper pairs with zero total momentum are predom-
inantly made by fermions from different bands, see Figs. 6
and 8. Accordingly, we set τ ′ = τ̄ in �στσ ′τ ′

a and express it
as �στσ ′ τ̄

a = �aiσy (�a is the same for the two choices of τ ).
The matrix gap equation then reduces to a set of three (six)
coupled equations for the six-patch (twelve-patch) model:

�6p = −

⎛
⎝v0 g1 g1

g1 v0 g1

g1 g1 v0

⎞
⎠�6p, (18)

�12p = −

⎛
⎜⎜⎜⎜⎜⎝

v0 g1− g2 g3 g2 g1+
g1− v0 g1+ g2 g3 g2

g2 g1+ v0 g1− g2 g3

g3 g2 g1− v0 g1+ g2

g2 g3 g2 g1+ v0 g1−
g1+ g2 g3 g2 g1− v0

⎞
⎟⎟⎟⎟⎟⎠�12p.

(19)

Here �6p = (�,�2,�3)T , �12p = (�,�2,�3,�4,�5,

�6)T , and  is the particle-particle polarization bubble (the
same for all pairs of fermions). Diagonalizing the matrix
gap equation, we obtain eigenvalues and eigenfunctions in
different pairing channels. We classify the solutions of the
gap equation according to the irreducible representations
of the point group D3 = C3 × C2, whose elements are
rotations along the z axis by ±2π/3 (C3) and twofold
rotations along the y- and symmetry-equivalent axes
(C2), Ref. [67]. The D3 group has two one-dimensional
irreducible representations, called A1 and A2, and one
two-dimensional representation, called E (the corresponding
eigenvalue is doubly degenerate). Each representation
contains an infinite set of eigenfunctions; some describe
spin-singlet and some spin-triplet order. The generic form
of eigenfunctions in A1 is cos(6nθk ) for spin-singlet pairing
(n = 0, 1, 2..) and sin((6n + 3)θk ) for spin-triplet pairing
with the polar angle θk = arctan ky/kx counted from the
kx axis. For A2, the eigenfunctions are cos((6n + 3)θk ) for
spin-triplet and sin(6nθk ) for spin-singlet pairing. For E ,
the eigenfunctions are (cos((6n + 2)θk ), sin((6n + 2)θk ))
and (cos((6n + 4)θk ), sin((6n + 4)θk )) for spin-singlet
pairing and (cos((6n + 1)θk ), sin((6n + 1)θk )) and
(cos((6n + 5)θk ), sin((6n + 5)θk )) for spin-triplet pairing.
The gap equation decouples between different representations

but not between different eigenfunctions within the same
representation. In a generic case, when all Fermi surface
points are relevant to pairing, all partial components get
coupled in the gap equation. In patch models, the gap equation
simplifies because only a limited number of harmonics is
distinguishable. For simplicity, we will use the lowest
harmonics to describe our solution of the gap equation.

In our sign convention, a specific channel becomes at-
tractive when the eigenvalue turns from negative to positive.
We show below that if we keep only local QQ terms in the
interaction (i.e., set αT = 0), all eigenvalues are negative and
superconductivity does not occur without additional contri-
butions to the pairing interaction from, e.g., Kohn-Luttinger
diagrams. However, once we add nonlocal terms, we find
that some channels become attractive once αT exceeds some
critical value, specific to a given channel.

Solving the gap equation for the six-patch model, we
find that only one eigenfunction from A1 and one from E
contribute to spin-singlet pairing. To express the correspond-
ing eigenfunctions, we note that the patches are centered
along high symmetry directions. In this situation, the polar
angles of the patch locations θi, i = 1, 2, 3, are related by
θ2 = θ1 − π/3, and θ3 = θ1 − 2π/3. We can then write the
eigenfunctions as

�A1
6p = (1, 1, 1)

�E1
6p = (cos(2θ1), cos(2θ1 − 2π/3), cos(2θ1 + 2π/3))

�E2
6p = (sin(2θ1), sin(2θ1 − 2π/3), sin(2θ1 + 2π/3)). (20)

The eigenfunction in the A1 representation has the same sign
in all patches and is analogous to an s wave. The eigen-
functions in the E representation change sign four times as
one makes the full circle along the Fermi surface and in this
respect are analogous to d wave.

The eigenvalues in the A1 and E channels are

λ
A1
6p = −(v0 + 2g1) (21)

λE
6p = −(v0 − g1). (22)

Substituting the values of couplings from (16), we obtain

λ
A1
6p = −V0

(
1.2 + 1.84α2

T

)
(23)

λE
6p = −V0

(
0.9 − 0.92α2

T

)
. (24)

We plot the eigenvalues as functions of αT in the left panel of
Fig. 10. We see that the coupling in the A1 channel is negative
(repulsive) for all values of αT , but the one in the E channel
becomes attractive for αT > 0.98.

For the twelve-patch model, θ2m+1 = θ1 − mπ/3, θ2 =
π − θ1, and θ2m+2 = θ2 − mπ/3 (see Fig. 9). This doubles the
number of nonequivalent eigenstates and eigenfunctions. The
eigenfunctions for spin-singlet pairing are

�A1
12p = (1, 1, 1, 1, 1, 1)

�A2
12p = (−1, 1,−1, 1,−1, 1)

�
E+

1
12p = (cos(2θ1), cos(2θ1), cos(2θ1 − 2π/3),

cos(2θ1+2π/3), cos(2θ1+2π/3), cos(2θ1−2π/3))
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FIG. 9. The eigenfunctions for E and A2 states in the twelve-
patch model. Numbering of VH points is shown on top. Middle: com-
ponents �

E1
12p = cos(4θi + 3π/4) (red) and �

E2
12p = sin(4θi + 3π/4)

(green). Bottom: �
A2
12p = sin(6θi ) (blue). Circles, squares, and dia-

monds denote the values of gap function at different VH points. Lines
are continuous functions of θ , obtained using symmetry reasoning.
Viewed as continuous functions, �

E1
12p and �

E2
12p have eight nodes,

and �
A2
12p has twelve nodes.

�
E+

2
12p = (sin(2θ1),− sin(2θ1), sin(2θ1 − 2π/3),

− sin(2θ1 + 2π/3), sin(2θ1 + 2π/3),

− sin(2θ1 − 2π/3))

�
E−

1
12p = (cos(4θ1), cos(4θ1), cos(4θ1 + 2π/3),

cos(4θ1 − 2π/3),

cos(4θ1 − 2π/3), cos(4θ1 + 2π/3))

�
E−

2
12p = (sin(4θ1),− sin(4θ1), sin(4θ1 + 2π/3),

− sin(4θ1 − 2π/3), sin(4θ1 − 2π/3),

− sin(4θ1 + 2π/3)). (25)

With respect to the number of nodes, the A1 eigenfunction
corresponds to s wave. The A2 eigenfunction is proportional
to sin(6θk ) at the patch points and corresponds to i wave (12
nodes along the Fermi surface). Eigenfunctions E+ and E−
from E correspond to d wave and g wave, respectively (4
nodes and 8 nodes, see Fig. 9). Because the two states with E
symmetry have different numbers of nodes, they decouple in
the gap equation (this does not hold beyond the patch model).

The eigenvalues in the four decoupled channels are

λ
A1/2

12p = −[v0 + 2g2 ± (g1− + g1+ + g3)], (26)

λE±
12p = −

[
v0 − g2

±
√

g2
1− + g2

1+ + g2
3 − g1−g1+ − g1−g3 − g1+g3

]
.

(27)

Substituting the values for the couplings from (17), we obtain

λ
A1/2

12p = −V0
[
1.39 + 0.106α2

T ± (0.33 + 28.43α2
T

]
, (28)

λE±
12p =−V0

[
0.81−0.053α2

T ±
√

0.05+5.89α2
T +201.94α4

T

]
.

(29)

We plot the eigenvalues as functions of αT in the right panel of
Fig. 10. We see that λ

A1
12p and λE+

12p are repulsive for all values

of αT , but λ
A2
12p and λE−

12p become attractive for αT > 0.19
and 0.21, respectively. Note that the values of αT needed
for attraction are smaller than in the six-patch model and
also smaller than the estimate for αT ∼ 0.23 presented in
Ref. [13]. Furthermore, over some range of αT ∼ 1/4, the
couplings λ

A2
12p and λE−

12p are almost identical, i.e., the critical
temperatures T A2

c and T E
c are approximately the same.

We emphasize that this observation represents a qualitative
difference to previous studies of superconductivity within
patch models for VH filling in TBG [30,33,90] because in
our case no Kohn-Luttinger type corrections (or higher order
corrections associated with spin or charge fluctuations) are
needed to induce attractive pairing interactions. As a con-
sequence, we anticipate a higher critical temperature than
typically expected for Kohn-Luttinger type superconductivity.
Fluctuation corrections will increase nonlocal interactions,
i.e., shift αT to a larger value and somewhat increase T A2

c and
T E

c from already nonzero values.
In the next section we derive the Landau free energy and

analyze the SC state below Tc. We show that the near degen-
eracy between the eigenfunctions in the A2 and E− channels
leads to a highly nontrivial phase diagram with a large region
of the coexistence state, where superconductivity breaks not
only the U (1) phase symmetry but also threefold C3 lattice
rotational symmetry, i.e., the SC state is a nematic supercon-
ductor. We show that two types of nematic superconductors
emerge, depending on system parameters. One additionally
breaks time reversal symmetry; the other preserves it.

Before we proceed, we make an adjustment of the E− state
in the 12-patch model for further convenience. Namely, we
use the fact that any rotation of the two components of E−
is still an eigenfunction and rotate them by 3π/4. The new
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FIG. 10. The eigenvalues for the six-patch model λE and λA1 (a) and for the twelve-patch model, λE+
, λE−

, and λA2 [(b) and (c)], as
functions of αT (λA1 is irrelevant and not shown). When an eigenvalue turns positive, the interaction in the corresponding pairing channel
becomes attractive. For the six patch model, λE > 0 for αT > 0.98. For the twelve patch model, λE−

and λA2 become positive when αT

exceeds certain values. Panel (b) is for the interactions, extracted from the microscopic model (see text). For panel (c), we increased exchange
interactions by a factor of two. Observe that λE−

and λA2 are nearly degenerate over some range of αT .

components E−
1 = E1 and E−

2 = E2 are

�E1
12p = (cos(4θ1 + 3π/4), . . . , cos(4θ6 + 3π/4))

�E2
12p = (sin(4θ1 + 3π/4), . . . , sin(4θ6 + 3π/4)). (30)

With this choice of basis eigenfunctions, �
E1
12p and �

E2
12p ex-

change as �
E1,2

12p → −�
E2,1

12p under the twofold rotations around
ky and symmetry related axes.

IV. LANDAU FREE ENERGY AND THE STRUCTURE
OF THE SUPERCONDUCTING STATE

We express the gap function in the superconducting state
as a linear combination of the eigenfunctions for the attractive
pairing components. In the six-patch model we have

�SC
6p = �E1�

E1
6p + �E2�

E2
6p, (31)

where �E1 and �E2 are complex numbers. In the twelve-patch
model we have

�SC
12p = �A2�

A2
12p + �E1�

E1
12p + �E2�

E2
12p, (32)

where �E1 , �E2 , and �A2 are complex numbers.
To analyze superconducting ground states, we derive

the Landau free energy, F6p = F6p(�E1 ,�E2 ) and F12p =
F12p(�E1 ,�E2 ,�A2 ), find their minima, and obtain the mag-
nitudes and phases of �E1 and �E2 for the six-patch model
and of �A2 , �E1 , and �E2 for the twelve-patch model. The
functional form of the Landau free energy for each model is
determined by D3 and U (1) symmetries [91], however which
superconducting state is realized depends on the parameters
of the Landau free energy. We obtain these parameters by
applying a Hubbard-Stratonovich decomposition to the un-
derlying fermionic model and integrating out fermions (see
Supplemental Material for details).

A. Six-patch model

The Landau functional for the six-patch model to order
�4

E1,2
has the form

F6p = α1
(∣∣�E1

∣∣2 + ∣∣�E2

∣∣2) + β1
(∣∣�E1

∣∣2 + ∣∣�E2

∣∣2)2

+ β2

∣∣�2
E1

+ �2
E2

∣∣2
. (33)

As usual, near a superconducting instability, α1 ∝ (T − Tc)
and β1 > 0. The coupling β2 can be of any sign, as long
as β1 + β2 > 0. Minimizing with respect to amplitudes and

phases of �E1 and �E2 we find that for β2 > 0, F6p is min-
imized by (�E1,�E2) = �E eiφ (1,±i) (Refs. [46,47]). This
state breaks U (1) phase symmetry and additionally breaks
Z2 time-reversal symmetry. For β2 < 0, F6p is minimized by
(�E1,�E2) = �E (cos γ , sin γ ), where γ is arbitrary. To fix
γ , one needs to include terms of sixth order in �E1,2 . The
relevant sixth-order term is [27,33,46,56,57,91]

F (6)
6p = λ

2
[(�E1 − i�E2 )3(�̄E1 − i�̄E2 )3 + c.c]. (34)

For our six-patch model for electron-doped TBG, we de-
rived β2 from the underlying microscopic model and found
β2 > 0, i.e., the SC state is a nodeless chiral superconductor.
Such a state, dubbed d ± id , has been found in several earlier
studies of superconductivity in TBG [32–35,38,39,41,44,45].
It breaks time-reversal symmetry but does not break C3 lattice
rotational symmetry.

It was argued that nematic fluctuations [27,60] in the
normal state (more accurately, nematic components of charge
or spin density wave fluctuations) do affect β2, and if these
fluctuations are strong, they can, in principle, reverse the sign
of β2 and convert the SC state in the six-patch model into
a nematic SC. We did not analyze the strength of nematic
fluctuations in our six-patch model. Instead we show how a
nematic SC state can still develop in the twelve-patch model
for hole doping, even if β2 > 0, due to the presence of another
superconducting component.

B. Twelve-patch model

As we demonstrated in Sec. III, there are two attractive
pairing channels for the twelve-patch model—one-component
A2 and two-component E channels. Up to fourth order in the
gap function, the Landau free energy is

F12p = α1
(∣∣�E1

∣∣2 + ∣∣�E2

∣∣2) + α2

∣∣�A2

∣∣2

+ β1
(∣∣�E1

∣∣2+∣∣�E2

∣∣2
)2+β2

∣∣�2
E1

+ �2
E2

∣∣2 + β3

∣∣�A2

∣∣4

+ γ1
(∣∣�E1

∣∣2 + ∣∣�E2

∣∣2)∣∣�A2

∣∣2

+ γ2
[(

�2
E1

+ �2
E2

)
�̄2

A2
+ (

�̄2
E1

+ �̄2
E2

)
�2

A2

]
+δ

[(
2�E1

∣∣�E2 |2+�̄E1�
2
E2

−�E1

∣∣�E1

∣∣2+2�E2

∣∣�E1

∣∣2

+ �̄E2�
2
E1

− �E2

∣∣�E2

∣∣2)
�̄A2 + c.c.

]
, (35)

where the bar on top of � means complex conjugation,
and α1 ∝ T − T E

c , α2 ∝ T − T A2
c change sign at the critical

224513-11



CHICHINADZE, CLASSEN, AND CHUBUKOV PHYSICAL REVIEW B 101, 224513 (2020)

temperatures for the pairing in E and A2 channels. We find that
all prefactors for the fourth-order terms—β1, β2, β3, γ1, γ2,
and δ—are positive.

Immediately below the largest of T E
c and T A2

c , the system
develops either E or A2 superconducting order. When T E

c is
larger, we have for the order in the E channel

F E
12p = α1

(∣∣�E1

∣∣2 + ∣∣�E2

∣∣2) + β1
(∣∣�E1

∣∣2 + ∣∣�E2

∣∣2)2

+ β2

∣∣�2
E1

+ �2
E2

∣∣2
. (36)

This F E
12p has the same form as F6p in the six-patch model.

Like there, we found β2 > 0. Then the state immediately
below T E

c is a nodeless SC, which breaks time-reversal sym-
metry but does not break C3 lattice rotational symmetry.

When T A2
c is larger, we have for the order in the A2 channel

F A2
12p = α2�

2
A2

+ β3�
4
A2

. (37)

The A2 order is odd under C2 rotations, but it does not break
C3 lattice rotation symmetry.

We now consider coexistence states, in which both A2

and E order parameters are nonzero. We see from Eq. (35)
that there are two types of terms in F12p, which contain
products of �A2 and �E1,2 . The terms with coefficients γ1 and
γ2 are “conventional” biquadratic terms, which in a generic
case set relative magnitudes and phases of A2 and E gap
components. However, there is the additional term in Eq. (35)
with prefactor δ, which is linear in �A2 and cubic in �E .
Such a term is allowed by all symmetries. Indeed, one can
explicitly verify that it is symmetric with respect to an overall
U (1) phase rotation and does not change under C3 and C2

rotations. For the invariance under C2, it is essential that our
choice of eigenfunctions �E1 and �E2 transforms under C2

as �E1 ↔ −�E2 [see Eq. (30) and discussion after it]. The
structure of this δ term is similar to that of the sixth-order term
in Eq. (34) of the six-patch model. Indeed, the δ term can be
re-expressed as

− δ

2
�̄A2

([(
�E1 − i�E2

)2(
�̄E1 − i�̄E2

)
+ (

�E1 + i�E2

)2(
�̄E1 + i�̄E2

)]
− i

[(
�E1 − i�E2

)2(
�̄E1 − i�̄E2

)
− (

�E1 + i�E2

)2(
�̄E1 + i�̄E2

)]) + c.c. (38)

We will show that the δ term in the twelve-patch model and
the sixth-order term in the six-patch model will play a similar
role regarding the breaking of lattice rotation symmetry. We
note in passing that the term cubic in one SC order parameter
and linear in the other was recently proposed in Ref. [92] in
the context of chiral p- and f -wave pairing states on the square
lattice, with application to Sr2RuO4.

To understand the role played by the δ term, it is instructive
to first consider the structure of the coexistence state without
this term and then add it. This is what we do next.

1. The structure of the coexistence state for δ = 0

Without loss of generality, we choose the phase of complex
�A2 to be zero, i.e., set �A2 to be real. We parametrize

complex �E1 and �E2 as(
�E1

�E2

)
= �E eiφ+

(
eiφ− cos γ

e−iφ− sin γ

)
, (39)

where γ ∈ [0, π/2]. Using this parametrization, we rewrite
the Landau free energy Eq. (35) with δ = 0 as

F δ=0
12p = 2α1�

2
E + α2�

2
A2

+ β1�
4
E + β3�

4
A2

+ γ1�
2
E�2

A2

+ β̃2(cos2 2γ + sin2 2γ cos2 2φ−)

+ 2γ̃2(cos 2φ+ cos 2φ− − sin 2φ+ sin 2φ− cos 2γ ),
(40)

where β̃2 = β2�
4
E , γ̃2 = γ2�

2
E�2

A2
. Minimizing the func-

tional, we find two types of solutions, one for γ̃2 < β̃2, another
for γ̃2 > β̃2. The first solution is realized when the coexistence
state emerges out of the E state; the second is when it emerges
from the A2 state.

For γ̃2 < β̃2 we obtain from minimization

cos 2φ− = − γ̃2

β̃2
cos 2φ+

cos 2γ = γ̃2 sin 2φ+
β̃2 sin 2φ−

. (41)

At �A2 = 0, γ̃2 = 0, and Eq. (41) yields γ = π/4 and φ− =
±π/4, as expected for the pure E state.

Substituting cos 2φ− and cos 2γ from Eq. (41) into the
Landau free energy, we find that

F δ=0
12p = 2α1�

2
E + α2�

2
A2

+ β1�
4
E + β3�

4
A2

+ γ1�
2
E�2

A2
− γ̃ 2

2

β̃2

= 2α1�
2
E + α2�

2
A2

+ β1�
4
E + β3�

4
A2

+ γ1�
2
E�2

A2
− γ 2

2 �4
A2

β2
(42)

does not depend on φ+. This implies that the order parameter
manifold contains, in addition to U (1) total phase symmetry,
another extra U (1), associated with the freedom to rotate
the common phase of �E1 and �E2 with respect to �A2 . In
addition, Eq. (41) for fixed φ+ allows two solutions (φ−, γ )
and (−φ−, π/2 − γ ). One solution transforms into the other
if we interchange �E1 into �E2 . The full order parameter
manifold is then U (1) × U (1) × Z2. One can verify that this
Z2 is associated with time-reversal symmetry.

For γ̃2 > β̃2, the solution Eq. (41) disappears. The new
minima are at

φ+ = 0
φ− = ±π/2 and

φ+ = ±π/2
φ− = 0 . (43)

Substituting these solutions into the Landau free energy, we
obtain that it does not depend on γ :

F δ=0
12p = 2α1�

2
E + α2�

2
A2

+ β1�
4
E

+ β3�
4
A2

+ γ1�
2
E�2

A2
+ β̃2 − 2γ̃2

= 2α1�
2
E + α2�

2
A2

+ β1�
4
E + β3�

4
A2

+ γ1�
2
E�2

A2
+ β2�

4
E − 2γ2�

2
E�2

A2
. (44)
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T

T
U(1)×U(1)× Z2 U(1)× U(1)

Coexistence phase

U(1)U(1)× Z2

(                 ), ,

Z2=1     2

Z2=1     2
U(1) U(1)

cos
sin

FIG. 11. A schematic phase diagram for the special case δ = 0
in Eq. (35) for the free energy. We use the strength of the nonlocal
interactions αT as tuning parameter. The orange circle marks the
point where A2 and E channels are exactly degenerate. In the green
shaded region the superconducting state is pure E (E1 ± iE2), in the
blue shaded region the SC is pure A2. In the red shaded region, both
E = (E1, E2) and A2 gap components are nonzero. The dashed red
line marks a phase transition between two coexistence states with dif-
ferent order parameter manifolds. On the left of this line the manifold
is U (1) × U (1) × Z2, on the right it is U (1) × U (1). In both cases,
the order parameter manifold contains an additional continuous U (1)
symmetry. The insets illustrate symmetry operations. The directions
of blue, green, and brown arrows correspond to the phases of A2, E1,

and E2 order parameters.

This means that the order parameter manifold again has an
additional continuous U (1) symmetry. To obtain the full order
parameter manifold in this case, we note that the four solutions
in Eq. (43) can be re-expressed as(

�E1

�E2

)
= i�E

(
cos γ

sin γ

)
, (45)

if we allow γ to vary between zero and 2π . This implies that
the order parameter manifold for γ̃2 > β̃2 is U (1) × U (1).
There is no additional Z2, because the phase of �E1 and �E2

in (45) is either the same or differs by π , in which case phase
reversal does not create a distinct SC state. Put differently, the
interchange �E1 ↔ �E2 can be absorbed into a variation of γ .

We show the phase diagram for δ = 0 and sketches of the
gap configurations in Fig. 11 with αT as a tuning parameter.
Along the transition line at γ̃2 = β̃2, one of the E compo-
nents vanishes, and the order parameter manifold reduces to
U (1) × Z2.

The existence of the continuous U (1) symmetry in the
order parameter manifold is highly unusual. In general, one
would expect only one U (1) to be present, associated with the
symmetry with respect to rotations of the common phase. We
will see below that in the presence of the δ term, the continu-
ous U (1) symmetry is replaced by a discrete C3 symmetry.

2. The structure of the coexistence state for nonzero δ

Next, we consider the full Landau free energy, Eq. (35),
with the δ term. We use the same parametrization as in
Eq. (39). The full analysis of Eq. (35) is rather cumbersome,
but the outcome can be understood by just expanding near the
boundaries of the coexistence phase. Near the left boundary,
where �A2 � �E , we have at δ = 0 γ = π/4 and φ− =
±π/4. Accordingly, at finite δ, we set γ = π/4 + εγ and

φ− = ±(π/4 + ε−), where εγ , ε− ∼ δ�A2/�E � 1. We will
see below that this expansion is valid for δ2 < 2β2γ2. The
solutions with opposite sign of φ− transform into each other
under �E1 ↔ �E2 , i.e., the order parameter manifold contains
Z2 associated with time reversal, like for δ = 0.

Substituting this expansion into (35) and minimizing with
respect to εγ , ε−, we obtain to leading order in �A2/�E :

εγ = δ

2β2

�A2

�E
sin φ+

ε− = δ

2β2

�A2

�E
cos φ+. (46)

Substituting these expressions back into the Landau free en-
ergy we obtain

F12p = F δ=0
12p − δ2

β2
�2

E�2
A2

− δ
2β2γ2 − δ2

β2
2

cos 3φ+�E�3
A2

+ δ2 8β2γ2 − 3δ2

4β3
2

�4
A2

. (47)

We see that the free energy now depends on φ+ via the
cos 3φ+ term. For δ2 < 2β2γ2, minimization with respect to
φ+ yields three solutions φ+ = (0, 2π/3,−2π/3). We see
that the δ term reduces the additional continuous U (1) sym-
metry to a discrete C3 symmetry. The system spontaneously
chooses one out of three allowed values of φ+ and thereby
breaks lattice rotational symmetry and becomes a nematic
superconductor. Note that one of the states has φ+ = 0 and,
hence, γ = π/4. For this state, the magnitudes of �E1 and �E2

are equal, only the relative angle 2φ− varies with �A2 . How-
ever, the two E components of the gap are not equal in any
given patch, as one gets multiplied by cos(4θi + 3π/4), and
the other by sin(4θi + 3π/4), where, we remind, θi specify
the directions towards VH points. For the other two solutions
(φ+ = ±2π/3), we verified that the E components of the gap
are the same as for the first solution if we rotate θi by ±π/3.
For δ2 > 2β2γ2, the φ+-dependent term in the free energy
Eq. (47) changes sign. In this case, another solution, with φ−
approximately ±3π/4 for �A2 � �E , becomes energetically
favorable.

We also note that (i) the prefactor for the term quadratic in
�A2 in Eq. (47) is negative, i.e., for nonzero δ the transition
temperature into the coexistence state is larger than the orig-
inal T A2

c , where α2 in Eq. (35) changes sign and (ii) the free
energy (47) has a term proportional to �3

A2
. This term renders

the transition between the pure E2 state and the coexistence
state first order.

We consider next the situation near the right boundary of
the coexistence phase, where �E � �A2 . Let us assume for
definiteness that without the δ term, φ− = π/2 and φ+ =
0 (�E1 = i cos γ ,�E− = −i sin γ ), cf. Eq. (43). When δ is
nonzero, we expand φ− = π/2 + ε− and φ+ = 0 + ε+. Min-
imizing with respect to ε±, we obtain

ε+ = δ

8γ2

�E

�A2

sin γ − cos γ

sin γ cos γ

ε− = δ

4γ2

�E

�A2

(cos 3γ − sin 3γ ), (48)
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and at the minimum

F12p = 2α1�
2
E + α2�

2
A2

+
(

β1 + β2 − δ2

2γ2

)
�4

E + β3�
4
A2

+ (γ1 − 2γ2)�2
E�2

A2
+ β2δ

2(sin(6γ ) − 1)�6
E

4γ 2
2 �2

A2

.

(49)

Contrary to the previous case, there is no U (1) breaking term
at order O(δ). However, such a term appears at order δ2

with the structure δ2 sin 6γ . Minimizing with respect to γ ,
we obtain γ = π/4 + πn/3, where n = 0, . . . , 5 is an integer.
We observe that now we have six solutions for γ within a 2π

interval. One can verify that out of these six solutions, three
are time-reversal partners of the other three, i.e., time-reversal
symmetry is broken. One can understand this on physical
grounds, because once the phase difference 2φ− between �E1

and �E2 becomes different from π , φ− and −φ− describe
nonidentical gap configurations, hence under time reversal
the system transforms into a physically different state. The
remaining three solutions transform into each other under
elements of C3, i.e., the order parameter manifold is U (1) ×
C3 × Z2, the same that we obtained near the left boundary of
the coexistence phase. Note that in Eq. (49) the correction
to α1 vanishes, and there is no �3

E term. As a consequence,
the transition from the pure A2 state into the coexistence state
is second order as long as 4(β1 + β2 − δ2

2γ2
)β3 > (γ1 − 2γ2)2

(see Refs. [93–95]).
We verified that near the left boundary of the coexistence

state, φ− increases with �A2 [cf. Eq. (46)], and near the right
boundary φ− decreases as �E increases [cf. Eq. (48)], i.e., �E1

and �E2 rotate towards each other. This strongly suggests that
the gap structure in the coexistence state evolves continuously
for small but nonzero δ. We solved numerically for the gap
at arbitrary ratio of �A2/�E and found that this is indeed
the case if δ2 < 2β2γ2. Specifically, for the “symmetric” state
with φ+ = 0 and γ = π/4, we found a continuous change of
φ− inside the coexistence phase from φ− ∼ π/4 for �A2 �
�E to φ− 	 π/2 for �A2 � �E . We show the phase diagram
in Fig. 1 along with the structure of the pure and coexistence
states.

3. The case of large δ

We now show that a new state emerges at δ2 > 2β2γ2,
which breaks C3 symmetry but preserves time-reversal sym-
metry. To see this, we look again at the solutions close to the
left and right boundaries. We found before that one of the
solutions from the C3 manifold is a symmetric one: φ+ = 0
and γ = π/4, i.e., |�E1 | = |�E2 |. Let us keep these values of
φ+ and γ but not assume that �A2/�E is small and treat φ− as
parameter. We will use this as an ansatz for the ground state
for larger δ and then verify that it is a stable minimum.

Substituting into Eq. (35), we obtain

F12p =2α1�
2
E + α2�

2
A2

+ 4β1�
4
E + β3�

4
A2

+ 2γ1�
2
E�2

A2

+ cos(2φ−)
(
2γ2�

2
E�2

A2
+ β2�

4
E

+ 2
√

2δ�3
E�A2 cos(φ−)

)
. (50)

One can check that at large enough δ, the free energy has the
smallest value when φ− = ±π . For this φ−, Eq. (50) reduces
to

F = 2α1�
2
E + α2�

2
A2

+ (4β1 + β2)�4
E + β3�

4
A2

+ 2(γ1 + γ2)�2
E�2

A2
− 2

√
2δ�3

E�A2 . (51)

In such a state the phase of the two E components of the gap is
opposite to the phase of the A2 component, i.e., all three gap
components, viewed as vectors, are directed along the same
axis. Such a state preserves Z2 time-reversal symmetry.

Rotational C3 symmetry requires that there must be two
other states with the same energy. In total, we find

φ+ = 0 γ = π/4 φ− = ±π

φ+ = π/2 γ = 5π/12 φ− = π/2 (52)

φ+ = π/2 γ = π/12 φ− = −π/2.

We now analyze where this “collinear” state is located in
the phase diagram. For this we assume that it is present for
some �A2 and �E and check its stability. For definiteness
we choose the “symmetric” state with φ+ = 0, φ− = π , γ =
π/4 and vary the angles by φ− = π + ε−, φ+ = ε+ and γ =
π/4 + εγ . Substituting this into the free energy, we obtain to
second order in εi

F12p = 2α1�
2
E + α2�

2
A2

+ (4β1 + β2)�4
E + β3�

4
A2

+ 2(γ1 + γ2)�2
E�2

A2
− 2

√
2δ�3

E�A2

+ [
5
√

2δ�3
E�A2 − 4γ2�

2
E�2

A2
− 4β2�

4
E

]
ε2
−

+ 9
√

2δ�A2�
3
Eε2

γ + [√
2δ�3

E�A2 − 4γ2�
2
E�2

A2

]
ε2
+.

(53)

The stability conditions are then
√

2δ�3
E�A2 − 4γ2�

2
E�2

A2
� 0

5
√

2δ�3
E�A2 − 4γ2�

2
E�2

A2
− 4β2�

4
E � 0. (54)

These conditions set the boundaries of the collinear phase at

√
2

5δ +
√

25δ2 − 32β2γ2

8β2
�A2 � �E

�
√

2
5δ −

√
25δ2 − 32β2γ2

8β2
�A2 (55)

and

�E � 4γ2√
2δ

�A2 . (56)

The first boundary is where fluctuations near φ− = π become
unstable, the second is where fluctuations near φ+ = 0 be-
come unstable. Fluctuations of γ do not give an additional
constraint. Combining these two conditions, we obtain that the
phase with unbroken time-reversal symmetry exists once δ2

exceeds 2β2γ2 (we need
√

2[5δ +
√

25δ2 − 32β2γ2]/8β2 �
4γ2/

√
2δ). It starts as a line in the phase diagram at δ2 =

2β2γ2 and expands into the coexistence phase for larger δ.
We show the phase diagram at large δ in Fig. 1 along with
the states from the C3 manifold inside the collinear phase,
and in Fig. 12 we present the plots of the total gap function
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(a) (b) (c)( (

FIG. 12. The magnitude of the total gap function �SC
12p = �A2�

A2
12p + �E1�

E1
12p + �E2�

E2
12p along the Fermi surface, when �

A2
12p, �

E1
12p, and

�
E2
12p are viewed as functions of continuous θ rather than of θi at VH points. The three panels correspond to three coexistence states in the right

panel of Fig. 1. We have chosen the symmetric state with |�E1 | = |�E2 | (one of the states in C3 manifold). Panel (b) is for the “collinear” state
in the middle of the right panel of Fig. 1, and panels (a) and (c) are for the states to the left and to the right of the collinear state, respectively.
We used �A2/�E = 0.2, φ− = 0.86 in panel (a), �A2/�E = 0.71 in panel (b), and �A2/�E = 6.6, φ− = 1.26 in panel (c). The gap functions
in panels (a) and (c) are complex numbers, and |�SC

12p| has no nodes. The gap function in the collinear phase is real and has nodes, because

�
E1
12p, �

E2
12p, and �

A2
12p have nodes (see Fig. 9). The gap structure in the left panel of Fig. 1 is the same as in panels (a) and (c).

�SC
12p = �A2�

A2
12p + �E1�

E1
12p + �E2�

E2
12p for the three regions

within the coexistence phase in the right panel of Fig. 1.
The condition δ2 � 2β2γ2 coincides with the condition that

φ− near the left boundary of the coexistence phase jumps
from π/4 to 3π/4. It then further increases with �A2 and
reaches π at the left boundary of the state with unbroken
time-reversal symmetry. The evolution of the gap between the
right boundary of the coexistence state and the collinear phase
is more involved and we refrain from discussing it in detail.
We note in passing that there is a certain analogy between
the phase diagram and excitations in our case and for a 2D
Heisenberg antiferromagnet in a magnetic field, whose phase
diagram also contains an intermediate up-up-down phase with
collinear ordering of spins in the three sublattices [96].

V. GAP STRUCTURE ALONG THE FULL FERMI SURFACE
AND EXPERIMENTAL CONSEQUENCES

The gap structure along the full Fermi surface is shown in
the three panels (a)–(c) in Fig. 12 for the three regions of the
phase diagram in the right panel of Fig. 1 [the gap structure
for the phase diagram in the left panel of Fig. 1 is the same
but without middle panel (b)]. The gap function in panel (b)
is for a SC state which preserves time-reversal symmetry and
has nodes. The variation of this gap function with the angle θ

along the Fermi surface is

�(θ ) = �A2

(
sin 6θ + �E

�A2

√
2 sin 4θ

)
. (57)

The number of nodes depends on the ratio �E/�A2 : For
�E/�A2 � 3/(2

√
2) there are twelve nodes; for �E/�A2 �

3/(2
√

2) the number of nodes is reduced to eight. The posi-
tions of four nodes are protected by time-reversal symmetry
and are fixed at θ = 0, π/2, π, 3π/2 (at these points both
sin 6θ and sin 4θ components vanish). The location of the
other nodal points depends on the ratio �E/�A2 .

The gap functions in panels (a) and (c) are for the states
with broken time-reversal symmetry. These gap functions are

nodeless by obvious reasons. They can be parameterized by

�(θ ) = �A2

[
sin 6θ − 1√

2

�E

�A2

eiφ+ (cos φ−[cos(4θ − γ )

+ sin(4θ − γ )] + i sin φ−[cos(4θ + γ )

+ sin(4θ + γ )])

]
, (58)

where φ+, φ− and γ evolve as functions of the ratio �E/�A2

[see Eqs. (46) and (48)]. The magnitude of the angle variation
of �(θ ) depends on the ratio �A2/�E and is larger in panel
(c) (i.e., for the state at a larger αT in the right panel of Fig. 1).

The gap structures, presented in Fig. 12, can be probed ex-
perimentally, by, e.g., QPI analysis of STM data and ARPES
experiments. The states with and without nodes can also be
distinguished by other techniques, e.g., by measuring the flux
penetration depth. The ratio of �A2 and �E likely can be
varied by, e.g., changing the twist angle or adding uniform
strain, which changes the degree of the nonlocality of the
interactions and hence affects our parameter αT in Fig. 1. A
discrete C3 symmetry breaking was reported in Refs. [48,68]
and motivated our study. It can also be detected in STM
studies and in angle-resolved photoemission spectroscopy
with nanoscale resolution [97]. A time-reversal symmetry
breaking can be detected via a broad range of probes [98],
including measurements of Kerr rotation [99] and zero-field
muon-spin relaxation, which detects weak internal magnetic
fields produced by spontaneous currents, generated around
impurities by time-reversal breaking superconducting order
[100–103]. Domain walls in such superconductors have mag-
netic signatures that could be detected in scanning SQUID
and scanning Hall probe microscope measurements [104].
It was also proposed [105] that a nematic superconductor
possesses topological skyrmions (bound states of two spatially
separated half-quantum vortices), which can be detected by
STM. On a qualitative level, a high Tc/TF ratio, observed in
magic-angle twisted bilayer graphene [1], is more consistent
with the existence of attractive pairing interactions at the bare
level rather than with Kohn-Luttinger scenario, in which the
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attraction develops at second order in the interaction and is
likely much weaker.

VI. CONCLUSIONS

In this paper we performed a comprehensive analysis of
superconductivity near VH filling in twisted bilayer graphene
(TBG) within an itinerant approach. The key motivation for
our study has been the recent experimental finding [19,48,68]
that the superconducting order in hole-doped TBG near n =
−2 breaks C3 lattice rotational symmetry, i.e., the SC state is
also nematic.

We used as an input the effective tight-binding Hamilto-
nian for the moiré superlattice, which describes flat bands
[14,61]. We argued that there are at least two VH fillings,
one for hole doping, the other for electron doping. At VH
filling for electron doping, there are six VH points, located
along high symmetry directions in the Brillouin zone but
away from the zone boundary. At VH filling for hole doping,
there are twelve VH points. They are symmetry related, but
each is located away from symmetry directions and the zone
boundary. We derived effective six-patch and twelve-patch
models for fermions near VH points and projected the in-
teractions into the pairing channel. For the six-patch model,
there are two symmetry-allowed pairing interactions in the
spin-singlet channel. For the twelve-patch model this number
is five. We obtained the values of the interactions by matching
the patch models with the microscopic model of Kang and
Vafek [13], which contains both local (Hubbard) and nonlocal
interactions. The relative strength of the nonlocal interaction
is measured by the parameter αT , which was estimated to
be around 0.23. We argued that for this αT , the nonlocal
interactions give rise to attraction in certain channels already
at the “bare” level, i.e., without including corrections to the
pairing interaction from the particle-hole channel. In other
words, the reconstruction of the band structure due to the
twist and projection onto the nearly flat bands leads to at-
tractive pairing interactions in TBG. The attraction exists for
both spin-singlet and spin-triplet channels. We concentrate on
the first because experiments on TBG point to spin-singlet
pairing [1].

The symmetry of the superconducting order parameter
can be classified based on the irreducible representations of
the lattice rotation symmetry group D3. They include two
one-dimensional representations, A1 and A2, and one two-
dimensional representation, E . Each representation contains
an infinite set of different eigenfunctions, but most become in-
distinguishable within patch models. For the six-patch model,
we found that the relevant eigenfunctions are a constant (s
wave) from A1 and d-wave-like (cos 2θi, sin 2θi ) from E ,
where θi set the directions towards six VH points. We found
that the interaction in the E channel is attractive and gives
rise to d ± id SC order. It breaks time-reversal symmetry

but preserves C3 lattice rotational symmetry. This agrees with
earlier results for the six-patch model [28,34] and with earlier
studies of single-layer graphene around VH filling [46,47].

For the twelve-patch model, we found four different
pairing channels: one in A1, with a constant eigenfunc-
tion, one in A2, with an eigenfunction changing signs be-
tween neighboring patches, and two in E with eigenfunctions
(cos 2θi, sin 2θi ) and (cos 4θi, sin 4θi ). We found that A2 and
the 4θ E channel are attractive and that for realistic αT

the coupling constants in the two channels have near-equal
magnitudes. We showed that pure A2 order breaks only U (1)
phase symmetry, and pure E order is similar to that in the
six-patch model, i.e., it breaks U (1) and Z2 time-reversal
symmetry but preserves C3.

Our key result is that in the coexistence state, where both
E and A2 order parameters are nonzero, C3 symmetry is
broken. We argued that this happens due to two reasons: (i)
conventional biquadratic couplings between E and A2 order
parameters do not specify the coexistence state, and the order
parameter manifold has an extra U (1) symmetry, in addition
to the U (1) total phase symmetry, and (ii) the Landau free
energy to quartic order contains a symmetry allowed term,
which is linear in �A2 and qubic in �E1,2 . This term breaks
the extra U (1) symmetry down to threefold C3. The system
spontaneously chooses one of three equivalent states from
C3 manifold and by doing this breaks C3. As a result, the
coexistence state turns out to be a nematic superconductor.
We found two phases with broken C3. In one, time-reversal
symmetry is also spontaneously broken. In the other, it is
preserved.

Our results present a scenario for the breaking of threefold
lattice rotation symmetry in the superconducting state of hole-
doped TBG near n = −2, where nematic superconductivity
has been observed [19,48,68]. We also consider it as a generic,
symmetry-based mechanism how a superconductor can break
lattice rotational symmetry. We also emphasize that although
in our scenario the nematic long-range order emerges only in
the coexistence superconducting phase, nematic order gener-
ally survives in some range outside the coexistence phase, and
nematic fluctuations are strong in the whole region where the
pairing susceptibility is enhanced in both E and A2 channels.
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