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Higgs oscillations in nonequilibrium superconductors provide a unique tool to obtain information about
the underlying order parameter. Several properties like the absolute value, existence of multiple gaps, and
the symmetry of the order parameter can be encoded in the Higgs oscillation spectrum. Studying Higgs
oscillations with time-resolved angle-resolved photoemission spectroscopy (ARPES) has the advantage over
optical measurements that a momentum-resolved analysis of the condensate dynamic is possible. In this paper,
we investigate the time-resolved spectral function measured in ARPES for different quench protocols. We find
that analyzing amplitude oscillations of the ARPES intensity in the whole Brillouin zone allows to understand
how the condensate dynamic contributes to the emerging of collective Higgs oscillations. Furthermore, by
evaluating the phase of these oscillations, the symmetry deformation dynamic of the condensate can be revealed,
which gives insight about the ground state symmetry of the system. With such an analysis, time-resolved ARPES
experiments might be used in the future as a powerful tool in the field of Higgs spectroscopy.
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I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES) is
a powerful method as it allows to measure the electronic
structure of materials directly [1]. Combined with additional
time resolution (tr-ARPES), dynamic processes of systems
out of equilibrium can be studied in great detail [2]. Hereby,
a pump pulse excites the system in a nonequilibrium state
prior to the photoemission probe pulse, which is applied after
a variable time delay to scan the dynamic of the system.

In recent years, there was an evolving interest in studying
collective excitations of materials in nonequilibrium as these
can provide fundamental insights into the internal symme-
tries and properties of a system. This has been demonstrated
on charge-density wave systems [3–5] and high-temperature
cuprate superconductors [6–8]. In superconductors, an intrin-
sic collective amplitude (Higgs) mode of the order parameter
exists due to spontaneous U(1) symmetry breaking at the
transition to the superconducting state [9,10]. Exciting the
Higgs mode is challenging and only in the last years an
exploration of this area has started. This progress was heavily
supported by the upcoming of new technologies like ultrafast
terahertz (THz) spectroscopy [11], which possess the required
excitation energy to not fully deplete the superconducting
condensate in the pump process.
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The main reason for the difficulties to excite the Higgs
mode is due to the fact that the Higgs mode is a scalar mode
with neither net charge nor electric dipole, which requires
to go beyond the linear excitation regime. While the first
predictions of the Higgs mode in superconductors are rela-
tively old [12,13], only indirect measurements in systems with
competing charge-density wave orders could be realized in the
beginning [14]. The first direct observation was performed in
a THz pump-probe experiment on the s-wave superconductor
Nb1−xTixN [15], where Higgs oscillations of the order param-
eter, reflected in oscillations of the electromagnetic response,
could be observed. Since then, only a few more experiments
were reported [16–20], but theoretical works on the subject
became more popular as it became clear that Higgs oscil-
lations in nonequilibrium systems provide rich information
about the superconducting ground state.

It was found that much information about the ground state
order parameter is encoded in the Higgs oscillation frequency.
First of all, the main Higgs oscillation frequency corresponds
to the maximum of the absolute value of the order parameter
itself [21–25]. In addition, multiband systems show frequen-
cies for each band and also for the frequency of the relative
phase mode (Leggett mode) [26,27]. Excited in an asymmetric
way, nontrivial gap symmetries can show additional oscilla-
tion frequencies as a result of an oscillation of the condensate
in a different symmetry channel [28]. Finally, composite order
parameters [29], excitations of subleading pairing channels
[30] as well as coupling to other coexisting modes [20] might
show up as additional frequencies.

As of now, two main approaches to study Higgs oscilla-
tions exist, namely measurements of the optical conductivity
in pump-probe experiments [31–33] and resonances in third-
harmonic generation in periodically driven systems [34,35],
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where both methods allow to deduce the intrinsic Higgs
modes. The only different approach, also in a pump-probe
setup, was the prediction of Higgs oscillations in tr-ARPES
[36–38], where the position of the maximum of the energy
distribution curve shows oscillations with the same frequency
as the Higgs mode.

In this paper, we study the spectral function measured
in tr-ARPES in a more general approach. While previous
papers concentrated on the oscillation of spectral weight in
energy, we also evaluate the amplitude oscillation, which
contains more information about the condensate dynamic.
We allow arbitrary gap symmetry and study the effect of
quenches in symmetry channels different from the ground
state. The idea behind such quenches is to model the net
effect of pump pulses in a controlled way, which act on the
condensate momentum-dependently. These might be realized
experimentally by tuning polarization and pulse direction [28]
or could be implemented in more complex approaches like
transient grating [39,40] or four-wave mixing [41] setups.

Quenching superconductors with such an approach, where
the symmetry of the condensate is altered with respect to
the ground state, can result in dynamically created additional
Higgs modes [28]. It is important to note that we ensure that
the order parameter always keeps its ground state symmetry
and only the underlying condensate is modified. This is plausi-
ble as a modification of the gap symmetry and thus, the pairing
interaction itself, in a conventional pump-probe experiment is
unlikely. However, a modification of the condensate, i.e., the
Cooper pair or quasiparticle distribution might be controllable
with light excitation. In our analysis, we neglect subleading
pairing channels, which may be present in some materials.
A symmetry-breaking quench would activate these channels,
such that Bardasis-Schrieffer modes can occur [30]. However,
in many materials, only a single pairing channel is dominant,
such that these effects can be neglected. As we show in this
work, additional Higgs mode can still occur assuming only a
single pairing channel.

By evaluating the induced oscillation of the ARPES inten-
sity, both in amplitude and weight shift in energy, we explore
the creation process of these additional Higgs modes, i.e., we
can understand how the dynamic of the condensate at differ-
ent momenta contributes to the collective Higgs oscillation.
Moreover, we compare superconductors with the same nodal
gap structure but different signs, like d-wave and nodal s-
wave, quenched in the same symmetry channel. A calculation
of the oscillation phase in different lobes shows opposite
phase oscillations, reflecting the differently induced symmetry
deformations of the condensate in momentum space.

II. MODEL AND METHODS

A. Hamiltonian

We consider the mean-field BCS Hamiltonian

H =
∑
kσ

εkc†
kσ

ckσ −
∑

k

(�kc†
k↑c†

−k↓ + c.c.) , (1)

where εk is the electron dispersion relative to the Fermi
level and c†

kσ
, ckσ the creation and annihilation operators for

electrons with momentum k and spin σ . The momentum-

TABLE I. Parameters used in the numerical calculation. The val-
ues correspond to material parameters of lead, following Ref. [31].
All results depend only quantitatively on the parameters and can be
rescaled to any other material values.

Parameter Value

Dispersion εk tk2 − εF

Dispersion parameter t 2005.25 meV
Fermi energy εF 9470 meV
Gap value � 1.35 meV
Energy cutoff εc 8.3 meV
Interaction quench strength gi 0.8
State quench strength gs 0.4
Temperature T 0 K
Radial discretization points Nk 1000
Azimuthal discretization points Nϕ 1000

dependent energy gap �k is defined by

�k =
∑

k′
Vkk′ 〈c−k′↓ck′↑〉 , (2)

where the pairing interaction Vkk′ = V fk fk′ is assumed to be
separable such that we can write �k = � fk with

� = V
∑

k

fk 〈c−k↓ck↑〉 . (3)

Hereby, V is the pairing strength and fk the gap symmetry
function, which can be chosen according to the symmetry
groups of the underlying lattice. As we will see, tr-ARPES
allows to measure the dynamic of the condensate 〈c−k↓ck↑〉 (t )
by measuring the spectral function, such that we can under-
stand how oscillations of 〈c−k↓ck↑〉 (t ) at different momenta
contribute to collective Higgs oscillation �(t ).

Our results are rather independent of material parameters
(see Appendix E), thus, we use a quadratic dispersion εk =
tk2 − εF for convenience. The used numerical values of the
parameters can be found in Table I. Furthermore, we restrict
our calculation to two dimensions to reduce the computational
costs and to correspond also to quasi-2d materials as the
layered cuprates.

To calculate the induced time evolution after a quench, it is
advantageous to perform a Bogoliubov transformation(

αk

β
†
k

)
=

(
uk −vk

vk uk

)(
ck↑

c†
−k↓

)
(4)

to new quasiparticle operators αk and βk with

uk =
√

1

2

(
1 + εk

Ek

)
, vk =

√
1

2

(
1 − εk

Ek

)
. (5)

In the expression above, Ek =
√

ε2
k + (� fk)2 is the quasipar-

ticle energy and we choose the phase of the equilibrium order
parameter � to be zero. The Bogoliubov transformation is
performed for this fixed value of the gap. The BCS Hamilto-
nian at arbitrary times for time-dependent values of the order
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parameter �(t ) in Eq. (1) then reads

H (t ) =
∑

k

Rk(t )(α†
kαk + β

†
kβk)

+
∑

k

Ck(t )α†
kβ

†
k − C∗

k (t )αkβk , (6)

where we neglect constant terms and define

Rk(t ) = 1

2Ek

(
2ε2

k + �k(t )�∗
k + �∗

k(t )�k
)
, (7a)

Ck(t ) = 1

2Ek
(2εk�k − �k(t )(Ek + εk)

+�∗
k(t )(Ek − εk)). (7b)

In equilibrium, �k(t ) = �k and the Hamiltonian becomes
diagonal with Rk = Ek and Ck = 0. We can express the
anomalous expectation value 〈c−k↓ck↑〉 in the gap equation
(3) with the new Bogoliubov quasiparticle operators and find

�(t ) = V
∑

k

fk[ukvk
(
1 − 〈α†

kαk〉 (t ) − 〈β†
kβk〉 (t )

)
− u2

k 〈αkβk〉 (t ) − v2
k 〈α†

kβ
†
k 〉 (t )]. (8)

B. Iterated equation of motion method

We calculate the time evolution of the Bogoliubov opera-
tors with the help of Heisenberg’s equation of motion

∂tα
†
k (t ) = i

h̄
[H̃ (t ), α†

k (t )] , (9a)

∂tβ
†
k (t ) = i

h̄
[H̃ (t ), β†

k (t )] , (9b)

where the Hamiltonian H̃ (t ), α†
k (t ) and β

†
k (t ) are the operators

in the Heisenberg picture. To evaluate these equations, we
make use of the iterated equation of motion approach [42] to
write the Bogoliubov operators in the Heisenberg picture as a
time-dependent superposition of the equilibrium operators

α
†
k (t ) = a0k(t )α†

k + a1k(t )βk , (10a)

β
†
k (t ) = b0k(t )β†

k + b1k(t )αk. (10b)

Inserted into Heisenberg’s equation of motion, such an
ansatz leads in general to an infinite hierarchy of equations
for the prefactors aik(t ) and bik(t ), which have to be trun-
cated at a certain order. However, for a bilinear Hamiltonian
like the BCS Hamiltonian, the approach in Eq. (10) using
only a second order ansatz for each operator is exact. This
allows to derive a closed set of differential equations for the
time-dependent prefactors. The derived equations are given in
Appendix A.

The coupled differential equations (A1) are solved nu-
merically in a self-consistent manner by evaluating the time-
dependent gap equation in each time step. The initial values
of the prefactors aik(0) and bik(0) are given by the ini-
tial values of the Bogoliubov quasiparticles expectation val-
ues 〈α†

kαk〉 (0), 〈β†
kβk〉 (0), 〈α†

kβ
†
k 〉 (0) and 〈αkβk〉 (0), which

themselves are determined by the electron expectation values
〈c−k↓ck↑〉 (0), 〈c†

k↑c†
−k↓〉 (0), 〈c†

k↑ck↑〉 (0) and 〈c−k↓c†
−k↓〉 (0).

Depending on the type of quench, the initial values are either

the equilibrium expectation values or quenched expectation
values. This is described in the next section and the respective
expectation values are listed in Appendix A.

In order to increase the precision while keeping the nu-
merical effort in a reasonable order, the 2d momentum space
is discretized only in a small region around the Fermi level
given by an energy cutoff εc. This is justified by the fact that
superconductivity only occurs near the Fermi momentum kF,
while contributions far away are negligible. The momentum
grid was chosen in polar coordinates, with Nk points in radial
and Nϕ points in azimuthal direction. All the numerical values
are listed in Table I.

C. Excitation with quantum quenches

We want to study the system in an out of equilibrium
state excited by a laser pulse in an experiment. As the net
effect of an ultrashort THz pump pulse is that it changes the
system abruptly, we model this effect in a general manner
by considering an effective quantum quench, i.e., the pump
pulse acts like a quench pulse. In literature [23], the usual way
to go is an interaction quench, i.e., changing the interaction
strength abruptly at t = 0 from its equilibrium value V to
a new value V ′ = gV , where g < 1, which reduces the gap
� to a new value �(0) = g�. Then, the time evolution can
be calculated starting from the equilibrium state of the old
system given in Eq. (A3) using the quenched gap equation
with the modified pairing interaction V ′. The disadvantage
of this method is that an interaction quench cannot easily
be realized experimentally in condensed matter. Only in cold
atom systems, where the interaction strength can be tuned
with Feshbach resonances [43], an implementation is feasible.
Besides that, an interaction quench is not directly equivalent
to the effect of a quench pulse and in addition, it always
acts on the whole system isotropically, whereas a momentum-
dependent excitation is more interesting to study, especially
for unconventional superconductors with nontrivial pairing
symmetry.

Considering all of this, we implement a momentum-
dependent state quench. Namely, the effect of a quench pulse
is to deplete a small portion of the condensate and create a
nonequilibrium quasiparticle distribution. What is happening
in particular, is that the equilibrium distribution of the quasi-
particles at T = 0, e.g., the anomalous expectation value

〈c−k↓ck↑〉 = �k

2Ek
, (11)

is modified as a result of the quench pulse, where the symme-
try of the quenched state 〈c−k↓ck↑〉′ does not necessarily have
to be the same as in equilibrium. To implement such a quench
in a controlled way, we introduce the quenched distribution

〈c−k↓ck↑〉′ = �′
k

2E ′
k

, (12)

which is an equilibrium distribution for a different symmetry

f ′
k with �′

k = � f ′
k and E ′

k =
√

ε2
k + (� f ′

k)2. This distribution
is of course no longer the equilibrium distribution for the
original system and the deviation can be controlled by the
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modified symmetry function

f ′
k = fk + gf q

k , (13)

which is a small deviation of strength g from the original
symmetry fk with the quench symmetry f q

k . In addition to
the exemplary shown anomalous expectation value, all other
expectation values are modified with the same f ′

k as well. This
is shown in Appendix A. Using the quenched expectation
values of the quasiparticles, the quenched prefactors aik(0)
and bik(0) can be calculated according to Eq. (A6). With
these initial values, Heisenberg’s equation of motion can be
integrated.

D. ARPES

The time-dependent ARPES intensity A(k, ω, t ) can be
calculated with the help of the lesser Green’s function
G<(k, ω, t ) [2,36,38]

A(k, ω, t ) = Im
∫

dt2

∫
dt1 (G<(k, t1, t2)

× p(t1 − t )p(t2 − t )eiω(t1−t2 ) ). (14)

Hereby, we neglect any matrix element effects. The lesser
Green’s function in the time-domain, is defined as

G<(k, t1, t2) = i 〈c†
k↑(t2)ck↑(t1)〉 . (15)

The required electron expectation value at different times
can be computed from the time evolution of the Bogoliubov
quasiparticle operators

〈c†
k↑(t2)ck↑(t1)〉
= u2

k 〈α†
k (t2)αk(t1)〉

+ v2
k (b∗

0k(t2)b0k(t1) + b∗
1k(t2)b1k(t1) − 〈β†

k (t1)βk(t2)〉)

+ ukvk(a∗
0k(t1)b∗

1k(t2) + a∗
1k(t1)b∗

0k(t2)

− 〈αk(t1)βk(t2)〉) + ukvk 〈α†
k (t2)β†

k (t1)〉 . (16)

The finite width of the probe pulse broadens the spectral
function. Thus, in the expression for the ARPES intensity
Eq. (14), the probe pulse envelope is incorporated by a Gaus-
sian function

p(t ) =
√

4 ln 2

πτ 2
p

exp

(
−4 ln 2

(
t

τp

)2
)

(17)

with full width at half maximum τp.

III. RESULTS

In the following, we will investigate the dynamics of two
quantities. On the one hand, we will consider the position of
the maximum of the energy distribution curve (EDC) at k =
kF, i.e.,

E (t, ϕ) = argmaxω A(k = kF, ϕ, ω, t ). (18)

This quantity, i.e., the position of the maximum with respect
to the Fermi level reflects the energy gap and thus, directly
reveals any collective excitation of the order parameter. On the

FIG. 1. ARPES intensity of an s-wave superconductor after per-
forming an interaction quench. (a) Equilibrium ARPES intensity
A(k, w, t = −∞), the maximum of the energy distribution curve
(EDC) at k = kF is marked by a circle and labeled E . The maximum
is at |E | = �. (b) ARPES intensity A(k, w, t = 0) after the interac-
tion quench, spectral weight is shifted towards the Fermi level. The
maximum is at the reduced value �∞ < |E | < �. (c) Time evolution
of the EDC at k = kF. See also Fig. 2. (d) Gap oscillations �(t ),
oscillations of the EDC maximum |E (t )| and amplitude oscillation
A(t, k = kF ) of the ARPES intensity. The edges in E (t ) are an
artifact due to the finite frequency resolution. (e) Fourier transform
of oscillations, all quantities oscillate with the Higgs frequency ω =
2�∞. The probe pulse width is τp = 1 h̄/�∞.

other hand, we will follow the dynamic of the amplitude of the
ARPES intensity at ω = −�∞, where the strongest dynamic
can be expected, i.e.,

A(t, k, ϕ) = A(k, ϕ, ω = −�∞, t ). (19)

In these expressions, the momentum is expressed in polar
coordinates with absolute value k and polar angle ϕ and �∞ is
the value of the gap after a long time. While the first quantity
is typically used to trace the time evolution of the system
[36,37], it will appear that an investigation of the second
quantity yields even more information. In contrast to the first
quantity, it does not reveal directly the collective modes of
the system but the dynamic of the underlying condensate
and allows to understand how it contributes and creates the
collective excitation of the order parameter.

A. Interaction quench for s-wave superconductor

Before studying superconductors with nontrivial gap sym-
metry, we first consider the s-wave case with fk = 1, where
we perform a simple interaction quench to trigger the time
dynamic. In Fig. 1, the time evolution of the ARPES in-
tensity can be found. One observes that after the quench
[Fig. 1(b)], spectral weight is shifted towards and above the
Fermi level compared to the equilibrium case [Fig. 1(a)].
This can especially be seen by determining E as defined in
Eq. (18). This position of the maximum, indicated by a circle
in Figs. 1(a) and Fig. 1(b) is shifted from its initial value
|E (t = −∞)| = � to a smaller value |E (t = 0)| < �, which
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FIG. 2. Time evolution of the EDC at k = kF. It corresponds
to Fig. 1(c) plotted as a 3d plot for better visualization. There
are two different kinds of dynamics: Oscillations in energy of the
maximum of the EDC curve (black line) as defined in Eq. (18)
with the momentum-independent frequency ωE = 2�∞ and oscil-
lations in the amplitude of the ARPES intensity (blue line) as
defined in Eq. (19) with the momentum-dependent frequency ωA

k =
2
√

ε2
k + (�∞ fk )2. At k = kF and fk = 1, ωA

k = ωE = 2�∞.

indicates a suppression of the energy gap after the quench.
To trace the induced dynamic, we look at the time evolution
of the EDC at k = kF shown in Figs. 1(c) and 2, where we
extract the two quantities E (t ) and A(t, k = kF).

For a sufficiently short probe pulse, i.e., τp is small com-
pared to the timescale given by h̄/(2�∞), the time-resolution
is high enough to directly observe the induced Higgs oscil-
lations of the order parameter as oscillations of E (t ), i.e., an
oscillation of the weight of the ARPES intensity in energy.
The extracted curve E (t ) is shown in Fig. 1(d) in comparison
to the calculated dynamic of the order parameter �(t ), where a
close accordance can be observed. The oscillation starts at the
quenched value �(0) < � and oscillates around �∞ < �(0)
in the long-time limit.

In addition to the oscillation of E (t ), we also look at the
dynamic of the amplitude of the ARPES intensity A(t, k =
kF) as defined in Eq. (19), shown as well in Fig. 1(d) for
comparison. We find oscillations with the same frequency as
the order parameter. This is confirmed in Fig. 1(e), where the
Fourier transform of the order parameter �(t ), the maximum
of the EDC E (t ) and the ARPES intensity A(t, k = kF) are
compared. All three quantities show the same oscillation with
a frequency of ω = 2�∞, the energy of the Higgs mode.

The pulse width plays a crucial role for the resolution of
the gap dynamic in E and A. If the probe pulse is too wide,
i.e., τp 	 h̄/(2�∞), it cannot resolve the oscillations of the
system and E and A will be constant in time at their mean
value, which is �∞ in the case of E , i.e., the value of the order
parameter after a long time. The influence of the probe pulse
width is discussed in more detail in Appendix B.

Thus the ARPES intensity provides a direct measure of
Higgs oscillations for superconductors in nonequilibrium,
both in energy and amplitude.

FIG. 3. ARPES intensity of a d-wave superconductor after a state
quench. (a) Symmetry function fk (blue) and quenched symmetry
function f ′

k (red) for different channels. (b) Corresponding ARPES
intensity. A shift of nodal lines is reflected by a shift of spectral
weight in the nodal region. The probe pulse width is τp = 10 h̄/�∞.

B. State quench for d-wave superconductor

After having considered the s-wave case with an isotropic
interaction quench, we will proceed to a d-wave supercon-
ductor, which we will quench in different symmetry channels
with the help of a state quench as defined in Sec. II C. The
symmetry function of a d-wave superconductor close to the
Fermi level can be written as fk = cos(2ϕ), where ϕ is the
polar angle. In order to excite the system in a systematic way,
we choose quench symmetries which are fundamental with
respect to the lattice point group. To this end, the supercon-
ductor is quenched in all different symmetry channels for the
D4h point group, which is the underlying lattice point group
for the important d-wave example of cuprate superconductors.
We define the following four quenches:

A1g : f q
k = 1 , (20a)

A2g : f q
k = sin(4ϕ) , (20b)

B1g : f q
k = cos(2ϕ) , (20c)

B2g : f q
k = sin(2ϕ). (20d)

Here, we use purely real quenches as our considered real
equilibrium gap is within a single symmetry channel. Com-
plex quench functions would induce unphysical couplings
between real and imaginary parts of the gap, since we are not
dealing with multiband or multicomponent order parameters.
The symmetry function and the quenched symmetry function,
as well as the ARPES intensity after the quench, can be found
in Fig. 3. First of all, in the equilibrium case, the ARPES
intensity closely resembles the absolute value of the symmetry
function. In the antinodal directions at ϕ = [0, π/2, π, 3π/2],
a full open gap can be observed with |E | = �. Moving ϕ

towards the nodal directions ϕ = [π/4, 3π/4, 5π/4, 7π/4],
the maximum E approaches zero.

The influence of the different quenches is also reflected in
the change in the ARPES intensity. The A1g and B2g quenches
shift the position of the nodes. In the case of the A1g quench,
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FIG. 4. Gap dynamic of d-wave (left) and nodal s-wave (right).
(Top) Oscillations after quenching in the four fundamental sym-
metries defined in Eq. (20). The B1g quench for d-wave and the
A1g quench for nodal s-wave induce stronger oscillations as these
quenches are within the same symmetry channel as the gap symme-
try. (Bottom) Fourier transform of the gap oscillations. All energies
are normalized to their individual �∞.

the shift is in opposite directions relative to the lobe maxima,
which creates lobes with different sizes. The B2g quench shifts
all nodes in the same direction, which results in a rotation of
all lobes. This can be seen by a transfer of spectral weight
above the Fermi level at exactly these points in the ARPES
intensity. The B1g quench does not change the symmetry at
all and the A2g quench only shifts weight inside the lobes,
such that for these two quenches, no obvious change in the
symmetry of the ARPES intensity is observable.

This fact is crucial for the induced Higgs oscillations of the
gap, as for the A1g and B2g quenches, the shift of the nodal
lines creates a second low-lying Higgs mode dynamically,
whereas for the other two quenches, it will not. This can
be seen in Figs. 4(a) and 4(c), where the oscillations of the
order parameter and their Fourier transform is shown for the
different quench symmetries. While the B1g and A2g quenches
only show a single broad peak around ω = 2�∞, the A1g

and B2g quenches show a two peak or kink structure in the
spectrum with one peak around ω = 2�∞ and a second peak
at lower frequencies. The same behavior is visible for nodal
s-wave, which is discussed in Appendix C and shown in
Figs. 4(b) and 4(d). The usual 2� Higgs mode corresponds to
an oscillation in the ground state symmetry channel, whereas
the low-lying Higgs mode corresponds to an oscillation in
another symmetry channel [28]. The energies of these two
modes are controlled by different quantities. While the energy
of the 2� Higgs mode is given by the value of the gap,
i.e., �∞ after the quench, the energy of the other mode is
controlled by the strength of deviation from the ground-state
symmetry. Thus, for increasing quench strength, the energy of
the 2� Higgs mode decreases, while the energy of the low-
lying Higgs mode increases. This is discussed in Appendix D
in more detail.

FIG. 5. Frequency distribution of ARPES intensity oscillation
for A1g (left) and B1g (right) quenches. (a) Momentum-dependent
frequency ωA

k of A(t, k, ϕ) (colored) compared with the theoretical
formula from Eq. (21) (lines). (b) Momentum-dependent amplitudes
of the oscillations. (c) Histogram of occurring frequencies compared
with Fourier transform of gap oscillations. The probe pulse width is
τp = 1 h̄/�∞.

Now, we will analyze the amplitude oscillations of the
ARPES intensity A(t ) in more detail to gain a deeper un-
derstanding of the dynamic creation of the low-lying Higgs
mode. According to the gap equation (3), the value of �(t )
is obtained by a summation over the condensate 〈c−k↓ck↑〉(t).
Both, the anomalous Green’s function 〈c−k↓ck↑〉(t) and the
normal Green’s function 〈c†

k↑ck↑〉(t) share a similar dynamic
as their equations of motion are coupled. This can be seen
in Eq. (D7) in Appendix D. Therefore a momentum-resolved
analysis of the ARPES intensity, i.e., A(t, k, ϕ), which is pro-
portional to the normal Green’s function, can reveal important
information about the dynamic processes. In comparison, an
angle-resolved evaluation of the maximum of the EDC curve,
i.e., E (t, ϕ), as considered in Ref. [37], does not give further
insight as it traces only the momentum-averaged quantity
�(t ).

To this end, we extract A(t, k, ϕ) and its frequency ωA
k

not only at k = kF but for all points in momentum space
and plot its distribution in Fig. 5(a) for a d-wave supercon-
ductor quenched in the A1g and B1g channels. The resulting
frequencies are momentum-dependent yet do not depend on
the quench. Namely, the frequency at each momentum point
k is given by two times the quasiparticle energy

ωA
k = 2

√
ε2

k + (�∞ fk)2. (21)

This result is derived in Appendix D. The same result for s-
wave symmetry and an interaction quench was also found in
Ref. [23]. A comparison of the extracted frequencies and the
analytic formula shows perfect agreement.

224510-6



MOMENTUM-RESOLVED ANALYSIS OF CONDENSATE … PHYSICAL REVIEW B 101, 224510 (2020)

In the summation process of the gap equation, the fre-
quency with the largest weight will dominate the oscilla-
tions. In the case of s-wave with fk = 1, this turns out to
be at k = kF , where εk = 0, which results in a single main
frequency ω = 2�∞. However, as the other frequencies still
contribute, the superposition of all different frequencies drives
the oscillations out of phase in the long-time limit, which
results in the well-known 1/

√
t decay [21]. In the case of

d-wave, there is a much larger variety of frequencies due
to the angular dependence of the gap �k. Therefore the
summation process creates a much stronger decay [24]. As the
oscillations in E (t ) correspond directly to the gap oscillations
�(t ), the damping due to the dephasing is also visible in this
quantity. In contrast, the oscillations visible in A(t, k, ϕ) are
undamped as they correspond to oscillations of the quasiparti-
cles, which can be understood as a precession of pseudospins
as shown in Appendix D. In the gap equation, it is exactly
this undamped oscillation of different momentum-dependent
frequencies which is summed up leading to the dephasing
effect and the damping of the collective Higgs oscillations.
The analytic expression for the pseudospin precession derived
in Eq. (D8) in the Appendix shows this undamped oscillation.

The second low-lying frequency for certain quenches can
be explained in the same picture. In Fig. 5(b), we show the
extracted amplitudes for ωA

k at each momentum point, which
correspond to the actual weight for each frequency. While
there is no difference in the frequency distribution between
different quenches in Fig. 5(a), we can clearly see a difference
in the amplitudes between the A1g quench, which shows a
second peak in the Higgs oscillations, and the B1g quench,
which shows no second peak. The change in symmetry due
to the quench creates a strong asymmetry in the weights
regarding the positive and negative lobe direction in the case
of the A1g-quench, while the amplitudes for the B1g-quench
are symmetric. This can result in the summation process in
an additional enhancement of frequencies other than ω =
2�∞. In Fig. 5(c), we show the histogram of the frequencies
from all momentum points. The raw histogram (red curve)
looks exactly the same for both quenches, with a peak at
ω = 2�∞ already without additional weighting. Now, if we
weight the histogram with the amplitude of the oscillation,
the picture changes (green curve). In the case of the A1g

quench, a two peak or two kink structure becomes visible,
very similar to the Fourier transform of the gap oscillation
(blue curve), whereas the symmetric weighting in the case
of the B1g quench only shows a one peak structure. Hence,
a careful analysis of the momentum-resolved frequencies in
the ARPES spectrum reveals the dynamic of the condensate
and explains the underlying processes leading to the collective
Higgs oscillations.

C. Analysis of oscillation phase

In the previous section, we have seen how the oscillation
of the ARPES intensity can provide a deep insight into the
creation process of the collective Higgs oscillation of the
order parameter. Now, we will analyze the phase of these
oscillations at different points in momentum space to resolve
the deformation dynamic of the condensate symmetry. We
have seen that an A1g quench for d-wave changes the sizes

FIG. 6. Oscillation of ARPES intensity after A1g-quench for d-
wave (left) and nodal s-wave (right) superconductor. [(a) and (b)]
Schematic picture of condensate symmetry in equilibrium (dotted)
and quenched (solid lines). The arrows indicate the movement of
the lobes. Points in momentum space rotated by π/2 oscillate with
opposite phase in the case of d-wave and in phase in the case of
nodal s-wave. For a B1g quench, the situation would be reversed.
[(c) and (d)] Time-dependent ARPES intensity. The oscillation of
the ARPES intensity follows the oscillation of the lobes. The out of
phase oscillation of d-wave lobes is clearly visible, in comparison to
the in phase oscillations of the nodal s-wave. The probe pulse width
is τp = 0.2 h̄/�∞.

of the positive and negative lobes, i.e., the lobes of one
sign increase in size while the other decrease. The resulting
deformation of the condensate symmetry will therefore be an
oscillation, where the smaller lobe increases while the larger
lobe decreases. Thus the movement of the lobes is out of phase
[see Fig. 6(a)].

The same quench applied to a nodal s-wave superconductor
with fk = cos2(2ϕ), which has the same nodal structure, will
change its lobes all equally due to the same sign of the
gap. The resulting oscillations are therefore in phase [see
Fig. 6(b)]. For comparison, the quenched symmetry function
and the resulting ARPES intensities analogous to the d-wave
case in Fig. 3 can be found in the Appendix in Fig. 8. Even
though the oscillation of the lobes is in phase for this quench,
the gap oscillation shows a two peak structure [Fig. 4(d)] due
to a shift of nodal lines. Thus a comparison of the Higgs
oscillation spectrum does not allow to distinguish between
d-wave and nodal s-wave in this case.

To see whether we can observe the different condensate
symmetry deformation for these two gap symmetries in
the ARPES intensity, we extract the amplitude oscillations
A(t, k = kF, ϕ) at ϕ = 0 and ϕ = π/2, i.e., at points in
momentum space rotated by ϕ = π/2, which should oscillate
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with opposite phase in the case of d-wave and with the
same phase for the nodal s-wave. The result can be found
in Figs. 6(c) and 6(d) and confirms the expected oscillatory
behavior. Oscillations of the amplitude provide therefore not
only information about the amplitude of the gap but relative
phase information from different points in momentum space
can be extracted as well. This shows that the information
obtainable from the time-dependent amplitude of the ARPES
intensity allows to clearly trace the induced symmetry
deformation and dynamic of the condensate in momentum
space, e.g. to determine the movement of the d-wave or nodal
s-wave lobes.

IV. SUMMARY AND DISCUSSION

In this paper, we demonstrate how the collective Higgs
oscillations of the superconducting order parameter can be
traced back and be observed as oscillations of the ARPES
intensity measured in THz tr-ARPES experiments. There
are two kinds of dynamics, namely momentum-independent
oscillations of the EDC maximum E (t ), which directly corre-
spond to oscillations of the energy gap �(t ), and momentum-
dependent oscillations of the amplitude of the ARPES inten-
sity A(t, k, ϕ). While the EDC dynamic only reveals infor-
mation about the momentum-averaged quantity �(t ), the am-
plitude oscillation of the ARPES intensity allows to perform
a momentum-resolved analysis of the condensate dynamic.
Experimental conditions might dictate which quantity can be
observed more easily. For this, further studies are required
including realistic matrix element effects for the ARPES
intensity as well as additional scattering channels influencing
the amplitudes of the oscillations. What can be stated is that
both quantities require short enough probe pulses to resolve
the Higgs oscillations. The EDC maximum oscillations are
restricted in their amplitude by the oscillation amplitude of
the gap, which can be in the sub-percentage range depending
on quench strength and gap symmetry. Increasing the quench
strength also increases the amplitude oscillations up to a
certain point beyond which the gap is quenched into a gapless
regime. Additional heating effects, which are not considered
here, restrict the maximum fluence of a quench pulse further,
such that only small quenches can be implemented experi-
mentally. In contrast, our calculation shows that the amplitude
oscillations of the ARPES intensity can be up to several
percentages in size also for small quench strength and thus,
be much larger for certain conditions. However, they might be
more difficult to resolve in general as oscillations in energy.
Another difference can be found in the intrinsic damping.
While the oscillations in E (t ) are intrinsically damped due to
dephasing, the oscillations in A(t, k, ϕ) are undamped. Yet, as
the intrinsic damping follows only a power law, additional ex-
ponential damping will diminish this advantage when further
scattering effects occur in an experiment.

A tracking of the amplitude oscillation frequencies ωA
k of

the ARPES intensity A(t, k, ϕ) at different momenta leads to

a deeper understanding of the microscopic creation process
of collective Higgs oscillations �(t ). While the frequencies
can be described with a single formula independent of gap-
and quench symmetry, the relative weight of each frequency
contributing in the collective amplitude oscillation of the order
parameter is determined by the gap and quench symmetry
in a nontrivial way. If there are asymmetries in the weights,
additional Higgs modes can appear, which are dynamically
created due to quenching the condensate in a symmetry chan-
nel different from its equilibrium value.

Furthermore, quenching the condensate in defined symme-
try channels and observing the oscillation phase of the ARPES
intensity allows to resolve the symmetry deformation and
dynamic of the condensate. This condensate dynamic depends
on the gap and quench symmetry. In this paper, the quench
symmetry for a certain gap was given such that the resulting
symmetry deformation dynamic of the condensate, like an
in-phase or out-of-phase oscillation of lobes of a d-wave or
nodal s-wave superconductor are clearly defined. Importantly,
this explicit construction of a quench symmetry allows to
distinguish between the two different gaps with same nodal
structure but different phase.

Whether and how all considered quenches can be realized
experimentally is an open question and beyond the scope of
this paper; however, there are several promising possibilities.
In-plane excitations can lead to symmetry breaking due to
the small but nonvanishing photon momentum [28], which
allows to quench the system asymmetrically with respect
to its ground state symmetry. Such momentum transfer can
be enhanced and controlled in more detail in transient grat-
ing setups [39,40] or four-wave mixing experiments [41].
Once tailored quenches are realized experimentally, a new
spectroscopic tool will be available to gain phase-sensitive
information about the gap symmetry of unconventional super-
conductors.
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APPENDIX A: EQUATIONS OF MOTION

Heisenberg’s equation of motion (9) for the time-
dependent quasiparticle operators α

†
k (t ) and β

†
k (t ) can be

evaluated by using the ansatz in Eq. (10). From the resulting
equations, a comparison of coefficients leads to a set of cou-
pled finite hierarchy differential equations for the prefactors

∂t a0k(t ) = i

h̄
[Rk(t )[a0k(t )(|a0k(t )|2 + |a1k(t )|2 − |b1k(t )|2) − a1k(t )b0k(t )b∗

1k(t )]

+Ck(t )[a0k(t )(a0k(t )b1k(t ) + a1k(t )b0k(t ))] + C∗
k (t )[b∗

1k(t )(|a0k(t )|2 + |a1k(t )|2)]] , (A1a)

224510-8



MOMENTUM-RESOLVED ANALYSIS OF CONDENSATE … PHYSICAL REVIEW B 101, 224510 (2020)

∂t a1k(t ) = i

h̄
[−Rk[a1k(t )(|b0k(t )|2 − |a1k(t )|2 − |a0k(t )|2) + a0k(t )b∗

0k(t )b1k(t )]

+Ck(t )[a0k(t )a1k(t )b1k(t ) + a1k(t )2b0k(t )] + C∗
k (t )[b∗

0k(t )(|a0k(t )|2 + |a1k(t )|2)]] , (A1b)

∂t b0k(t ) = i

h̄
[Rk(t )[b0k(t )(|b0k(t )|2 + |b1k(t )|2 − |a1k(t )|2) − a0k(t )a∗

1k(t )b1k(t )]

−Ck[a1k(t )b0k(t )2 + a0k(t )b0k(t )b1k(t )] − C∗
k [a∗

1k(t )(|b0k(t )|2 + |b1k(t )|2)]] , (A1c)

∂t b1k(t ) = i

h̄
[−Rk(t )[b1k(t )(|a0k(t )|2 − |b0k(t )|2 − |b1k(t )|2) + a∗

0k(t )a1k(t )b0k(t )]

−Ck[a1k(t )b0k(t )b1k(t ) + a0k(t )b1k(t )2] − C∗
k (t )[a∗

0k(t )(|b0k(t )|2 + |b1k(t )|2)]]. (A1d)

The initial values for the prefactors can be derived from
the initial values of the quasiparticle expectation values. The
time-dependent quasiparticle expectation values expressed
within the iterated equation of motion ansatz assuming that
the system is in equilibrium for T = 0 read

〈α†
k (t )αk(t ′)〉 = a1k(t )a∗

1k(t ′) , (A2a)

〈β†
k (t )βk(t ′)〉 = b1k(t )b∗

1k(t ′) , (A2b)

〈αk(t )βk(t ′)〉 = a∗
0k(t )b∗

1k(t ′) , (A2c)

〈α†
k (t )β†

k (t ′)〉 = a1k(t )b0k(t ′). (A2d)

To derive this result, we used the fact that for T = 0, all
equilibrium quasiparticle expectation values, i.e., 〈α†

kαk〉 = 0
etc. are zero. For t = t ′ = 0, we easily find

a0k(0) = b0k(0) = 1 , (A3a)

a1k(0) = b1k(0) = 0 , (A3b)

i.e., α
†
k (0) = α

†
k and β

†
k (0) = β

†
k . The solution for a nonequi-

librium distribution is straight forward as well, by using the
respective initial values for quasiparticle expectation values.
However, we found it advantageous for more numerical sta-
bility to first use the relation

|a0k(t )|2 + |a1k(t )|2 = 1 , (A4a)

|b0k(t )|2 + |b1k(t )|2 = 1 , (A4b)

following from the anticommutation rules for the time-
dependent Heisenberg operators, to rewrite Eq. (A2) as

〈α†
kαk〉 (0) = 1 − |a0k(0)|2 , (A5a)

〈β†
kβk〉 (0) = 1 − |b0k(0)|2 , (A5b)

〈αkβk〉 (0) = a∗
0k(0)b∗

1k(0) , (A5c)

〈α†
kβ

†
k 〉 (0) = a1k(0)b0k(0) , (A5d)

such that the solution reads

a0k(0) =
√

1 − 〈α†
kαk〉 (0) , (A6a)

b0k(0) =
√

1 − 〈β†
kβk〉 (0) , (A6b)

a1k(0) = 〈α†
kβ

†
k 〉 (0)√

1 − 〈β†
kβk〉 (0)

, (A6c)

b1k(0) = 〈αkβk〉∗ (0)√
1 − 〈α†

kαk〉 (0)
. (A6d)

This prevents dividing by zero in the calculation of a1k(0)
and b1k(0).

The initial values 〈α†
kαk〉 (0), etc. in the state quenched

case are derived as follow. For T = 0, the equilibrium electron
expectation values read

〈c−k↓ck↑〉 = �k

2Ek
, (A7a)

〈c†
k↑c†

−k↓〉 = �∗
k

2Ek
, (A7b)

〈c†
k↑ck↑〉 = 1

2
− εk

2Ek
, (A7c)

〈c−k↓c†
−k↓〉 = 1

2
+ εk

2Ek
. (A7d)

Using the definition of the Bogoliubov transformation in
Eq. (4) one can derive the corresponding expressions for
the quasiparticle expectation values. In the state quench, all
occurring symmetry functions fk are replaced by the modified
symmetry function f ′

k. These expectation values are then used
as initial values for the calculation.

APPENDIX B: INFLUENCE OF PROBE PULSE WIDTH

The probe pulse width determines both the energy resolu-
tion in the spectrum and the time resolution in the dynamic
[44]. If the probe pulse is very long compared to the intrinsic
oscillations of the system, i.e., τp 	 h̄/(2�∞), it can only
detect the average value of the oscillations, which results in
constant quantities E and A. However, if the probe pulse is
short in time, i.e., shorter than the intrinsic oscillation period
of the system, it can scan the oscillations which leads to
oscillations in the ARPES intensity in energy and amplitude.

In Fig. 7, the ARPES intensity of an s-wave supercon-
ductor after an interaction quench is shown for different
probe pulse widths. An infinite long probe pulse with τp = ∞
leads to a very sharp ARPES intensity in energy. However,
no oscillations in the ARPES intensity can be observed in
this case (black and red curve), despite the oscillations in
the gap (blue curve). For decreasing probe pulse width, the
energy resolution of the ARPES intensity decreases and the
ARPES intensity peak becomes broader. Simultaneously, the
time-resolution increases and oscillations of the EDC maxi-
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FIG. 7. Influence of probe pulse width on ARPES spectrum and
its time evolution for an s-wave superconductor after an interaction
quench. For decreasing probe pulse width (right to left), the energy
resolution decreases while the time-resolution increases. The edges
in E are an artifact due to the finite frequency resolution. The
decreased amplitude of the ARPES intensity in the beginning for
larger pulse widths τp results from decreased weight due to the cutoff
of the probe pulse envelope at t = 0.

mum E (t ) and the ARPES intensity amplitude A(t ) can be
observed.

APPENDIX C: STATE QUENCH FOR NODAL s-WAVE
SUPERCONDUCTOR

In analogy to Sec. III B and Fig. 3, we quench a nodal
s-wave superconductor in all symmetry channels of the D4h

lattice point group. The result can be found in Fig. 8. In the
areas, where the quench shifts nodal lines, we can observe a
corresponding shift in spectral weight. If one calculates the re-

FIG. 8. ARPES intensity of a nodal s-wave superconductor after
a state quench. (Top) Symmetry function fk (blue) and quenched
symmetry function f ′

k(red) for different channels. (Bottom) Corre-
sponding ARPES intensity, shift of nodal lines is reflected by a shift
of spectral weight in the nodal region. The probe pulse width is
τp = 10 h̄/�∞.

sulting gap oscillations shown in Fig. 4, one can observe a two
peak or kink structure for all quenches. We can understand
this by the fact that all quenches shift the nodal lines such
that there is an asymmetry in the weights of the k-dependent
frequencies. In the case of the B1g quench, this shift is smaller
compared to the other quenches, which results in a lower
frequency of the second Higgs mode. In general, the energy of
the dynamically created Higgs mode depends on the quench
strength, i.e., the deviation from the equilibrium state.

APPENDIX D: MOMENTUM-DEPENDENT FREQUENCY

If we are only interested in the dynamic of the gap and
expectation values at equal times, we can formulate the BCS
Hamiltonian in Anderson’s pseudopin representation [45] and
solve the resulting Bloch equations similar to Ref. [28]. The
pseudospin is defined as

σk = 1
2�

†
kτ�k (D1)

with the Nambu-Gorkov spinor �
†
k = (ck↑ c†

−k↓) and the
Pauli matrices τ i. The x-component corresponds to the
real part of the anomalous Green’s function 〈c−k↓ck↑〉 +
〈c†

k↑c†
−k↓〉, while the z component corresponds to the normal

Green’s function 〈c†
k↑ck↑〉 − 〈c−k↓c†

−k↓〉. The BCS Hamilto-
nian can be written as

H (t ) =
∑

k

bk(t )σk (D2)

with the pseudomagnetic field bk(t ) = (−2�(t ) fk, 0, 2εk )
and the gap equation reads

�(t ) = V
∑

k

fk
〈
σ x

k

〉
(t ). (D3)

Hereby, we assume a real gap, such that the y-component,
which corresponds to the imaginary part of the gap, is zero.
Heisenberg’s equations of motion for the pseudospin take the
form of Bloch equations

∂t 〈σk〉 (t ) = bk(t ) × 〈σk〉 (t ). (D4)

We can linearize these equations for small deviations from the
initial values

〈σk〉 (t ) = 〈σk〉 (0) + 〈δσk〉 (t ) , (D5a)

�(t ) = �(0) + δ�(t ) , (D5b)

where 〈σk〉 (0) is the quenched pseudospin expectation value
at t = 0 with

〈
σ x

k

〉
(0) = 〈

σ x
k

〉′ = �′
k

2E ′
k

, (D6a)

〈
σ z

k

〉
(0) = 〈

σ z
k

〉′ = − εk

2E ′
k

(D6b)

according to Sec. II C in the main text. Using this ansatz
while neglecting all products in higher order of the devia-
tions, we can write the Bloch equations in Laplace space for

224510-10



MOMENTUM-RESOLVED ANALYSIS OF CONDENSATE … PHYSICAL REVIEW B 101, 224510 (2020)

complex frequency s as

s
〈
δσ x

k

〉
(s) = −2εk

〈
δσ

y
k

〉
(s) , (D7a)

s
〈
δσ

y
k

〉
(s) = 2εk

s

� f ′
k − �(0) fk

2E ′
k

+2εk
〈
δσ x

k

〉
(s)

+2�(0) fk
〈
δσ z

k

〉
(s)

−2εk
fk

2E ′
k

δ�(s) , (D7b)

s
〈
δσ z

k

〉
(s) = −2 fk�(0)

〈
δσ

y
k

〉
(s). (D7c)

Solving for the x and z components, it follows

〈
δσ x

k

〉
(s) = 2ε2E ′

k

(�(0) fk−� f ′
k

s + fkδ�(s)
)

4ε2 + 4�(0)2 f 2
k + s2

, (D8a)

〈
δσ z

k

〉
(s) = 2ε�(0) fkE ′

k

(�(0) fk−� f ′
k

s + fkδ�(s)
)

4ε2 + 4�(0)2 f 2
k + s2

(D8b)

and the solution for the gap reads

δ�(s) = F2(s)

1 − F1(s)
(D9)

with

F1(s) = C − V
∑

k

f 2
k

s2 + 4�(0)2 f 2
k

2E ′
k

(
s2 + 4ε2

k + 4�(0)2 f 2
k

) , (D10a)

F2(s) = �(0)

s
(C − 1) + 1

s
V

∑
k

fk(� f ′
k − �(0) fk)

× s2 + 4�(0)2 f 2
k

2E ′
k

(
s2 + 4ε2

k + 4�(0)2 f 2
k

) . (D10b)

with C = V
∑

k
f 2
k

2E ′
k
. An inverse Laplace transform yields

F1(t ) = C − V
∑

k

f 2
k

(
δ(t )

2E ′
k

− 2ε2
k

E ′
kωk

sin(ωkt )

)
, (D11a)

F2(t ) = �(0)(C − 1) + V
∑

k

fk(� f ′
k − �(0) fk)

×
(

2�(0)2 f 2
k + ε2

k cos(ωkt )

E ′
kω

2
k

)
, (D11b)

where ωk = 2
√

ε2
k + �(0)2 f 2

k . In the linear regime, we can
approximate �(0) ≈ �∞, such that we arrive at the formula
Eq. (21) from the main text. We can see that the main
oscillation frequency of the summand in the gap equation and
both the anomalous and normal Green’s function, i.e., the x
and z components of the pseudospin in Eq. (D8) is given by
ωA

k . The frequency is independent of the quench, however
the individual weighting in momentum space, i.e., the am-
plitudes of each frequencies depend heavily on the quench.
Namely, the prefactors, controlled by the gap symmetry fk and
quenched symmetry f ′

k, determine the dominating frequency
in the summation process in a nontrivial way.

We can see the energy scales of the collective Higgs modes
in more detail, by evaluating the k sum in F1(s) or F2(s).

For this, the sum is replaced by an integral using polar coor-
dinates, i.e., V

∑
k → λ

∫ ∞
−∞ dε

∫ 2π

0 dϕ, where λ = V D(εF)
with D(εF) the density of states at the Fermi level. Following
Ref. [28], one finds

F1(s) ∝
∫ 2π

0

√
s2 + 4�(0)2 f (ϕ)2√

s2 + 4(�(0)2 f (ϕ)2 − �2 f ′(ϕ)2)
(D12)

and a similar expression for F2(s). Here, two
energy scales appear. The term

√
s2 + 4�(0)2 f (ϕ)2

determines the usual 2� Higgs mode, whereas the term√
s2 + 4(�(0)2 f (ϕ)2 − �2 f ′(ϕ)2) determines the energy of

the second low-lying Higgs mode. For small quenches g ≈ 0,
the quenched symmetry function is f ′(ϕ) ≈ f (ϕ) and the
second Higgs mode softens. For increasing quench strength,
the difference �(0)2 f (ϕ)2 − �2 f ′(ϕ)2 increases, resulting
in an increase of the energy. In contrast, the 2� Higgs mode
decreases as the gap is reduced more. Yet, to obtain the exact
energies, the integral has to be evaluated numerically as the
whole expression is nontrivial.

The gap oscillations are damped with 1/t n, where n = 1/2
for s-wave and n > 1/2 for d-wave. This is a dephasing effect
as oscillations of slightly different frequency are summed
up in the gap equation. In contrast, the oscillations of the
quasiparticles or pseudospins, which are the quantities which
are summed up in the gap equation, are undamped. This can
be seen in the expression for the pseudospins in Eq. (D8). As
an example the expression for the z component reads〈

σ z
k

〉
(s) = a

s(b2 + s2)
+ c

b2 + s2
δ�(s) , (D13)

where a, b, c are s-independent constants. The inverse Laplace
transform of the first term yields a/b2 − a cos(bt )/b2, which
contains an undamped oscillatory part. As a result, the con-
sidered amplitude oscillations A(t, k, ϕ) in this work are
undamped as well.

APPENDIX E: INFLUENCE OF SYSTEM PARAMETERS

Higgs oscillations are a collective oscillation of the order
parameter. Thus, a variation of system parameters only quan-
titatively changes the oscillations but do not affect the overall
collective excitation. To demonstrate that the induced Higgs
oscillation do not depend on system parameters, we show
results for a single-band tight-binding dispersion on a square
lattice, where we vary the filling and quench strength. The
dispersion reads

εk = −2t (cos kx + cos ky) − εF (E1)

where we chose t = 200 meV, � = 30 meV, εc = 60 meV,
Nk = 2000, and Nϕ = 1000, which is in the order of numeri-
cal values found e.g. in cuprates.

In Figs. 9(a) and 9(b), we show the results for a d-wave
order parameter which we quench in the A1g channel with
a fixed strength of g = 0.4. We vary the filling by varying
the Fermi energy from εF = −100 to 100 meV. This changes
the Fermi surface from nearly circular to Fermi pockets at
(π, π ). First of all, independent of the parameters, Higgs
oscillations are always excited as shown in Fig. 9(a) and in
all cases, two Higgs modes are visible as it can be seen in
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FIG. 9. Higgs oscillations and spectrum for a d-wave order pa-
rameter quenched in the A1g channel for varying parameters using the
tight-binding dispersion Eq. (E1). [(a) and (b)] The Fermi energy εF

is varied from negative to positive values, which results in a change
in the Fermi surface from nearly circular to Fermi pockets at (π, π ).
In all cases, 2 Higgs modes occur, yet, the relative weight of the
occurring frequencies depends on the Fermi surface. [(c) and (d)]
The quench strength g is varied. For increasing quench strength, the
2�∞ Higgs mode is shifted to lower energies, while the low-lying
Higgs mode is shifted to higher energies.

Fig. 9(b). As the Fermi surface changes for different fillings,
the same quench strength g has a different strong quench effect

on the system, yet, the result is qualitatively the same. As
we have shown in this paper the ARPES intensity directly
reflects the collective gap oscillations and the oscillations of
the underlying condensate. Thus, the qualitative invariance of
the gap oscillations under variation of system parameters is
also found in the oscillations of the ARPES intensity.

Quantitatively, the following differences are visible. In
the half-filling case εF = 0, where the Fermi surface has the
shape of a square with the corners in the antinodal direction,
the 2�∞ peak is sharper compared to the other cases. This
is perfectly understandable with our analysis of the main
text regarding the emerging of the Higgs modes. Due to the
position of the corners in the antinodal direction, there is
more weight in this region and the corresponding frequencies
contribute more. As the frequency in the antinodal direction
at the Fermi level is given by the full open gap 2�∞, this
frequency dominates the resulting spectrum.

Another difference is visible for the Fermi surface with
pockets in the case εF > 0. Here, there is no Fermi surface
in the antinodal direction and thus, less weight for the 2�∞
oscillation. As a consequence, the main peak is slightly shifted
to lower frequencies.

In Figs. 9(c) and 9(d), we fix the filling at εF = −100 meV
and vary the quench strength using g = [0.2, 0.4, 0.6, 0.8].
We observe that the gap is reduced more for stronger
quenches, i.e., �∞ decreases. As a consequence, the main os-
cillation frequency of the 2�∞ Higgs mode decreases as well,
which can already be seen in the oscillations in Fig. 9(c) but
more clearly in Fig. 9(d) by a shift of the main peak to lower
frequencies. In contrast, as also discussed in Appendix D,
the energy of the low-lying Higgs mode increases.
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