
PHYSICAL REVIEW B 101, 224504 (2020)

Rotational transition, domain formation, dislocations, and defects in vortex systems
with combined sixfold and twelvefold anisotropic interactions
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We introduce a phenomenological model for a pairwise repulsive interaction potential of vortices in a type-II
superconductor, consisting of superimposed sixfold and twelvefold anisotropies. Using numerical simulations
we study how the vortex lattice configuration varies as the magnitudes of the two anisotropic interaction terms
change. A triangular lattice appears for all values, and rotates through 30◦ as the ratio of the sixfold and
twlevefold anisotropy amplitudes is varied, in agreement with experimental results. The transition causes the
vortex lattice to split into domains that have rotated clockwise or counterclockwise, with grain boundaries that are
“decorated” by dislocations consisting of fivefold and sevenfold coordinated vortices. We also find intradomain
dislocations and defects, and characterize them in terms of their energy cost. We discuss how this model could
be generalized to other particle-based systems with anisotropic interactions, such as colloids, and consider the
limit of very large anisotropy where it is possible to create cluster crystal states.
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I. INTRODUCTION

Magnetic flux enters a type-II superconductor in the form
of quantized vortices [1]. The interaction between vortices
is repulsive and causes them to crystallize in an ordered
vortex lattice (VL), unless pinning forces or disordering due to
thermal fluctuations are dominant [2]. In an ideal isotropic su-
perconductor the VL is triangular [3] and is oriented randomly
with respect to the crystal directions of the host material.
There are, however, a large class of superconductors that
possess a hierarchy of anisotropies that strongly influence the
VL symmetry and/or orientation relative to the crystalline
axes, and which can often give rise to magnetic field or tem-
perature driven transitions [4–6]. Examples include the tran-
sition from a square to a hexagonal vortex lattice in rare-earth
nickelborocarbides [7–9], heavy fermion systems [10–12],
and high temperature superconductors [13,14]. Triangular-to-
square vortex lattice transitions can also appear in superfluid
systems [15,16].

Theoretical approaches used to study structural transitions
of the VL include modifications to the London model [17–19],
the addition of fourfold symmetric terms to the Ginzburg-
Landau free energy [20], Eilenberger theory [21], modified
Ginzburg-Landau approaches [22], and modifications to the
vortex interactions produced by strain fields [23]. Vortex
lattice ordering can also be studied using molecular dynamics
(MD) methods, which treat the vortices as point particles
with bulk Bessel function interactions or thin film Pearl
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interactions. MD methods were used previously to study
structural vortex transitions for varied anisotropy [24–28], but
this work was limited to systems with isotropic vortex inter-
actions due to the complexity introduced by including a fully
anisotropic interaction potential, which produces nonradial
forces between the vortices.

Olszewski et al. recently implemented a phenomenological
model that made it possible to perform MD simulations of the
VL in the presence of fourfold anisotropic interactions, and
used this model to study a square-to-hexagonal vortex transi-
tion [29]. Motivated by the continuous VL rotation transitions
observed in the hexagonal superconductors MgB2 [30,31] and
UPt3 [32,33] by small-angle neutron scattering (SANS), in
this work we expand the anisotropic vortex model to include
a combined sixfold and twelvefold anisotropy. Through MD
simulations we are able to reproduce the rotation transition by
varying the ratio of the sixfold and twelvefold contributions
to the anisotropic interaction potential, validating our phe-
nomenological model. The competition between the sixfold
and twelvefold anisotropies results in the formation of a rich
variety of defects and domains that are distinct from what is
observed in systems where the lattice defects are produced
by quenched disorder. We show how the defect structures and
the range of the defect-defect interactions change across the
transition from sixfold to twelvefold symmetry.

Another behavior that has been attracting attention is the
formation of a vortex cluster lattice, which can appear when
competing interactions or multiple interaction length scales
are present even when the interactions are isotropic [34–39].
Here we demonstrate that in the limit of large anisotropy, a
novel vortex cluster crystal emerges, suggesting that strong
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anisotropy may be a route for creating vortex clusters as well
as cluster phases in particle-based systems with competing
anisotropies.

In addition to the equilibrium VL configurations, MD
simulations give access to the statics and dynamics of a large
number of vortices over long times. Our model can be applied
to other particle-based systems with anisotropic interactions,
including skyrmion lattices [40–42] or colloidal particles with
anisotropic interactions [43,44]. It will also allow modeling of
the dynamics associated with the generation and recombina-
tion of dislocations, grain boundaries and domain formation
in the VL [45–47], as well as in general [48,49].

II. METHODS

The conventional model used for MD simulations of vor-
tices in an isotropic type-II superconductor is a pairwise
isotropic repulsive potential that is proportional to the zeroth-
order Bessel function U (r) = K0(r) [50]. Previously, we ex-
tended this model to make it applicable to materials with
anisotropic vortex interactions [29]. The result was the fol-
lowing pairwise repulsive potential:

U (r, θ ) = AvK0(r)

[
1 + Ka cos2

(
na(θ − φa)

2

)]
, (1)

where r = |ri − r j | is the distance between two vortices at
positions ri and r j . The angle between the vortices is given
with respect to the positive x-axis as θ = tan−1(rx/ry) with
r = ri − r j , rx = r · x̂, and ry = r · ŷ. The isotropic strength
of the pairwise repulsion is determined by Av , and is used as
a normalization parameter. The magnitude and order of the
anisotropic contribution to the vortex interaction is given by
Ka and na, respectively, and a reference direction is specified
by the angle φa. We used this model to study vortices in su-
perconductors with a fourfold anisotropy (na = 4), and were
able to reproduce the well-known triangular to square VL
transition via an intermediate rhombic phase [29]. In addition,
we discovered the presence of “chain states” for large values
of K4 produced when deep minima in the interaction potential
led to a net attractive interaction between the vortices. This
model in Eq. (1) is applicable when only a single order of
anisotropy is present.

To allow for more complex vortex interactions, we propose
the following modification which includes two anisotropies of
different orders, superimposed in the same potential:

U (r, θ ) = AvK0(r)

[
1 + Kα cos2

(
nαθ

2

)
+ Kβ cos2

(
nβθ

2

)]
,

(2)
where r, θ , and Av are the same as before. The param-
eters nα and nβ represent the anisotropic orders for the
two anisotropies, with magnitudes given by Kα and Kβ , re-
spectively. We focus on the particular case of nα = 6 and
nβ = 12. The interaction potential in Eq. (2) is motivated by

theoretical work, based on the Ginzburg-Landau (GL) theory,
describing the field and temperature dependence of the VL in
the multigap superconductor MgB2 [51]. Here the twelvefold
term arises from an expansion of fourth-order terms in the
GL functional. Subsequent numerical studies, based on Eilen-
berger theory and first-principle band-structure calculations
for MgB2 [52], found that competing sixfold interactions
on the different Fermi surface sheets are responsible for the
continuous rotation of the triangular VL observed experimen-
tally in this material [30,31]. We note that the interaction
potential in Eq. (2) is not based on an ab initio calculation, but
rather it is a phenomenological model. However, as shown in
Sec. III B, it reproduces the experimentally observed macro-
scopic VL behavior for a suitable choice of parameters K6 and
K12. It can be considered as a minimal model, and it is thus
reasonable also to use this expression to describe the VL in
UPt3 where a similar rotation transition is observed [32,33].

For the combined sixfold and twelvefold anisotropy, the
number and angular position of the minima and maxima in
the interaction potential depends on the anisotropy ratio κ =
K6/K12, as illustrated in Fig. 1. When |κ| > 4, the potential
is dominated by the sixfold term, resulting in minima along
either the horizontal (κ = −6) or vertical (κ = 6) axis as
well as at every 60◦ increment from this axis, as shown in
Figs. 1(a) and 1(g), respectively. Reducing the magnitude of
the anisotropy ratio causes the minima to widen and become
shallower, and at κ = ±4 the width of the minima is maxi-
mized, as indicated in Figs. 1(b) and 1(f). When |κ| is further
reduced, each local minimum splits into two minima that
rotate continuously away from the high symmetry directions
in the manner illustrated in Figs. 1(c) and 1(e). For κ = 0
the potential has perfect twelvefold anisotropy, with minima
along the vertical axis and at every 30◦ increment from this
axis, as shown in Fig. 1(d). For |κ| � 4, the angular locations
of the minima in the interaction potential are given by

θmin(κ ) = ±1

6
arccos

(
−κ

4

)
. (3)

Here six of the minima rotate clockwise as κ is reduced while
the other six rotate counterclockwise. Changing the sign of
κ is equivalent to a 30◦ rotation of the interaction potential
which exchanges the location of the minima and maxima.

To investigate the VL ground states that emerge for differ-
ent values of the anisotropy ratio, we performed MD simula-
tions for κ in the range −6 to 6. The dynamics of vortex i are
governed by an overdamped equation of motion

η
dri

dt
= F i

vv + F i
T . (4)

Here η is the damping constant which is set equal to unity. The
force field from the surrounding vortices is given by Fvv =
−∇(U ) = (−∂U/∂x,−∂U/∂y), yielding

Fx/Av = cos(θ ) K1(r)[1 + K6 cos2(3θ ) + K12 cos2(6θ )] − sin(θ )

r
K0(r)[3K6 sin(6θ ) + 6K12 sin(12θ )], (5a)

Fy/Av = sin(θ ) K1(r)[1 + K6 cos2(3θ ) + K12 cos2(6θ )] + cos(θ )

r
K0(r)[3K6 sin(6θ ) + 6K12 sin(12θ )]. (5b)
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FIG. 1. Equipotential lines for the vortex-vortex interaction in Eq. (2) at different values of the anisotropy ratio: κ = (a) −6, (b) −4, (c) −2,
(d) 0, (e) 2, (f) 4, and (g) 6.

Thermal forces are modeled by Langevin kicks F i
T with the

properties 〈FT 〉 = 0.0 and 〈F i
T (t )F j

T (t ′)〉 = 2ηkBT δi j δ(t −
t ′) where kB is the Boltzmann constant. We perform simulated
annealing by starting in a molten state with temperature
F T = 6.0 and gradually cooling the system to F T = 0.0.
The temperature is reduced by 
F T = −0.01 every 40 000
simulation time steps, which is long enough to ensure that the
system reaches an equilibrium state.

III. RESULTS

Our results are organized as follows. We first verify that
the simulated annealing has converged properly and establish
the appropriate parameter regimes for investigation. Next,
we characterize the phase diagram for the VL rotation as a
function of anisotropy. Finally, we discuss the structure and
energetics associated with individual dislocations and defects
as well as the domain formation process.

A. Simulated annealing

We simulate a two-dimensional system of size L × L with
periodic boundary conditions in the x and y directions. Dis-
tances are measured in units of the London penetration depth,
λ. To ensure that our results are not affected by the sample
size, we performed simulations with different numbers of
vortices Nv while holding the vortex density constant at ρv =
Nv/L2 = 0.4398/λ2. We consider five system sizes: L = 36λ

with 570 vortices, L = 72λ with 2280 vortices, L = 108λ with
5130 vortices, L = 144λ with 9120 vortices, and L = 180λ

with 14 250 vortices. We select values of K12 = 0.001, 0.005,
0.01, 0.0125 0.015, 0.0175, 0.02, 0.05, 0.1, and 0.2. For each
value of K12, we vary the anisotropy ratio from κ = −6 to
κ = 6 in increments of 0.25 by modifying K6.

Increasing or decreasing the values of K6 and/or K12

changes the magnitude of the energy potential experienced by
each vortex, which is equivalent to a change in the effective
vortex density. To eliminate effects arising from a density
difference, we define an effective magnetic field that is pro-
portional to the two-dimensional integral of the interaction
potential

Beff ∝
∫ ∞

0
r dr

∫ 2π

0
dθ U (r, θ ) ∝ Av

(
1 + K6

2
+ K12

2

)
.

(6)

Using K6 = 0 and Av = 2.0 as a reference, we set Av = 2(2 +
K12)/(2 + K6 + K12) for each individual MD simulation, such
that all simulations have the same value of Beff .

The VL configuration is analyzed during the annealing
process using a Voronoi polygon construction. This yields
the local coordination number zi of each vortex, which is
used to compute the fractions Pn = 1

Nv

∑Nv

i=1 δ(zi − n) for
n = 5, 6, and 7. Figure 2 shows P5, P6, and P7 versus F T

obtained during a typical annealing process. Initially, the
system is in a high temperature molten state. As F T is
reduced, the vortices order into a triangular lattice with a
few impurities at F T ∼ 2.5, as indicated by the increase
in P6 at this temperature. We find qualitatively similar be-
havior during the annealing process for all choices of the
parameters Av , K6, and K12. For the remainder of this paper
we consider only the final VL configuration, obtained at
F T = 0. To characterize the global VL configuration of
the system after annealing we compute the structure fac-
tor S(k) ∝ |∑Nv

i exp(−ik · ri )|2. To achieve meaningful re-
sults from the simulations it is necessary to establish the

FT

P
n

0 1 2 3 4 5 6

P5

P7

P6

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Coordination number Pn vs temperature F T during an
annealing process with K6 = 0.05, K12 = 0.05, and a system size of
L = 144λ. We plot only P5, P6, and P7. The temperature decreases
during the anneal, meaning that the system moves from right to left
along the curves. At F T = 0, we find P5 = 0.011, P6 = 0.978, and
P7 = 0.011.
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FIG. 3. Structure factor S(k) plotted as a height field for (a) the isotropic case with K6 = K12 = 0, (b) intermediate anisotropy with K6 = 0
and K12 = 0.0125, (c) large anisotropy with K6 = −0.4 and K12 = 0.1, and (e) very large anisotropy with K6 = −1.2 and K12 = 0.2. The
dashed rectangle in (b) indicates the reciprocal space area shown in Figs. 4(b) to 4(h). Circle segments in (c) show the the expected radius
(0.71 × 2π/λ) for a uniform triangular VL with 14 250 vortices and a system size of 180λ × 180λ. (d) Inverse transform of the innermost
contribution (indicated by the circles) to the structure factor in panel (c). (f) Real-space vortex positions for the very large anisotropy system
in (e), showing the formation of an ordered lattice of vortex clusters.

appropriate range of values for K6 and K12. If the anisotropy
amplitudes are too small they will not significantly affect
the VL, and the results will be the same as for an isotropic
system. In addition, due to the weaker anisotropy, boundary
effects become more significant, often dictating the orienta-
tion of the VL. Conversely, values that are too large may
lead to instabilities, such as the previously observed vor-
tex chain states in the case of a single fourfold anisotropy
[29].

In Fig. 3 we illustrate representative examples of the
structure factor for low, intermediate, and high anisotropy
samples. For the isotropic K6 = K12 = 0 case of Fig. 3(a)
we observe an almost complete “powder ring” arising from
a number of randomly oriented VL domains. Here the gaps
in the ring are due to the finite system size. The radius of
the ring agrees with the calculated value for a triangular lat-

tice, k0 = (2/
√

3)
1/2

2π (
√

14250/180λ) = 0.71(2π/λ). The
narrow radial width of S(k) corresponds to a very uniform
vortex spacing, indicating that the individual domains are well
ordered. In the intermediate anisotropy sample with K6 = 0
and K12 = 0.0125 in Fig. 3(b), the intensity of S(k) still lies
on a circle with the same radius as before, but it is now
concentrated in 12 sharp (Bragg) peaks. This indicates the
presence of VL domains that are oriented along one of two
different directions separated by 30◦, corresponding to the
minima in the interaction potential in Fig. 1(d).

When the anisotropy is large, as in Fig. 3(c) at K6 = −0.4
and K12 = 0.1, the maxima in S(k) broaden significantly in the
radial direction and develop an internal structure. Figure 3(d)
shows the inverse transform | ∫ S(k) exp(ik · r) d2k|2 for this
system, calculated using only the innermost (lowest k) contri-
butions to the structure factor. It reveals a nonuniform vortex
spacing, with intertwined regions of low (bright) and high
(dark) vortex density. The heterogeneous vortex density is due
to an instability caused by the deep minima that appear in the
interaction potential for high values of the anisotropy. A more
extreme case is shown in Fig. 3(e) for a very large anisotropy
of K6 = −1.2 and K12 = 0.2. Here additional peaks emerge in
S(k), indicating the development of a superstructure. This is
illustrated directly in the real-space image of Fig. 3(f), where
closely bound clusters, each containing two to five vortices,
are arranged in a periodic lattice. Here the large-scale sixfold
ordering is produced by the strong sixfold anisotropy term.
This is similar to the cluster crystals found in particle-based
systems with competing isotropic interactions [34,38]. It may
be possible that the true lowest-energy state would contain
clusters of a single size, such as three vortices. The compe-
tition between the two anisotropies could frustrate the system,
however, producing a variety of ground states with roughly
the same energy that prevent the system from crystallizing on
the cluster level and giving rise to the strong dispersion in the
cluster size.
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FIG. 4. Vortex lattice rotation transition for K12 = 0.0125. (a) Azimuthal dependence of the structure factor, averaged over all six 60◦

segments, vs the anisotropy ratio κ . The azimuthal angle range is illustrated in panel (b). (b)–(h) S(k) for select values of κ for the region of
reciprocal space indicated in Fig. 3(b). Here κ = (b) −6, (c) −4, (d) −2.25, (e) 0, (f) 2.25, (g) 4, and (h) 6. The definition of the VL splitting
angle 
θ for κ � 0 and κ � 0 is shown in panels (d) and (f), respectively, while the rotation angle θ is shown in panel (e).

B. Rotational transition

As discussed in Sec. II, changing the anisotropy ratio κ

causes the minima in the interaction potential to both split and
rotate within the range θ = [−30◦, 30◦]. Figure 4(a) illustrates
the azimuthal dependence of the structure factor as κ is varied
from κ = −6 to κ = +6 in steps of 
κ = 0.25 for samples
with fixed K12 = 0.0125 and L = 180λ. Due to the sixfold
symmetry that appears both in the interaction potential in
Fig. 1 and in the structure factor plots in Fig. 3, to obtain the
intensity in Fig. 4(a), we take the average of six 60◦ segments.
For κ < −4 we find a single peak at θ = 0◦, indicating the
presence of a single preferred domain orientation. When κ

increases above κ = −4, the peak splits in two, with a peak
separation that grows with increasing κ . Finally, for κ > 4,
the split peaks recombine, with the peak at θ = ±30◦ merging
with the peak arising from the neighboring 60◦ segment.
This behavior indicates that when |κ| < 4, the VL breaks
into domains that rotate either clockwise or counterclockwise
between the two high-symmetry directions, while when |κ| >

4, there is a single preferred direction of the VL. The series
is symmetric around κ = 0, with identical behavior appearing
under a reflection and a 30◦ shift in θ . Figures 4(b) to 4(h)
show the structure factor for select values of κ along the
rotation transition. In the vicinity of the rotation onset at κ =
±4, the structure factor broadens in the azimuthal direction,
as shown in Fig. 4(c) for κ = +4 and Fig. 4(g) for κ = −4,
before splitting into two well-defined peaks in Figs. 4(d)
through 4(f) at κ = −2.25, 0, and 2.25, respectively. The
broadening for |κ| ∼ 4 is likely due to the shallow minima that
emerge in the interaction potential, illustrated in Figs. 1(b) and
1(f).

The VL rotation transition can be quantified by either the
angle between domains, given by the structure factor peak
splitting 
θ indicated in Figs. 4(d) and 4(f), or by the rotation
θ of one of the domains relative to a fixed direction, as shown
in Fig. 4(e). Figure 5 shows both the VL domain splitting 
θ

and rotation θ versus κ for different values of K12 and a system
size of L = 180λ. Also shown for comparison are the location
θmin and separation 
θ of the minima in the interaction
potential given by Eq. (3), corresponding to the lowest-energy
configuration for a single VL domain. Here 
θ = 2θmin for

κ � 0 and 
θ = 60◦ − 2θmin for κ � 0. In the absence of
effects arising due to the presence of grain boundaries, the
MD simulation results are expected to follow these calculated
curves, and we find good agreement for values of K12 in

0

10

20

5

15

0

5

20

25

10

15

30

25

30

θ 
(d

eg
.)

Δ
θ 

( d
eg

.)

-6 -4 -2 0 2 4 6

(a)

(b)

0.001
0.01
0.0125
0.02
0.1

K12

K12

κκ

0

1

2

3

10-3 10-2 10-1

σ

FIG. 5. (a) Peak position θ and (b) peak splitting 
θ , obtained
from the structure factor, plotted vs anisotropy ratio κ for different
values of K12. Lines indicate the locations of the minima in the
interaction potential, Eq. (3). The inset in (a) shows the standard
deviation σ between the simulated value of θ and the actual location
of the potential minimum as a function of K12.
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FIG. 6. Structure factor peak position θ vs anisotropy ratio κ for
different system sizes at K12 = 0.0125. The line corresponds to the
interaction potential minimum θmin obtained from Eq. (3).

the range K12 = 0.01 to 0.02. For values outside this range
the simulation results deviate from the curves, particularly in
the vicinity of κ = ±4. For K12 < 0.01, the transition from

θ = 0◦ to 
θ = 30◦ occurs over a narrower range of the
anisotropy κ , most likely because the minima that appear
in the interaction potential near κ = ±4 are too shallow to
produce ordered VL domains when the splitting is small.
For these small values of K12, we posit that the effects of
the square sample geometry are proportionally stronger and
change the nature of the observed transition. Conversely, for
K12 > 0.02, the splitting process continues beyond κ = ±4,
which we attribute to the pattern-forming instability discussed
in Sec. III A and illustrated in Figs. 3(c) to 3(f). We obtain
the best agreement between Eq. (3) and the MD simulation
results when K12 = 0.0125, as measured by the deviation σ =√∑

(θMD − θmin)2/(M − 1) between the simulation results
and the theory, where M = 49 is the number of simulations
in a single sequence. As shown in the inset to Fig. 5(a), σ

is minimized at K12 = 0.0125. The relative narrowness of the
minimum in σ as a function of K12 underscores the importance
of optimizing the parameters used for the MD simulations.
It is possible that a different choice of interaction potential
that avoids the wide and flat minima for |κ| ≈ 4 would have a
broader minimum in σ and thus require less optimization.

While the evolution of the rotation transition obtained from
the MD simulations depends sensitively on the anisotropy
amplitude as discussed above, it is independent of the system
size. This is illustrated in Fig. 6, where results from samples
with L ranging from L = 36λ to L = 180λ agree within
stochastic fluctuations. In all cases, σ < 1. As the number of
vortices is reduced, the fraction of simulations that terminate
with a single VL domain increases. In such cases it is not
possible to define a value of the peak splitting 
θ , and
therefore we plot only the VL rotation θ .

C. Dislocations and defects

At the local scale the annealed lattices frequently contain
vortices that are not sixfold coordinated, even though the

structure factor shows sharp peaks as in Figs. 3(b) and 4. In the
following we characterize the observed lattice imperfections
occurring within the optimal range 0.01 � K12 � 0.02 deter-
mined above. We compare systems with |κ| > 4, correspond-
ing to a sixfold anisotropy in the interaction potential in Fig. 1,
to systems with |κ| � 2, corresponding to a well-developed
twelvefold interaction potential anisotropy.

The elemental lattice imperfection that we observe is a
5–7 edge dislocation, shown in Fig. 7(a) for a sample with
κ = −5.25 in the sixfold anisotropy regime and in Fig. 7(b)
for a sample with κ = 0 in the twelvefold anisotropy regime.
This dislocation inserts two new lattice half-planes origi-
nating on the five-coordinated vortex and separated by 60◦,
producing a nonzero Burgers vector [53] (open Burgers cir-
cuit) as highlighted in Figs. 7(a) and 7(b). In the twelvefold
anisotropy regime, the vector bisecting the two new lattice
planes runs along the line connecting the 5–7 vortex pair.
This high degree of symmetry is possible due to the 30◦
separation between the minima of the interaction potential.
In the sixfold anisotropy regime this symmetry is broken
and, as shown in Fig. 7(a), the vortex with sevenfold co-
ordination is rotated away from the bisector direction, as
the latter now passes through a maximum in the potential
energy landscape. We note that “free” edge dislocations, i.e.,
5–7 vortex pairs that are not located along VL grain bound-
aries described in Sec. III D, do not appear for intermediate
values 2 < |κ| < 4 of the anisotropy ratio; they form only
in the sixfold and twelvefold dominated regimes defined
above.

The difference between the sixfold and twelvefold
anisotropy is visible in the distribution of vortex energies
near the edge dislocation, shown in Figs. 7(c) and 7(d).
The energy Ui of vortex i is given by Ui = ∑

j �=i U (ri j, θi j ),
where U (ri j, θi j ) is defined in Eq. (2). Here ri j and θi j are,
respectively, the distance and angle to the horizontal axis
of the vector joining vortices i and j. We plot the relative
energy difference 
U/Uav, where 
U = Ui − Uav and Uav =
N−1

v

∑Nv

i Ui is the average vortex energy of the system. In all
cases, Uav is close to the value 1.678Av obtained from Eq. (2)
for an isotropic interaction potential. Both the sixfold and
twelvefold regimes show the formation of an energy “dipole”
due to the compression (tension) experienced by the vortices
on the same (opposite) side as the new lattice planes. The
rotation of the sevenfold coordinated vortex away from the
bisector in the sixfold regime produces larger deviations from
the average energy compared to the twelvefold regime, where
the 5–7 vortex pair remains aligned with the bisector. On the
other hand, the disturbance in the energy profile produced
by the 5–7 vortex pair extends further in the direction per-
pendicular to the bisector for the twelvefold regime than in
the sixfold regime, meaning that the energy is more localized
for the sixfold regime and less localized for the twelvefold
regime. In both cases, the vortex energies are highly sym-
metric around the bisector direction. These results indicate
that focusing solely on the vortex coordination number, which
in the sixfold regime is asymmetric around the bisector,
can be misleading. This is because small displacements can
change which of the vortices near the edge dislocation are
five- or seven-coordinated, without significantly altering their
energies.
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FIG. 7. Edge dislocations observed in (a,c) the sixfold anisotropy regime (κ = −5.25) and (b,d) the twelveold anisotropy regime (κ = 0).
Delaunay triangulations (a,b) indicate the Burgers circuit (dashed black line), nonzero Burgers vector (black arrow), the extra lattice planes
originating on the five-coordinated vortex (solid blue lines) and the direction of their bisector (dashed blue line). Five-, six- and seven-
coordinated vortices are plotted as blue, white, and red circles, respectively. The corresponding heatmaps (c,d) show the deviation 
U/Uav of
the energy U of each vortex, based on its interactions with the surrounding VL, from the system wide average energy Uav. White lines indicate
high symmetry directions used to determine the range of the dislocations.

By merging two or more 5–7 edge dislocations, it is
possible to create localized defects with a closed Burgers
circuit (zero Burgers vector) and an average vortex coordina-
tion number equal to 6. Defects emerge spontaneously when
the vortex-vortex interactions are anisotropic, but must be
“seeded” into equilibrated isotropic vortex lattices by either
adding or removing a particle and the letting the remaining
system relax [54,55]. Many of the defects we find were pre-
viously reported in other two-dimensional systems including
colloids [55,56], skyrmions [57–59], graphene [60], and silica
bi-layers [61], and throughout this paper we adopt and expand
the nomenclature used in Refs. [54–56]. As was the case
for free edge dislocations, both vacancy and interstitial de-
fects appear almost exclusively in the sixfold and twelvefold
regimes, with only ∼1% of defect observations occurring for
2 < |κ| < 4. This is illustrated in Fig. 8, where we plot the
average defect count per simulation as a function of the loca-
tion |θmin| of the minimum in the interaction potential. Here
the sixfold regime corresponds to θmin = 0 and the twelvefold
regime to |θmin| � 20◦. As we would expect, defects created
by combining two 5–7 dislocations appear more frequently
than those that combine three.
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FIG. 8. Average number of defects occurring per simulation vs
the location |θmin| of the minimum in the interaction potential.
Double and triple defects correspond to combinations of two or three
5 to 7 dislocations, respectively.
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FIG. 9. Vacancy defects. Delaunay triangulations overlaid with heatmaps showing, respectively, the coordination and energy for each
vortex. Twofold symmetric crushed: (a) V (12)

2b , (b) V (6)
2a , (c) D(6)

2b . Twofold symmetric split: (d) SV (12), (e) SD(6)
a , (f) STr (6)

a . Threefold symmetric:
(g) D(12)

3 , (h) Tr (12)
3 , (i) Te(12)

3 . White lines indicate high symmetry directions used to determine the range of vacancy defects.

In Fig. 9, we provide a survey of the typical vacancy defects
that we observe. Figures 9(a) and 9(b) show examples of sin-
gle (one missing vortex) twofold symmetric crushed vacancies
which we label V (x)

2a/2b, where the superscript x denotes the
symmetry of the interaction potential (sixfold or twelvefold).
These are the most common vacancy defects, constituting
∼87% of observed vacancies in the sixfold regime and ∼34%
of observed vacancies in the twelvefold regime. The energy

U/Uav is almost featureless in the twelvefold regime, but
shows some deviations from the average vortex energy in
the sixfold regime. Larger excursions from the average en-
ergy appear in the disjoint symmetric crushed divacancy D(6)

2b
shown in Fig. 9(c), which occurs only in the sixfold regime
(constituting ∼12% of observations). The twofold symmetric
split vacancies in Figs. 9(d) to 9(f) display a trend similar to

the crushed vacancies, with deviations from the average en-
ergy increasing upon passing from the single vacancy SV (12)

to the divacancy SD(6)
a and finally to the disjoint trivacancy

STr (6)
a . Here SV (x) and SD(x)

a occur almost exclusively in the
twelvefold regime, where together they account for ∼17% of
the observations, and we found only a single occurrence of
STr (x)

a for each of the two symmetries throughout all of the
simulations. The threefold symmetric vacancies in Figs. 9(g)
to 9(i) correspond to a divacancy D(12)

3 , a trivacancy Tr (12)
3 ,

and a tetravacancy Te(12)
3 , respectively, and appear only in the

twelvefold regime. In contrast to the twofold symmetric va-
cancies, the threefold symmetric vacancies contain no vortices
with Ui > Uav. The Tr (12)

3 vacancy is an additional example
of a defect where the energy distribution reveals a higher
degree of symmetry than what is indicated by the Delaunay
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FIG. 10. Interstitial defects. Delaunay triangulations overlaid with heatmaps showing, respectively, the coordination and energy for each
vortex. Twofold symmetric crushed: (a) I (6)

2 , (b) I (6)
2d . Twofold symmetric split: (c) SI (12)

2 , (d) SDI (12)
2 , (e) STrI (12)

2d . Threefold symmetric:
(f) I (12)

3 . White lines indicate high symmetry directions used to determine the range of interstitial defects.

triangulation. Finally, we note that in the twofold symmetric
crushed and split vacancy defects shown in Figs. 9(c) and 9(f),
it is in principle possible to remove an arbitrary number of
vortices within a lattice plane by increasing the separation
between the 5–7 dislocations along the direction joining the
fivefold coordinated vortices. In contrast, separating the 5–7
dislocations along a line oriented 60◦ from this direction does
not create additional vacancies. In the interest of brevity we
will consider such cases as separate, closely spaced disloca-
tions rather than localized defects.

In Fig. 10 we show typical examples of interstitial defects.
In analogy with the vacancies discussed above, we observe
twofold symmetric crushed interstitials I (6)

2 [Fig. 10(a)] and
their disjoint variants I (6)

2d [Fig. 10(b)], where the latter is a
double interstitial. In the sixfold regime, nearly all observed
defects (∼98%) are of I (6)

2 or I (6)
2d type, while the I (12)

2 and
I (12)
2d defects constitute ∼55% of observations in the twelvefold

regime. We also find twofold symmetric split interstitials
in the twelvefold regime that incorporate one (SI (12)

2 ), two
(SDI (12)

2 ), or three (STrI (12)
2d ) additional vortices, as shown

in Figs. 10(c) to 10(e). In contrast to the behavior found for
vacancies, the deviation from the average vortex energy for
the interstitial defects decreases upon passing from SI (12)

2 to
STrI (12)

2d . We observed only a single instance of a threefold
symmetric single interstitial defect I (12)

3 , shown in Fig. 10(f).
Unlike the threefold symmetric vacancies, this interstitial
defect includes vortices with energies both below and above
Uav. As with vacancy defects, the separation between the 5–7

dislocations within the twofold symmetric crushed and split
interstitials in Figs. 10(b) and 10(e) can be increased to insert a
finite lattice plane containing an arbitrary number of vortices.

Considering the defect energetics, it is not surprising that
the SV (12), D(12)

3 , Tr (12)
3 , and Te(12)

3 vacancies as well as
the SI (12)

2 , SDI (12)
2 , STrI (12)

2d , and I (12)
3 interstitials appears

almost exclusively in the twelvefold anisotropy regime. As
shown in Figs. 9 and 10, they all contain vortex pairs that
are rotated by 30◦ relatively to the surrounding VL planes.
In the twelvefold anisotropy regime, this corresponds to the
location of an additional minimum in the interaction potential,
as discussed above for the edge dislocations, making such
pairs energetically favorable and stabilizing the defect. These
additional minima in the interaction potential are absent in
the sixfold anisotropy regime, causing the above-mentioned
defects to be very energetically costly. To further characterize
the dislocations and defects, we consider how the vortex
energy U approaches Uav along the high symmetry directions
indicated by white lines in Figs. 7, 9, and 10. We plot the spa-
tial variation of 
U = U − Uav versus the parallel component
of the radial distance |r · ê| in Fig. 11, where r is the vortex
position relative to the center of the dislocation/defect and ê is
a unit vector along the relevant high symmetry direction. We
include only a selection of representative defects in Figs. 11(b)
to 11(d) for clarity. Motivated by the near exponential decay
of K0(r) in the interaction potential in Eq. (2) for r � 1, we
fit |
U | by exp[−|r · ê|/a] to obtain the range a for each
dislocation and defect. Table I lists the values of a obtained
in this way. The only omissions are V (12)

2b and V (6)
2a , where the
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FIG. 11. Range of the energy deviation of dislocations and defects, plotted as |
U | vs |r · ê|, a distance taken along the high symmetry
direction indicated by white lines in Figs. 7, 9, and 10. In all cases lines are exponential fits to the data. (a) Edge dislocations. (b) Double
vacancy defects. (c) Triple vacancy defects. (d) Interstitial defects.

TABLE I. Characteristic lengths for lattice imperfections in units
of the penetration depth.

U − Uav > 0 U − Uav < 0
5–7(6) 3.1 ± 0.3 4.8 ± 0.8
5–7(12) 7.0 ± 0.7 8.0 ± 1.5

D(6)
2b 2.4 ± 0.4

SV (12) 2.6 ± 0.6

SD(6)
a 2.8 ± 0.7

STr (6)
a 2.6 ± 0.5

D(12)
3 1.3 ± 0.5

Tr (12)
3 1.8 ± 0.4

Te(12)
3 1.9 ± 0.6

I (12)
2 1.9 ± 0.3

I (6)
2 1.6 ± 0.2

I (6)
2d 2.1 ± 0.2

SI (12)
2 1.7 ± 0.3

SDI (12)
2 2.0 ± 0.3

STrI (12)
2d 3.4 ± 1.2

energy variation is insufficient to yield a reliable fit, and I (12)
3

which has both positive and negative deviations from Uav. All
values of a exceed the range a ≈ 1.1λ obtained directly from
K0(r) for an isolated vortex.

The 5–7 edge dislocations have the largest ranges, and
we find notable range differences between the sixfold and
twelvefold regimes. As shown in Fig. 11(a), the twelvefold
regime has lower values of |
U | and an essentially symmetric
decay of the energy along the symmetry line on either side of
the defect center, but the defect ranges are greater than what
we observe in the sixfold regime. In contrast, the decay of
|
U | in the sixfold regime is different on the positive and
negative sides, most likely due the lower degree of symme-
try discussed previously. All twofold symmetric vacancies
have roughly the same range a ≈ 2.6λ, while the threefold
symmetric vacancy ranges are shorter, although the range
increases on passing from D(12)

3 to Te(12)
3 . Thus all vacancy

defects have a shorter range than the 5–7 edge dislocations,
likely due to the closed Burgers circuit and corresponding
absence of additional lattice planes. For interstitial defects
we find a greater variation in the range, but again the range
is always smaller than for the 5–7 edge dislocations when
comparing the sixfold and twelvefold regimes separately.
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FIG. 12. Grain boundaries plotted as Delaunay triangulations for different values of the anisotropy ratio: (a) κ = −1.75, 
θ = 21.4◦,
(b) κ = −2.00, 
θ = 20.0◦, and (c) κ = −3.25, 
θ = 11.9◦. For simplicity, we plot only fivefold and sevenfold coordinated vortices along
with their adjacent sixfold coordinated neighbors, and the VL orientation in the bulk is indicated by a single set of lattice planes. Vortices are
colored according to their coordination number as in Fig. 7, and the plots are overlaid on a heatmap indicating the relative energy U/Uav for
each vortex. In panel (c), the white line indicates the location of the grain boundary.

D. Grain boundaries

The presence of two minima in the interaction potential
within each 60◦ angular segment when −4 < κ < 4 produces
a twofold degeneracy for the triangular VL. This twofold de-
generacy leads to the formation of VL domains that are rotated
by an angle 
θ with respect to each other, as indicated by the
12 peaks in the structure factor in Figs. 4(d) to 4(f); however,
due to the finite size of our system, not all simulations result in
the formation of a multidomain state. In Fig. 12 we show three
representative examples of grain boundaries (GB) separating
VL domains. Figure 12(a) shows a straight continuous GB
at κ = −1.75, Fig. 12(b) illustrates a curved continuous GB
at κ = −2.0, and Fig. 12(c) shows a meandering GB at κ =
−3.25. We note that due to our periodic boundary conditions,
the GBs always close on themselves. There is, however, a
qualitative difference between a situation in which a domain
of one orientation is fully enclosed by another, as in Fig. 12(b),
and one in which the domains wrap around the entire system.
In the later case, the number of GBs is always even.

Among the possible GBs between triangular lattices [62]
we observe only the simplest kind, decorated with edge dislo-
cations similar to those shown in Fig. 7. The energy heat maps
in Fig. 12 indicate that just as in the case of individual disloca-
tions, fivefold-coordinated vortices have higher than average
energy and sevenfold-coordinated vortices have lower than
average energy. The lower dislocation density in Fig. 12(c)
is in qualitative agreement with Frank’s formula [63], which
predicts that the density of dislocations decorating the GB is
proportional to the split angle 
θ . Here we identified the GB
between individual edge dislocations based on the change in
the angle of the vortex lattice planes, as indicated by the white
line in Fig. 12(c).

Although we find curved GBs in our simulations for all
values of the anisotropy ratio within the range [−4, 4], straight
GBs, such as the one illustrated in Fig. 12(a), appear only
when 0.75 � |κ| � 2.25. From Coincident Site Lattice (CSL)
theory, straight GBs are expected to be favored for specific
values of 
θ that are commensurate with the lattice symmetry
[64]. Here the degree of fit � between adjacent domains

is defined as the ratio of the total number of sites to the
coincidence sites, and GBs with low integer values of � have
the lowest energy and are expected to be the most stable. For
the two-dimensional triangular lattice relevant to this work,
the two lowest values are � = 7, corresponding to θmin =
10.9◦ or 49.1◦ and |κ| = 1.67, and � = 13, corresponding
to θmin = 13.9◦ or 46.1◦ and |κ| = 0.46. Considering the
rotation transition in Fig. 6, there are no obvious features at
these specific values of θmin. As we discuss further below,
however, a cross-over that coincides with � = 7 appears for
the orientation of the GB edge dislocations. We analyze the
GB by measuring the angle θ5–7 between the fivefold and sev-
enfold coordinated vortices with respect to the positive x-axis.
Using the sixfold symmetry of our system, we project θ5–7

into the range [−30◦, 30◦]. In Fig. 13 we plot the observation

θ 5-
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FIG. 13. Heatmap showing the frequency of θ5–7, the angle of
the line connecting the fivefold and sevenfold coordinated vortices
in grain boundary edge dislocations, as a function of κ . All values
of θ5–7 are mapped into a single 60◦ segment. The heavy white
curve indicates θmin, and the vertical lines show the values of κ

corresponding to � = 7.

224504-11



M. W. OLSZEWSKI et al. PHYSICAL REVIEW B 101, 224504 (2020)

frequencies of θ5–7 for different values of κ , and find that the
observations always fall between the minima in the interaction
potential indicated by the heavy white line. This is consistent
with what we find for free edge dislocations in Fig. 7. In
addition, the data in Fig. 13 fall into two distinct regimes:
for 1.67 < |κ| < 4, θ5–7 is clustered at two distinct values,
while for 0 < |κ| > 1.67, we observe six peaks in the angle
histogram. The boundary between the two regimes coincides
with � = 7.

IV. DISCUSSION

In this work we considered only the static properties of
the VL. A logical next step would be to examine the vortex
dynamics. For example, if the vortex-vortex interactions were
suddenly changed in real time, such as by a rapid increase
or decrease in the vortex density driven by a change in the
applied magnetic field, then the VL structures would need to
change dynamically. In this case, the vortex motion would
likely be dominated by the defect structures and grain bound-
aries or by plastic rearrangements. This is directly related to
the metastable VL phases observed in MgB2 [31,65]. Here,
the activation barrier associated with the transition to the equi-
librium phases increases as the metastable volume fraction is
reduced [45–47], suggesting a work hardening of the VL due
to the proliferation of GBs. Another area for study is both the
statics and dynamics across the transition between the sixfold
and twelvefold regimes in the presence of quenched disorder.
If disorder is present, it might be strong enough to induce the
formation of an intermediate glassy phase near the transition.
Under an applied drive, there could be a strong effect of the
transition on the depinning threshold, which might exhibit
some type of peak effect phenomenon. In isotropic vortex
systems in the presence of strong disorder, the pinned state is
often highly disordered or glassy; however, under an applied
drive, a plastic flow phase can appear followed at higher drives
by a dynamically induced transition into a moving lattice or
moving smectic state [25,66,67]. In the anisotropic system,
it would be interesting to see whether the presence of strong
pinning combined with a drive can produce similar dynamical
ordering transitions, and whether the dynamically ordered
state would be a lattice with sixfold or twelvefold ordering,
a smectic state, or some completely different type of moving
phase.

Our results can be generalized to other particle based
systems. For example, the expression in Eq. (2) could be
modified easily by replacing the Bessel function K0 with
a screened Coulomb interaction e−κr/r of the type that
describes charge-stabilized colloids [55,56] or with a 1/r3

interaction that describes magnetically interacting colloids
[68]. One could also examine whether the melting tran-

sition would change. For isotropic interactions in a two-
dimensional system, the melting transition can occur in
two stages through the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) mechanism [69–73], which includes an
intermediate hexatic phase, or it can be a first-order process
mediated by grain boundaries [73,74]. In the KTHNY case,
the hexatic phase often occurs only over a very small range
of parameters or temperatures [75,76]. If the system has a
strong sixfold anisotropy, the hexatic phase could be strongly
enhanced.

Finally, we notice that the interaction potential in Eq. (2)
should ideally be replaced by the results of a microscopic
ab initio calculation, both in terms of the angular dependence
and the radial-angular decomposition. This is outside the
scope of the current work, and is left as a motivation for future
work.

V. SUMMARY

We expanded our previous MD simulations of vortices by
incorporating a combined sixfold and twelvefold anisotropy
in the pairwise interaction potential. Using this model we are
able to reproduce the continuous 30◦ rotation transition of
the triangular VL that has been observed experimentally in
superconducting MgB2 and UPt3. We observe a spontaneous
formation of dislocations as well as vacancy and interstitial
defects, and characterize these in terms of their structure and
energy distribution. Grain boundaries separating differently
oriented VL domains and decorated by edge dislocations,
appear as the rotation transition progresses. Large values of
the anisotropy produce cluster crystal states. Our model could
be applied to other particle-based systems, such as magnetic
skyrmions or colloids with anisotropic interactions, by modi-
fying the isotropic contribution to the pairwise interactions.
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