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Crystalline nodal topological superconductivity and Bogolyubov Fermi surfaces in monolayer NbSe2
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We present a microscopic calculation of the phase diagram of the Ising superconductor NbSe2 in the presence
of both in-plane magnetic field and Rashba spin-orbit coupling (SOC). Repulsive interactions lead to two
distinct instabilities, in singlet and triplet interaction channels. While we recover the previously predicted nodal
topological superconducting state in the absence of Rashba SOC at large magnetic field with six pairs of nodes
along �-M lines, a finite Rashba SOC breaks the symmetry that protects these nodes and therefore generally
lifts them, resulting in a topologically trivial phase. There is an exception when the field is applied along one of
the three �-K lines, however. In that case, a single mirror symmetry remains that can protect two pairs of nodes
out of the original six, resulting in a crystalline topological superconducting phase. Depending on the Cooper
pairs’ center-of-mass momentum, this superconducting state displays either Bogolyubov Fermi surfaces or point
nodes. Moreover, a chiral topological superconducting phase with a Chern number of 6 is realized in the regime
of large Rashba SOC and dominant triplet interactions, spontaneously breaking time-reversal symmetry.
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I. INTRODUCTION

The observation of superconductivity (SC) in 1H mono-
layer transition-metal dichalcogenides such as NbSe2 and
MoS2 opens a new avenue to explore superconductivity in
systems with strongly coupled spin-orbital degrees of freedom
[1–11]. In contrast to their bulk counterparts, inversion sym-
metry is broken in these monolayers, giving rise to an Ising
spin-orbit coupling (SOC) that forces the spins to point out of
plane [7,8,12–14]. This Ising SOC is believed to be responsi-
ble for the experimental observation that the superconducting
state survives up to remarkably large in-plane magnetic fields,
far beyond the usual Pauli limit [5–7,10,15,16].

The combination of large Ising SOC, which lifts the spin
degeneracy, with multiple Fermi pockets has inspired con-
siderable interest in the potential for unconventional super-
conductivity in these materials [12,15,17–19,19–27]. In gated
MoS2, which has four spin-split Fermi pockets centered at the
±K points of the hexagonal Brillouin zone, repulsive inter-
band interactions can stabilize a fully gapped triplet SC state
[19,24,25]. Chiral topological superconductivity [28] both
with and without large Rashba SOC has also been predicted
in MoS2 [24,26,29], as has finite-momentum Cooper pairing
[26,30]. In NbSe2 and its close relative TaS2, which have
Fermi pockets centered at the ±K and � points, it was argued
that for in-plane magnetic fields larger than the Pauli limiting
field a nodal topological SC state is realized, protected by an
antiunitary time-reversal-like symmetry and characterized by
Majorana flat bands at the sample’s edges [17,22].

Despite the flurry of activity on this front, important ques-
tions about the microscopic mechanism of unconventional SC
and its stability in realistic experimental conditions remain
unaddressed. Here, we go beyond phenomenological models
and present a microscopic theory of superconductivity in

NbSe2 that considers the most relevant repulsive electronic
interactions involving low-energy fermions. Moreover, we
include the simultaneous effects of an in-plane magnetic field
B and Rashba SOC, with energy scale αR pF (pF is the Fermi
momentum). The latter is commonly present experimentally
and can in principle be controlled by gating or by the choice
of substrate. Importantly, it qualitatively changes the phase
diagram: the nodal SC topological phase present at large fields
[17] is generally destroyed by even a small Rashba SOC, as
it lifts the nodes and breaks the time-reversal-like symmetry
protecting them. The exception is when the B field is parallel
to one of the �-K directions: in that case, nodes located
along the direction perpendicular to B are protected by mirror
symmetry, resulting in a crystalline topological SC phase that
can be either nodal or exhibit protected Bogolyubov Fermi
surfaces, depending on the momentum of the Cooper pairs.

Our analysis reveals two distinct (B, αR) phase diagrams,
shown in Fig. 1. For repulsive interactions, if the interband re-
pulsion coupling the � and ±K Fermi pockets dominates, the
SC state for B = αR = 0 is predominantly a singlet extended
s-wave state with nearly isotropic gaps of opposite signs at �

and ±K [Fig. 1(a)]. If the interband processes coupling the K
and −K Fermi pockets dominate, the dominant SC instability
for B = αR = 0 is towards a triplet f -wave state, characterized
by isotropic gaps of opposite signs at K and −K , and a nodal
gap at �. While the crystalline topological SC phase is present
in both phase diagrams for large enough fields, a distinct chiral
topological p ± ip SC that spontaneously breaks time-reversal
symmetry (TRS) is present for large αR and B � 0 in the phase
diagram of Fig. 1(b).

The rest of the paper is organized as follows. In Sec. II
we introduce our microscopic model, that includes Ising and
Rashba SOC, in-plane magnetic field, and all symmetry-
allowed spin-conserving interactions. We analyze these
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FIG. 1. Phase diagram for NbSe2 as a function of the Rashba
SOC (αR ) and in-plane magnetic field B oriented along the �-K
direction, in units of the Ising SOC βI . The leading SC instability at
αR = B = 0 is a singlet extended s-wave state or triplet f -wave state
in panel (a) and (b), respectively. Solid (dashed) lines indicate exact
(approximate) phase boundaries. Uniform SC becomes unstable
in the light-shaded regions, but finite-momentum pairing remains
possible. We discuss the phases in more detail in Sec. IV B. We use
parameter values given in Eqs. (8) and (45).

interactions using a renormalization-group (RG) analysis in
Sec. III, and find that (at energy scales where SOC and
the magnetic field can be neglected) superconductivity is the
only instability. As a result, the RG at lower energy scales
becomes equivalent to a self-consistent mean-field analysis.
In Sec. IV we use this approach to study the superconducting
phase diagram in the presence of SOC and magnetic field,
and identify a crystalline gapless topological superconducting
phase at large in-plane magnetic field. Because the Fermi
surfaces are no longer symmetric under momentum inversion
p → −p in the presence of both magnetic field and Rashba
SOC, we also calculate the boundary of the region where
uniform superconductivity becomes unstable in Sec. IV C. We
show in Sec. V that the gapless phase identified in Sec. IV
is a crystalline gapless topological phase, and analyze the
resulting boundary modes using a simple tight-binding model.
We conclude in Sec. VI by discussing possible experimental
signatures of the possible topological superconducting phases.
A detailed discussion of the chiral state, as well as other
technical supporting material, can be found in the Appendices.

II. MICROSCOPIC MODEL

The Fermi surface of undoped NbSe2 is shown in Fig. 2.
The noninteracting Hamiltonian is given by

H0 =
∑
ηp

ψ†
η,p[εη(p) + βη(p)σ z + αR(σ × p)z]ψη,p (1)

where ψ†
η,p = (d†

η,p↑, d†
η,p↓) and d†

η,pα creates an electron at
the pocket η with spin α =↑, ↓ and momentum p measured
relative to the center of the pocket. The Fermi surface has
three pairs of spin-split hole pockets centered at the ±K, �

points in the Brillouin zone, which we label by η = ±K, �,
using the convention that −� ≡ �. Here εη(p) = − p2

2mη
− μ is

the band dispersion, with mK = m−K . The Ising SOC has the
form β±K = ±βI near the ±K points and β� = 2λp3 cos 3θ

near the � point, where θ is the angle measured relative to
the �-K direction (see Fig. 2). Although Ising SOC vanishes

FIG. 2. The Fermi surface of NbSe2 in the presence of Ising
SOC and a weak Rashba SOC. The colors indicate the out-of-plane
spin polarization of each pocket. The arrows denote the four distinct
types of repulsive electronic interactions that contribute to the pairing
instability. We used parameter values in Eq. (8) for the noninteracting
Hamiltonian, with b = 0.5βI , and αR = 0; the Fermi surfaces are
independent of the direction of the magnetic field in this case (b = 0,
and αR pF = 0.5βI give the same Fermi surface). We picked values
somewhat larger than reported in experiment to produce visible
splitting at the � pocket.

along the �-M lines, αR does not, so the spin degeneracy
is fully lifted on all Fermi pockets. An in-plane magnetic
field B adds a term HZeeman = −∑

ηp ψ†
η,p(b · σ )ψη,p, where

b ≡ 1
2 gLμBB and gL is the Landé g factor; this also lifts the

spin degeneracy along the �-M lines. We then have

H0 + HZeeman =
∑
ηp

ψ†
η,p[εη(p) + δη(p) · σ]ψη,p (2)

where

δη(p) = βη(p)ẑ + αR(pyx̂ − pxŷ) + b (3)

is the effective magnetic field seen by an electron with mo-
mentum p. The eigenvalues of the noninteracting Hamiltonian
are therefore given by

ξητ (p) = εη(p) + τδη(p) (4)

where δη = |δη|, and the eigenstates are related to the electron
annihilation operators dη,pα by the unitary transformation

cη,pτ = U α
ητ (p)dη,pα. (5)

Here τ = +1 (−1) on the outer (inner) spin-split Fermi sur-
face, α = 1 (−1) for spin up (spin down) (see Fig. 2), and we
have defined

U α
�τ (p) =

√
δ� + τα(2λp3 cos 3θp)

2δ�

(τe−iφ )
1+α

2 ,

U α
±Kτ (p) =

√
δK ± ταβI

2δK
(τe−iφ )

1+α
2 (6)

where

δ� =
√

[2λp3 cos(3θ )]2 + (αR py + bx )2 + (αR px − by)2,

δK =
√

β2
I + (αR py + bx )2 + (αR px − by)2,

eiφ = αR py + bx + i(−αR px + by)√
(αR py + bx )2 + (αR px − by)2

. (7)
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Experimentally, the Ising SOC at K points βI is found to be
much smaller than the bandwidth. Thus, in the weak-coupling
theory used here, the overall energy scale is set by βI , and
the momentum scale is set by the Fermi momentum pF . To
produce the plots in this paper, we took equal masses and
chemical potentials at � and K points, and chose

m = 1.5
p2

F

βI
, μ = −5βI , λ = 0.5βI (8)

with p shown in units of pF . This choice roughly matches the
Fermi surfaces reported in Refs. [7,10,17,20]. Experimentally,
for bulk NbSe2, pF /h̄ = 0.5 Å−1 [31,32]. Note that the esti-
mated value of βI is of the order of 40 meV [7,10]. Thus,
the maximum values of b in our phase diagrams of Fig. 1
correspond roughly to fields of 70 and 100 T. Although the
largest values in this range are most likely above the experi-
mental critical in-plane field value, given the uncertainty in the
microscopic parameters, we opt to extend the phase diagrams
across a wide range of magnetic field values.

Interactions near the Fermi surfaces

Symmetry constrains the number of possible spin-
conserving, momentum-direction independent electronic in-
teractions between the low-energy fermionic operators to 8.
Of these, the four interactions that contribute to supercon-
ductivity are (see Fig. 2) intrapocket density-density inter-
actions involving the � (g1) and the ±K (g2) pockets, and
interpocket pair-hopping interactions between K and −K (g3)
and between � and ±K (g4). Thus we consider the following
interacting Hamiltonian:

HInt = V α′β ′;αβ

�;� (p; k) d†
�,pαd†

�,−pβ ′d�,kα′d�,−kβ ′

+ V α′β ′;αβ
±K ;±K (p; k) d†

±K,pαd†
∓K,−pβd±K,kα′d∓K,−kβ ′

+ V α′β ′;αβ
±K ;∓K (p; k) d†

±K,pαd†
∓K,−pβd∓K,kα′d±K,−kβ ′

+ V α′β ′;αβ

�;±K (p; k) d†
±K,pαd†

∓K,−pβd�,kα′d�,−kβ ′ + H.c.
(9)

Accounting for the antisymmetric nature of the fermion op-
erators (and including all Hermitian conjugates), the uniform
part of the interactions can be separated into singlet and triplet
interaction channels, as follows:

[V s]α
′β ′;αβ

�;� = g1

2
(iσ y)αβ (iσ y)α

′β ′
,

[V s]α
′β ′;αβ

�;±K = ±g4

2
(iσ y)αβ (iσ y)α

′β ′
,

[V s]α
′β ′;αβ

±K ;±K = 1

4
(g2 + g3)(iσ y)αβ (iσ y)α

′β ′
,

[V t ]α
′β ′;αβ

±K ;±K = 1

4
(g2 − g3)

∑
j=x,y,z

(σ j iσ y)∗αβ (σ j iσ y)α
′β ′

. (10)

Since VK,K and VK,−K are related by interchanging the spin
indices α′ and β ′, combined with an overall minus sign for
interchanging two fermion operators, in this representation we
have

[V s]α
′β ′;αβ

±K ;∓K = [V s]α
′β ′;αβ

±K ;±K ,

[V t ]α
′β ′;αβ

±K ;∓K = −[V t ]α
′β ′;αβ

±K ;±K . (11)

From Eq. (10), we see that V±K,±K (and thus V±K,∓K )
have contributions in both the singlet channel (labeled s) and
the triplet channel (labeled t), while for momentum-direction
independent interactions V�,� and V�,K have contributions
only in the singlet channel. In addition to these interactions,
in order to ensure that the gap on the � pocket does not
artificially vanish in the triplet regime, we also include weak
(but symmetry-allowed) momentum-direction dependent in-
teractions:

[V t (p; k)]α
′β ′;αβ

�;� = gt
1 cos 3θk cos 3θp(σiσ y)∗αβ · (σiσ y)α

′β ′
,

[V t (p; k)]α
′β ′;αβ

�;±K = ± gt
4√
2

cos 3θk(σiσ y)∗αβ · (σiσ y)α
′β ′

(12)

where θk refers to the angle of momentum on the � pocket.
Note that all higher harmonics can be included in a similar
fashion, but they do not qualitatively affect our conclusions.
We take |gt

i| � |gi|, so these interactions have a negligible
effect on whether the system enters the singlet or triplet
regime.

Note that there are four other possible interactions, which
we do not include in our analysis here:

HInt = g5

2
d†

Kαd†
KβdKβdKα + g6

2
d†

−Kαd†
�βd�βd−Kα

+ g7

2
d†

−Kαd†
�βd−Kβd�α + g8

2
d†

−Kαd†
�βdKβdKα + H.c.,

(13)

where we omitted momentum indices and symmetry re-
lated terms for simplicity. These interactions decouple from
g1, . . . , g4, and hence need not be included when analyzing
the possible superconducting instabilities. They can in prin-
ciple give rise to a pair density wave which may compete
with superconductivity, depending on the microscopic values
of g5, . . . , g8. We defer analysis of this possibility to future
work.

III. RENORMALIZATION GROUP AND
SUPERCONDUCTING INSTABILITY

To determine which instabilities are favored by the interac-
tions above, we perform a parquet RG analysis, keeping only
the dominant momentum-direction independent interactions
of Eq. (10). This approach is appropriate for the situation
when the Fermi energy is small compared to the bandwidth,
as one integrates out states from energies of the order of
the bandwidth to energies of the order of the Fermi energy
[33–36]; in the case of NbSe2 the Fermi surfaces can be made
small by controlling the gate voltage. Below the Fermi energy,
the different channels decouple, and in the absence of nesting
the only logarithmic instability is the superconducting one.
Because the energy scale of the Ising SOC is smaller than the
Fermi energy, we perform the parquet RG in the absence of
SOC or magnetic fields. These terms, however, are relevant as
we move to energy scales below the Fermi energy, which we
explore in Sec. IV.

A. RG flow equations

It is convenient to rescale the coupling constants by the
density of states (DOS) Nη = mη

2π
of the η pocket (by symmetry
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NK = N−K ):

g̃(s)
1 = N�g1, g̃(s)

4 = √
N�NK g4, g̃(s)

23 = NK
g2+g3

2 ,

g̃(t )
1 = N�gt

1, g̃(t )
4 = √

N�NK gt
4, g̃(t )

23 = NK
g2−g3

2 . (14)

We use the standard parquet RG procedure [33–36]. Since all
pockets are hole pockets, only ladder diagrams contribute to
logarithmic instabilities at one-loop order. In the absence of
SOC the RG flow equations for the singlet (a = s) and triplet
(a = t ) channels decouple:

˙̃g(a)
1 = −(

g̃(a)
1

)2 − 2
(
g̃(a)

4

)2
, (15)

˙̃g(a)
23 = −2

(
g̃(a)

23

)2 − (
g̃(a)

4

)2
, (16)

˙̃g(a)
4 = −(

g̃(a)
1 + 2g̃(a)

23

)
g̃(a)

4 (17)

where the dot indicates a derivative with respect to the RG
scale s determined by the pairing susceptibility via

−Nηs = �η = 2T
∑

n

∫
d�

G(0)
η (iωn, Q)G(0)

−η(−iωn,−Q)

× d2Q

(2π )3
. (18)

Here ωn are Matsubara frequencies, and the momentum in-
tegral is restricted to a thin shell at energy � and of thick-
ness d� ≡ �s. G(0)

η (iωn, Q) = [iωn − εη(Q)]−1 is the bare
normal-state Green’s function.

Equation (15) has an analytic solution, which can be ob-
tained by switching to a cylindrical coordinate system in the
g̃(a)

1 , g̃(a)
23 , and g̃(a)

4 parameter space:

z(a) = 2g̃(a)
23 + g̃(a)

1 , r (a) cos θ (a) = g̃(a)
4 ,

r (a) sin θ (a) = 2g̃(a)
23 − g̃(a)

1 .

Equation (15) becomes

ż(a) = − (z(a) )2

2
− (r (a) )2

2
(1 + 7 cos2 θ (a) ), (19)

ṙ (a) = −r (a)z(a), (20)

θ̇ (a) = 0. (21)

We see that one channel, parametrized by θ (a), is not renor-
malized within one loop. The other two channels decouple,
according to

γ̇ (a±) = (γ (a±) )2 (22)

where, in terms of the coupling constants g̃a, we have

γ (a±) = − 1
2 (z(a) ∓ r (a)

√
1 + 7 cos2 θ (a) ) (23)

= − 1
2 g̃(a)

1 − g̃(a)
23 ± 1

2

√(
g̃(a)

1 − 2g̃(a)
23

)2 + 8
(
g̃(a)

4

)2
.

When γ (a±) > 0, the associated coupling constant flows to ∞.
Since γ (a+) > γ (a−), the former always diverges faster than
the latter, so we need only analyze the γ (a+) solution. When
Nη = N are all equal, these can be expressed as

γ (s) = γ (s+) = −N

2
(g1 + g2 + g3)

+ N

2

√
(g1 − g2 − g3)2 + 8g2

4 (24)

in the singlet channel and

γ (t ) = γ (t+) = N

2
(g3 − g2 + |g2 − g3|) (25)

in the triplet channel.

B. Superconducting instability

Having determined the RG flow of the coupling constants,
we now discuss which instabilities they cause. To do so,
we introduce vertices associated with different types of elec-
tronic order [�� (p)]αβ ∝ 〈d�,pαd�,−pβ〉 at the � pocket, and
[�±K (p)]αβ ∝ 〈d±K,pαd∓K,−pβ〉 at the ±K pockets. Here α β

are spin indices. In the absence of SOC the corresponding
superconducting pairing vertices can be decomposed into
singlet and triplet channels as follows:

�(s)
η (p) = D(s)

η iσ y,

�
(t )
� (p) = D(t )

�

√
2 cos 3θ�,pd̂ · σ iσ y,

�
(t )
±K (p) = ±D(t )

K d̂ · σ iσ y

(26)

where θ�,p is the angle about the � Fermi surface, D(a)
η are mo-

mentum independent coefficients, and the (unit) d̂ vector is the

same on � and K pockets. Note that �(a)
η (p) = −[�(a)

−η(−p)]
T

due to the anticommutation relations of fermionic creation
and annihilation operators. In particular, �K and �−K are not
independent gap functions.

The one-loop vertex flow correction is then

[δ�η(p)]αβ = �η′

∫
[V (k; p)]αβ;α′β ′

η;η′ [�η′ (k)]α′β ′
dθη′,k

2π
(27)

with a sum over repeated indices implied. This reduces to a
system of 2 × 2 equations for the D(a)

η coefficients:

d

ds

(
D(a)

�

D(a)
K

)
= −

⎛
⎝ g̃(a)

1 2g̃(a)
4

√
NK
N�

g̃(a)
4

√
N�

NK
2g̃(a)

23

⎞
⎠(

D(a)
�

D(a)
K

)
. (28)

The eigenvalues of the matrix correspond precisely to the de-
coupled RG effective couplings γ (a±); thus, γ (a+) > 0 implies
a SC transition in the corresponding a channel.

Even when all gj interactions are purely repulsive, this
leads to two possible SC instabilities, provided that one of the
interpocket interactions, g3 or g4, overcomes the intrapocket
repulsion promoted by g1 and g2 [see Eqs. (24) and (25)].
When g4 is dominant, the resulting SC state is a singlet s
wave, with isotropic gaps �(s)

η . With repulsive interactions,

sgn[D(s)
� ] = −sgn[D(s)

K ], the so-called extended s-wave or s±-
wave state, previously proposed to be realized, e.g., in iron
pnictides [37] and strontium titanate [38].

In contrast, when g3 is the dominant interaction, the SC
instability is towards a triplet f -wave state, characterized
by [�� (p)]αβ ∝ cos 3θ�,p[(d̂ · σ )iσ y]αβ and [�±K (p)]αβ ∝
[(d̂ · σ )iσ y]αβ . Because spin is conserved in the absence of
SOC and magnetic field, the d̂ vector can point in any direc-
tion. Unlike typical triplet gaps, here �K (p) is momentum
independent on the K pocket, since for triplet states we
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have �−K (p) = −�K (p). In order for �� (p) to be nonzero,
we include the subleading momentum-direction dependent
interactions (12), which do not contribute significantly to the
pairing instability. While here our focus is on SC due to purely
electronic interactions, the SC states obtained above are not
necessarily inconsistent with electron-phonon interactions,
which are expected to promote intrapocket attraction, thus
reducing the amplitude—or even changing the sign—of the
g1 and g2 terms.

C. Density wave instabilities

Next, we show that the interactions g1, . . . , g4 do not
lead to density-wave particle-hole instabilities in the spin and
charge channels within logarithmic accuracy. This means that
any instability in these channels requires a threshold value
for these interactions, and is thus unlikely to be driven by
the low-energy fermions. The vertices associated with the
particle-hole instabilities are

�
(μDW)
η,η′ d†

ηασ
μ
αβdη′β (29)

with μ = 0 corresponding to charge-density wave (CDW) or-
der parameters and μ = x, y, z corresponding to spin-density
wave (SDW) order parameters (here we are ignoring the small
momentum dependence). Because the pockets at K and � are
both hole pockets, the SDW and CDW channels completely
decouple from the SC channels. Explicitly, while the particle-
particle bubble

�η =
∫

tanh εη

2T

2εη

d2Q

(2π )3
(30)

has a logarithmic divergence when integrated over all mo-
menta, the particle-hole bubble does not:

χη = T
∑

ω

∫
G(0)

η (iω, Q)G(0)
−η(iω,−Q)

d2Q

(2π )3

= −
∫

sech εη

2T

4T

d2Q

(2π )2
. (31)

Consequently, any particle-hole channel is subleading to the
SC channel within weak coupling. For example,

δ�
(CDW)
�,� = 2χ�g1�

(CDW)
�,� + χK

g6 + g7

2
�

(CDW)
K,K . (32)

There are additional CDW and SDW vertices, but all the
equations have χη in them and thus the flows are all ex-
ponentially suppressed by a factor of sech �

2T ≈ 2e− �
2T as a

result. This agrees with the analysis of Ref. [36], which only
found leading particle-hole instabilities because the � pocket
was electronlike and nested with the K pocket. Note that an
incommensurate CDW has in fact been observed in monolayer
NbSe2 [32], as well as in bulk. While its origin remains con-
troversial, the evidence supports a scenario in which the CDW
is not a consequence of Fermi surface nesting, consistent with
our calculation [31,39–41].

IV. SUPERCONDUCTIVITY IN THE PRESENCE
OF SOC AND MAGNETIC FIELD

The parquet RG treatment of the previous section shows
that superconductivity is the only instability generated by the
interactions in Eq. (9) within weak coupling. If the super-
conducting transition temperature was larger than the Fermi
energy, then the superconducting problem would have been
essentially solved. However, since Tc � EF in NbSe2, one
needs to proceed to energy scales below the Fermi energy,
where Ising and Rashba SOC and the magnetic field become
relevant. Since superconductivity is the leading instability and
decouples from other channels below the Fermi energy, it is
sufficient to consider a simpler mean-field approach to include
the additional terms in the Hamiltonian that were neglected in
analysis above.

A. Mean-field gap equation in the presence of
SOC and magnetic field

In order to determine the appropriate BCS gap equation,
we first project the interactions onto the spin-split Fermi
surfaces, by using the transformation (5) between eigenstates
of spin and eigenstates of the noninteracting Hamiltonian and
restricting the gap functions to involve pairs on the same
Fermi surface only. Throughout the phase diagrams shown
in Fig. 1, the Fermi surfaces are qualitatively similar to
those shown in Fig. 2, with the important caveat that in the
presence of both Rashba SOC and magnetic field inversion
symmetry is broken, as we discuss in more detail below. Our
analysis assumes that the minimum splitting between Fermi
surfaces (with an associated energy scale on the order of the
magnetic field b and/or Rashba SOC αR pF ) is large compared
to the superconducting pairing strength, the energy scale of
which is on the order of the superconducting gap function.
In particular, close to the phase transition at which the gap
function vanishes this is valid almost everywhere in our phase
diagram. Note, however, that for αR = b = 0, or for αR = b
with B along a � − K line, the inner and outer Fermi surfaces
at the � pocket touch along the �-M lines, and our approach
is insufficient to resolve the gap in the immediate vicinity of
these loci even very close to Tc.

After the projection, the interactions generally acquire a
dependence on the momentum direction. Explicitly, this gives

HInt = Ṽ τ,τ ′
�,� c†

�τ c†
�τ c�τ ′c�τ ′

+ Ṽ τ,τ ′
±K,±K c†

±Kτ c†
∓Kτ c±Kτ ′c∓Kτ ′

+ Ṽ τ,τ ′
±K,∓K c†

±Kτ c†
∓Kτ c∓Kτ ′c±Kτ ′

+ Ṽ τ,τ ′
�±K c†

±Kτ c†
∓Kτ c�τ ′c�τ ′ (33)

with

Ṽ τ,τ ′
η,η′ (p, k) = 1

2

∑
μ=0,x,y,z

g(μ)
η,η′Q(μ)

ητ (p)Q(μ)∗
η′τ ′ (k) (34)

(η, η′ = �,±K). Here terms on the right-hand side with μ =
0 are projections of singlet interactions in (10), while those
with μ = j ≡ x, y, z are projections of the three triplet inter-
actions, respectively, into the relevant Fermi surface. Since
spin is not conserved in the presence of SOC and/or magnetic
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field, these three spin polarizations are no longer equivalent.
Explicitly,

Q(0)
ητ (p) =

∑
αβ

(iσ y)αβU α
ητ (p)U β

−ητ (−p),

Q( j)
±Kτ (p) = ±

∑
αβ

(iσ j iσ y)αβU α
Kτ (p)U β

−Kτ (−p),

Q( j)
�τ (p) =

√
2 cos(3θp)

∑
αβ

(iσ j iσ y)αβU α
�τ (p)U β

�τ (−p).

(35)

There is a phase ambiguity in the definitions of Q(μ)
ητ (p); the

additional factors of i in the last two expressions are chosen
to simplify the gap equation below. Here g(μ)

η,η′ are constants
independent of p and k (with j = x, y, z):

g(0)
�,� = g1, g( j)

�,� = gt
1,

g(0)
�,±K = g(0)

±K,� = g4,

g( j)
�,±K = g( j)

±K,� = gt
4,

g(0)
±K,±K = g(0)

±K,∓K = g2 + g3

2
,

g( j)
±K,±K = g( j)

±K,∓K = g2 − g3

2

(36)

where g1, . . . , g4 are the values of the couplings at the end of
the RG procedure described above.

For uniform SC (i.e., with zero center-of-mass momen-
tum), the paired electrons are either both from inner pockets
or both from outer pockets, with corresponding gap functions

��τ (p) ∝ 〈c�,pτ c�,−pτ 〉,
�±Kτ (p) ∝ 〈c±K,pτ c∓K,−pτ 〉

(37)

where the momentum p is measured with respect to the center
of the relevant Fermi pocket. The gaps are diagonal in the
index τ , as we assume there is no pairing between inner
and outer Fermi surfaces. Note that particle-hole symmetry
imposes �−Kτ (p) = −�Kτ (−p), so these are not two sepa-
rate order parameters. The new self-consistent gap equation,
analogous to Eq. (27), is (see Appendix A)

�ητ (p) =
∑
η′,τ ′

∮
�η′τ ′ (θη′,k )Ṽ τ,τ ′

η,η′ (p; k)�η′τ ′ (k)
dθη′,k

2π
. (38)

After integrating over momenta, the (angle-resolved) particle-
particle pairing susceptibility �ητ (θη,p) becomes

�ητ (θη,p) = −
∑

p

tanh
( βξητ (p)

2

) + tanh
( βξ−ητ (−p)

2

)
ξητ (p) + ξ−ητ (−p)

(39)

where θη,p is the angle along the τ Fermi surface relative to
the center of the pocket η (below we simply use θ when this
is clear from context). Assuming that the Fermi surface is
inversion symmetric, we find

�ητ (θη,p) = −Nητ ln
1.13�

Tc
(40)

with Nητ the density of states at the inner or outer Fermi
surface at the η pocket and � is the cutoff energy. Although

the Fermi surface is only inversion symmetric when αR = 0
or b = 0, the expression (40) is approximately correct when
either is sufficiently small; this issue will be discussed in more
detail in Sec. IV C.

Plugging Eq. (34) into Eq. (38), we find

�ητ (k) =
∑

μ

D(μ)
ητ Q(μ)

ητ (p) (41)

where Dητ = (D(0)
ητ , D(x)

ητ , D(y)
ητ , D(z)

ητ ) are momentum indepen-
dent gap coefficients. The structure of Eq. (38) implies that
we can take D(μ)

ητ = D(μ)
η−τ ≡ D(μ)

η , and we thus drop the τ

index on D hereafter. Moreover, particle-hole symmetry en-
forces D(μ)

K = D(μ)
−K , consistent with the fact that �−Kτ (p) =

−�Kτ (−p). Plugging the form (41) back into the gap equation
(38) yields the reduced gap equations

D(0)
� =

∑
μ

(
g1 f (0)�

(μ) D(μ)
� + 2g4 f (0)K

(μ) D(μ)
K

)
,

D(0)
K =

∑
μ

(
g4 f (0)�

(μ) D(μ)
� + (g2 + g3) f (0)K

(μ) D(μ)
K

)
,

D( j)
� =

∑
μ

(
gt

1 f ( j)�
(μ) D(μ)

� + 2gt
4 f ( j)K

(μ) D(μ)
K

)
,

D( j)
K =

∑
μ

(
gt

4 f ( j)�
(μ) D(μ)

� + (g2 − g3) f ( j)K
(μ) D(μ)

K

)
(42)

where j = x, y, z and the form factors f (μ′ )η
(μ) are given by

f (μ′ )η
(μ) =1

2

∮ ∑
τ

�ητ Q(μ)∗
ητ Q(μ′ )

ητ

dθη,k

2π
. (43)

In the presence of SOC and magnetic field none of the chan-
nels (μ = 0, x, y, z) decouple in general. Equations (42) thus
can be viewed as an 8 × 8 matrix equation, leading to eight
possible superconducting solutions, of which we choose the
one with the highest Tc. The choice of phases in Eq. (35) was
made to make the form factors f (μ′ )η

(μ) real when the densities
of state on inner and outer Fermi surfaces are equal in which
case the coefficients D(μ)

η can also be taken to be real.

B. Phase diagrams

To study the possible superconducting phases, it is useful
to define singlet and triplet instability regimes by considering
the limit of no SOC and magnetic field. We define a dominant
singlet (dominant triplet) instability to occur when the largest
eigenvalue of the gap equation is for the spin singlet (spin
triplet) gap with SOC and magnetic field set to zero. The tran-
sition temperature for each channel (when the corresponding
eigenvalue of the gap equation equals 1) is determined by the
couplings g1, . . . , g4 via

T (a)
c = 1.13�e−1/γ (a+)

, (44)

where � is the upper energy cutoff, and γ (a+) are identical to
the couplings obtained in the RG analysis in Eq. (23) (a = s, t
for singlet and triplet, respectively). Figure 1 shows the phase
diagrams corresponding to singlet (a) and triplet (b) instability
regimes as a function of Rashba SOC and in-plane magnetic
field. We emphasize that the resulting SC states themselves
are always a mixture of singlet and triplet Cooper pairs.
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As seen in Eqs. (24) and (25), with equal DOS in all bands,
for repulsive interactions the singlet instability dominates for
large g4, while the triplet instability dominates for large g3.
For concreteness, in this section we take

g2 = 1.2g1, g4 = 2g1, gt
1 = 0.2g1, gt

4 = 0.1g1 (45)

with g3 = 1.05g1 (4.2g1) to produce a singlet (triplet) insta-
bility.

To describe the phase diagrams in Fig. 1, it is useful
to classify the solutions to the gap equations (41) by the
irreducible representations (irreps) of the relevant point group.
In the absence of Rashba SOC and magnetic field, the point
group of 1H-NbSe2 is D3h [42]. We find that the μ = 0, z
terms on the right-hand side of Eq. (41) both belong to the
A′

1 irrep of D3h, indicating that the singlet and z-polarized
spin-triplet gaps are mixed in the presence of Ising SOC.
In our model, this mixing is proportional to the difference
between the densities of states Nητ on the inner (τ = −1) and
outer (τ = 1) Fermi surfaces. Since these densities of states
are not expected to differ significantly in two dimensions,
this mixing is weak in our model. The remaining components
μ = x, y of the triplet gap transform as the two-dimensional
E ′′ irrep of D3h. We find that, in the absence of both Rashba
SOC and magnetic field, the highest Tc corresponds to the A′

1
irrep in our model.

Rashba SOC transforms as the A′′
2 irrep of D3h. This lowers

the point group to C3v , but does not mix the A′
1 and E ′′ gaps.

In contrast, the in-plane magnetic field b transforms according
to the E ′′ irrep of D3h. As a result, it mixes the E ′′ gap with
the A′

1 one [21]. Thus, in the presence of an in-plane magnetic
field, all μ terms in Eq. (41) are mixed.

The electronic spectrum in the superconducting phase is
obtained by diagonalizing the Bogolyubov–de Gennes (BdG)
Hamiltonian:

H = 1

2

∑
pητ

�†
pητHητ (p)�pητ (46)

where �ητ (p) = (cη,pτ , c†
−η,−pτ )T and

Hητ (p) =
(

ξητ (p) �ητ (p)
�∗

ητ (p) −ξ−ητ (−p)

)
(47)

with ξητ (p) given in Eq. (4). Note that when TRS is broken
ξ−ητ (−p) �= ξητ (p) in general. The BdG spectra are given by
Eητ (p),−E−ητ (−p), with

Eητ (p) = ξAητ (p) +
√

ξSητ (p)2 + |�ητ (p)|2 (48)

where

ξSητ (p) = ξητ (p) + ξ−ητ (−p)

2
, (49)

ξAητ (p) = ξητ (p) − ξ−ητ (−p)

2
. (50)

Clearly, nodes only occur if both ξSητ and �ητ vanish simulta-
neously. Note that, in our case, the Fermi surface is symmetric
under momentum inversion, p → −p, only when either αR or
b vanishes. In this case, ξAητ = 0 and ξSητ = ξητ .

We are now in a position to describe the SC phase diagrams
of Fig. 1, obtained for a fixed value of the Ising SOC and vary-
ing the magnitude of the magnetic field b and Rashba SOC αR.

In all cases, the gap at the ±K pockets is nearly isotropic,
so we focus on the � pocket. We first analyze the phase
diagram of Fig. 1(a), where the dominant g4 interaction gives
the singlet extended s-wave state in the limit of vanishing SOC
and magnetic field. Along the b = 0 axis, the main effect of
increasing the Rashba SOC αR is to change the anisotropy
of ��τ (p), due to the small admixture with the μ = z nodal
triplet gap. Importantly, no phase transition happens along this
axis, as the dominant instability is always in the A′

1 irrep of
the original D3h point group. In contrast, along the αR = 0
axis, a phase transition takes place to a nodal topological SC
state for b = bP, where bP ≈ ��1 corresponds roughly to the
Pauli-limiting field [43,44]. Because our assumption of well-
separated Fermi surfaces is not valid for fields smaller than bP,
our analysis is not sufficient to determine the phase boundary
quantitatively, but we show it qualitatively in Fig. 1(a). This
phase transition, and the topological character of the resulting
nodal SC state, were previously predicted in Ref. [17] and can
be understood as a consequence of the vanishing of the Ising
SOC along the six �-M directions, where the SC gap vanishes
and 12 nodes (six for each � Fermi surface) appear due to
spins aligning with the magnetic field. This gap structure is
shown in the BdG spectrum of the inner � Fermi surface,
displayed in Fig. 3(a) together with the spin texture of the
normal-state Fermi surface.

Turning on the Rashba SOC introduces a second spin-
orbit energy scale that does not vanish along the �-M di-
rections. As a result, generally even an infinitesimal Rashba
SOC lifts the nodes and destroys the topological character
of this state, as shown by the fully gapped BdG spectrum
in Fig. 3(b). The only exception is when b is aligned along
one of the �-K directions: in this case, as we discuss in
detail in Sec. V, the system has a mirror symmetry. For
αR pF < b, this symmetry forces spins along the �-M line
perpendicular to b to align (antialign) with the magnetic
field on the inner (outer) � pocket, as shown in the inset
of Fig. 3(c). As a consequence, the gap vanishes along the
line perpendicular to b, as displayed by the BdG spectrum of
Fig. 3(c). Therefore, two pairs of nodes originally present on
this line are protected, whereas the remaining eight nodes are
gapped, resulting in a crystalline gapless topological SC state.
Because the Fermi surfaces are no longer symmetric under
momentum inversion (i.e., ξAητ �= 0), these protected nodes
are generally shifted away from the Fermi level, resulting in
the Bogolyubov Fermi surfaces shown in Fig. 3(c). As we
discuss in the next section, however, the nodes can move
back to the Fermi level if the Cooper pair acquires a finite
center-of-mass momentum, which is expected to happen for
large enough b and αR [Fig. 3(d)]. For αR pF > b, however,
the pair of nodes on the inner and outer Fermi surfaces
merges and the superconducting state becomes fully gapped.
While we could not precisely locate this phase boundary, it
is expected to interpolate between b = αR pF for large values
of αR to b = bP for αR = 0, as shown by the dashed line in
Fig. 1(a). The evolution of the gap at the outer � Fermi surface
across this transition is shown in Figs. 4(a) and 4(b). In panel
(a), the magnetic field is applied along a direction that does
not coincide with the �-K direction. As a result, the nodal
superconducting state only exists for αR = 0 (red curve). In
contrast, when the magnetic field is applied along the �-K
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FIG. 3. Superconducting excitation spectrum, Eq. (48), for the
inner Fermi surface at � in the presence of an in-plane magnetic
field and without [panel (a)] or with [panels (b)–(d)] Rashba SOC.
In panel (b) [panels (c) and (d)], B is aligned along ϑ = π/7
(ϑ = 0) from the �-K lines; panel (a) is the same for any field
direction. In panel (c) [panel (d)], the Cooper pair has zero (nonzero)
center-of-mass momentum. Insets show the resulting spin textures
along the normal-state Fermi surfaces for the corresponding field
directions, with colors as in Fig. 2 and arrows indicating in-plane
spin components. We used the normal-state dispersion from Eq. (2)
with the same parameter values given in Eq. (8), and took b = 5βI ,
as well as αR = 2βI in panels (b)–(d). We set D(0)

�,−1 = 20βI and
D(z)

�,−1 = 20βI in Eq. (41), and pshift = −0.3pF in panel (d).

direction [panel (b)], two nodes persist even when αR �= 0
(dark orange curve).

We now turn to the case of dominant triplet instability
shown in Fig. 1(b), obtained for a dominant g3 interaction.
As in the singlet regime, we observe a nodal topological
superconductor for αR = 0. In the triplet regime, however,
the superconducting gap on the � pocket is nodal along the
entire αR = 0 line (except for very small magnetic fields,
where the small difference in density of states on the inner
and outer Fermi surfaces can open a gap); hence the nodal
topological SC state occurs for all values of b, as there is no
Pauli limit in this case [43,44]. Similarly, the transition into
the crystalline nodal topological phase happens close to the
αR pF = b line.

Along the b = 0 line, the nodes on the � pocket in the μ =
z triplet state are lifted due to the admixture with the sublead-
ing s-wave μ = 0 state generated by Ising SOC, resulting in
an anisotropic gap. This is shown in Fig. 4(c), which presents
the evolution of ��1(p) along the b = 0 axis for increasing αR.
Note that to generate singlet-triplet mixing we must include
a small difference between the inner and outer DOS in the
plots of Fig. 4; the magnitude of this mixing increases with

αR. Thus, although the superconducting gap on � in the triplet
regime remains strongly modulated as a function of angle for
modest αR [see Fig. 4(c)], the superconducting phase in this
region is nonetheless fully gapped.

For large values of αR (of the order of the Ising SOC), the
dominant instability shifts from being in the A1 irrep of C3v

(previously the A′
1 irrep of the original D3h group) to the two-

dimensional E irrep (previously the E ′′ irrep of the original
D3h group). As a result, a new chiral p ± ip superconducting
state emerges in the triplet regime at b = 0. The chiral phase,
shown in Fig. 4(d), occurs because in this two-dimensional
irrep the free energy is minimized by a spontaneous breaking
of time-reversal symmetry, as we discuss in Appendix B. This
is in agreement with the general result in Refs. [45,46]. As we
show in Appendix B, this results in a gapped chiral topological
SC with gapless chiral edge modes resulting in a thermal Hall
conductance κxy = ±6(π2k2

B/3h)T [28]. This topological SC
phase survives for sufficiently small in-plane magnetic fields,
but our approach is insufficient to quantitatively obtain the
phase boundary [see blue dashed line in Fig. 1(b)].

C. Broken momentum inversion symmetry: Bogolyubov Fermi
surfaces and finite-momentum pairing

In the presence of both αR and b, the Fermi surfaces are no
longer inversion symmetric under p → −p. The key quantity
that measures the degree of symmetry breaking is

ξAητ (p) = ξητ (p) − ξ−ητ (−p)

2
(51)

previously defined in Eq. (50). Here we discuss two important
consequences of this inversion symmetry breaking for the
crystalline topological SC state. First, within the crystalline
topological SC state, breaking inversion symmetry moves
the two nodes on the same Fermi surface at � in opposite
directions away from the Fermi level. This follows directly
from Eq. (48) as the nodes move by an energy ξA�τ (pnode). As
we showed in Fig. 3(c), this results in the nodes “inflating”
into Bogolyubov Fermi surfaces (see Refs. [47–50]). These
Fermi surfaces are protected by mirror symmetry, due to
the topological stability of the band crossings in the BdG
spectrum, as we show in the next section.

Second, breaking momentum inversion symmetry cuts
off the Cooper logarithm in the particle-particle bubble in
Eq. (40). As a result, the pairing interaction must be larger
than a certain threshold, proportional to how much inversion
symmetry is broken, for a uniform SC state to onset. To
show this explicitly, we evaluate the particle-particle bubble
in Eq. (39) in the absence of inversion symmetry. Assuming
that ξAητ is a function only of the direction θ around the Fermi
surface, in the limit of � � ξAητ we find

�ητ (θ )

Nητ

= − ln
1.13�

Tc
+ Re

[
ψ

(
1

2
+ iξAητ (θ )

2πTc

)
− ψ

(
1

2

)]
(52)

where ψ is the digamma function. As a result, at zero temper-
ature

�ητ (θ ) = −Nητ ln
�

|ξAητ (θ )| , (53)
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FIG. 4. Superconducting gap ��1 in Eq. (41) at the outer � pocket, as a function of the angle θ along the Fermi surface with respect
to the �-K direction, in various regions of the phase diagrams of Fig. 1. Panels (a) and (b) correspond to the cuts across the phase diagram
of Fig. 1(a) shown in the insets, with a magnetic field away from the �-K direction by an angle ϑ = 2π/25 [panel (a)] and along the �-K
direction [panel (b)]. Panels (c) and (d) correspond to cuts along the b = 0 axis of the phase diagram of Fig. 1(b), outside and inside the chiral
SC phase, respectively (see insets). Note that the gap amplitudes have been rescaled for clarity, since they are not fixed by the linearized gap
equations. We used coupling constants given in Eq. (45) and parameters for the noninteracting Hamiltonian as in Eq. (8). We also took the
inner and outer densities of states to differ by 10% to ensure that the symmetry-allowed mixings between the singlet and triplet channels are
present in our solutions.

i.e., the infrared logarithmic divergence originally present is
cut off by |ξAητ (θ )|. This means that there is a critical value
of the parameter ξ c

Aητ beyond which uniform SC is no longer
stable. The resulting critical lines are shown in Fig. 1 and for
a larger range in Fig. 5 for both singlet and triplet instabilities.
Note that because this is a multiband superconductor the
critical line has a (weak) dependence on the cutoff �.

The general shape of the critical lines can be understood
from a simple approximation, noting that

ξAητ (p) = τ

2
[δη(p) − δ−η(−p)], (54)

where δη are functions of αR pF and b as given in (7). For
αR pF , b � βI ,

ξAητ (p) ≈ τ
αR pF b

βI
sin(θ − ϑ ) (55)

where βI is the Ising SOC on the relevant pocket and ϑ is the
direction of the magnetic field. From (53), we can estimate
that the characteristic scale of ξ c

Aητ , properly averaged, is
of the order Tc0/1.13, where Tc0 is the solution of the gap
equation when ξ c

aητ = 0 [see Eq. (40)]. The critical curve is
thus roughly given by

αR pF b ∼ βI Tc0

1.13
. (56)

As shown in Fig. 5, this approximation reasonably captures
the exact result for the critical line.

For inversion symmetry breaking exceeding the critical
value, where the uniform SC state is no longer stable,
superconductivity with finite center-of-mass momentum
pshift �= 0, i.e., a so-called FFLO (Fulde-Ferrell-Larkin-
Ovchinnikov) phase [30,51,52], is still possible. Note that
the momentum shift is not necessarily equal for each
Fermi surface, so more generally there are four parame-
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FIG. 5. Critical lines above which uniform SC becomes unstable
for the singlet (left) and triplet (right) phase diagrams shown in
Fig. 1. The blue line is the numerical solution from the full gap
equation, while the red dashed line is given by the approximation
αR pF b = βI Tc0

1.13 . In addition to the parameters used in Fig. 4, we took
Tc = 0.01βI and � = 25βI , roughly corresponding to the observed
values [7,10,20].

ters pshift,ητ . Depending on whether pshift,ητ = pshift,η−τ or
pshift,ητ = −pshift,η−τ , the FFLO phase is classified as helical
and stripe, respectively, and may even compete with the
uniform SC phase below the threshold curve in the (αR pF , b)
plane [51]. Ultimately, the four parameters pshift,ητ must be
obtained by minimization of the free energy, which is a
computationally involved task beyond the scope of our paper.
It is interesting to note, however, that by matching pshift with
the geometric shift of the center of the corresponding Fermi
surface the nodes of the superconducting ground state move
back to the Fermi level since the shift compensates for the
finite ξAητ [see Eqs. (63)–(65) below], as shown in Fig. 3(d).
Because this configuration maximizes the gap around the
Fermi surface, it is expected to maximize the condensation
energy. In any case, as we show in the next section, the finite-
momentum pairing does not affect the topological properties
of the SC phase.

V. CRYSTALLINE GAPLESS TOPOLOGICAL
SUPERCONDUCTIVITY

Having established the existence of a nodal SC phase
for large magnetic fields in the phase diagrams of Fig. 1,
we now discuss its topological properties. As discussed in
Refs. [53–58], two-dimensional gapless topological phases
are stable only in the presence of certain symmetries, which
guarantee stability of both the bulk nodes and of the corre-
sponding edge modes. When αR = 0, the SC state has both
particle-hole symmetry C and an antiunitary time-reversal-like
symmetry T̃ = iσ xK (K is complex conjugation, and σ x acts
on the spin index), which is a composition of time-reversal
symmetry and a reflection with respect to the xy plane. T̃
reverses the in-plane momentum and the z component of
the spin, satisfying T̃ 2 = 1. This time-reversal-like symmetry
places the system into symmetry class BDI [59–61] and
protects the 12 nodes of the superconducting gap on the two
� pockets along the �-M lines, ensuring that the boundary
flat bands cannot be gapped [22,55]. However, a finite Rashba
SOC breaks the T̃ symmetry, putting the model in symmetry
class D. For generic in-plane field directions, this results in a

fully gapped, topologically trivial SC phase with no protected
zero-energy boundary states.

The notable exception is when B is parallel to one of the
�-K directions: in this case, the system has a mirror symmetry
associated with reflection about the plane perpendicular to B.
For example, when B is parallel to the x axis, the mirror sym-
metry corresponds to a reflection with respect to the yz plane
perpendicular to B, which also flips the y and z components
of spin: Mx = iσ xRyz, where the reflection Ryz corresponds
to (x, y, z) → (−x, y, z) and, as above, σ x acts on the physical
spin indices. In general the superconducting gap can be either
even or odd under this mirror symmetry. We show below that
for b > αR pF , where the gap is mirror odd, the reflection
symmetry anticommutes with particle-hole symmetry. In this
case, there is a Z-valued topological invariant that diagnoses
the topological superconducting phase [56].

This invariant is characterized by a nonvanishing quantized
winding number along a contour encircling each node—or, if
the nodes are not at the Fermi energy [60], a contour encircling
each Bogolyubov Fermi surface [62]. Thus mirror reflection
protects the four nodes in the reflection plane provided that
b > αR pF [see Fig. 3(c)] [56,57,63]. When b = αR pF , pairs
of nodes touch and there is a topological phase transition into
a nodeless phase at b < αR pF .

We emphasize that the topological nature of this αR �= 0
SC state is qualitatively different than that of the αR = 0 SC
state, as in the former case the symmetry that protects the SC
state is not time-reversal-like, but a mirror symmetry—hence
the denomination crystalline gapless topological SC [56,57].

A. Mirror symmetry and topologically protected nodes

To see how the mirror reflection symmetry protects the
nodes in the reflection plane, we will follow the approach of
Ref. [56], which established that an analysis of the symmetry-
allowed mass terms in an effective low-energy theory can
reveal whether a nongapped superconductor is topologically
nontrivial. Mx acts on the noninteracting Hamiltonian (1) as

M−1
x H (p)Mx = H (p̄) (57)

where p̄ = (−px, py). Since this reflection also reverses the y
and z components of the spin, in the spin basis Mx acts as
iσ x, while in the SOC basis (5) it is momentum dependent,
Mx(p) = U α

ητ (p)iσ x
αβU β∗

ητ ′ (p̄) = iτe−iφ(p)δττ ′ , where φ(p) is
given in Eq. (7).

The action of mirror symmetry can be extended to the BdG
spinors to give

M̃x(p) =
(
Mx(p) 0

0 −M†
x (−p)

)

=
(

eiφ(p) 0
0 −e−iφ(−p)

)
. (58)

On the BdG Hamiltonian Eq. (47), the mirror symmetry thus
acts according to

M̃−1
x Hητ (p)M̃x = Hητ (p̄). (59)

Here the relative sign between the two nonvanishing compo-
nents of M̃ is fixed by whether the gap function is even or odd
under the mirror symmetry. For b > αR pF , where the SC gap
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that gives the highest Tc in Eq. (38) is odd under px → −px,
the appropriate choice is minus [64].

Following the methods of Ref. [56], we will show that
in the low-energy theory obtained by linearizing the model
near the nodes there are no symmetry-allowed mass terms;
this is equivalent to showing that the topological winding
number is nontrivial (which we have also verified in our
model by directly computing the Berry connection, though
we will not present the calculation here). However, we do
find symmetry-allowed terms that shift the nodes away from
the Fermi energy, leading to protected Bogolyubov Fermi
surfaces.

We begin by linearizing the Hamiltonian in the region
b > αR pF around the pair of nodes at px = 0. This gives a
4 × 4 low-energy effective Hamiltonian, with a new index
L, R to keep track of the two nodes. We define τμ to be the
Pauli matrices acting on the L, R indices, while ςμ are Pauli
matrices acting on the two indices of the BdG spinors (i.e.,
on the particle-hole indices). In this basis the particle-hole
symmetry, which interchanges the two nodes, acts via C =
ς x ⊗ τ xK. Note that Eq. (58) implies that the action of Mx

on the mirror plane changes discontinuously at b = αR pF : for
b < αR pF , Mx is proportional to the identity matrix times
sgn py, while for b > αR pF it has the form M̃x(p) = ς z. Since
the mirror symmetry acts in the same way near both nodes, in
our linearized theory it acts via

M̃x = ς z ⊗ τ 0. (60)

Since the nodes are in the mirror plane, this leading-order
approximation is sufficient to determine which terms can open
a gap.

We now consider all leading terms of the generic form
h(δpy, px )ςμ ⊗ τ ν allowed by symmetry, with δpy = py −
p(node)

y . Note that we do not wish to allow terms that couple
the two nodes, as these break translational symmetry; thus we
require ν = 0 or z. Recall that the symmetries are

C−1H(δpy, px )C = −H(−δpy,−px ),

M̃−1
x H(δpy, px )M̃x = H(δpy,−px ).

(61)

Thus h(−δpy,−px ) = ±h(δpy, px ) when C−1ςμ ⊗ τ νC =
∓ςμ ⊗ τ ν . Similarly h(δpy,−px ) = ±h(δpy, px ) when
M̃−1

x ςμ ⊗ τ νM̃x = ±ςμ ⊗ τ ν . To gap out the nodes we
must have h(0, 0) �= 0; thus we need plus signs in both cases.
Hence ςμ ⊗ τ ν anticommutes with ς x ⊗ τ xK and commutes
with M̃x.

This restricts the linearized Hamiltonian for b > αR pF to
the form

H = δpyς
z ⊗ τ z + pxς

x ⊗ τ 0 + mς z ⊗ τ 0 + ξAς0 ⊗ τ z

(62)
where m and ξA are constants (for simplicity, we take the
Fermi velocity to be 1, so all parameters have the same units).
The m term, which plays the role of a chemical potential shift
at each node, does not lift the nodes; rather it shifts them
in opposite directions along the py axis, from py = ±pF to
±(pF + m). The ξAς0 ⊗ τ z term, on the other hand, shifts
the nodes in opposite directions in energy by an amount ξA,
inflating the nodes into small Bogolyubov Fermi surfaces
(see also Refs. [47–50]). Comparing with the BdG spectrum

Eq. (48), we find that ξA is precisely the value of ξA�τ given in
Eq. (50) when ξS�τ (p) = 0 in Eq. (49). Since a constant shift
in energy cannot change the Berry connection, the winding
numbers are unaffected and remain nontrivial [57,58], as can
be verified by direct computation. Note that the Bogolyubov
Fermi surfaces are topologically protected only in a fragile
sense [65], as they can be removed by mixing with additional
bands, similar to what has been observed theoretically in one-
dimensional (1D) crystalline topological insulators [66,67].

The term ξAς0 ⊗ τ z describes a state with broken momen-
tum inversion symmetry, in which the normal-state Fermi sur-
face is shifted by a momentum of ξA relative to the Brillouin-
zone center. To see this, note that at px = 0 the normal-state
Fermi surface at both nodes is determined by δpy + ξA = 0.
This means that Cooper pairs cannot both lie on the Fermi
surface. As noted in Sec. IV C, for sufficiently large inversion
symmetry breaking, uniform pairing becomes unstable, but
an FFLO-type finite-momentum pairing between electrons on
the Fermi surface remains a possibility [51]. In this case the
Nambu spinors have to be redefined as (cp+pshift ŷ, c†

−p+pshift ŷ
),

where 2pshift is the total momentum of the pair. This trans-
forms the BdG Hamiltonian in Eq. (47) into

Hητ (p) =
(

ξητ (p + pshift ) �ητ (p)

�∗
ητ (p) −ξ−ητ (−p + pshift )

)
(63)

with the spectrum now given by

Eητ (p) = ξAητ (p, pshift ) +
√

ξSητ (p, pshift )2 + |�ητ (p)|2
(64)

with

ξSητ (p, pshift ) = ξητ (p + pshift ) + ξ−ητ (−p + pshift )

2
,

ξAητ (p, pshift ) = ξητ (p + pshift ) − ξ−ητ (−p + pshift )

2
. (65)

Linearizing the transformed BdG Hamiltonian around
the nodes [where ξSητ (p, pshift ) = 0] yields a new term
−pshiftς

0 ⊗ τ z in Eq. (62). Picking pshift = ξA, this term can-
cels the energy shift of the nodes, bringing them back to the
Fermi level.

B. Boundary modes

By the bulk-boundary correspondence [56,57], there are
edge bands terminating at the nodes. However, unlike other
nodal topological superconductors with Majorana flat band
edge modes [17,53,54,68], the edge modes in the crystalline
topological phase under consideration are not in general flat
and not necessarily at zero energy. The edge bands can be
studied following the methods of Refs. [69,70]; we find that
for open boundary conditions in x and py close to the node
the edge mode has energy ξA. When ξA vanishes at the node
(e.g., if a stripe FFLO phase is realized in the bulk) this means
that the boundary modes cross zero energy—but they are not
flat in general as ξA does not have to vanish for all py. Similar
edge states have been studied in three-dimensional crystalline
topological insulators, where they are referred to as drumhead
states [71–73].

An alternative way to understand the edge modes is to
view them as topological boundary modes of the family of 1D
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FIG. 6. Excitation spectrum in the topological crystalline SC
phase on a 150 × ∞ unit-cell strip with B = Bx̂. Blue indicates delo-
calized bulk eigenstates, red indicates eigenstates concentrated near
the boundaries, and yellow shows a cut of the bulk BdG spectrum at
px = 0. The inset illustrates the Bogolyubov Fermi surfaces and the
original Fermi surfaces (dashed black lines) and its inverse image
under p → −p (dashed gray lines). For details of the tight-binding
model, see Appendix C.

Hamiltonians Hpy (px ) = H(px, py) at fixed py, which are in
topological class A and respect mirror symmetry. Since mirror
symmetry is equivalent to inversion in one dimension, these
are the same systems as studied in Refs. [66,67]. As py crosses
the node, Hpy (px ) undergoes a topological phase transition
from trivial to nontrivial. The 1D topological invariant is the
mirror index MZ defined as follows [66,74]. Since Hpy (px )
commutes with Mx at px = 0 and π (the boundary of the
1D Brillouin zone), at those points it can be decomposed
into two blocks on which Mx = ±1, respectively: H±

py
(0) and

H±
py

(π ). If n(0)
+ is the number of occupied states of H+

py
(0)

and n(π )
+ is that of H+

py
(π ), the mirror index is simply NMZ =

|n(0)
+ − n(π )

+ |. There are then 2NMZ edge states, with each state
even under reflection being degenerate with an edge state that
is odd under reflection. Taken together these edge states form
the band of edge modes of the 2D system. At a node (which
is at px = 0), H+

py
(0) crosses with a state in H−

py
(0), which

changes n(0)
+ by one and the number of edge states by two.

The edge mode thus splits into two bulk modes which cross at
the node.

To study the boundary modes of our model in the uni-
form superconducting state, in Appendix C we describe a
tight-binding model that captures the key features of our
gapless topological superconducting phase. The results are
displayed in Fig. 6, which shows the BdG spectrum on a
150 × ∞ unit-cell strip with open zig-zag edges parallel to
the ŷ direction, and B = Bx̂, in the uniform superconducting
state. Each state ψk is colored according to the inverse par-
ticipation ratio

∑
y |ψk (y)|4, such that the boundary modes

are red, and bulk modes are blue. A cut containing the
nodes along px = 0 of the bulk BdG spectrum is shown in
yellow.

It is worth noting that in actual materials the existence
of both bulk nodes and corresponding boundary states is
guaranteed only if the relevant mirror reflection is an exact
symmetry. As such, these may be sensitive to orientational
defects in the crystal.

VI. CONCLUDING REMARKS

Our microscopic interacting model for NbSe2 predicts
multiple possible exotic superconducting phases in this ma-
terial, tuned by the Rashba SOC αR and the in-plane magnetic
field B. Two different primary SC instabilities (i.e., that would
take place when Ising SOC is zero) can be driven by purely
electronic interactions: a singlet extended s-wave instability
and a triplet f -wave instability. The phase diagrams for both
are qualitatively similar, with a fully gapped superconductor
for αR > b, and a crystalline gapless topological SC state for
large b and small αR. Interestingly, the topological properties
of the latter phase depend crucially on the B field being
aligned along one of the �-K directions. In addition, the triplet
instability supports a chiral topological SC state for small b
and large αR.

Although direct experimental detection of these topolog-
ical SC states may be technically challenging, their indi-
rect experimental manifestations should be accessible. For
instance, because the chiral SC state transforms as a two-
dimensional irreducible representation of the trigonal space
group, it should be strongly affected by strain, with Tc splitting
into two separate transitions under externally applied uniaxial
strain [75]. As for the crystalline topological SC state, its ex-
treme sensitivity to the field direction is expected to promote
strongly anisotropic properties. Specifically, since the nature
of the SC state changes as a function of the B direction,
one expects pronounced sixfold anisotropies in the upper
critical field and in the critical current. Recent experiments
have identified sixfold and twofold anisotropies in the mag-
netoresistance and in the critical field [76,77]. Whether these
results can be attributed to the crystalline nodal topological
superconducting state discussed here requires further inves-
tigation. Finally, the presence of Bogolyubov Fermi surfaces
should also be manifested in several experimental observables
that are sensitive to the existence of a finite DOS at zero
energy [78].
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APPENDIX A: GINZBURG-LANDAU FREE ENERGY

Here we write down the Ginzburg-Landau free energy in
the presence of SOC and magnetic field. We later use it
in Appendix B to analyze the chiral phase that emerges in
the regime of dominant triplet interactions in the absence of
magnetic field and large values of Rashba SOC.
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We start with the Bogolyubov-Gor’kov Hamiltonian ob-
tained after doing a Hubbard-Stratonovich transformation:

H = 1

2

∑
pητ

�†
pητHητ (p)�pητ + 1

2

∑
pητ

ξητ (p) + H0(�2)

(A1)
where

H0
(
�2

) = −1

4

∑
pητ

kη′τ ′

�∗
ητ (p)[Ṽ −1(p; k)]η

′τ ′
ητ �η′τ ′ (k) (A2)

and where we use the Nambu-Gor’kov representation
�ητ (p) = (cη,pτ , c†

−η,−pτ )T and the BdG Hamiltonian
Eq. (47). Recall that the BdG spectrum has two branches,
Eητ (p) and, by particle-hole symmetry, −E−ητ (−p). Using
the fact that

det[−iω + Hητ (p)] = [−iω + Eητ (p)][−iω − E−ητ (−p)]
(A3)

we obtain the Ginzburg-Landau free energy:

F = −T

2

∑
pητ

ln

[
2 cosh

(
βEητ (p)

2

)]

− T

2

∑
pητ

ln

[
2 cosh

(
βE−ητ (−p)

2

)]

+H0(�2). (A4)

To obtain the linearized gap equation we expand F to first
order in |�ητ |2, which yields

F (2) = −
∑
pητ

tanh
( βξητ (p)

2

) + tanh
( βξ−ητ (−p)

2

)
4ξSητ (p)

|�ητ (p)|2

+H0(�2). (A5)

Minimizing the free energy Eq. (A5) with respect to �∗
ητ (p),

we obtain the gap equation (38).

APPENDIX B: CHIRAL TOPOLOGICAL
SUPERCONDUCTIVITY AT LARGE αR

As we discussed in the main text, at zero magnetic field and
in the dominant triplet instability regime, at large αR pF the
leading superconducting instability is in the two-dimensional
E irrep of the point group C3v . Here we show that this state
spontaneously breaks TRS and compute its Chern number to
show that it is a chiral topological state.

1. Spontaneous time-reversal symmetry breaking

We begin by observing that for b = 0, and assuming equal
densities of states on inner and outer Fermi surfaces, the
reduced gap equation (42) can be solved analytically, giving

�
(0)
�τ (p) = τ ie−iθ D(0)

� ,

�
(0)
±Kτ (p) = τ ie−iθ D(0)

K ,

�
(z)
�τ (p) =

√
2ie−iθ cos2 3θ

λp3
F

δη(p)
D(z)

� ,

�
(z)
±Kτ (p) = ±ie−iθ βI

δη(p)
D(z)

K ,

�
(x)
�τ (p) =

√
2ie−iθ sin θ cos 3θ

αR pF

δη(p)
D(x)

� ,

�
(x)
±Kτ (p) = ±ie−iθ sin θ

αR pF

δη(p)
D(x)

K ,

�
(y)
�τ (p) =

√
2ie−iθ cos θ cos 3θ

αR pF

δη(p)
D(y)

� ,

�
(y)
±Kτ (p) = ±ie−iθ cos θ

αR pF

δη(p)
D(y)

K . (B1)

At large αR, there is a transition from a mixed D(0), D(z)

solution to a solution with D(0) = D(z) = 0, D(x,y) �= 0. This
solution belongs to the 2D E irrep of C3v , the relevant point
group in this regime. In other words, the (x) and (y) solutions
are degenerate, i.e., have the same Tc.

This degeneracy opens the possibility of spontaneous time-
reversal symmetry breaking at b = 0. In the SOC basis (5),
TRS acts as

cη,pτ
T→ iτeiθ c−η,−pτ , (B2)

�ητ (p)c†
η,pτ c†

−η,−pτ

T→ −e−2iθ�∗
ητ (p)c†

η,pτ c†
−η,−pτ .

Taking �ητ (p) = ei�ητ (p)|�ητ (p)|, TRS is therefore satisfied
when ei�ητ (p) = ±ie−iθ .

In the linearized gap equation (38), since the μ = x and y
channels are degenerate (i.e., they have equal critical temper-
atures), in principle the relative amplitudes and phases of D(x)

η

and D(y)
η are not fixed (i.e., any linear combination of the two

solutions is allowed). This is no longer the case if we consider
the nonlinear gap equations. Alternatively, in terms of the
Ginzburg-Landau free energy (A4), the relative amplitudes
and phases are fixed by the quartic terms in the gap functions.
Since b = 0, ξητ (−p) = ξητ (p), the free energy simplifies to

F = −T
∑
pητ

ln

[
2 cosh

(
βEητ (p)

2

)]
+ H0(�2). (B3)

Expanding in powers of the gap function, we obtain the
fourth-order correction [in addition to (A5)]

F (4) = 7ζ (3)

64π2T 2

∑
ητ

∫
Nητ |�ητ (p)|4 dθp

2π
(B4)

where ζ (x) is the Riemann zeta function. Substituting the
general form of the gap function in the μ = x and y channel,

��τ (p) =
√

2ie−iθ cos 3θ
αR pF

δη(p)

(
D(x)

� cos θ + D(y)
� sin θ

)
,

�±Kτ (p) = ±ie−iθ αR pF

δη(p)

(
D(x)

K cos θ + D(y)
K sin θ

)
,

and approximating αR pF

δη (p) ≈ 1 (which is valid as long as

αR pF � λp3
F ), we obtain

F (4) = 7ζ (3)

2048π2T 2

∑
ητ

Nητ

[
3
(∣∣D(x)

η

∣∣2 + ∣∣D(y)
η

∣∣2)2

− 4
∣∣D(x)

η

∣∣2∣∣D(y)
η

∣∣2
sin2 φxy

]
(B5)
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where φxy is the relative phase between D(x)
η and D(y)

η . Min-
imization gives φxy = ±π

2 , which implies that the supercon-
ducting gap has the form

��τ (p) ∝
√

2i cos 3θ
αR pF

δη(p)
e−i(θ∓θ ),

�±Kτ (p) ∝ ±i
αR pF

δη(p)
e−i(θ∓θ ), (B6)

which is not invariant under the time-reversal symmetry
transformation (B2). We thus find that time reversal is
spontaneously broken, in agreement with the general result
in Refs. [45,46]. Note that while ��τ (p) obtained from
our calculation is nodal there is an additional symmetry-
allowed term �(3) = e3iθ that belongs to the same E ir-
reducible representation. Adding this term lifts the nodes
and results in a fully gapped, time-reversal symmetry-broken
phase.

2. Chern number and chiral topological superconductivity

To show that this TRS-breaking phase is indeed chiral, we
calculate the Chern number, given by

Ch = 1

2π

∑
ητ

∫
BZ

Fητ (p) · d2p (B7)

where the Berry curvature vector is given by

Fητ (p) = ∇ × Aητ (p) (B8)

with Aητ (p) the usual Berry connection associated with
the occupied band only. For a superconductor, the Berry
connection is defined in terms of the normalized eigenvec-
tors of the BdG Hamiltonian (47): ϒητ (p) = uητ (p)cη,pτ +
vητ (p)c†

−η,−pτ , via

Aητ (p) = i〈ϒητ (p)|∇p|ϒητ (p)〉. (B9)

In our case, the cη,pτ operators may carry a nontrivial Berry
phase due to the changing orientation of the associated spin.
One should therefore consider |ϒητ (p)〉 as a four compo-
nent eigenvector in a basis of Nambu-Gor’kov four-spinors
� (4)

ητ (p) = (dη,p↑, dη,p↓, d†
−η,−p↑, d†

−η,−p↓)T . Using the change
of basis (5), we find

∣∣ϒητ

〉 =

⎛
⎜⎜⎜⎝

U 1
ητ (p)uητ (p)

U −1
ητ (p)uητ (p)

U 1∗
−ητ (−p)vητ (p)

U −1∗
−ητ (−p)vητ (p)

⎞
⎟⎟⎟⎠. (B10)

Thus,

uητ (p) = ξSητ − Eητ (p)√
[ξSητ − Eητ (p)]2 + |�ητ (p)|2 , (B11)

vητ (p) = �ητ (p)√
[ξSητ − Eητ (p)]2 + |�ητ (p)|2 (B12)

where we use the notation of Eqs. (48)–(50).
Below we calculate the Chern number for b = 0 and

nonzero αR only, in which case U 1
ητ (p) = −i|U 1

ητ (p)|e−iθη,p

where θη,p is the angle of the momentum p measured relative
to the center of the Fermi pocket η. Defining as before

�ητ (p) = |�ητ (p)|ei�ητ (p), we find that in this regime the
Berry connection associated with the pocket η is

Aητ (p) = ∣∣U 1
ητ (p)

∣∣2∇θηp − |vητ (p)|2(∇�ητ (p) + ∇θηp).
(B13)

For the two TRS-breaking gaps given in Eq. (B6), we have
�ητ = 0 and −2θη, respectively.

To obtain the Chern number we insert these expressions
into (B13), and integrate over an annulus around each compo-
nent of the Fermi surface. To evaluate this integral, we assume
with no loss of generality that the gap function is constant
in some region around the FS, and completely vanishing in
regions sufficiently far from the FS, with a phase independent
of the radial direction p, and take |U 1

ητ (p)| to be independent
of p. Finally, observe that vητ changes rapidly from 0 to 1
in the vicinity of the Fermi surface. For the pocket η, we
therefore obtain

Chη = 1

2π

∫
[Fητ (p)]pθd p dθ = 1

2π

∫
∂p[Aητ (p)]θd p dθ,

(B14)

= 1

2π

{∫
[Aητ (p)]θdθ

}p=∞

p=0

= − 1

2π
[�ητ (p) + θη,p]2π

0

(B15)

where the integrals over θ and p are understood to be over the
tangential and normal directions in a disk including the Fermi
surface of the η pocket, respectively. This gives a net Chern
number of ±6, with a total contribution of ±4 from the ±K
pockets, and of ±2 from the � pocket.

We emphasize that this result is independent of the choice
of �ητ away from the Fermi surface. This is because only
the region proximate to the Fermi surface contributes to the
integral in Eq. (B7). To see this, notice that any two choices
of the superconducting gap away from the Fermi surface must
yield the same result, as a topological phase transition requires
band touching that can only occur when ξSητ and �ητ are
simultaneously zero in Eq. (48) (as can be directly verified by
constructing a simple homotopy between Hamiltonians with
any two such choices).

APPENDIX C: TIGHT-BINDING MODEL ON A CYLINDER

To study the edge modes in more detail and produce the
plot in Fig. 6 we used a tight-binding model defined on the
triangular lattice. The Hamiltonian has the general form

H = H0 + HZ + HSC. (C1)

The first term describes the normal-state band structure in the
presence of SOC; the second-term is the Zeeman coupling
due to in-plane magnetic field; and the last term represents
the superconducting pairing gap. For simplicity we use a
tight-binding model that only includes the η = � pocket
Fermi surface, since the ±K pockets are unimportant for the
crystalline nodal topological superconductor.

We describe our model in terms of the creation operators
d†

i,α , where α =↑,↓ is a spin index, and i is a site index. We
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have

H0 =
∑

iα

μ d†
iαdiα +

∑
〈i j〉α

t d†
iαd jα

+
∑

〈i j〉αβ

[
4iλνi jσ

z
αβ + iαR

3
ẑ · (σ × ai j )αβ

]
d†

iαd jβ,

HZ =
∑
iαβ

(b · σ )αβd†
iαdiβ, (C2)

HSC = 1

2

∑
i jαβ

[�]i j
αβd†

iαd†
jβ + H.c.,

where ai j ∈ {±a1,±a2,±a3} is the vector from site i to
site j, and νi j = 1 (−1) if the vector is a1, −a2, a3

(−a1, a2, −a3). For our triangular lattice, a1 = (a, 0) and
a2 = a

2 (1,
√

3), a3 = a2 − a1 = a
2 (−1,

√
3). We consider the

singlet-instability regime, in the crystalline nodal topological
phase where b � αR. In this region the self-consistent solu-
tions of the gap equation obtained in a k · p model are well
approximated by

�i j = �tνi j (σ
x cos ϑ + σ y sin ϑ )iσ y + �siσ

y (C3)

where ϑ is the direction of the magnetic field, assuming
�s � �t (higher lattice harmonics are in general needed to
match the k · p model exactly). The numerical coefficients are
chosen to match the k · p Hamiltonian (including the value of
pF ).

Our cylinder is created by taking periodic boundary condi-
tions in the vertical y direction, and open zig-zag boundary

conditions along the x direction. To produce the plot, we
Fourier transform in the y direction:

dRiα = 1√
N

∑
py

dRix pyαe−ipyRiy ≡ 1√
N

∑
py

dipyαe−ipyRiy (C4)

where Ri = (Rix, Riy). Note that i labels the x coordinates of
the sites which go in increments of a/2, while the period along
the y axis is actually doubled since identical sites are now
separated by 2a2, resulting in the folding of the 1D Brillouin
zone (which has a period of 2π√

3a
).

The resulting BdG Hamiltonian on the cylinder can be
expressed

HBdG = 1

2

∑
i j,py

�
†
i,py

Hi j (py)� j,−py (C5)

where �i,py = (di,py↑, di,py↓, d†
i,−py↑, d†

i,−py↓) and

Hi j (py) =
(

Hi j
kin(py) �i j (py)

−[�i j (−py)]∗ −[
HT

kin(−py)
] ji

)
(C6)

where we have defined

H0 + HZ =
∑
i jαβ

[Hkin(py)]i j
αβd†

ipyα
d j pyβ. (C7)

In Fig. 6 we plot the spectrum of (C6) with the number
of sites along the nonperiodic x direction N = 300 (which
corresponds to 150 unit cells due to period doubling). We also
set t = 1, μ = 0, βI = 1, λ = 0.2, b = 1, αR = 0.1, �t = 1,
and �s = 0.1. The magnetic field was again aligned along one
of the �-K directions, ϑ = 0.
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