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The spin-1/2 Heisenberg chain with a ferromagnetic first-neighbor exchange coupling J1 and an antiferro-
magnetic second-neighbor J2 has a Haldane dimer ground state with an extremely small spin gap. Thus the
ground state is readily altered by perturbations. Here, we investigate the effects of XXZ exchange magnetic
anisotropy of both the easy-axis and easy-plane types and an alternation in J1 on the ground state, the spin
gap, and magnetic properties of the frustrated ferromagnetic spin-1/2 chain. It is found that there are two
distinct dimerized spin-gap phases, in one of which the spin gap and the magnetic susceptibility are extremely
small around the SU(2) symmetric case and in the other they are moderately large far away from the SU(2)
symmetric case. A small alternation in the amplitude of J1 rapidly shortens the pitch of spin correlations towards
the four-spin periodicity, as in the limit of J1/J2 → 0. These effects are not sufficient to quantitatively explain
overall experimentally observed magnetic properties in the quasi-one-dimensional spin-gapped magnetoelectric
cuprate Rb2Cu2Mo3O12 that exhibits ferroelectricity stabilized by a magnetic field. Our results are also relevant
to Cs2Cu2Mo3O12, where the ferromagnetic intrachain and antiferromagnetic interchain order has recently been
found, in a single chain level. We also reveal the nature of symmetry-protected topological phase transitions in
the model by mapping onto effective spin-1 chain models.

DOI: 10.1103/PhysRevB.101.224439

I. INTRODUCTION

The frustrated spin-1/2 XXZ chain with a ferromagnetic
first-neighbor exchange coupling J1 < 0 and an antiferromag-
netic second-neighbor exchange coupling J2 > 0 has attracted
considerable interest both for realizing nontrivial phases, in-
cluding the vector-spin-chirality ordered phase [1] and the
Haldane dimer phase [2], and for the relevance to quasi-one-
dimensional edge-sharing multiferroic cuprates [1], such as
A2Cu2Mo3O12 (A=Rb, Cs) [3–8], LiCu2O2 [9–12], SrCuO2

[13], LiCuVO4 [14–18], LiCuSbO4 [19], Li2CuZrO4 [20], and
PbCuSO4(OH)2 [21,22]. The Hamiltonian is given by

HXXZ =
∑

n=1,2

Jn

∑
j

∑
α=x,y,z

�αSα
j Sα

j+n,

�x = �y = �xy, (1)

with the spin-1/2 operator Si at the site i.
The model has been studied intensively and extensively

in the Heisenberg (�xy = �z = 1) [2,23–32] and easy-plane
(�xy = 1 and 0 < �z < 1) cases [1,2,24,33–38]. For J1/J2 �
−4, the ground state belongs to a Tomonaga-Luttinger liquid
(TLL) phase with a quasi-long-range ferromagnetic order
[24]. For J1/J2 � −4, on the other hand, the model exhibits
various phases, depending on �z. The ground state belongs to
the Haldane dimer phase [2], which has been labeled as the D+
phase [39], around the SU(2)-symmetric case. The subscript

+ or − denotes the relative sign of the xy and z components
of the dimer order parameters and is opposite to the parity
eigenvalue of the ground state [39]. The spin gap in this D+
phase is orders of magnitude smaller [1,2,26,31,32] than in
another D+ phase realized for antiferromagnetic J1 [32,40–
46]. With increasing easy-plane exchange anisotropy, namely,
decreasing �z from unity, a gapless vector-chiral (VC) phase
appears robustly [1]. In practice, these states are susceptible
to other weak perturbations. For instance, an infinitesimally
small alternation δ in the amplitude of J1, as described by

HδXXZ = J1δ
∑

j

(−1) j−1
∑

α

�αSα
j Sα

j+1, (2)

replaces the gapless VC phase with two topologically distinct
vector-chiral dimer (VCD+ and VCD−) phases separated by
a gapless VC phase boundary [39,47]. Unfrustrated three-
dimensional interchain interactions readily leads to a long-
range spiral magnetic order, as is the case in multiferroic
cuprates [1,9,10,14–16,21,22]. With a further decrease in �z,
there appears another dimer (D−) phase, which can have a
larger spin gap than in the D+ phase. The coexistent phases,
i.e., the VCD+ and VCD− phases, survive in narrow regions
even for δ = 0 [1,2]. For more details, see Ref. [2] in the case
of δ = 0 and Refs. [39,47] in the case of δ �= 0.

In contrast to the easy-plane case, the global phase diagram
of the Hamiltonian Eq. (1) in the easy-axis (0 < �xy < 1
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and �z = 1) case has not been fully clarified yet. It has
been known that a fully polarized ferromagnetic phase (FPF)
appears when J1/J2 < −4 [23,24]. In the Ising limit �xy =
0, a first-order phase transition occurs at J1/J2 = −2 from
the FPF phase to an up-up-down-down (UUDD) (· · ·↑↑↓↓
· · · ) antiferromagnetic phase [48]. A weak inplane exchange
interaction, namely, �xy � 1, induces a partially polarized
ferromagnetic (PPF) TLL phase between the FPF and UUDD
phases [24,48]. Exact-diagonalization calculations [24] and
a bosonization analysis [2] have revealed that the leading
correlations in this PPF TLL phase are given by multimagnons
or multispinons, as in the associated Heisenberg model under
a magnetic field [49–51]. However, the phase diagram with
an intermediate region of �xy remains open both with and
without the bond alternation δ, and its clarification is one of
the two main goals of this paper.

Although the J1(< 0)-J2(> 0) spin-1/2 chain model
should certainly be relevant to quasi-one-dimensional edge-
sharing cuprates, quantitative comparisons are not necessarily
easy. In particular, since the spin gap is extremely small or
even vanishes near the SU(2)-symmetric case, as we have
mentioned above, various perturbations may critically alter
the ground state and/or excitations of the system. For in-
stance, recent experiments combined with theoretical stud-
ies [52] have indicated an emergent spin-1 Haldane gap in
the quasi-one-dimensional frustrated ferromagnetic spin-1/2
magnet Rb2Cu2Mo3O12 [3]. It has been argued that quantita-
tive explanations of magnetic properties of the compound de-
mand a two-leg ladder model comprising of antiferromagneti-
cally coupled J1-J2 frustrated spin-1/2 chains with moderately
large Dzyaloshinskii-Moriya interactions. Namely, the single
frustrated ferromagnetic chain should not be sufficient. It is
the other main goal of this paper to reveal the effects of various
perturbations within a single J1-J2 chain on experimentally
observable quantities. In particular, we investigate the effects
of easy-plane and easy-axis exchange magnetic anisotropy
and the bond alternation δ on the spin gap, the periodicity
of dominant spin correlations, and the uniform magnetic sus-
ceptibility. These results will be useful for direct comparisons
with experiments and indeed preclude single-chain scenarios
for Rb2Cu2Mo3O12.

The rest of the paper is organized as follows. In Sec. II,
we present the global phase diagram of the Hamiltonian H =
HXXZ + HδXXZ and the maps of the spin gap, the periodicity
of dominant spin correlations, and the uniform transverse
magnetic susceptibility. Our results are consistent with the
previous results in already known cases with both easy-plane
[1,2,39,47] and easy-axis anisotropy [23,24,48]. In Sec. III,
we examine in detail phase transitions in the case of easy-
axis anisotropy. In Sec. IV, analytical expressions of the
spin gap are derived for the FPF phase that appears with
easy-axis anisotropy and for the UUDD phase in the Ising
limit. We also introduce a mapping onto effective spin-1
XXZ chain models, starting from the strongly dimerized limit.
On the basis of this mapping, we elucidate the nature of
the symmetry protected topological (SPT) phase transition
of the Gaussian universality class between (VC)D± phases
and the continuous phase transition of the Ising universality
class between the UUDD phase and the D+ phase. Lastly, in
Sec. V, we provide discussion and the conclusions, precluding
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FIG. 1. (a) Ground-state phase diagram, (b) spin gap �G,
(c) wave number qmax of the maximum spin-spin correlation func-
tion, and (d) transverse magnetic susceptibility χ x of the bond-
alternated XXZ model, HXXZ + HδXXZ. Note that in the panel (a),
some symbols are overlapped with each other, forming straight lines.
Thin solid lines for phase boundaries in (a) are guides to the eye.
Black, green, and brown lines represent second-order, first-order,
and either second-order or weakly first-order phase transitions. (See
Sec. III.) In the hatched areas, our iTEBD calculations using up to
the matrix dimensions 300 did not converge. In the white regions
in the figure panel (b), the spin gap vanishes, i.e., �G = 0. In the
white line respecting the SU(2) symmetry, i.e., �xy = �z = 1, the
magnetic susceptibility vanishes, i.e., χ x = 0. In (d), χ x|hx→0 = ∞
in the TLL phase is depicted in pink color.

single-chain scenarios for Rb2Cu2Mo3O12. Possible relevance
to Cs2Cu2Mo3O12 is also discussed.

II. GLOBAL GROUND-STATE PHASE DIAGRAM AND
MAGNETIC PROPERTIES

Figure 1 presents the main results on the global phase
diagram, the spin gap �G, the wave number qmax of the
maximum spin-spin correlation, and the transverse magnetic
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TABLE I. Summary of ground state properties for eleven phases of the Hamiltonian HXXZ + HδXXZ; fully polarized ferromagnetic (FPF),
partially polarized ferromagnetic (PPF), Néel (N), up-up-down-down (UUDD), dimer D±, Tomonaga-Luttinger liquid (TLL), gapless vector-
chiral (VC), VC dimer (VCD±), and VC Néel (VCN) phases. Five order parameters (M, ON , Ouudd, D, κ), the spin gap (�G), the wave number
(qmax) of the maximum spin correlation functions, the dominant component α of the maximum spin correlation functions, and the transverse
magnetic susceptibility χ x are defined in the text. C/IC represents commensurate/incommensurate. Values of �G/J2 and J2χ

x refer to the
cases of δ = 0.

Phase M ON Ouudd D = DxDz κ �G/J2 qmax α J2χ
x

FPF 1/2 0 0 0 0 �−�z(J1/J2 + 1) 0 z �0.2
PPF (0, 1/2) 0 0 0 (δ = 0) 0 0 0 z �0.2

Finite (δ > 0)
N 0 Finite 0 0 (δ = 0) 0 <0.03 π z �10

Finite (δ > 0)
UUDD 0 0 Finite Finite 0 ��z π/2 z �0.2
D+ 0 0 0 D > 0 0 <0.03 C/IC z (�xy < �z = 1) � 0.1

x, y (�z < �xy = 1)
D− 0 0 0 D < 0 0 <0.03 (�xy < �z = 1) C/IC z �0.1

� 0.7 (�z < �xy = 1) x, y �0.3
gapless VC 0 0 0 0 Finite 0 IC x, y �0.1
TLL 0 0 0 0 0 0 0 x, y ∞
VCD+ 0 0 0 D > 0 Finite <0.03 IC x, y �0.1
VCD− 0 0 0 D < 0 Finite <0.03 IC x, y �0.7
VCN 0 Finite 0 0 Finite <0.03 π z �3

susceptibility χ x for the Hamiltonian H = HXXZ + HδXXZ.
The physical quantities except the spin gap are computed by
the infinite-time evolving block decimation (iTEBD) method
[53]. In iTEBD, we start from random complex matrix-
product states (MPSs) [54–57] with the 4-site period, in which
the spatial pattern of order parameters discussed later can be
embedded, and adopt the same Suzuki-Trotter decomposition
[58,59] as in Ref. [1]. The bond dimensions χ of the MPS
are taken up to 300, and the step size of imaginary time in
Suzuki-Trotter decomposition is taken to be δτ = 0.008/J2.
(See Appendices A and B for numerical details of iTEBD.)
The spin gap is calculated by means of the infinite-size density
matrix renormalization group (iDMRG) [60–62] with χ up to
800, and we employ the procedure given in Ref. [32]. (See
Appendix C.) Properties of each phase are summarized in
Table I and will be explained below.

A. Fully polarized ferromagnetic (FPF) phase

The FPF phase [48] has the unique order parameter of the
uniform magnetization

M = 1

L

〈
Sz

T

〉
, Sz

T =
∑

j

Sz
j, (3)

which is pinned to 1/2, where 〈· · · 〉 denotes the ground-state
expectation value with L being the total number of sites.
As we will show in Sec. IV B, the FPF phase emerges for
J1/J2 < 2/(1 − δ) in the Ising limit �xy = 0 (�z = 1). The
lower bound of |J1/J2| for the FPF phase monotonically
increases with increasing �xy for δ = 0, 0.02, 0.1, and 0.2,
and reaches J1/J2 = −2[(1 + δ)/(1 − δ) + 1] at �xy = �z =
1 [31]. Early studies [23,24,48] have shown that the instability
of the FPF state occurs towards multi-magnon bound states,
and that the number of magnons forming the bound state
increases with increasing �xy.

In the FPF phase, the spin gap �G is given by the energy
difference between the lowest-energy states with Sz

T = L
2 and

L
2 − 1. As we will show in Sec. IV A, the analytic form of �G

near �xy = 0 is given by �z|J2|(1 + J1/J2) in the Ising limit
and gradually decreases with increasing �xy. The value of the
wave number kinc of this first-excited state with Sz

T = L
2 − 1

depends on J1/J2 as |kinc| = cos−1 [ J2
1

8J2
2

(1 − δ2) − 1+δ2

1−δ2 ] for

δ2 � 1 and −1 <
J2

1

8J2
2

(1 − δ2) − 1+δ2

1−δ2 < 1, as will be derived
in Sec. IV A.

The wave number qmax at which the spin-spin correlation

Sα (q) = 1

L

∑
j,n

e−inq
〈
Sα

j Sα
j+n

〉
(4)

shows the maximum among α = x, y, z, trivially vanishes,
namely, qmax = 0, because of the emergence of the uniform
magnetization.

We compute the ground-state transverse magnetic suscep-
tibility χ x from

χ x =
〈
Sx

T

〉
Lhx

(5)

with the transverse magnetic field hx = 0.001J2. It de-
creases with decreasing �xy in this phase. Nevertheless,
it remains as large as 0.37 for δ = 0, 0.02, 0.1, and 0.2
with (J1/J2,�

xy) = (−3.28, 0.4), as confirmed numerically
[Fig. 1(d)]. In the limit of J2 = �xy = δ = 0, the Hamiltonian
is equivalent to one-dimensional ferromagnetic Ising chain,
then the zero-field susceptibility of the transverse Ising chain
χ x = limhx→0

〈Sx
T〉

Lhx can be obtained exactly as J2χ
x = 0.5

[63–65].

B. Partially polarized ferromagnetic (PPF) phase

In the PPF phase [23], the magnetization continuously
changes within 0 < M < 1/2 as a function of J1/J2 and �xy.
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This phase is described as a single channel TLL and thus has
no spin gap. The bosonaization analysis [2] reveals that the
transverse spin correlation function 〈S+

j S−
j′ 〉 decays exponen-

tially with respect to the distance, and the longitudinal spin
correlation function 〈Sz

jS
z
j′ 〉 and the bond nematic correlation

[49,50] 〈S+
j S+

j+1S−
j′ S

−
j′+1〉 show power-low decays.

The dimer order parameter

Dα = 1

L

∑
j

(−1) j−1
〈
Sα

j Sα
j+1

〉
, (6)

vanishes for δ = 0 [2], as also confirmed by our numerical
calculations. Once we introduce δ > 0, M and Dα may appear
simultaneously, because the finite δ introduces relevant cosine
terms of bosonic fields into the Hamiltonian [2] and can shift
the field-locking positions. As shown in Fig. 1(a), the area
of PPF phase is strongly suppressed by increasing the bond
alternation δ because the UUDD state has a large energy
gain with respect to δ, as we will show in Secs. IV B and
IV C. The PPF phase has qmax = 0, as in the FPF phase. It
also has a moderately transverse magnetic susceptibility, for
instance, J2χ

x = 0.26, 0.26, 0.42, 0.63 for (J1/J2,�
xy, δ) =

(−1.84, 0.35, 0), (−2.02, 0.35, 0.02), (−2.56, 0.6, 0.1), and
(−2.92, 0.65, 0.2), respectively [Fig. 1(d)].

C. Up-up-down-down (UUDD) phase

The order parameter Ouudd characterizing the UUDD phase
is defined by

Ouudd = 1

2L

∑
j

(−1) j−1
〈
Sz

2 j−1 + Sz
2 j

〉
. (7)

For �xy = 0, the UUDD phase emerges for J1/J2 >

2/(1 − δ), as this criterion is an extension of the known results
for δ = 0 [48]. (See Sec. IV B.) It has been known that solitons
(domain walls) form propagating modes having the lowest
excitation energy in the UUDD state for �xy � 1 in the case
of δ = 0 [48]. A large spin gap �G exists between the ground
state with Sz

T = 0 and the lowest energy with Sz
T = 1 in the

UUDD phase, (see Sec. IV B) and is enhanced by increasing
δ, as numerically confirmed in Figs. 1(a) and 1(b). The qmax

becomes π/2 to reflect the four-site periodicity of Ouudd.
The transverse magnetic susceptibility χ x in the UUDD is as
large as J2χ

x = 0.38, 0.29, 0.31, 0.32 for (J1/J2,�
xy, δ) =

(−0.76, 0.2, 0), (−0.76, 0.4, 0.02), (−1.12, 0.4, 0.1), and
(−1.3, 0.4, 0.2), respectively.

D. Haldane-dimer (D+) phase

The D+ phase is characterized by (Dx + Dy)Dz > 0, and
does not have any local magnetic order. In this phase, effective
spin-1 degrees of freedom emerge on the bonds with stronger
ferromagnetic correlation, forming a valence bond solid state
[66] as in the spin S = 1 Heisenberg chain [67,68]. The
pattern of the dimer and thus the stronger ferromagnetic bonds
has the twofold degeneracy when δ = 0, but is fixed by finite
δ that breaks the one-site translational symmetry and doubles
the unit cell. In particular, the weaker ferromagnetic bonds are
entangled. This phase appears around the SU(2) symmetric
case, as shown in Fig. 1(a). It is robust against the XXZ

anisotropy �xy �= �z and the bond alternation δ, because of
the Z2 × Z2, time-reversal, and bond-center inversion symme-
tries protecting the topological property of the D+ phase [39].

The phase diagram and the spin gap �G in the SU(2)-
symmetric case (�xy = �z) have been studied in detail
[2,26,31,32]: �G is extremely small for δ = 0 and monoton-
ically increases with increasing |δ|, and the first-order phase
transition occurs between the TLL and D+ phases at J1/J2 =
−2[(1 + δ)/(1 − δ) + 1].

The wave number qmax of the maximum spin correlation
can be incommensurate in the D+ phase and evolves from
zero towards π/4 with decreasing |J1/J2| and increasing δ

[Fig. 1(c)]. It is notable that the transverse susceptibility is
tiny only in the D+ phase, as shown in Fig. 1(d), and it merely
amounts to J2χ

x = 7.9 × 10−2 at most for the parameter line
of (J1/J2, δ) = (−2.2, 0), because the ground state is adia-
batically connected to that in the SU(2) case where χ x = 0,
without closing the spin gap.

E. Even-parity dimer (D−) phase

The D− phase [1,2,24,33,38,69] is characterized by (Dx +
Dy)Dz < 0, and also does not have any local magnetic order.
This phase shares the same topological properties with the
D+ phase, except that the stronger ferromagnetic bonds are
entangled. As in the case of the D+ phase, the doubly degen-
erated ground states emerge in the D− phases for δ = 0, and
the degeneracy is lifted for δ �= 0. This phase appears on both
the easy-plane and easy-axis sides.

Let us start with the easy-plane side (�xy = 1,�z < 1).
It has already been shown that the D− phase appears in a
rather large region, typically �z � 0.6 [1]. While this phase
appears in −3 � J1/J2 � −1 in the case of δ = 0, it expands
appreciably and occupies a large portion of the phase diagram
in the case of δ �= 0. [See Fig. 1(a).] Deeply inside the D−
phase, the spin gap �G and the transverse magnetic suscepti-
bility χ x increase up to 0.4J2 and 0.72/J2 for (J1/J2,�

z, δ) =
(−1.66, 0, 0) and up to 1.4J2 and 0.88/J2 for (J1/J2,�

z, δ) =
(−4, 0, 0.2), respectively. Thus the ground state can show a
large magnetization by applying a small transverse magnetic
field.

Now we turn to the easy-axis side (�xy = 1,�z < 1).
Actually, the presence of the D− phase has for the first time
been uncovered in the easy-axis case. As shown in Fig. 1,
it appears in a narrow region surrounded by the PPF phase,
the D+ phase, and the UUDD phase. With increasing |δ|, the
region quickly narrows. The spin gap �G is not larger than
0.03J2, since the phase is rather narrow and sandwiched by
a gapless PPF phase and a critical phase boundary with the
D+ phase [Fig. 1(a)]. Although the spin gap can be small
as in the D+ phase, the transverse magnetic susceptibility
J2χ

x is typically an order of magnitude larger [∼0.2 for
(J1/J2,�

xy, δ) = (−2.2, 0.75, 0)] than in the D+ phase.
Namely, on both the easy-plane and easy-axis sides, in gen-

eral, the observation on the transverse magnetic susceptibility
provides a key to discriminate the D− phase from the D+
phase in experimental observations.

On both the easy-plane and easy-axis sides, the behavior
of the wave number qmax of the maximum spin correlation is
similar to that in the D+ phase: it can be incommensurate and

224439-4



ROLES OF EASY-PLANE AND EASY-AXIS XXZ … PHYSICAL REVIEW B 101, 224439 (2020)

evolves from zero towards π/4 with decreasing |J1/J2| and
increasing δ [Fig. 1(c)].

F. Gapless vector-chiral (VC) phase

The gapless VC phase is characterized by a long-range
order of the uniform vector-chirality [70]

κ = 1

L

∑
j

〈[S j × S j+1]z〉. (8)

and a single-channel TLL showing a quasi-long-range inplane
spiral spin correlation [45]. This phase occupies a wide region
of the phase diagram with easy-plane anisotropy (�xy =
1,�z < 1) in the case of δ = 0 [Fig. 1(a)] [1,2]. Then, the
gapless VC phase is immediately replaced with (vector-chiral)
dimer phases by introducing nonzero δ [39,47]. The wave
number qmax of the maximum spin correlations evolves from
∼0.7 to π/2 for �z = 0.85 as |J1|/J2 decreases [1,2], as
shown in Fig. 1(c). Reflecting the gapless nature, this phase
shows a large transverse magnetic susceptibility up to J2χ

x =
2.0 for (J1/J2,�

z ) = (−3.28, 0.85).

G. Vector-chiral dimer (VCD±) phases

The VCD± phases have the relative sign ± of the dimer
order parameters Dx and Dz. They appear as coexistent phases
of the vector-chirality order and the dimer order on the easy-
plane side [1,2,39,47]. In the case of δ = 0, they are restricted
to narrow regions sandwiched by the gapless VC phase and
the D± phases. Turning on finite δ �= 0 immediately replaces
the gapless VC phase with the VCD± phases, except at the
boundary of the VCD± phases. Then, with increasing δ, the
areas of the VCD± phases gradually decrease. Behaviors of
�G, qmax, and χ x in the VCD± phases are similar to those in
the D± phases, except that J2χ

x in the VCD+ phase can be
slightly larger (�0.1) than in the D+ phase.

H. Tomonaga-Luttinger liquid (TLL) phase

The TLL phase in the case of easy-plane anisotropy with
δ = 0 [Fig. 1(a)] has already been investigated intensively
[1,2,24,33,35,36,69] and does not have any long-range order,
for instance, of M, Dα , Ouudd, κ , and ON , but shows a quasi-
long-range transverse ferromagnetic order and has gapless
excitations [Fig. 1(b)]. The maximum peak position qmax is
always zero, as shown in Fig. 1(c). Reflecting the quasi-long-
range order, the transverse magnetic susceptibility χ x diverges
[Fig. 1(d)]. This TLL phase is immediately replaced with
dimer phases by introducing finite δ.

I. Néel (N) phase

The N phase [37] is characterized by the staggered magne-
tization

ON = 1

L

∑
j

(−1) j−1
〈
Sz

j

〉
. (9)

The spin gap �G is small and not larger than 0.03J2, since
the phase is narrow and surrounded by the gapless VC phase,
the TLL phase, and the D− phase [Fig. 1(a)]. This phase
has a large transverse magnetic susceptibility up to 2 × 102

for (J1/J2,�
z ) = (−3.64, 0.85). Because of the Néel order,

the maximum spin correlation occurs at qmax = π in the z
component of spins, while the short-range spin correlations
in the xy component change from commensurate (q = 0) to
incommensurate (q > 0) inside this phase [37,71,72]. This N
phase is replaced with the (chiral) dimer (VC)D± phases by
finite δ, as is clear from Fig. 1(a).

J. Vector-chiral Neel (VCN) phase

From the bosonization analysis and numerical calculations
in Refs. [2,47], the vector-chirality order and the Néel order
can emerge simultaneously near the phase boundary among
VC, N, D±, and the TLL phases. This VCN phase has an
extremely small spin gap �G < 0.03J2 and a commensurate
pitch of qmax = π [Figs. 1(b) and 1(c)]. The behavior of χ x in
the VCN phase is similar to that in the Néel phase [Fig. 1(d)].
We did not observe the VCN phase for δ � 0.02.

III. PHASE TRANSITIONS ON THE EASY-AXIS SIDE

This section is devoted to a numerically precise deter-
mination of phase boundaries in the phase diagrams on
the easy-axis side [see upper panels of Fig. 1(a) and to
a clarification of the nature of the phase transitions. For
this purpose, we performed iTEBD [53] and/or iDMRG
[62] calculations along several typical vertical and horizontal
lines in the phase diagrams. In Fig. 2, the results of rele-
vant order parameters are shown as functions of J1/J2 for
(�xy, δ) = (0.1, 0) [Fig. 2(a)], (0.5,0) [Fig. 2(b)], (0.45,0.02)
[Fig. 2(c)], (0.8,0.02) [Fig. 2(d)], (0.35,0.1) [Fig. 2(e)],
(0.7,0.1) [Fig. 2(f)], (0.4,0.2) [Fig. 2(g)], and (0.75,0.2)
[Fig. 2(h)]. In Fig. 3, they are shown as functions of
�xy for (J1/J2, δ) = (−2.56, 0.1) [Fig. 3(a)] and (−1.3, 0.2)
[Fig. 3(b)]. In the following, we will explain the results
separately for each of the phase transitions.

A. FPF-UUDD transition

It has already been known that a first-order phase transition
occurs at J1/J2 = −2 between the FPF and UUDD phases in
the case of �xy = δ = 0 [48]. The δ dependence of the FPF–
UUDD phase transition point is exactly obtained in the Ising
limit as

J1

J2
= − 2

1 − |δ| for 0 � |δ| � 1, (10)

from a crossing of the energy levels of the FPF state
(· · · ↑↑↑↑ · · · ) and the UUDD state (· · · ↑↑↓↓ · · · ), as we
will explain in detail in Sec. IV B. Equation (10) indicates that
with an increase in the bond alternation |δ|, the UUDD phase
expands while the FPF phase narrows. On the basis of our
numerical results shown in the upper panels of Fig. 1(a), this
first-order phase transition is likely to survive a finite but small
transverse interaction up to �xy ∼ O(δ), though massive cal-
culations are required for confirming the conjecture. With
further increasing �xy within �xy � 1, the direct FPF–UUDD
phase transition disappears and the FPF and UUDD phases are
intervened by the PPF phase.
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FIG. 2. Order parameters (M : ©, Ouudd : , (Dx + Dy )Dz : ) as functions of J1/J2 for �z = 1. Parameter sets (�xy, δ) for (a)–(h) are
shown at the left top of each panels. The regions filled in dirk gray, light gray, red, blue, and yellow colors correspond to the FPF, PPF, D+,
D−, and UUDD phases, respectively.

B. FPF-PPF transition

Phase transitions between the FPF and PPF phases are
observed from a change in the magnetization M in all the
panels of Figs. 2 and in 3(a). In the case of δ = 0, this
transition has been described as a continuous phase transition
associated with the condensation of bound multimagnons
[2,23,24,48]. This mechanism also holds when δ �= 0. Note
also that a similar mechanism holds in the spin S = 1/2 XXZ
model around the saturated magnetic field [49–51]. For δ = 0,
our results on the FPF–PPF transition line shown in the upper
leftmost panel of Fig. 1(a) is consistent with previous exact-
diagonalizaiton results [23,24].

C. PPF-UUDD transition

The PPF-UUDD phase transition [Figs. 2(a)–2(b)] is a
first-order phase transition. This is confirmed by the disconti-

nuity in the relevant order parameter Ouudd at the PPF-UUDD
transition, as shown in Fig. 2(a). As the PPF phase narrows
with an increase in |δ|, the direct PPF-UUDD phase transition
is also shortened. The D− phase eventually intervenes the PPF
and UUDD phases. [See the phase diagrams of Fig. 1(a).

D. PPF-D− transition

The PPF-D− phase transition [Figs. 2(c), 2(e)–2(h), and
3(a)] is also a first-order phase transition. This is confirmed
by the discontinuity of the magnetization M at the PPF-D−
transition, as shown in Fig. 3(a).

E. D−-UUDD transition

The D−-UUDD phase transition [Figs. 2(c), 2(e) and 2(g)]
emerges in the case of |δ| > 0. The UUDD order parameter
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FIG. 3. Order parameters (M : ©, Ouudd : , (Dx + Dy )Dz : )
and correlation length (ξ : ) as functions of �xy for �z = 1. A
magnified view of (Ouudd )8 around �xy = 0.92 is shown in the inset
of (b).

Ouudd rapidly drops towards the D−-UUDD phase transition
with either a second-order phase transition or a weakly first-
order. Note that the D− phase and the UUDD phase are cor-
responds to the large-D phase and Néel phase in an effective
S = 1 Hamiltonian for |δ| ∼ 1, as we will show in Sec. IV C.
The large-D–Néel phase transition in the effective model is
known as a first-order phase transition [73]. As long as the
analogy holds, this phase transition could be of the first order.

F. D+-UUDD transition

The mechanism of the D+-UUDD phase transition
[Figs. 2(d), 2(f) 2(h), and 3(b)] is also understood by the
analysis of the effective S = 1 Hamiltonian for |δ| ∼ 1 in
Sec. IV C. Actually, the D+-UUDD transition corresponds to
the Haldane–Néel transition [73] in the effective S = 1 Hamil-
tonian. Thus it could belong to the Ising universality class, as
long as the analogy holds. Indeed, the order parameter Ouudd

shows the Ising critical behavior (�xy
c − �xy)1/8, as shown in

the inset of Fig. 3(b).

G. D−-D+ transition

The D−-D+ phase transition [Figs. 2(f), 2(h) and 3(a)] has
the same mechanism as that on the easy-plane side, and is a
second-order phase transition [2,47]. This phase transition is
associated with the sign change of Dx = Dy (Dz) on the easy-
axis (-plane) side. A bosonization analysis is also available
[2,47]. At the transition, there is a critical divergence of the
correlation length of the matrix-product state (MPS), as shown
in Fig. 3(a). This points to a continuous phase transition. From
the analysis of an effective S = 1 Hamiltonian for |δ| ∼ 1, we
show in Sec. IV C that this D−–D+ phase transition belongs to

the Gaussian universality class, and is a canonical symmetry
protected topological (SPT) phase transition protected by the
time-reversal symmetry, bond-inversion symmetry, and Z2 ×
Z2 symmetry [74,75].

H. FPF-D+ transition

It has been reported that a first-order phase transition
occurs between the FPF phase and D+ phase at J1/J2 =
−2[(1 + δ)/(1 − δ) + 1] in the SU(2) limit [31]. At a glance
of Fig. 1(a), it is expected that this direct FPF-D+ phase
transition survives tiny easy-axis anisotropy, though more
intensive calculations are required for the confirmation. With
increasing �xy, this transition eventually bifurcates into the
FPF-D− and D−-D+ transitions.

IV. ANALYTIC SOLUTIONS

A. Spin gap in the FPF phase

Here, we assume that the number L of sites in the system is
even, L = 2n, when the bond alternation δ is finite. However,
the final results on the spin gap holds even when δ = 0 and L
is odd.

The FPF ground state for even L is written as

|F〉 = ⊗n
l=1| ↑↑〉. (11)

The ground state energy is given by

EF = 〈F|H |F〉 = n�z

2
(J1 + J2). (12)

The excited states specified by the z component
∑

i Sz =
n − 1 of the total spin and the wave number k ∈
{0, 2π/n, · · · , 2π (n − 1)/n} can be expressed as

|vk〉 =
∑
i=1,2

cik|vik〉, (13)

with coefficients cik satisfying
∑

i |cik|2 = 1, where

|v1k〉 = 1√
n

n−1∑
j=0

eik j T̂ 2 j | ↑↓〉 ⊗n−1
l=1 | ↑↑〉, (14)

|v2k〉 = 1√
n

n−1∑
j=0

eik j T̂ 2 j | ↓↑〉 ⊗n−1
l=1 | ↑↑〉, (15)

form a set of orthonormal bases. We have also introduced a
translation operator T̂ through

T̂ | ↑↓〉 ⊗n−1
l=1 | ↑↑〉 = | ↑↑〉 ⊗ | ↓↑〉 ⊗n−2

l=1 | ↑↑〉,
Since the Hamiltonian H commutes with T̂ 2, we obtain

H |v1k〉 = 1√
n

n−1∑
j=0

eik j T̂ 2 jH | ↑↓〉 ⊗n−1
l=1 | ↑↑〉, (16)

H | ↑↓〉 ⊗n−1
l=1 | ↑↑〉 = (N − 2)

�z(J1 + J2)

2
| ↑↓〉 ⊗n−1

l=1 | ↑↑〉

+J1�
xy(1 + δ)

2
| ↓↑〉 ⊗n−1

l=1 | ↑↑〉

+J1�
xy(1 − δ)

2
T̂ 2| ↓↑〉 ⊗n−1

l=1 | ↑↑〉

+J2�
xy

2
(T̂ 2 + T̂ −2)| ↑↓〉 ⊗n−1

l=1 | ↑↑〉.
(17)
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We can compute H |v2〉 in the same manner as Eqs. (16) and
(17), except that | ↑↓〉 and | ↓↑〉 are swapped and T̂ 2 in the
third line of Eq. (17) is replaced with T̂ −2.

Using Eqs. (16) and (17) as well as the relation
〈vi|T 2 j |vi′ 〉 = δi, je−k j for i, i′ = 1, 2, the matrix elements of
H − EF are obtained as

〈v1|H − EF|v1〉 = −�z(J1 + J2) + J2�
xy cos k, (18)

〈v2|H − EF|v1〉 = J1�
xy

2
(1 + δ + (1 − δ)e−ik ), (19)

〈v1|H − EF|v2〉 = 〈v2|H − EF|v1〉∗, (20)

〈v2|H − EF|v2〉 = 〈v1|H − EF|v1〉. (21)

This matrix has two eigenvalues

ε±,k = −�z(J1 + J2) + J2�
xy cos k

±
∣∣∣∣J1�

xy

2

∣∣∣∣√2(1 + δ2) + 2(1 − δ2) cos k. (22)

The spin gap �G can then be calculated as the lowest eigen-
value minkε−,k . In addition to two trivial local minima,

ε−,k=0 = −�z(J1 + J2) + J2�
xy − |J1�

xy|,
ε−,k=π = −�z(J1 + J2) − J2�

xy − |J1�
xyδ|, (23)

there may exist another local minimum at an incommensurate
wave number kinc in the thermodynamic limit. This solution
can be obtained by differentiating ε−,k with respect to k as

∂kE− = −J2�
xy sin k +

∣∣∣∣J1�
xy

2

∣∣∣∣(1 − δ2) sin k

×(2(1 + δ2) + 2(1 − δ2) cos k)−1/2, (24)

leading to

|kinc| = cos−1

[
J2

1

8J2
2

(1 − δ2) − 1 + δ2

1 − δ2

]
, (25)

ε−,±kinc = −�z(J1 + J2)

−J2�
xy 1 + δ2

1 − δ2
− J2

1 �xy

8J2
(1 − δ2), (26)

in the case of δ2 � 1 and −1 <
J2

1

8J2
2

(1 − δ2) − 1+δ2

1−δ2 < 1. The
result �G = min(ε−,0, ε−,π , ε−,±kinc ) is plotted in the FPF
phase of Fig. 1(b). In particular, for δ = 0, ε−,−kinc yeilds the
spin gap �G for −4 < J1/J2 < 2, while ε−,π for J1/J2 � −4.

B. Spin gap in the UUDD phase in the Ising limit

Here, we assume that the number L of sites in the system
is a multiple of 4, L = 4n, when the bond alternation δ is
positive. The UUDD state in the Ising limit is written as

|uudd〉 = ⊗n
l=1| ↑↑↓↓〉. (27)

The ground state energy under the periodic boundary condi-
tion reads

Euudd = 〈uudd|H |uudd〉
= n

J1�
z(2(1 + δ) − 2(1 − δ))

4
− 4n

J2�
z

4
= n�z(J1δ − J2). (28)

FIG. 4. Energy difference between the lowest energy E1 spec-
ified with Sz

T = 1 and the energy Euudd of up-up-down-down state
for �xy = 0 and �z = 1 under the periodic boundary condition.
Each vertical dotted line indicates the FPF-UUDD phase transition
points for each δ. The region A, B, and C are J1/J2 > −1/(1 −
δ), −2/(1 − δ) < J1/J2 < −1/(1 − δ), and J1/J2 < −2/(1 − δ), re-
spectively. The UUDD state is a ground state in the region A and B,
and the FPF state is a ground state in the region C.

In the case of J1/J2 > −1 and δ = 0, the lowest ex-
cited states within the Sz

T = 1 manifold are expressed as
{T̂ j |σ a

r 〉}0� j<4n
0�r<n with∣∣σ a

r

〉 = | ↑↑↓〉 ⊗r
l=1 | ↑↑↓↓〉 ⊗ | ↑〉 ⊗n−r−1

l ′=1 | ↑↑↓↓〉, (29)

where T̂ j is the operator that translated the spins by j sites.
Then, the spin gap �G is given by

�G = 〈
σ a

r

∣∣H − Euudd

∣∣σ a
r

〉 = J2�
z . (30)

On the other hand, in the case of −2 < J1/J2 < −1 and
δ = 0, the lowest excited states within the Sz

T = 1 manifold
are given by {T̂ j |σ b

uvw〉}, where∣∣σ b
uvw

〉 = | ↑↑↓↓↓〉 ⊗u
l=1 | ↑↑↓↓〉 ⊗ | ↑〉 ⊗v

l ′=1 | ↑↑↓↓〉
⊗| ↑〉 ⊗w

l ′′=1 | ↑↑↓↓〉 ⊗ | ↑〉 ⊗n−2−(u+v+w)
l ′′′=1 | ↑↑↓↓〉 (31)

with u � 0 ∧ v � 0 ∧ w � 0 ∧ u + v + w � n − 2. Then,
the spin gap is given by

�G = 〈
σ b

uvw

∣∣H − Euudd

∣∣σ b
uvw

〉 = 2J2�
z + J1�

z . (32)

Turning on the positive δ, the degeneracy of the two
manifolds {T̂ j |σ a

r 〉} and {T̂ j |σ b
uvw〉} is lifted. Then, the lowest-

energy states within the Sz
T = 1 manifold are given by

{T̂ 2k|sa
〉}0�k<2n

∈{0,1} for J1/J2 > −1/(1 − δ) (region A in Fig. 4)
with ∣∣sa

0

〉 = | ↑↑↓↑〉 ⊗n−1
l=1 | ↑↑↓↓〉, (33)∣∣sa

1

〉 = | ↑↑↑↓〉 ⊗n−1
l=1 | ↑↑↓↓〉, (34)

and {T̂ 2k|sb
p〉}0�k<2n

∈{0,1},0�p<n−1 for −2/(1 − δ) < J1/J2 <

−1/(1 − δ) (region B in Fig. 4) with∣∣sb
0p

〉 = | ↑↑↓↓↓↑〉 ⊗p
l=1 | ↑↑↓↓〉 ⊗ | ↑↑〉 ⊗n−2−p

l ′=1 | ↑↑↓↓〉,
(35)∣∣sb

1p

〉 = | ↑↑↑↓↓↓〉 ⊗p
l=1 | ↑↑↓↓〉 ⊗ | ↑↑〉 ⊗n−2−p

l ′=1 | ↑↑↓↓〉,
(36)
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respectively. Then, the spin gap is given by

�G =
{

J2�
z − J1δ�

z [ J1
J2

> − 1
1−δ

]
2J2�

z + J1(1 − 2δ)�z [− 2
1−δ

< J1
J2

< − 1
1−δ

]
.

(37)
Thus the effect of finite δ introduces a nonmonotonic behavior
of the spin gap with respect to J1/J2, and the result of �G is
plotted in Fig. 1(b).

C. Effective Hamiltonian in the strongly dimerized case

Here, to understand the nature of the phase transitions
among the UUDD phase, D± phase and VCD± phases, we
consider a mapping to an effective Hamiltonian in the strongly
dimerized limit of (1 − |δ|) � J2/|J1| � (1 + |δ|). The fol-
lowing analysis holds in the strongly dimerized case, i.e.,
|δ| → 1, but the nature of the mapping and the associated
phases and transitions should also hold for weakly dimerized
case as long as the phases are adiabatically connected from
strong to weakly dimerized regimes.

In the strongly dimerized limit, it is reasonable to perform
the following projection onto the effective (vector-chiral)
spin-1 degree of freedom formed on the strong nearest-
neighbor ferromagnetic bond:

pθ = | ↑↑〉〈↑↑ | + |0, θ〉〈0, θ | + | ↓↓〉〈↓↓ | (38)

with |0, θ〉 ≡ (e−iθ/2| ↑↓〉 + eiθ/2| ↓↑〉)/
√

2, which possess
the local vector chirality,

〈0, θ |(Sx ⊗ Sy − Sy ⊗ Sx )|0, θ〉 = − 1
2 sin θ, (39)

where θ is a parameter describing the ground state, and is 0
in the D± and UUDD phases while nonzero (0 < |θ | � π/2)
in the VCD± phases. Then, pairs of spin-1/2 operators are
projected onto effective spin-1 operators as

pθ (Sx ⊗ Sx + Sy ⊗ Sy)p†
θ = 1

2
(1 − (sz )2) cos θ, (40)

pθ (Sz ⊗ Sz )p†
θ = 1

2
(sz )2 − 1

4
, (41)

pθ (1l ⊗ Sx )p†
θ = 1

2

(
sx cos

θ

2
+ sy sin

θ

2

)
, (42)

pθ (1l ⊗ Sy)p†
θ = 1

2

(
−sx sin

θ

2
+ sy cos

θ

2

)
, (43)

pθ (1l ⊗ Sz )p†
θ = 1

2
sz, (44)

pθ (Sx ⊗ 1l)p†
θ = 1

2

(
sx cos

θ

2
− sy sin

θ

2

)
, (45)

pθ (Sy ⊗ 1l)p†
θ = 1

2

(
sx sin

θ

2
+ sy cos

θ

2

)
, (46)

pθ (Sz ⊗ 1l)p†
θ = 1

2
sz. (47)

Using the relations given in Eqs. (41)–(47), the effective spin-
1 Hamiltonian Hθ = PθHP†

θ with Pθ ≡ ⊗i pθ is obtained as

Hθ =
∑

j

Jxy
θ

(
sx

js
x
j+1 + sy

js
y
j+1

) + Jz
θ sz

js
z
j+1

+ dθ

(
sx

js
y
j+1 − sy

js
x
j+1

) + Dθ

(
sz

j

)2 + Cθ (48)

with

Jxy
θ = �xy

4
(J1(1 − |δ|) cos θ + 2J2), (49)

Jz
θ = �z

4
(J1(1 − |δ|) + 2J2), (50)

dθ = −�xy

4
J1(1 + |δ|) sin θ, (51)

Dθ = J1(1 + |δ|)�
z − �xy cos θ

2
, (52)

Cθ = J1(1 + |δ|)2�xy cos θ − �z

4
. (53)

The Dzyaloshinskii-Moriya interaction term with the coupling
constant dθ can be gauged away from the Hamiltonian (48) by
considering the following spin axes rotations:

sx
j → s̃x

j = sx
j cos θ j + sy

j sin θ j,

sy
j → s̃y

j = −sx
j sin θ j + sy

j cos θ j,

sz
j → s̃z

j = sz
j, (54)

with

θ j = ( j − 1)ϕ, tan ϕ = dθ /Jxy
θ . (55)

Then, the Hamiltonian (48) is reduced to the effective spin-1
Hamiltonian H̃θ , which is equivalent to the S = 1 XXZ chain
with the single-ion anisotropy,

H̃θ =
∑

j

J̃xy
θ

(
s̃x

j s̃
x
j+1 + s̃y

j s̃
y
j+1

) + Jz
θ s̃z

j s̃
z
j+1

+ Dθ

(
s̃z

j

)2 + Cθ (56)

with

J̃xy
θ = sgn

(
Jxy
θ

)√(
Jxy
θ

)2 + d2
θ . (57)

The global phase diagram of H̃θ for J̃xy > 0 has already
been investigated by the numerical exact diagonalization with
finite-size scaling analyses [73]. It contains the Néel, Hal-
dane, and large-D phases for J̃xy

θ > 0 ∧ Jz
θ > 0. These phases

corresponds to the UUDD, D+ (VCD+) and D− (VCD−)
phases for θ = 0 (θ > 0), respectively, in the original spin-1/2
Hamiltonian H . Then, it is reported that the Haldane-Néel
phase transition and the Haldane-large-D phase transition
are continuous phase transitions that belong to the Ising
universality class (the central charge c = 1/2) and to the
Gaussian universality class (c = 1), respectively [73]. Indeed,
our current numerical finding on the Ising universality class
for the D+-UUDD phase transition on the easy-axis side of
the original spin-1/2 HamiltonianH [Sec. III F agrees with
that of the Haldane-Néel phase transition for H̃θ with θ = 0.
Furthermore, our previous numerical finding on the Gaussian
universality class for the VCD+–VCD− phase transition in the
easy-plane side of H [39] can also be elucidated from that
of the Haldane-large-D phase transition for H̃θ with finite θ .
The D+-D− phase transition that most likely appears for small
|J1/J2| in the case of large |δ| in the spin-1/2 Hamiltonian
H with the easy-plane anisotropy should also belong to the
Gaussian universality class from the analogy to the Haldane–
large-D phase transition for H̃θ with θ = 0.
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V. DISCUSSION AND CONCLUSIONS

We have investigated the ground-state properties and the
spin gap of the spin-1/2 frustrated spin XXZ chain with
the ferromagnetic first-neighbor coupling J1 and the anti-
ferromagnetic second-neighbor coupling J2, both with and
without an alternation in J1. Using the iTEBD and iDMRG
methods, we have numerically completed the ground-state
phase diagram as well as the maps of the spin gap, the wave
number of the maximum spin correlation, and the transverse
magnetic susceptibility on both the easy-plane and easy-axis
sides. We have also derived analytic expressions for the spin
gap in the fully polarized ferromagnetic phase (FPF) and in
the up-up-down-down (UUDD) phase near and in the Ising-
limit, respectively, in the case with a finite bond alternation δ

in the first-neighbor exchange coupling. These maps, summa-
rized in Fig. 1 and Table I, will be useful for understanding
low-temperature experimental results on the basis of a single
frustrated J1-J2 spin-1/2 chain.

In particular, our numerical results has for the first time
uncovered the anisotropic dimer (D−) phase on the side
of easy-axis magnetic anisotropy. We have shown that this
phase is surrounded by the partially polarized ferromagnetic
(PPF) phase, the up-up-down-down (UUDD) phase, and the
(nearly) isotropic dimer phase (D+). Clear first-order phase
transitions have been found at the D−-PPF and PPF-UUDD
phase. The D−-UUDD phase transition either is weakly first-
order or belongs to the Ising universality class. The D−–D+
phase transitions is of the second order and belongs to the
Gaussian universality class with the central charge c = 1. The
nature of D−-UUDD and D−-D+ phase transitions has also
been explained as the Haldane-large-D and Haldane–Néel
phase transitions, respectively, by mapping the original spin-
1/2 model in the strongly dimerized case onto an effective
spin-1 XXZ chain model with single-ion anisotropy D. Note
that the D−-D+ phase transition is a symmetry-protected
topological phase transition protected by the time-reversal,
bond-inversion, and Z2 × Z2 symmetries. This analysis for
obtaining the Gaussian universality class holds for the VCD−-
VCD+ phase transition on the side of easy-plane exchange
magnetic anisotropy, which solves the issue posed from pre-
vious numerical finding [39].

Our results have crucial implications to experiments
on low-temperature magnetic properties of quasi-one-
dimensional spin-1/2 compounds. Large exchange magnetic
anisotropy on both the easy-plane and easy-axis sides can
yield an energy gap in the spin excitation above a nonmagnetic
ground state in the D− and VCD− phases. However, the
ground state necessarily possesses a moderately large trans-
verse magnetic susceptibility. This feature is robust and also
holds even when the U(1) spin symmetry is absent [76]. It may
happen in experiments that while the magnetic susceptibility
is strongly suppressed as in the D+ and VCD+ phases, the
spin gap is too large for the D+ and VCD+ phases. Such
case can hardly be explained within single frustrated spin-1/2
models, but will demand interchain interaction that enhances
the spin gap, as we will show below that this is the case for
Rb2Cu2Mo3O12.

Now, we explain the extent to which single J1-J2 spin-1/2
chain models can and cannot explain experimental findings of

the quasi-1D spin-1/2 chain compound Rb2Cu2Mo3O12 that
hosts a nonmagnetic ground state [52]. It is reasonable to start
from the SU(2) symmetric model with no bond alternation
δ = 0 and then to consider effects of perturbations. The
wave number qmax ∼ π/4, which corresponds to the eight-
spin periodicity, of the maximum spin correlation has been
observed with inelastic neutron-scattering experiments. From
this value, the ratio J1/J2 is estimated as −3.6. Then, the
magnetic susceptibility of the powder samples can be fit in the
temperature range from 300 K down to 40 K by taking |J1| =
0.62 meV and J2 = 0.17 meV. The first spin excitation energy
has also been measured as ∼0.2 meV in inelastic neutron-
scattering experiments. This energy gap is too large for the
spin gap in the D+ phase for δ = 0, since �G < 0.03J2 in the
D+ phase with and without easy-plane anisotropy. Attributing
this large energy gap to the bond alternation demands a rather
large value δ = 0.1. However, with this value of δ, qmax

approximates to π/2, in stark contrast to the neutron result
of qmax ∼ π/4. There is another way to enhance the energy
gap while keeping the relation qmax ∼ π/4 intact. Increasing
easy-plane anisotropy, namely, decreasing �z, VCD± and D−
phases appear. The VCD+ phase is also excluded since the
spin gap is too small as in the D+ phase. In the VCD− and
D− phases, the spin gap may increase up to �G = 0.93J2,
for instance, for (J1/J2,�

z, δ) = (−2.02, 0.0, 0.2). Thus, if
we take J2 = 0.21 meV, we reproduce �G = 0.2 meV keep-
ing the wave number qmax ∼ π/4. However, the transverse
magnetic susceptibility is as large as 0.7 μB/Cu · T in the
ground state. This contradicts to experimental observations
of a suppression of the magnetic susceptibility to 0.005 μB/

Cu · T below 0.08 K and the associated magnetization
curve that starts to rise steeply only at 2 T. In general,
Dzyaloshinskii-Moriya interactions as well as XYZ exchange
anisotropy �x = �xy < �y < �z do not increase the first spin
excitation energy as long as the spin gap is already finite in the
case of �x = �y = �xy, and thus should not be responsible
for enhancing the size of the spin gap. Thus we are naturally
led to the next candidate, namely, an unfrustrated interchain
interaction within a pair of J1-J2 spin-1/2 chains. It has been
shown that it can enhance the spin gap while keeping qmax

intact. Indeed, the two-leg ladder model of a pair of J1-J2

frustrated spin-1/2 chains that are coupled by an antiferro-
magnetic rung interaction J ′ can quantitatively explain overall
experimental findings. Namely, choosing J1 = −9.82 meV,
J2 = 3.03 meV, and J ′ = 1.77 meV, and taking rather large
Dzaloshinski-Moriya interactions of the order 3.8 meV, the
model accounts all of the magnetic susceptibility, the mag-
netic field strength for closing the spin gap, and inelastic
neutron-scattering and electron spin resonance spectra [52].

Lastly, we briefly mention the case of Cs2Cu2Mo3O12

[4–7]. Recent neutron diffraction experiments on this material
have shown that the spins order ferromagnetically within sin-
gle chains and antiferromagnetically between the two coupled
chains [77]. It is naturally expected that the effective single
spin-1/2 chain model lies in the ferromagnetic phases on
the easy-axis side or the TLL phase, which shows a quasi-
long-range ferromagnetic order, on the easy-plane side. As in
Rb2Cu2Mo3O12, the two adjacent chains should be coupled
antiferromagnetically. Actually, this rung interaction does not
allow the full spin polarization, since the fully spin polarized
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Néel state cannot be an eigenstate of the ladder Hamiltonian.
If we take a naive estimate of the ratio J1/J2 to be −2.8 [4],
it is likely that the compound possesses easy-axis exchange
anisotropy, since with easy-plane anisotropy, the single-chain
model shows the vector-chiral order, which is readily driven
to a long-range spiral magnetic order by three-dimensional
interactions of the order of the Néel temperature 1.85 K [5].
It is also possible that the compound has a moderately large
J ′ as in Rb2Cu2Mo3O12 and a larger |J1|/J2 than 2.8. Inelastic
neutron-scattering experiments are required for further quan-
titative theoretical analyses.
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APPENDIX A: TWO PARAMETER SCALING FOR
NUMERICAL ERROR OF ITEBD CALCULATION

There are two origins of calculation errors in the iTEBD
method [53]. One is the step size δτ of the imaginary time
in the Suzuki-Trotter (ST) decomposition [58,59]. The other
is the finite bond dimension χ of the matrix-product state
(MPS). In the limit where χ → ∞ with δτ being fixed,
the dominant factor of the error is the time step size δτ of
the ST decomposition. In this limit, the error of the total
energy ε(δτ, χ ) = E (δτ, χ ) − Eexact, where E (δτ, χ ) is the
variational energy of iTEBD calculation and Eexact is the exact
ground state energy, behaves as

ε(δτ, χ → ∞) ∼ (δτ )n+1 (A1)

with n being the order of the ST decomposition.
On the other hand, in the limit of δτ → 0 with χ being

fixed, the leading factor of the error becomes finite-χ effects
in MPS. From the finite-entanglement scaling [79], we expect
that the asymptotic form of the error becomes

ε(δτ → 0, χ ) ∼ χ c2 , (A2)

where we assume the real correlation length is extremely
large, compared to a controllable length scale introduced by
the finite-χ effects.

Here, we propose a scaling hypothesis

ε(δτ, χ ) = χ c2 F (δτχ c1 ) (A3)

to satisfy both asymptotic form Eqs. (A1) and (A2), where the
function F has the asymptotes,

F (δτχ c1 ) ∼
{
χ−c2 (δτ )n+1 , δτχ c2 � 1

const. , δτχ c1 � 1
, (A4)

FIG. 5. Two parameter scaling for ε and δτ with respect to χ

up to 40 for HXXZ with J1/J2 = −5/3 and �xy = �z = 1. Scaling
parameters c1 = 1.09 ± 0.03 and c2 = −1.87 ± 0.06 are estimated
by the Bayesian inference method [78].

and apply this scaling analysis to the energy error for HXXZ in
Eq. (1) with J1/J2 = −5/3 and �xy = �z = 1 [31,32]. Then,
in Fig. 5, we confirm that the energy error ε with several χ are
nicely on the universal function with appropriate c1 and c2 and
employ a condition δτχ c1 ∼ 4, where two asymptotic lines
intersect. This provides a condition for efficient calculation
of iTEBD, and the suitable step size is found to be δτ ∼
0.008/J2 for χ = 300. Under the conditions, the error of the
ground-state energy per site in the Heisenberg case (�xy =
�z = 1) for J1/J2 = −5/3 is found to be ∼5 × 10−6J2. The
condition of δτχ c1 , where two asymptotic lines intersect, de-
pends on the parameter set. However, it is difficult to perform
the scaling analysis in the all of parameter space because we
should refer to the numerically exact ground state energy,
that is quite time consuming process. Therefore the constant
step size δτ = 0.008/J2 is employed in the all of iTEBD

FIG. 6. Example of χ dependence of the order parameters for
�xy = 0.45, �z = 1, and δ = 0.02 with χ = 100, 200, and 300.
The vertical broken lines are phase boundary shown in Fig. 1(a)
or 2(c).
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calculation, and we check the convergence of the calculation
with up to χ = 300.

APPENDIX B: CONVERGENCE OF ORDER PARAMETERS
WITH RESPECT TO BOND DIMENSIONS IN ITEBD

In this article, we estimate all of order parameters by use of
the iTEBD method [53] up to χ = 300. The order parameters,
of course, depend the value of χ . In Fig. 6, we show an
example of the convergence behaviors, with respect to χ , of
M in Eq. (3), Ouudd in Eq. (7), and (Dx + Dy)Dz with Eq. (6)
for the parameter set �xy = 0.45, �z = 1, and δ = 0.02, for
which three successive phase transitions occur from the FPF
phase through the PPF and D− phases to the UUDD phase.
The order parameters converge with respect to χ except near
phase boundaries, and the error of phase-transition points with
respect to J1/J2 are smaller than 0.1 in the example. Therefore,
we plot the phase boundaries estimated by the calculation with
χ = 300 in Fig. 1(a).

APPENDIX C: DEPENDENCE OF SPIN GAP ON THE
SYSTEM SIZE AND THE BOND DIMENSIONS IN IDMRG

Here, we explain the finite-size scaling analysis of the spin
gap �G/J2 in the global phase diagram [Fig. 1(b)], except for
the FPF and PPF phases. We performed the iDMRG [60–62]
calculations, exploiting the U(1) symmetry, and obtained the
lowest energies for Sz

tot = 0 and 1 as functions of L and
estimate the energy gap between them. Then, we perform

FIG. 7. Example of a finite size scaling of the spin gap for
J1/J2 = −2.56, �xy = 0.9, �z = 1, and δ = 0.2 with χ = 400, 600,
and 800. The data of χ = ∞ are estimated by the linear fitting with
respect to 1/χ .

the second-order polynomial fittings as functions of 1/L with
L up to 200. We checked the dependence of the gap on χ

and estimate the difference between �G/J2 with χ = 800 and
χ = ∞. Figure 7 demonstrates the analysis in the particular
case of J1/J2 = −2.56, �xy = 0.9, �z = 1, and δ = 0.2. The
difference in Fig. 7 is about 0.0003 and is negligibly small
on the scale of Fig. 1(b). Also, we have confirmed that
the χ dependence safely converges within 10% error when
�G/J2 > 0.03 in our calculations. Thus we plot �G/J2 with
χ = 800 in the figure.
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