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Persistent currents and spin torque caused by percolated quantum spin Hall state
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Motivated by recent experiments, we investigate the quantum spin Hall state in 2D topological
insulator/ferromagnetic metal planar junctions by means of a tight-binding model and linear response theory.
We demonstrate that whether the edge state Dirac cone is submerged into the ferromagnetic subbands and the
direction of the magnetization dramatically affect (i) how the edge state percolates into the ferromagnet and (ii)
the spin-momentum locking of the edge state. Laminar flows of room temperature persistent charge and spin
currents near the interface are uncovered. In addition, the current-induced spin polarization at the edge of the
2D topological insulator is found to be dramatically enhanced near the impurities. The current-induced spin
polarization in the ferromagnet is mainly polarized in the out-of-plane direction ẑ, rendering a current-induced
spin torque that is predominantly fieldlike ∝S × ẑ.
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I. INTRODUCTION

The quantum spin Hall effect (QSHE) represents one of the
important properties of two-dimensional (2D) time-reversal
(TR) invariant topological insulators (TIs) [1–5]. Owing to
the existence of edge states, the defining feature of QSHE
is the spin current circulating the edge of the system, which
motivates a variety of edge state based topological spintronic
devices. To exploit the edge spin current, the TI is often
made in conjunction with a ferromagnetic metal (FMM),
for instance in three-dimensional (3D) TI/FMM heterostruc-
tures [6–10], such that the magnetization can be used to
affect the edge spin transport or vice versa. On the theoretical
side, a significant amount of work has been dedicated to
understand the complicated spintronic mechanisms in such a
hybrid structure [11–16]. However, to delineate an adequate
theoretical description, it is crucial to understand how the
QSH state is altered when the TI is made in conjunction with a
metallic material, especially given that the boundary condition
of the edge state wave function is modified.

Recent experiments have also demonstrated the feasibil-
ity of spin to charge interconversion in spintronic devices
based on 2D TIs. In particular, the high efficiency of spin
pumping and spin-transfer torque observed in monolayer
or multilayer transition metal dichalcogenide/ferromagnet
(TMD/FMM) heterostructures is exceedingly encourag-
ing [17–22], especially given that these materials can realize
the QSHE [23–25]. Motivated by these experiments, and also
to clarify the role of edge states in these spintronic effects, in
this paper we investigate the 2D TI/FMM planar junction by
means of a lattice model approach. We show that the modifi-
cation of the QSH state depends significantly on whether the
edge state Dirac cone submerges into the FMM subbands, as
well as on the direction of the magnetization. These factors
strongly influence the percolation of the edge state into the
FMM, as well as the spin-momentum locking in the TI region
near the TI/FMM interface. We uncover a number of peculiar

dissipationless responses, including the existence of room
temperature persistent charge and spin currents that manifest
as laminar flows. Moreover, we elaborate that the real wave
function of the percolated edge state is crucial to the direction
and magnitude of the current-induced spin torque.

The structure of the paper is organized in the following
manner. In Sec. II A, we detail the lattice model for the 2D
TI/FMM junction and delineate two different types of band
structures and the corresponding percolation of topological
edge states in Sec. II B. We proceed to demonstrate that the
asymmetric band structure yields a laminar flow of persistent
charge current, as well as elaborating the proximity induced
persistent spin current in the system in Sec. II C. The current-
induced spin torque is investigated by means of a linear
response theory in Sec. II D, where we emphasize the fieldlike
nature of the spin torque due to the real wave functions of the
percolated edge state and the quantum well state of the FMM.
Section III summarizes the results.

II. BHZ/FMM PLANAR JUNCTION

A. Lattice model

To properly address the percolation of the edge state, we
employ a tight-binding model approach similar to that used
for 3D TIs [16]. For concreteness, we consider a strip of
2D Bernevig-Hughes-Zhang (BHZ) model [2] of width Ny,TI

in conjunction with a strip of 2D FMM of width Ny,FM, as
indicated in Fig. 1(a). Periodic boundary condition (PBC)
in the longitudinal x̂ direction and open boundary condition
(OBC) in the transverse direction ŷ are imposed, i.e., a closed
BHZ/FMM ribbon. The BHZ region is composed of the spin-
ful s and p orbitals ψ = (s ↑, p ↑, s ↓, p ↓)T , with the Dirac
matrices γi = {σ z ⊗ sx, I ⊗ sy, I ⊗ sz, σ x ⊗ sx, σ y ⊗ sx} and
the TR operator T = −iσ y ⊗ IK , where σ b and sb are Pauli
matrices in the spin and orbital spaces, respectively. The
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model in momentum space reads [26]

H (k) =
3∑

i=1

di(k)γi = A sin kxγ1 + A sin kyγ2

+ (M − 4B + 2B cos kx + 2B cos ky)γ3

=
(

h(k) 0
0 h∗(−k)

)
, (1)

where h(k) = ∑3
i=1 di(k)σ i, A and B are kinetic parameters,

and M < 0 is the topologically nontrivial phase that hosts the
edge state.

We now detail the lattice model of the BHZ/FMM ribbon.
Due to the proximity to the TI, the conduction band of the
FMM is assumed to be split into s-like and p-like orbitals;
both are subject to the magnetization S of the FMM through
an exchange coupling. The model is described by

H =
∑
i∈T I

{−itc†
is↑ci+ap↑ − itc†

ip↑ci+as↑ + itc†
is↓ci+ap↓ + itc†

ip↓ci+as↓ + H.c.}

+
∑
i∈T I

{−tc†
is↑ci+bp↑ + tc†

ip↑ci+bs↑ − tc†
is↓ci+bp↓ + tc†

ip↓ci+bs↓ + H.c.}

+
∑
i∈T I

(M + 4t ′ − μ){c†
is↑cis↑ + c†

is↓cis↓} +
∑
i∈T I

(−M − 4t ′ − μ){c†
ip↑cip↑ + c†

ip↓cip↓}

+
∑

i∈T I,δ

(−t ′){c†
is↑ci+δs↑ − c†

ip↑ci+δp↑ + c†
is↓ci+δs↓ − c†

ip↓ci+δp↓ + H.c.} − μF

∑
i∈FM,Iσ

c†
iIσ ciIσ

− tF
∑

i∈FM,δIσ

{c†
iIσ ci+δIσ + c†

i+δIσ ciIσ } +
∑

i∈FM,Iσ

JexS · c†
iIασαβciIβ − tB

∑
i∈BD,Iσ

{c†
iIσ ci+bIσ + c†

i+bIσ ciIσ }. (2)

Here ciIσ and c†
iIσ are electron annihilation and creation op-

erators, I = {s, p} is the orbital index, δ = {a, b} denotes the
lattice constant along the two planar directions, σ = {↑,↓} is
the spin index, i = {x, y} denotes the planar position, and T I ,
FM, BD denote the TI region, the FMM region, and the inter-
face sites, respectively. In addition, due to the Schottky-Mott
rule [27,28], i.e., the difference in work functions causes an
adjustment of the chemical potentials, the FMM onsite energy
μF becomes a material-dependent parameter that shifts the
FMM bands. The magnetization of the FMM is denoted by
the classical vector S = S(sin θ cos ϕ, sin θ sin ϕ, cos θ ).

To make connection with the real HgTe quantum well
parameters, the hopping parameters are chosen as

A = 2t ≈ −3.4 eV , B = −t ′ ≈ −17 eV = 10t . (3)

We will treat the hopping t = A/2 = −1.7 eV ≡ −1 as the
energy unit throughout the paper (that is, we take 1.7 eV as
energy unit). However, we find that in the lattice model, if
we take the value t ′ = −10t = 10, then the energy spectrum
does not clearly show a gap. This is obviously because of
the higher order term in the d3 component. If we simulate
it with 4t ′ − 2t ′ cos kxa − 2t ′ cos kya with a large hopping
amplitude t ′, then this term will wash out the bulk gap. This is
obviously an artifact of using a lattice model to simulate the
continuous HgTe quantum well. For this reason we reduce the
t ′ = −10t = 10 to t ′ ≈ −t = 1 in our lattice model in order
to maintain the bulk gap and demonstrate the edge state.

The other approximation we will use is about the mass term
M. In reality, A/M = 2t/M gives the decay length of the edge
state. Because we will simulate the system on a lattice size of
the order of 10 × 10 sites, this means the decay length cannot
exceed a few lattice sites, otherwise the edge states on the
two opposite edges overlap. Therefore for our simulation we
choose the mass term to be M = −1, which is quite different
from real HgTe quantum wells. The calculations of persistent

currents and the magnetoelectric susceptibility (see below)
are performed at a scale of the order of room temperature
kBT = 0.03. Finally, the interface hopping, assumed to be
between the same orbital and spin species, is fixed at tB = 0.8
for concreteness. In summary, we use the parameters (in units
of |t | = 1.7eV)

−t = t ′ = −M = tF = 1, μ = 0, μF = 0.5 (pristine)

μF = −0.5 (submerged), tB = 0.8, Jex = 0.1,

kBT = 0.03. (4)

We emphasize that the statements made in the present work
are fairly robust against changing these parameters.

B. Band structure and percolation of the edge state

The band structure E (n, kx ) can be obtained from Eq. (2)
by a partial Fourier transform ciIσ = cxyIσ = ∑

kx
eikxxckxyIσ ,

where ciIη is the electron annihilation operator of orbital I =
{s, p} and spin σ = {↑,↓} at site i = {x, y}. For comparison,
in Fig. 1(b) we show the band structure when the BHZ and
the FMM are uncoupled tB = 0, in which the edge state Dirac
cone and the quadratic FMM bands are clearly distinguish-
able. The FMM wave functions are confined quantum well
states since the FMM is sandwiched between the TI and the
vacuum. Figure 1(c) shows what we call the pristine type of
band structure for the coupled BHZ/FMM strip simulated by
μF = 0.5 and interface hopping tB = 0.8, and the correspond-
ing percolations of the edge state, with magnetization S ‖ ẑ
pointing along the spin polarization of the edge state. The
Dirac cone remains gapless, and at larger momenta gradually
merges with the FMM subbands of the same spin polariza-
tion. Going from small to large momentum, the edge state
wave function |ψ |2 = ∑

Iσ |ψIσ |2 gradually evolves from that
highly localized at the edge to a profile that merges with the
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FIG. 1. (a) Schematics of the lattice model of the BHZ/FMM
strip, with PBC along x̂ and OBC along ŷ. (b) The low energy spin
up (blue) and down (green) band structures when the BHZ and FMM
are uncoupled tB = 0. The magnetization is fixed at S ‖ ẑ, with BHZ
width Ny,TI = 10 and FMM width Ny,FM = 6. (c) The pristine and
(d) submerged types of band structures for the coupled BHZ/FMM
strip at interface hopping tB = 0.8. The undistorted Dirac cone
corresponds to the edge state at the vacuum/BHZ interface y = 1,
whereas the distorted one corresponds to that at the BHZ/FMM
interface (dashed line). The bottom panels show the wave function
profiles |ψ |2 (also equal to 〈σ z〉) of the corresponding states of the
same colors on the band structure.

FMM quantum well state of the first harmonic. Because the
edge state Dirac cone is still identifiable, and the feature of the
wave function merging between the edge state and the FMM
quantum well state, we call this state the percolated QSH state.

The other type of band structure simulated by μF = −0.5
is what we call the submerged type where the Dirac point
overlaps with the FMM subbands, as shown in Fig. 1(d). In
this case the Dirac cone at the BHZ/FMM interface is very
much distorted and becomes highly intertwined with FMM
subbands. Tracking the states originating from the Dirac cone
shows that the Dirac cone splits into different branches; each
branch hybridizes with the FMM quantum well state of a
different harmonic, such as the second harmonic shown by
the |ψ |2 in Fig. 1(d). The percolation in both situations also
increases with the interface hopping tB, as expected (not
shown). Although the highly intertwined Dirac cone and
FMM subbands make it rather ambiguous to identify edge
states at the BHZ/FMM interface, one should keep in mind
that the edge states at the other edge y = 1 remains unaltered,
and hence we still regard this submerged situation a QSH
state. Finally, whether the Dirac point submerges into the
FMM subbands also depends on the number of the FMM
subbands, which is given by the width Ny,FM of the FMM. For
either the pristine or submerged situation, the edge state at the
vacuum/BHZ interface at y = 1 is unaffected by the contact

FIG. 2. The band structures of the BHZ/FMM ribbon with mag-
netization along S ‖ x̂, for (a) the pristine μF = 0.5 and (b) the
submerged μF = −0.5 type. The green and blue colors indicate
the spin up and down polarizations, and the black color parts are
unpolarized. The edge state wave function and spin polarization of
the corresponding states in the dispersion are shown in the same
colors.

to the FMM at y = Ny,TI interface, and the Dirac cone therein
remains undistorted.

The simulations for the two other magnetization directions
S ‖ x̂ and S ‖ ŷ that are orthogonal to the spin polarization of
the edge state are shown in Fig. 2. The results reveal that the
merger between edge states and quantum well states induces a
small spin polarization along S for the edge states in the BHZ
region near the interface (a small 〈σ x〉 near y � 10 in Fig. 2).
This indicates that the spin polarization in the BHZ region is
no longer perfectly along ẑ, hence the spin-momentum lock-
ing is altered by the presence of the magnetization. Likewise,
the percolated edge state in the FMM region is polarized in
the plane spanned by S and ẑ, instead of entirely along S,
indicating the spin polarization is also distorted in this region.
For instance, for either the pristine or the submerged type of
band structure, the spin polarization in the S ‖ x̂ case entirely
lies in the xz plane. As we shall see in Sec. II D, such a peculiar
spin texture eventually yields a current-induced spin torque
that is entirely fieldlike.

C. Laminar charge and spin currents

The dispersion for either the pristine or submerged situ-
ation becomes asymmetric between +kx and −kx when the
magnetization has a component along the spin polarization of
the edge state Sz, as shown in Fig. 1(b). This is because such a
component makes one branch of the Dirac cone more energet-
ically favorable than the other, similar to what occurs in 2D
magnetized Rashba systems [29]. Although this asymmetry
motivates us to speculate the existence of a persistent charge
current [30], one should keep in mind that an asymmetric
dispersion does not yield a nonzero net current. This can be
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FIG. 3. The laminar charge current 〈J0(y)〉 and spin current
〈Jz(y)〉 as a function of transverse coordinate y, at different magneti-
zation directions S ‖ {x̂, ŷ, ẑ} and for either the pristine or submerged
type of band structure. The charge current is nonzero only when
the magnetization has a ẑ component, and both the spin and charge
currents vanish if the BHZ and FMM are decoupled tB = 0.

seen by noticing that the expectation value of the velocity
operator vx for the eigenstate |un,kx 〉 is simply the group
velocity [31]

〈un,kx |vx|un,kx 〉 = 〈un,kx |
1

h̄

∂H

∂kx
|un,kx 〉 = ∂E (n, kx )

h̄∂kx
. (5)

The expectation value of the current operator integrated
over momentum vanishes identically

〈vx〉 =
∑

n

∫ π

−π

dkx

2π

∂E (n, kx )

h̄∂kx
f (E (n, kx )) = 0, (6)

where f (E (n, kx )) = 1/(eE (n,kx )/kBT + 1) is the Fermi func-
tion, and hence there is no net current.

However, the local current is nonzero. This can be seen
by evaluating the charge and spin currents directly from the
lattice model according to the following procedure. Firstly,
the BHZ model does not commute with σ x and σ y, so we only
investigate the longitudinal charge current and the spin current
polarized along σ z and consider the charge/spin polarization
operator

Pa =
∑
iIηλ

xic
†
iIησ

a
ηλciIλ ≡

∑
Iηλ

Pa
Iηλ, (7)

where xi is the longitudinal coordinate of site i, and σ a =
{σ 0, σ z} = {I, σ z}. The current operators are then Ja = Ṗa =
i
h̄ [H, Pa], as calculated explicitly in Appendix A. The ground
state expectation value of the current operator gives the local
current

〈Ja〉 =
∑

n

〈n|Ja|n〉 f (En), (8)

where |n〉 is the eigenstate with eigenenergy En of the
BHZ/FMM lattice model, and one may separate 〈Ja〉 into
contributions from each bond connecting site i and i + a to
investigate the local current.

The longitudinal charge current as a function of trans-
verse coordinate 〈J0(y)〉 is shown in Fig. 3, which features
a laminar current whose direction of flow depends on y.
The net current vanishes up to numerical precision, in ac-
cordance with Eq. (6). The local charge current is finite
only when the magnetization has an out-of-plane component
Sz, a feature inherited from the asymmetric band structure.
Moreover, the current is nonzero only when the BHZ and

FIG. 4. (a) The dispersion of BHZ ribbon of width Ny = 10,
with Dirac point located at chemical potential (zero energy). The
red and blue color indicate the spin up and down component of the
wave function closer to the y = 1 edge m̃kx ,ny defined in Eq. (9).
(b) The resulting persistent spin current versus transverse coordinate
〈Jz(y)〉cut calculated by summing only the states within an energy
window |E (n, kx )| < Ecut. The Ecut = 1 case includes only the Dirac
cone contribution, whereas the Ecut = 8 case sums over the entire
band structure. The Ecut = 4 case is shown schematically by the
two dashed lines in (a), between which the states are summed and
weighted by the Fermi function.

FMM are coupled tB �= 0, so it is entirely proximity induced.
A close inspection reveals that both the charge and spin
currents arise from contributions not only from the edge
states but from all the subbands. This makes the currents
easily persist up to room temperature, which is an advantage
over that induced at the topological superconductor/FMM
interface [32,33]. For our choice of parameters, the magnitude
of the current is of the order of 〈J0(y)〉 ∼ 10−3et/h̄ ∼ 10−7 A,
and the flow direction alternates between +x̂ and −x̂ at the
length scale of lattice constant ∼nm. The Ampere’s circuital
law B = μ0〈J0(y)〉/2πr then indicates that at a distance
r ∼ nm above the surface, the laminar current produces a
magnetic field ∼1Oe that points along ŷ and alternates at
the length scale of nm. Thus although the laminar current
is not expected to manifest in the transport properties, the
alternating magnetic field it produces should in principle be
measurable.

Concerning the spin current, we first remark that the BHZ
model alone does not produce a net edge spin current if the
Dirac point locates at the chemical potential. This is because
the spin current caused by the edge state is canceled out by the
contribution from the BHZ valence bands that are also spin
polarized. To elaborate this statement, in Fig. 4(a) we show
the dispersion of the BHZ ribbon, with the red and blue colors
indicating the spin polarization of the eigenstates |kx, ny〉 near
the y = 1 edge

m̃z
kx,ny

=
∑

1�y�Ny/2

σ z
kx,ny

. (9)

The Dirac cone has the spin up propagating with positive
group velocity and spin down with negative group velocity
at the y = 1 edge, as expected. In addition to this, one sees
that the valence bands are also spin polarized (so are the
conduction bands, but they are not important due to the Fermi
distribution). Moreover, at least some parts of the valence
bands have spin up but negative group velocity [red color and
negative slope in Fig. 4(a)], meaning that these states produce
a spin current against that produced by the edge states. The
same mechanism also happens at the other edge y = 10.
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To quantify the contribution to the edge current from the
Dirac cone and that from the valence bands, we calculate the
spin current in the lattice model by summing the states within
an energy window Ecut around the chemical potential

〈Jz〉cut =
∑

n

〈n|Jz|n〉 f (En)θ (Ecut − |En|), (10)

where θ (Ecut − |En|) is the step function. As shown in
Fig. 4(b), the Ecut = 1 case that includes only the Dirac cone
contribution has a finite spin current, but the Ecut = 8 case
that sums over the entire band structure gives a zero spin
current. In other words, the contribution from the bulk bands
cancels out that from the edge state Dirac cone to yield a
zero spin current. A finite spin current occurs only when the
Dirac point is shifted away from the chemical potential or in
a certain experiment that can measure the equilibrium spin
current contributed only within an energy window near the
chemical potential [34].

On the other hand, when the BHZ model is made in con-
junction with an FMM, a persistent spin current is produced
for both the pristine and the submerged cases and is a laminar
flow that percolates into the FMM, as shown in Fig. 3. Such
a laminar spin current appears regardless of the direction of
the magnetization and the energy of the Dirac point. The
magnitude of the profile of the spin current only differs by
about 20% at different magnetization directions, as can be
seen by comparing the 〈Jz〉 as a function of y at S ‖ x̂, S ‖ ŷ,
and S ‖ ẑ in Fig. 3.

D. Current-induced spin torque

The components b = {x, y, z} of the spin polarization in-
duced by a longitudinal electric field E (i, t )x̂

σ b(i, t ) = χb(i, ω)E (i, t ). (11)

in our lattice model can be formulated within a linear response
theory, where the real part of the DC magnetoelectric suscep-
tibility is calculated by [35,36]

lim
ω→0

Reχb(i, ω)

= −
∑

j

∑
m,n

〈n|σ b(i)|m〉〈m|J0( j)|n〉F̃ (En, Em), (12)

as detailed in Appendix B. The function F̃ (En, Em) is highly
peaked at En ≈ Em ≈ 0, meaning that the states at the Fermi
surface contribute the most to the response, as expected,
which include both the Dirac conelike bands and the FMM-
like subbands according to Figs. 1(c) and 1(d). We focus on
the DC magnetoelectric susceptibility limω→0 Reχb(i, ω) ≡
χb(y) as a function of transverse coordinate y. We also remark
that a recent work in magnetized BHZ model suggests that a
dampinglike spin torque can be induced by impurities [37].
This feature is analogous to the spin mixing enhanced by
disorder-induced spin-dependent scattering originally uncov-
ered in metallic spin valves and domain walls [38,39]. Moti-
vated by these earlier works, and also for the sake of removing
the numerical ambiguities detailed in Appendix B, we add

FIG. 5. The fieldlike component of the magnetoelectric suscep-
tibility χ z(y) in the BHZ/FMM junction as a function of transverse
coordinate y and at several values of interface hopping tB, plotted
for different types of band structures and magnetization directions:
(a) Pristine S ‖ ẑ, (b) submerged S ‖ ẑ, (c) pristine S ‖ x̂, and (d) sub-
merged S ‖ x̂. The other two components remain zero χ x = χ y = 0.
The y � 10 is the BHZ region and y > 10 the FMM region. The
negative value near the free edge y = 1 delineates the Edelstein effect
of the BHZ model alone.

random impurities into the BHZ/FMM junction

Himp = Uimp

∑
i∈imp,Iσ

c†
iIσ ciIσ , (13)

where i ∈ imp denotes the impurity sites. We choose a rel-
atively large impurity potential Uimp = 4 and density nimp =
10% in an attempt to draw relevance to TMD-based 2D TIs,
where a significant amount of defects, such as missing sulfur
atoms, are known to be a realistic issue [40–43]. The magne-
toelectric susceptibility χb is then calculated by Eq. (12) using
the lattice eigenstates |n〉.

The result for the magnetization directions S ‖ ẑ and
S ‖ x̂ is shown in Fig. 5, where the magnetoelectric sus-
ceptibility averaged over the longitudinal direction χ z(y) ≡∑Nx

x=1 χ z(x, y)/Nx for a specific impurity configuration is pre-
sented. The nonzero χ z(y) near the free edge y = 1 delineates
the Edelstein effect of the BHZ model alone, i.e., current
induced spin polarization caused by the edge state analogous
to that occurs in 3D TIs [44–48]. At mean free time τ ∼
10−14 s and a typical experimental electric field strength E ∼
104 kgm/Cs2, the induced spin polarization at the free edge is
of the order of 10−7 (in units of μB). In contrast, at the y = 10
edge where the BHZ model is made in contact with the FMM,
the magnitude of χ z(y) is enhanced at small interface hopping
tB = 0.2 but decreases at larger tB. The spatial profile of χ z(y)
extends into the FMM for both the pristine and the submerged
situations and changes with tB in a rather complicated manner.
The band structures in Figs. 1(c) and 1(d) naturally explain
this enhancement of χ z(y) due to interface hopping: Com-
pared to an isolated BHZ model, the BHZ/FMM junction
has many additional FMM states at the chemical potential
[|n〉 and |m〉 in Eq. (12)] that participate in the particle-hole
excitation process of the magnetoelectric response. Moreover,
the FMM wave functions and the edge state wave functions
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FIG. 6. Magnetoelectric susceptibility χ b as magnetization
points at S ‖ x̂ + ẑ averaged over longitudinal position x at a specific
impurity configuration for both the (a) pristine and (b) submerged
types of band structures. The spatial distribution of the fieldlike χ z

dampinglike χ y components are shown in lower panels, where the
black dots label the impurity positions.

have a significant overlap due to percolation of the edge state,
yielding nonzero matrix elements 〈n|Ô|m〉 in Eq. (12). Notice
that an isolated FMM does not exhibit Edelstein effect, so the
nonzero χ z(y) in the FMM region y ∈ FM entirely originates
from the proximity to the BHZ model.

The average magnetoelectric susceptibility in the FMM re-
gion χb

F ≡ ∑
y∈FM χb(y)/Ny,FM is what yields the spin torque

on the magnetization S. Since the current-induced spin po-
larization is polarized along ẑ for an isolated BHZ model, it
is customary to define the fieldlike torque in the FMM to be
along Ŝ × ẑ and the dampinglike torque to be along Ŝ × (Ŝ ×
ẑ), as in the usual metallic thin film spin-transfer torque (STT)
devices. We find that if the magnetization lies in the xy plane
or entirely points along ẑ, then out of the three components
χb

F = {χ x
F , χ

y
F , χ z

F } only χ z
F is nonzero. This indicates that

the spin torque is entirely fieldlike if the magnetization lies
in the xy plane, and there is no torque if the magnetization
points out-of-plane S ‖ ẑ. For magnetization along other di-
rections, a small dampinglike component develops (note that
our calculation neglects other complications such as spin-orbit
torque [49,50] and spin relaxation). This is very different
from the STT in usual metallic heterostructures [51,52] or that
induced by the spin Hall effect [53,54], where the plane wave
states usually contribute to both fieldlike and dampinglike
torque at any magnetization direction.

Figure 6 shows the result for the magnetization direction
S ‖ x̂ + ẑ, which has both the fieldlike χ z and dampinglike
χ y components. We find that the dampinglike component is
generally one order of magnitude smaller than the fieldlike
component. A closer investigation shows that near the two
edges of the BHZ region, both χ z and χ y are locally enhanced
by the impurities, as can be seen from the local {χ y, χ z}
map in Fig. 6. On the other hand, in the FMM region, the
magnitude of both components does not seem to correlate with

impurity positions. These features are true for both the pristine
and the submerged types of band structures. At a typical ex-
ternal electric current jc ∼ 1011 A/m2, the spin polarization
obtained from Eq. (11) yields a spin torque according to the
Landau-Lifshitz dynamics

dS
dt

= Jex

h̄

[
1

Ny,FM

∑
i∈ FM

σ(i)

]
× S, (14)

which is basically the numerical values of χb
F multiplied by

GHz, as demonstrated in Appendix B. The absolute magni-
tude of the spin torque is fairly consistent with that uncovered
experimentally [17–22], although one should keep in mind
that our BHZ/FMM side junction is different from the exper-
imental setup where the TMD is usually deposited on top of
the FMM thin film.

III. CONCLUSIONS

In summary, we address the percolation of QSHE into
an adjacent FMM by means of a lattice model. The band
structure displays a pristine/submerged dichotomy due to
the difference in work functions, which strongly influences
the percolation of the edge state. The merger between the edge
states and the quantum well states of the FMM modifies the
spin momentum locking near the TI/FMM interface and also
alters the spin polarization in the FMM region. A laminar flow
of persistent charge current owing to the asymmetry of the
band structure is uncovered, and the edge spin current also
turns into a laminar flow that percolate into the FMM. The
current-induced spin polarization at the edge of the 2D TI is
dramatically enhanced near the impurities. On the other hand,
the current-induced spin torque in the FMM is not directly
correlated with the impurity positions and is found to be
entirely fieldlike if the magnetization lies in the xy plane or
points at the ẑ axis. The dampinglike component developed
at other magnetization directions is generally one order of
magnitude smaller than the fieldlike component. As these
results greatly improve our understanding of the role of edge
states in these 2D TI-based spintronic effects, it is intriguing
to apply our lattice model approach to other situations that are
more relevant to experimental setups, such as TI on top of the
FMM, which await further investigations.
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APPENDIX A: THE CURRENT OPERATORS

The charge and spin current operator of this lattice model
can be calculated conveniently in the following manner. First,
the system is translationally invariant along x̂, so we only
calculate the currents flowing along x̂. In the calculation of
the current operator from the polarization operator Ja = Ṗa =
i
h̄ [H, Pa], one may simplify the tedious commutator [H, Pa]
from the following general consideration. Since only hopping
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terms in Eq. (2) contribute to the current operator, we focus
on these terms that generally take the form

H δ
LαMβ =

∑
j

T δ
LαMβc†

jLαc j+δMβ + T δ∗
LαMβc†

j+δMβc jLα, (A1)

which describes the hopping of electron between
site/orbital/spin jLα and j + δMβ along the planar
directions δ = {a, b}, with T δ

LαMβ the hopping amplitude.
Using the fact that the hopping part of the total Hamiltonian
is the summation of Ht = ∑

δ

∑
LαMβ H δ

LαMβ , we obtain that
a specific orbital/spin species Iηλ contributes to the charge
current (a = 0) and the spin current (a = z) by following the
definition in Eq. (7),

Ja
Iηλ = i

h̄

∑
δ

∑
LαMβ

[
H δ

LαMβ, Pa
Iηλ

]

= i

h̄

∑
i

⎧⎨
⎩

∑
Mβ

[ − xiT
a

IλMβ

]
c†

iIησ
a
ηλci+aMβ

+
∑
Lα

[
(xi + a)T a

LαIη

]
c†

iLασ a
ηλci+aIλ

+
∑
Lα

[
(−xi − a)T a∗

LαIλ

]
c†

i+aIησ
a
ηλciLα

+
∑
Mβ

[
xiT

a∗
IηMβ

]
c†

i+aMβσ a
ηλciIλ

⎫⎬
⎭. (A2)

We then put in all the nonzero hopping amplitudes T δ
LαMβ and

T δ∗
LαMβ according to Eq. (2) and sum over all the Iηλ species.

The resulting charge current operator reads

J0 = 1

h̄

∑
i∈T I

∑
σ

{ησ t c†
isσ ci+apσ + ησ t c†

i+apσ cisσ

+ ησ t c†
ipσ ci+asσ + ησ t c†

i+asσ cipσ }

+ 1

h̄

∑
i∈T I

∑
σ

{−it ′ c†
isσ ci+asσ + it ′ c†

i+asσ cisσ

+it ′ c†
ipσ ci+apσ − it ′ c†

i+apσ cipσ }

+ 1

h̄

∑
i∈FM

∑
σ

{−itF c†
isσ ci+asσ + itF c†

i+asσ cisσ

− itF c†
ipσ ci+apσ + itF c†

i+apσ cipσ }, (A3)

where η↑ = 1, η↓ = −1, and i ∈ T I , i ∈ FM, and i ∈ BD
indicate that the sites i and i + a belong to the BHZ model
part, the FMM part, and the interface bonds. Likewise, the
operator for spin current polarized along z is

Jz = 1

h̄

∑
i∈T I

∑
σ

{t c†
isσ ci+apσ + t c†

i+apσ cisσ

+ t c†
ipσ ci+asσ + t c†

i+asσ cipσ }

+ 1

h̄

∑
i∈T I

∑
σ

{−it ′ησ c†
isσ ci+asσ + it ′ησ c†

i+asσ cisσ

+ it ′ησ c†
ipσ ci+apσ − it ′ησ c†

i+apσ cipσ }

+ 1

h̄

∑
i∈FM

∑
σ

{−itF ησ c†
isσ ci+asσ + itF ησ c†

i+asσ cisσ

− itF ησ c†
ipσ ci+apσ + itF ησ c†

i+apσ cipσ }, (A4)

which is essentially the same as J0 except the spin up and
down channel have an additional minus sign difference, as
expected.

APPENDIX B: LINEAR RESPONSE THEORY FOR THE
MAGNETOELECTRIC SUSCEPTIBILITY

To calculate the spin accumulation induced by a charge
current, we employ the linear response theory for the local
spin accumulation σ b(i, t ) in the presence of a perturbation
H ′(t ′) in the Hamiltonian

σ b(i, t ) = −i
∫ t

−∞
dt ′〈[σ b(i, t ), H ′(t ′)]〉, (B1)

where σ b(i, t ) = ∑
Iβγ c†

iIβ (t )σ b
βγ ciIγ (t ) is the b = {x, y, z}

component of the spin operator at position i, and the fermion
operators ciIγ (t ) are defined in the Heisenberg picture. The
perturbation comes from the longitudinal component of
the vector field A( j, t ′) that induces the electric field and the
electric current and hence

H ′(t ′) = −
∑

j

J0( j, t ′)A( j, t ′), (B2)

where the electric field comes from the time variation of the
vector field A(i, t ) = A(i)e−iωt

E = −∂βV − ∂A

∂t
= −∂A

∂t
= iωA. (B3)

As a result, the commutator in Eq. (B1) reads

[σ b(i, t ), H ′(t ′)] = i

ω

∑
j

eiω(t−t ′ )E ( j, t )[σ b(i, t ), J0( j, t ′)],

(B4)

since the electric field has a single wave length and frequency
E (i, t ) = E0eiq·ri−iωt . Consequently, the local spin accumula-
tion in Eq. (B1) becomes

σ b(r, t ) =
∑

j

∫ ∞

−∞
dt ′eiω(t−t ′ ) 1

ω
θ (t − t ′)

×〈[σ b(i, t ), J0( j, t ′)]〉E ( j, t )

=
∑

j

∫ ∞

−∞
dt ′eiω(t−t ′ ) iπb(i, j, t − t ′)

ω
E ( j, t )

=
∑

j

iπb(i, j, ω)

ω
E ( j, t ) ≡

∑
j

χb(i, j, ω)E ( j, t ).

(B5)

Here χb(i, j, ω) is the response coefficient for the contribution
to the σ b(i, t ) at site i due to the longitudinal electric field
E ( j, t ) applied at site j. We will further assume that the
electric field is constant everywhere, i.e., q → 0 such that
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E (i, t ) = E ( j, t ) = E0e−iωt . In this case,

σ b(i, t ) =
⎧⎨
⎩

∑
j

χb(i, j, ω)

⎫⎬
⎭E (i, t ) = χb(i, ω)E (i, t ) . (B6)

We aim to calculate the real part of the DC magnetoelectric
susceptibility

lim
ω→0

Reχb(i, ω) = lim
ω→0

Re

⎧⎨
⎩ i

ω

∑
j

πb(i, j, ω)

⎫⎬
⎭. (B7)

Let |n〉 be the eigenstate with eigenenergy En after diagonaliz-
ing the BHZ/FMM junction described by Eq. (2), the retarded
πb(i, j, ω) operator is given by

πb(i, j, ω) =
∑
m,n

〈n|σ b(i)|m〉〈m|J0( j)|n〉 f (En) − f (Em)

ω+ En− Em+ iη
,

(B8)

where η is a small artificial broadening. Using η/(x2 + η2) =
πδη(x), the limit in Eq. (B7) reads

− lim
ω→0

Re

⎧⎨
⎩ i

ω

∑
j

πb(i, j, ω)

⎫⎬
⎭ = lim

ω→0

⎧⎨
⎩

∑
m,n

〈n|σ b(i)|m〉〈m|
∑

j

J0( j)|n〉 f (En) − f (Em)

ω

−η

(ω + En − Em)2 + η2

⎫⎬
⎭

= lim
ω→0

⎧⎨
⎩

∑
m,n

〈n|σ b(i)|m〉〈m|
∑

j

J0( j)|n〉 f (En) − f (En + ω)

ω
(−π )δη(ω + En − Em)

⎫⎬
⎭

=
∑
m,n

〈n|σ b(i)|m〉〈m|
∑

j

J0( j)|n〉
(

π
∂ f (En)

∂En

)
δη(En − Em)

≡
∑
m,n

〈n|σ b(i)|m〉〈m|
∑

j

J0( j)|n〉F̃ (En, Em), (B9)

where we have used the fact that Re[〈m|∑ j J0( j)|n〉] is even but Im[〈m|∑ j J0( j)|n〉] is odd in (n, m), Re[〈n|σ b(i)|m〉] is even
but Im[〈n|σ b(i)|m〉] is odd in (n, m), and the real part of (1/ω)( f (En) − f (Em))/(ω + En − Em + iη) in the η → 0 and ω → 0
limit is even in (n, m) to eliminate several terms in the

∑
nm summation. The function F̃ (En, Em) can be further approximated by

F̃ (En, Em) =
(

π
∂ f (En)

∂En

)
δη(En − Em) =

∫
dω δ(ω − En)

(
π

∂ f (ω)

∂ω

)
δη(ω − Em)

≈
∫

dω
η

(ω − En)2 + η2

(
1

π

∂ f (ω)

∂ω

)
η

(ω − Em)2 + η2
, (B10)

which leads to Eq. (12). In addition, the vanishing di-
agonal elements F̃ (En, En) = 0 are imposed according to
Eq. (B8).

Although linear response theory of this kind has been
widely adopted to investigate metallic systems, we uncover
a number of numerical subtleties that must be implemented
for the BHZ model. Firstly, for a homogeneous isolated BHZ
model, all states are doubly degenerate due to Kramers’
degeneracy [see the block-diagonal form of Eq. (1)]. In
addition, the edge state at the y = 1 edge and that at the
y = Ny,T I edge at the same energy are degenerate, and hence
the numerically observed wave function can be an arbitrary
mixture of them, which complicates the calculation of the
〈n|σ b(i)|m〉 and 〈m|∑ j J0( j)|n〉 matrix elements in Eq. (12).
Moreover, we find that for a homogeneous BHZ model, the
matrix elements 〈m|∑ j J0( j)|n〉 between the edge states are
zero. This is because this matrix element is essentially that of
the velocity operator, of which the edge states are eigenstates,
so 〈m| ∑ j J0( j)|n〉 ∝ 〈m|v̂x|n〉 = vF 〈m|n〉 = 0 if |n〉 �= |m〉.

To remove these numerical ambiguities, we focus on the
BHZ/FMM junction case in the presence of disorder and a
small edge magnetic field for the following reasons. The first
advantage of the BHZ/FMM junction is that the degeneracy

between the two edges of the BHZ region is lifted due to the
nonzero interface coupling tB �= 0 to the FMM at y = Ny,TI,
hence the problem of mixing the wave functions of the two
edges is resolved. On the other hand, the y = 1 edge still accu-
rately captures the Edelstein effect of an isolated BHZ model,
so it can be used to compare with the tB �= 0 cases at the other
edge y = Ny,TI. Secondly, the edge state in the presence of
disorder is no longer an eigenstate of the velocity operator,
so the vanishing 〈m|∑ j J0( j)|n〉 is resolved. The disorder
also helps to smear out the sparse edge state energy spectrum,
which increases the accuracy of the numerical calculation. We
also add a small magnetic field B(y = 1) = By=1ẑ at the free
edge y = 1 to lift the degeneracy between the two spins, and
choose |n − m| > 1 to avoid neighboring energy levels, such
that there is no ambiguity in calculating the matrix element
of the spin operator 〈n|σ b(i)|m〉. Numerically, we perform the
calculation on a lattice of size Nx × (Ny,T I + Ny,FM ) = 48 ×
(10 + 6) with 10% impurities of impurity potential Uimp = 4
and use the artificial broadening η = 0.1 (mean free time τ ∼
10−14 s) and temperature kBT = 0.03. Because the function
F̃ (En, Em) highly peaks at the chemical potential En ≈ Em ≈
0, the summation

∑
n,m in Eq. (12) is over the 100 states

nearest to the chemical potential. Such a calculation can
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achieve about 70% ∼ 80% accuracy, which is sufficient to
draw conclusions. The accuracy can certainly be improved at
larger system sizes.

The obtained numerical value of χb is of the order of
O(1) × ae/t ∼ 10−9mC/J. Given the typical external charge
current in experiment jc ∼ 1011 A/m2 and the electrical

conductivity of the FMM ∼107 S/m, the corresponding elec-
tric field is E ∼ 104 kgm/Cs2, which yields a spin polariza-
tion σ b(i) ∼ 10−5. Using Jex = 0.1 eV, the spin torque at this
typical current density is essentially the numerical values of
χb(i) averaged over the FMM sites and then multiplied by
GHz.
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