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The Lieb-Schultz-Mattis (LSM) theorem states that a spin system with translation and spin rotation symmetry
and half-integer spin per unit cell does not admit a gapped symmetric ground state lacking fractionalized
excitations. That is, the ground state must be gapless, spontaneously break a symmetry, or be a gapped spin liquid.
Thus, such systems are natural spin-liquid candidates if no ordering is found. In this work, we give a much more
general criterion that determines when an LSM-type theorem holds in a spin system. For example, we consider
quantum magnets with arbitrary space-group symmetry and/or spin-orbit coupling. Our criterion is intimately
connected to recent work on the general classification of topological phases with spatial symmetries and also
allows for the computation of an “anomaly” associated with the existence of an LSM theorem. Moreover,
our framework is also general enough to encompass recent works on “SPT-LSM” theorems where the system
admits a gapped symmetric ground state without fractionalized excitations, but such a ground state must still be
nontrivial in the sense of symmetry-protected topological phases.
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I. INTRODUCTION

In quantum many-body physics, there is the question of
how to determine the nature of the ground state of a quan-
tum system, given knowledge of the microscopic degrees
of freedom and their Hamiltonian. Unfortunately, in general
this problem is completely intractable by either analytical or
numerical methods, and one is left trying to match hypotheses
about the nature of the ground state to experimental observa-
tions.

In some cases, however, there exist powerful theorems that
show that certain properties of the microscopic degrees of
freedom (specifically, the way in which symmetries act upon
them) imply highly nontrivial constraints on the nature of the
ground state. An example of such a result was proven by Lieb,
Schultz, and Mattis (LSM) for one-dimensional systems [1],
and later generalized to higher dimensions by Oshikawa and
Hastings [2,3]. The theorem states that a system of quantum
spins with translational symmetry and SO(3) spin rotation
symmetry, carrying half-integer spin per unit cell, must satisfy
one of the following in the thermodynamic limit: either (a)
it orders at zero temperature (i.e., one of the aforementioned
symmetries is spontaneously broken); or (b) the ground state
is gapless; or (c) the ground state has nontrivial degeneracy
in the torus. In language usual to the study of quantum
magnetism, we can say that possibility (b) corresponds to
the ground state being a gapless quantum spin liquid, and (c)
corresponds to the ground state being a topological quantum
spin liquid (with fractional excitations such as anyons). The
possibility of the system being completely trivial at zero
temperature, with neither spontaneous symmetry breaking nor
spin-liquid character, is thus disallowed.

The manifest power and utility of this theorem raises the
question of when we expect similar results to hold more
generally, a question which has been examined from various
points of view [2,4–27]. One particularly intriguing point of
view is based on a connection with the theory of topological
phases with symmetries [11,15,16,20]: one can think of a
system with half-integer spin per unit cell as corresponding
to the boundary of a symmetry-protected topological (SPT)
phase in one higher dimension, protected by the symme-
tries under consideration, namely, translation symmetry and
SO(3). Another closely related point of view is based on
anomalies: the half-integer spin per unit cell somehow implies
that the low-energy field theory describing the system must be
“anomalous” in a certain sense. This prevents the low-energy
physics from being completely trivial but also implies stronger
constraints than the original LSM-Oshikawa-Hastings formu-
lation; even a nontrivial spin-liquid ground state must have
the correct anomaly as dictated by the microscopic sym-
metry action, which places nontrivial constraints on which
spin-liquid ground states are allowed [9,11] (a question
on which the original LSM-Oshikawa-Hastings result was
silent).

These points of view, although highly suggestive, have not
so far been fully developed, mainly because theorems of LSM
type always seem to involve spatial symmetries (for exam-
ple, translation symmetry in the original LSM theorem; one
can also consider other spatial symmetries such as rotations,
reflections, etc.), and the theory of topological phases with
spatial symmetries has not historically been well understood.
Nevertheless, recently a systematic theory of topological
phases with spatial symmetries has emerged [18,26,28–30].
This raises the possibility that the “topological” point of view
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on LSM-type results can now be formalized and put on a
completely general footing.

In this paper, we realize this possibility. In particular, we
formulate the general criterion for a quantum spin system,
with a general symmetry group and representation of that
symmetry on the microscopic degrees of freedom, to have a
result of LSM type. We do this by precisely characterizing the
anomaly that results from the microscopic symmetry action,
which then implies constraints on the allowed ground states.

As a concrete application, we specialize to symmetries of
particular relevance to quantum magnetism: specifically, we
consider the symmetry group of a crystalline quantum magnet
in two or three spatial dimensions, with or without time-
reversal symmetry breaking, and with or without spin-orbit
coupling. In each of these cases, we find that the criterion for
when a result of LSM type holds can be reduced to a simple
geometrical criterion on the arrangement of spins in the unit
cell, called “lattice homotopy,” which generalizes the criterion
of the same name that was conjectured (and proven in certain
cases) for systems without spin-orbit coupling in Ref. [14].

The outline of this paper is as follows. In Sec. II, we discuss
a general form for the symmetry representations we intend
to consider, give some examples, and introduce the notion
of “lattice homotopy” generalizing Ref. [14]. In Sec. III, we
review the “defect networks” of Ref. [30], and then show in
Sec. IV that defect networks lead to an appealing physical
picture for LSM-type results. In Sec. V, we translate these
considerations into a concrete and computable mathematical
criterion for LSM-type results based on an object called
equivariant homology. In Sec. VI, we present our results from
performing exhaustive computational searches in many cases
of interest for quantum magnetism, concluding that lattice
homotopy completely captures the LSM criterion in these
cases. In Sec. VII we present some equivariant homology
computations of the LSM anomaly associated to translation
and point-group symmetries. In Sec. VIII, we discuss how our
framework also encompasses “SPT-LSM” theorems in which
the ground state, if gapped and symmetric, is constrained to at
least be in a nontrivial symmetry-protected topological (SPT)
phase. In Sec. IX, we give a rigorous proof of a special case
of our LSM criterion in two dimensions. Finally, in Sec. X we
discuss directions for future work.

II. ANOMALOUS TEXTURES

Results of LSM type arise in situations where the sym-
metry acts projectively on sites. For example, in the original
LSM result, sites carrying half-integer spin correspond to
projective representations of the spin rotation group SO(3).
In this section, we describe a general form of a symmetry
action, and introduce an object which we call an “anomalous
texture” to describe the projective action on sites. (The reader
who is not so interested in general formalism can skip ahead
to Sec. II A where we discuss concrete examples of the kind
of symmetries we intend to consider.)

We consider a symmetry group G with an associated ac-
tion on d-dimensional space, described by a homomorphism
G → ISO(d ), where ISO(d ) is the set of isometries of d-
dimensional space Rd (this group is generated by translations,
rotations, and reflections). We assume the system is composed

of a collection of spins indexed by a set � ⊂ Rd that is
invariant under the action of G (we will refer to � as “the
lattice”). Its Hilbert space can be represented as a tensor
product H = ⊗

s Hs, where the product is over all spins, and
Hs is the local Hilbert space of spin s.

We assume that the symmetry acts on the Hilbert space by
a representation of the form

U (g) =
(⊗

s

Vs(g)

)
S(g)K p(g), (1)

where Vs(g) is an onsite unitary acting on the spin states Hs;
S(g) is a unitary that acts on the whole Hilbert space by
permuting the spins in accordance with the spatial action of
the symmetry; and K is the antiunitary complex-conjugation
operator, with μ(g) = 0 or 1 depending on whether g acts
unitarily or antiunitarily. Note that unitary symmetries that
are orientation reversing in space, such as reflection, still
correspond to μ(g) = 0.

In order for U (g) to be a linear G representation, i.e.,
U (g1)U (g2) = U (g1g2), some consistency conditions have to
be satisfied. First, we must have μ(g1g2) = μ(g1) + μ(g2)
[mod 2]. Second, we must have S(g1g2) = S(g1)S(g2). Lastly,
Vs(g) satisfies a condition we find by computing

U (g1)U (g2)

=
(⊗

s

Vs(g1)

)
S(g1)Kμ(g1 )

(∏
s

Vs(g2)

)
S(g2)Kμ(g2 ) (2)

=
(⊗

s

Vs(g1)

)
S(g1)

(⊗
s

V ∗μ(g1 )
s (g2)

)

× S(g1)−1S(g1g2)Kμ(g1g2 ) (3)

=
(⊗

s

[
Vs(g1)Vg−1

1 s(g2)
])

S(g1g2)Kμ(g1g2 ), (4)

where V ∗μ = V ∗ (complex conjugate) if μ = 1 and V if p =
0. On the other hand, we have

U (g1g2) =
(⊗

s

Vs(g1g2)

)
S(g1g2)Kμ(g1g2 ). (5)

We therefore conclude that

Vs(g1g2) = ωs(g1, g2)Vs(g1)V ∗μ(g1 )
g−1

1 s
(g2) (6)

for some phase factor ωs(g1, g2).
The phase factor ωs(g1, g2) is a spatially dependent gen-

eralization of a group 2-cocycle; the latter characterizes
projective representations and appears in physics to clas-
sify (1+1)D bosonic symmetry-protected topological (SPT)
phases [31,32]. Let us note that by expanding Vs(g1g2g3) in
two different ways, ωs must satisfy the associativity condition

ω
σ (g1 )
g−1

1 s
(g2, g3)ωs(g1, g2g3) = ωs(g1, g2)ωs(g1g2, g3), (7)

where we introduced the notation σ (g) = (−1)μ(g). Moreover,
we had some gauge freedom in defining the operators Vs(g) in
the first place. We are free to choose phase factors βs(g) for
each g ∈ G and spin s, and then redefine Vs(g) → βs(g)Vs(g).
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This has the following effect on ωs(g1, g2):

ωs(g1, g2) → ωs(g1, g2)
β

σ (g1 )
g−1

1 s
(g2)βs(g1)

βs(g1, g2)
. (8)

We call a lattice of sites �, equipped with an equivalence
class of ωs satisfying Eq. (7), subject to the equivalence
relation (8), an anomalous texture on �. Under multiplication
of ωs, anomalous textures on � form an Abelian group which
we will call HG

−2(�, U(1)) or, equivalently, H2
G(�, U(1)).1

The reason behind these notations will become clear later.
Physically, the group structure corresponds to stacking of
Hilbert spaces and tensor product of symmetry operators
U (g).

Finally, we note a useful result about anomalous textures.
For every site s, let Gs be the subgroup of G that leaves s
invariant. We will refer to this as the “isotropy group” of
the site. Then, the onsite operators Vs(g) define a projective
representation of Gs, which defines a class in group cohomol-
ogy H2(Gs, U(1)). A representative 2-cocycle can be obtained
from ωs as defined above by restricting it to Gs. Moreover,
suppose s and s′ are two different sites that are symmetry
related, that is, there exists g∗ ∈ G such that g∗s = s′. Then,
from the associativity condition on ω one can show that the
classes in H2(Gs, U(1)) and H2(Gs′ , U(1)) are related by
the isomorphism H2(G′

s, U(1)) → H2(Gs, U(1)) induced by
the group map Gs → Gs′ , g �→ g∗gg−1

∗ (this isomorphism in
group cohomology does not depend on the choice of g∗).
Roughly speaking, this is just saying that the onsite projective
action needs to be invariant under the whole action of the
spatial symmetry group. Furthermore, one can show (see Ap-
pendix A) that HG

−2(�, U(1)) is in one-to-one correspondence
with the sets of allowed data [ωs] ∈ H2(Gs, U(1)) for each site
s, subject to the condition of G symmetry just mentioned. That
is, anomalous textures on a lattice of sites � just correspond to
consistent assignments of on projective representations of the
isotropy group at every site. Further, one needs only keep track
of the projective representation at one site in each orbit. All the
other projective representations are determined by symmetry.

A. Examples

Let us discuss some examples that we will come back to in
the course of the paper:

(1) Quantum paramagnet without spin-orbit coupling. For
example, the Hamiltonian could be a Heisenberg interaction

H =
∑
a,b

Ja,bSa · Sb, (9)

where Sα
a , α = x, y, z, are the spin operators at position a, and

the couplings Ja,b respect the spatial symmetries of the lattice.
This Hamiltonian has a symmetry G = SO(3) × ZT

2 × Gspatial

or SO(3) × Gspatial (depending on whether time-reversal sym-
metry ZT

2 is broken), where SO(3) is the internal spin rotation

1Throughout this paper, U(1) as a coefficient group will always
come equipped with a G action, with the antiunitary elements of
G, but not spatially orientation-reversing symmetries like reflection,
unless they are also explicitly antiunitary, acting nontrivially. In cases
where different G actions are used, we note them explicitly.

symmetry, and Gspatial is the discrete spatial symmetry of the
lattice. The representation U (g) is generated by the action
of SO(3) on spins and by the permutation of spins under
Gspatial. The onsite symmetry representations are linear SO(3)
representations for integer spin, and projective representations
for half-integer spins; this corresponds to the class [ωs] for
a site s being either the trivial or nontrivial element of
H2(SO(3), U(1)) = Z2. With time reversal the half-integer
spin representations are Kramers doublets with T 2 = −1, so
we obtain the diagonal element of H2(SO(3) × ZT

2 , U(1)) =
Z2 × Z2.

(2) Exotically ordered quantum magnet. We can also con-
sider spin systems where the SO(3) spin rotation symmetry
is broken (either spontaneously or explicitly) down to some
subgroup. In order to have nontrivial LSM, what we will
need is that the integer and half-integer representations remain
distinct. So, ferromagnetic or antiferromagnetic order will
not be sufficient [in that case SO(3) gets broken down to
SO(2), which has no nontrivial projective representations] but,
for example, we could consider spin-nematic order, where
SO(3) is broken down to O(2) (an out-of-plane π rotation
is preserved) [or if time reversal is also present, then the
symmetry is O(2) × ZT

2 ]. The projective representations are
captured in group cohomology by the symmetry-reduction
maps (in this case isomorphisms)

H2(SO(3), U(1)) → H2(O(2), U(1)) = Z2, (10)

H2(SO(3) × ZT
2 , U(1)) (11)

→ H2(O(2) × ZT
2 , U(1)) = Z2 × Z2. (12)

Note that as for O(2) × ZT
2 , half-integer spins only realize the

diagonal element of the latter group [which is projective under
both O(2) and ZT

2 ].
(3) Quantum paramagnet with spin-orbit coupling. The

Hamiltonian (9) can be obtained as the effective theory for the
spin degrees of freedom of a Mott insulator with one electron
on each lattice site. However, suppose that the underlying
electrons have spin-orbit coupling. Then, the internal spin
SO(3) symmetry is broken, and in general the Hamiltonian
will have less symmetry than Eq. (9). Instead, the Hamiltonian
will be of the form

H =
∑
a,b

Sa · Jab · Sb, (13)

where for each a, b, Jab is a 3 × 3 matrix.
However, we know that the laws of physics are invariant

under the Euclidean group ISO(3), provided that the spins of
the electrons also transform. ISO(3) is spontaneously broken
to a discrete subgroup Gs in a crystalline solid, so we conclude
that the couplings Jab must be such that H is still be invariant
under Gs. Thus, the symmetry group in this case is G = Gspatial

or Gspatial × ZT
2 (depending on whether or not time-reversal

symmetry is broken). We emphasize that, in this case, the
spatial symmetries must be taken to have an internal action on
the spin degrees of freedom rather than just permuting them.
For half-integer spins this internal action can lead to nontrivial
projective representations of the site symmetry groups Gs,
with classes in H2(Gs, U(1)). (However, in the case where
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time-reversal symmetry is broken, this only occurs at sites s
where the site symmetry group Gs remains large enough.)

Later (see Sec. VIII), we will also consider some more ex-
otic symmetries where the full symmetry group is a nontrivial
extension of a space group by an internal symmetry.

B. Lattice homotopy

We define a simple equivalence relation for anomalous
textures, which we call lattice homotopy, generalizing notions
in [14,18,28,33]. Recall that an anomalous texture is defined
by a collection of sites s ∈ � indexing the phase factors
ωs(g1, g2), with a G action on �. We think of � as an abstract
set mapped into physical space X = Rd by a map f : � → X ,
which is required to be equivariant with respect to the G action
on � and on X , meaning f (g · s) = g · f (s). This map may be
considered part of the data of the anomalous texture.

Two anomalous textures are lattice homotopy equivalent if
they are related by a series of the following simple equiva-
lences:

(1) If two sites s, s′ sit on top of each other, that is they
map to the same point in X under f , then we can combine
them into a single point s′′ and add their corresponding phase
factor data, that is, ωs′′ (g1, g2) = ωs(g1, g2)ωs′ (g1, g2).

(2) If a site carries trivial phase factor data, i.e.,
ωs(g1, g2) = 1 for all g1, g2 ∈ G, then s can be removed from
�.

(3) If two anomalous textures are related by symmetric
deformation of the locations of the sites, then they are equiv-
alent. In other words, if h : [0, 1] × � is a G-equivariant
continuous map, i.e., h(t, g · s) = g · h(t, s), then the anoma-
lous textures defined by f = h(0,−) and f ′ = h(1,−) are
equivalent. h is a homotopy between the maps f , f ′, hence,
the name lattice homotopy.

The lattice homotopy equivalence relations can also be
stated in a more concrete way in terms of the local data.
Recall that in Sec. II we stated that the local class [ωs] ∈
H2(Gs, U(1)) for all sites s is sufficient to determine the
anomalous texture up to gauge freedom. Items 1 and 2 in
the list above apply in the obvious way to this description
of the anomalous texture. Item 3 is a bit trickier because as
we deform the locations of sites, their site symmetry groups
Gs can change. In particular, we need to consider fusion
moves where a collection of symmetry-related sites fuses into
a single site with a larger site symmetry group [18,28,33];
an example is shown in Fig. 1. To derive the fusion rule of
such a move, let G∗ be the enlarged site symmetry group after
fusion, and let S be the set of sites before fusion that are going
to fuse into a single site. Then, we can treat the local data
on each site as defining an anomalous texture just on S, with
symmetry G∗. As we know, an equivalent description of such
an anomalous texture is in terms of a map ω : S × G∗ × G∗ →
U(1) satisfying Eq. (7). Then, we can define an element of
H2(G∗, U(1)) to describe the result of the fusion, through the
2-cocycle

ω(g1, g2) =
∏

s

ωs(g1, g2). (14)

Now, let us discuss the significance of lattice homotopy for
LSM results. If we allow ourselves to add additional degrees

FIG. 1. An example of a fusion move. The overall symmetry
group is G = Gspace × Gint , for some internal symmetry group Gint ,
and where Gspace is generated by a threefold rotation and a reflection
(i.e., Gspace = D3). The site symmetry group Gs for each site on the
left-hand side is Z2 × Gint . Under lattice homotopy, one can fuse a G
orbit comprising three of these points into a single point whose site
symmetry group is enlarged to G. We need a fusion rule giving a map
H2(Z2 × Gint, U(1)) → H2(G, U(1)) to describe the impact of such
a fusion on the anomalous texture.

of freedom (transforming linearly under the symmetry so that
they do not affect the anomalous texture), then it is easy to
see that a trivial anomalous texture, i.e., one with ωs = 1 for
all s, admits a trivial symmetric gapped ground state, in fact a
product state. [Such a product state ground state is not always
possible if we do not add degrees of freedom; for example,
consider a system built out of S = 1 spins with SO(3) sym-
metry.] Moreover, if we again allow adding additional degrees
of freedom without changing anomalous texture, then lattice
homotopy equivalence can always be implemented simply
by moving degrees of freedom around symmetrically. Thus,
we obtain a trivial gapped symmetric ground state for any
anomalous texture that is lattice homotopy equivalent to the
trivial one. The case where we do not allow ourselves to add
degrees of freedom is more difficult, but generally one expects
that in the case of an anomalous texture that is trivial in lattice
homotopy equivalence, a trivial gapped symmetric ground
state can be constructed as some kind of tensor network
[14].

The question now is, if an anomalous texture is not trivial
in lattice homotopy, does it necessarily lead to an LSM result?
If we define an “LSM result” to be the statement that any
symmetric gapped ground state, if it exists, is topologically
ordered, we will see that the answer turns out to be yes
in many cases of physical interest (see Sec. VI), but no in
general. However, see also Sec. VIII where we discuss other
kinds of LSM-type results.

Finally, let us mention a simplification that occurs in many
cases of physical interest. We consider a symmetry group
of the form G = Gspace × Gint , where the Gint symmetry acts
internally, and only the Gint acts projectively on sites. In other
words, if we we decompose the classifying group for the
projective representation on site s as

H2(Gs, U(1)) = H2(Gspace,s × Gint, U(1)) (15)

= H2(Gspace,s, U(1)) (16)

×H1(Gspace,s,H1(Gint, U(1))) (17)

×H2(Gint, U(1)), (18)
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where Gspace,s is the subgroup of Gspace that leaves s invariant,
then we consider only anomalous textures resulting from the
last factor. This is the relevant case for quantum magnets
without spin-orbit coupling, where Gint is the spin-rotation
symmetry SO(3) or time-reversal symmetry ZT

2 .
In this case, let P := H2(Gint, U(1)) (usually P = Z2 for

quantum magnets, which keeps track of whether the spin at
site s is integer or half-integer). Then, an anomalous texture
on a collection of sites � with embedding f : � → X is just
an assignment of an element ω ∈ P for all s ∈ �. Moreover,
the lattice homotopy equivalence relations can be stated very
simply:

(1) If two sites s, s′ sit on top of each other, that is they map
to the same point in X under f , then we can combine them
into a single point s′′ and add their corresponding elements of
P using the group law for H2(Gint, U(1)), corresponding to
tensor product of projective representations.

(2) If a site carries the trivial element of P, then it can be
removed since it carries a linear representation of Gint.

(3) If two anomalous textures are related by symmetric
deformation of the locations of the sites, without changing any
of the P labels of the sites, then they are equivalent.

Such an equivalence relation on anomalous textures has
previously been considered in Ref. [14]. It leads to a purely
geometric way to determine when there is an LSM result (in
cases where this is determined by lattice homotopy equiva-
lence), as discussed there.

C. Fermionic anomalous textures

Although we will mostly talk about bosonic systems (e.g.,
spins) in this paper, for completeness we also introduce
anomalous textures in fermionic systems [12,17,24]. For each
site s, we indicate by Gs,b = Gs, f /Z

f
2 to be the bosonic

isotropy group at s, where Gs, f is the subgroup of the full
symmetry G f (which contains fermion parity Z f

2 ) that leaves
the site s invariant. The anomalous texture contains the data of
projective action of Gs,b on Hs, whether any elements of Gs,b

anticommute with fermion parity, as well as whether s carries
an odd number of Majorana modes. This is the same data as a
one-dimensional (1D) fermionic SPT with internal symmetry
Gs, where Gs contains fermion parity.

III. DEFECT NETWORKS: REVIEW

A. Defect networks

In Refs. [18,26,28,30], a general picture of crystalline
topological phases emerged based on so-called defect net-
works. The starting point is a space X with an action of
a group G. For example, in the usual case of an infinite
crystal, X = Rd and G acts on X by Euclidean isometries
such as translation, reflection, rotation, etc. We choose a cell
decomposition (for example, a triangulation) of X , such that
G maps cells to cells. Furthermore, we require that for each
(open) cell σ , if g ∈ G fixes any point in σ , it fixes all of σ .
The group of such elements is called the isotropy group of σ ,
denoted Gσ .

The idea of a defect network is that to each d-dimensional
cell σd , we assign the data of a d-dimensional Gσd -symmetric
topological phase of matter (either SPT or SET). Then,

0-cell

1-cell

2-cell

FIG. 2. A cell decomposition of the plane. In an invertible-defect
network, 2-cells carry a two-dimensional topological phase, 1-cells
carry invertible gapped interfaces between topological phases, and
0-cells carry invertible gapped junctions between interfaces.

on each (d − 1)-dimensional cell σd−1, we assign the data
of a Gσd−1 -symmetric interface between the d-dimensional
phases carried on the adjoining d-cells. Then, on each (d −
2)-dimensional cell σd−2, we assign the data of a Gσd−2 -
symmetric junction between the abutting interfaces, and so
on, until we get down to 0-cells (see Fig. 2). There is a
basic consistency condition, which states the resulting state
needs to be symmetric under the whole symmetry group G.
We already got part of the way there by requiring that the
phase/interface/junction/etc. on each cell is invariant under
Gσ , but since an element g ∈ G not in Gσ will permute the cell
σ into another cell gσ we also require that the resulting data
of a Ggσ = gGσ g−1 is related by the isomorphism Gσ → Ggσ

given by h �→ ghg−1.
We can distinguish between different classes of interface

defect networks. A defect network is called an invertible-
defect network if the interfaces on all the k-cells for k < d
are invertible (although the gapped phases on d-cells are not
required to be invertible), meaning that every interface has
an inverse interface such that when the interface is brought
close to its inverse, they together are equivalent by a local
unitary to the trivial interface. In this work, we will only ever
discuss invertible-defect networks, which are already believed
to be sufficient to classify “liquid” (e.g., not fractonic) topo-
logical phases with spatial symmteries, and in fact when we
say “defect network” without qualification, we will mean an
invertible-defect network.

An invertible-defect network is further called an invertible-
substrate defect network if the top-dimensional data, i.e.,
the phase carried on d-cells is itself invertible (for example,
an SPT or a p + ip superconductor, but not a phase with
fractional excitations). An invertible-substrate defect network
describes a crystalline topological phase which, if we forget
about the symmetries, is either trivial (i.e., with symmetries it
is a crystalline SPT) or an invertible topological phase. In any
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case it is short-range entangled (according to the definition
of Kitaev [34]). Note that an LSM theorem is precisely
the statement that no invertible topological phase symmetric
ground states are allowed.

Finally, we will call a defect network k-skeletal if it
carries trivial data on all cells of dimension >k. Note
that since invertible gapped k-dimensional interfaces be-
tween trivial (k + 1)-dimensional phases are equivalent to
k-dimensional invertible phases, for a k-skeletal defect net-
work, the data on a k-dimensional cell σ is always an in-
vertible Gσ -symmetric topological phase. Moreover, since
the trivial phase is certainly invertible, a k-skeletal defect
network (for k < d) is always an invertible-substrate defect
network.

There is an equivalence relation on defect networks
described in [30]. Two defect networks are equivalent if
they are related by symmetric motions of the defects as
well as fusion/splitting processes. Equivalently, we say
they are equivalent if they are related by pumping pro-
cesses applied on each cell (called “bubble equivalences” in
Ref. [26]).

B. Anomalous defect networks and anomalous textures

In Refs. [26,30], it was highlighted that a defect network
can be anomalous, meaning that it cannot be realized in
a gapped system with a nondegenerate ground state, e.g.,
as a crystalline SPT. These anomalies can be associated
with a region of some dimension r < d . For example, a
symmetry-breaking domain wall in an SPT phase typically
defines an anomalous defect network with anomaly along the
wall.

We define a degree-r anomalous defect network as a spec-
ified configuration of interfaces on k-cells for all k > r, in
which there exists an r-cell σ for which no gapped symmetry-
preserving junction exists between the interfaces adjoining σ .
In an anomalous defect network, all the cells of dimension �r
are therefore left unspecified.

For invertible-substrate defect networks, we argued in
Ref. [30] that such anomalies are classified by the same
data that classifies usual symmetry anomalies for the isotropy
group Gσ of the r-cell treated as an internal symmetry, or
equivalently SPT phases in r + 1 spatial dimensions with
internal symmetry Gσ . The interpretation is that if we were
to add an (r + 1)-cell τ in a new direction perpendicular to X ,
with ∂τ = σ , where Gσ fixes τ pointwise, then we would be
able to place an (r + 1)-dimensional Gσ -SPT along τ which
absorbs the Gσ anomaly induced by the abutting defects at σ .

Of particular interest to the study of LSM theorems is
the case r = 0, meaning the anomalies occur at points s
with isotropy group Gs (see Fig. 3). For bosonic systems, Gs

anomalies of zero-dimensional (0D) systems or, equivalently,
one-dimensional Gs-SPTs, are classified by H2(Gs, U(1)).
The assignment of these anomalies is equivariant with respect
to the global G symmetry. Therefore, a degree-0 anomalous
defect network defines an anomalous texture in the sense of
Sec. II.

Conversely, given an anomalous texture on � ⊂ X , we
can define a degree-0 anomalous (invertible-substrate) defect
network on X × [0,∞) which is nonanomalous in the bulk,

 2-d topological
phase

1-d interface

"Anomalous" mode
carrying projective
representation

FIG. 3. A degree-0 anomalous defect network in a bosonic sys-
tem in two dimensions. All the 2-cells and 1-cells carry gapped
invertible phases and interfaces, respectively, but 0-cells (points)
carry emergent degenerate modes transforming projectively under
their respective isotropy groups Gs.

but has an anomaly on the boundary characterized by the
given anomalous texture. In particular, we can take the defect
network to be 1-skeletal, meaning it is just some parallel
arrangement of 1D SPTs (see Fig. 4). We choose these 1D
SPTs so for each site s on the boundary there is a 1D SPT in
the bulk classified by [ωs] ∈ Hs(Gs, U(1)) which terminates
on the boundary at the site s.

More generally, one could define higher-dimensional
anomalous textures so that the anomaly of an invertible-
substrate defect network always corresponds to an anomalous
texture of some kind. Furthermore, such anomalous textures
occur at the boundaries of general crystalline SPTs. We do not
consider these generalized situations in much detail, although
the computational schemes we develop in Sec. V E do apply
to them.

C. Bulk-boundary correspondence in terms of defect networks

When does a spin system in d dimensions with spins trans-
forming projectively admit an invertible symmetric ground
state? That is, when is there an LSM theorem?

As we have shown above, any anomalous texture sits at
the boundary of a crystalline SPT in the (d + 1)-dimensional
space X × [0,∞), where we have added an extra half-infinite
direction.

1-d SPT

FIG. 4. An anomalous texture can appear at the boundary of a
1-skeletal defect network in one higher dimension.
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One can show that crystalline SPTs of this special form
admit invertible symmetric boundary conditions iff they are
trivial, in the sense explained at the end of Sec. III A. Thus,
the invariants of these crystalline SPTs in d + 1 dimensions
capture LSM anomalies in d dimensions.

In this paper, however, we will introduce a different
(though closely related) perspective; rather than talking about
crystalline SPTs in d + 1 spatial dimensions, we will talk
about anomaly cancellation in d spatial dimensions, that
is, without adding an extra dimension to the problem. This
picture will ultimately prove more powerful, and will be the
subject of the next section.

IV. ANOMALY MATCHING

In the previous sections, we saw that anomalous tex-
tures can arise in several different ways. In particular, they
can arise both as the anomaly of a defect network, in the
sense described above, and as a description of the projective
representation of the microscopic degrees of freedom. This
motivates the following principle, which we can think of as a
form of “UV-IR anomaly matching”:

A defect network represents an allowed state for a strictly
d-dimensional system if and only if its anomaly cancels the
anomalous texture of the microscopic degrees of freedom.
Moreover, an anomalous texture will give rise to a traditional
LSM theorem if and only if there are no invertible-substrate
defect networks that give rise to a matching anomaly.

Let us now discuss some concrete examples.

A. Examples

In the following, we will usually not make explicit ref-
erence to a cell decomposition of the space X , with the
understanding that one can always be chosen in order to fit
the discussion into the cellular framework introduced above.

1. Cancellation of an anomalous texture
by a 1-skeletal defect network

The simplest example of cancellation of anomalous tex-
tures occurs in a spin system with SO(3) symmetry and
translation symmetry and two spin-half particles per unit cell.
According to our definitions, so long as the two spin-halfs sit
at different locations in the unit cell, this system has nontrivial
anomalous texture in the sense that ωs defines a nontrivial
element of HG

−2(�, U(1)). Nevertheless, it is clear that we
do not have an LSM theorem since this Hilbert space admits
a gapped symmetric invertible ground state, in which the
spin-half particles are paired into singlets. We can rephrase
this from the point of view of anomalous texture cancellation
if we add extra integer-spin degrees of freedom into the unit
cell (which does not affect the anomalous texture) and replace
the singlets with 1D Haldane chains [5,35,36], as shown in
Fig. 5. Because the Haldane chains have boundaries, there are
emergent spin- 1

2 degrees of freedom associated with the end
points, which we interpret as an emergent anomalous texture.
This emergent anomalous texture cancels with the anomalous
texture of the microscopic spin- 1

2 degrees of freedom, allow-
ing for a gapped nondegenerate symmetric ground state. This

Haldane

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

(a)

(b)

1/2

1/2

1/2

1/2

1/2

1/2

FIG. 5. In a spin system which has SO(3) spin rotation symmetry
and translation symmetry, a system with two spin-half particles per
unit cell gives rise to an anomalous texture which can be canceled
by a collection of Haldane chains. (a) The microscopic anomalous
texture. (b) The defect network with emergent anomalous texture.

is an example of a microscopic anomalous texture which can
be canceled by a 1-skeletal defect network, since the Haldane
chains are one dimensional.

Note that the above argument could easily be repeated in a
fermionic system, with the spin- 1

2 ’s replaced with microscopic
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Majorana zero modes, and the Haldane chains replaced with
Kitaev chains [37].

It might seem contrived in this example to think of the
singlets as miniature Haldane chains. Moreover, this is an
example of anomalous texture which is trivialized by the
lattice homotopy equivalence relations described in Sec. II B
(generally, any anomalous texture which is lattice homotopy
equivalent to the trivial one can be trivialized by 1D wires, as
we show in Appendix E). Nevertheless, we chose to present
this example in order to illustrate the analogy with the more
nontrivial kinds of anomalous texture cancellations discussed
below.

2. Cancellation by an invertible-substrate defect network

In the previous section, we discussed an anomalous tex-
ture which can be canceled by a 1-skeletal defect network.
Next, we will discuss an anomalous texture which cannot
be canceled by a 1-skeletal defect network, but can be by
an invertible-substrate defect network. We discuss fermionic
systems here because the simplest analogous case we know
of for bosonic systems, the magnetic translations example
discussed in Sec. VIII, is substantially more complicated.
Our example is related by a bulk-boundary correspondence
to a 3D defect network defining a trivial crystalline SPT state
discussed in Refs. [30,38].

The state which will have the desired anomalous texture
in the emergent sense is a (p + ip) superconductor with C2

rotation symmetry. For our purposes, it will be sufficient
to consider a continuum Hamiltonian which has a (p + ip)
superconductor as its ground state, namely,

H =
∫

d2r
[

†

(
− 1

2m
∇2 − μ

)



+ �
†(∂x + i∂y)
† + H.c.

]
, (19)

where 
(r) is a fermionic field, and �, m, and μ are con-
stants. The pairing term is not rotationally invariant, as can be
seen by writing it in polar coordinates (r, θ ):∫

d2r 
†(∂x + i∂y)
† =
∫

r dr dθ eiθ
†(∂r + ir∂θ )
†.

(20)

What, then, are we to do if we want to construct our (p + ip)
superconductor to be C2 invariant? In fact, we can make
Eq. (20) rotationally invariant if we redefine 
† → eiθ/2
†.
The problem is that this is effectively introducing a π vortex
(flux of fermion parity) at the origin, and we know that
this binds a Majorana zero mode (MZM) [39]. Hence, we
conclude that the C2 invariant (p + ip) superconductor has an
emergent anomalous texture characterized by a single MZM
at the origin. Therefore, if we construct a system which
microscopically has a MZM at the origin, then the anomalous
textures can cancel, and the two MZMs couple to form a
nondegenerate ground state (see Fig. 6). Observe that this
anomalous texture cannot be canceled by a 1-skeletal defect
network because there is no way to add Kitaev chains to
cancel the MZM while preserving the C2 symmetry. However,
the C2-invariant (p + ip) superconductor corresponds to an

p+ip

(a) (b)

FIG. 6. In a fermionic system in (2+1)D with C2 spatial rotation
symmetry, a microscopic MZM at the origin can be canceled by
a (p + ip) superconductor. (a) The microscopic anomalous texture.
(b) The defect network with emergent anomalous texture.

invertible-substrate defect network that cancels the anomalous
texture.

Similarly, one can also show that if we restore (lattice)
translational symmetry, so that the full symmetry group is the
wallpaper group p2, then we can show that the (p + ip) su-
perconductor with p2 symmetry has an emergent anomalous
texture with a MZM at each rotation center (of which there are
four per unit cell). Therefore, to get a nondegenerate ground
state we need a lattice system which microscopically has a
MZM at each rotation center.

3. Cancellation by a noninvertible state

Next, we consider an example of an anomalous texture
which cannot be canceled by any invertible-substrate defect
network, but can be by a general invertible-defect network,
i.e., one where the top-dimensional cells carry a noninvertible
phase but all defects are invertible.

The anomalous texture corresponds to a spin system with
discrete translation symmetry in two dimensions, with a spin-
1
2 per unit cell. The statement that such a system cannot
have an invertible symmetric ground state is, of course, the
original LSM theorem in 2D. On the other hand, a symmetric
ground state can exist if it has noninvertible topological order
with fractionalized excitations. It was shown in Ref. [9],
however, that there are still nontrivial constraints on which
noninvertible topological orders are allowed.

We can interpret the constraints of Ref. [9] as correspond-
ing to the requirement that the anomalous texture be canceled.
Reference [9] showed that the translation symmetry and spin-
rotation symmetry must be fractionalized on anyons; such
a fractionalization can be interpreted as saying that there is
an anyon present in each unit cell in the ground state, and
that anyons carry fractional spin, respectively. Furthermore,
Ref. [9] showed that the specific anyon which is present in
each unit cell in the ground state must carry half-integer
spin. We can interpret this as an anomalous texture cancel-
lation condition: the microscopic spin 1

2 in each unit cell
and the emergent half-integer spin per unit cell due to the
fractionalization must combine to form an integer spin (see
Fig. 7). Indeed, if this cancellation did not occur, then in
the defect network picture there would be a massive ground-
state degeneracy due to the half-integer spins in each unit cell.
Note that in the defect-network picture, due to the assumption
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e

1/2

topological order

(a)

(b)

FIG. 7. In a spin system which has SO(3) spin-rotation symme-
try and translation symmetry, a system with one spin-half particle per
unit cell gives rise to an anomalous texture which can be canceled by
a Z2 topological order (i.e., the topological order of the toric code)
with an e particle carrying half-integer spin located in each unit cell.
(a) The microscopic anomalous texture. (b) The defect network with
emergent anomalous texture.

that the unit-cell size is much larger than the correlation
length, these spins would not be able to couple to each other.

B. Connection with lattice homotopy

As we have already mentioned in Sec. IV A 1, the lattice
homotopy equivalence relation is closely connected with the
idea of anomaly cancellation. Specifically, an anomalous tex-
ture is equivalent to the trivial texture in lattice homotopy if
and only if the anomaly can be canceled by a 1-skeletal defect
network. In general, one can take this as the definition of
lattice homotopy, but for bosonic systems we show in Sec. V C
that this also agrees with the concrete formulation of lattice
homotopy from Sec. II B. The fact that this is not the most

general invertible-substrate defect network is precisely why
an anomalous texture can be nontrivial in lattice homotopy
but still not result in a traditional LSM theorem which guar-
antees noninvertible ground states. On the other hand, in such
case we will generally have an “SPT-LSM” theorem which
constrains what kind of invertible ground states one can have.
We discuss such results in more detail in Sec. VIII.

C. Connection with the bulk-boundary correspondence

As we mentioned in Sec. III C, the LSM theorem may
also be formulated in terms of a bulk-boundary correspon-
dence, where the anomalous texture sits at the boundary of a
crystalline SPT in the (d + 1)-dimensional space X × [0,∞),
where we have added an extra half-infinite direction. Thus, the
LSM constraints come from the invariants of these crystalline
SPTs.

The two approaches are equivalent. In particular, in Ap-
pendix E, we prove that an anomalous texture in d spatial
dimensions can be canceled by an invertible-substrate defect
network if and only if its associated (d + 1)-dimensional
crystalline SPT is trivial according to the defect-network
equivalence relation.

V. CALCULATIONS IN BOSONIC SYSTEMS USING
EQUIVARIANT HOMOLOGY

So far, we have given a very appealing set of physical pic-
tures, but we have not yet explained how to compute anything
in this picture. In this section, we develop a computational
method which applies in most cases of interest for LSM theo-
rems in spin systems and which easily may be computerized.
Specifically, we consider bosonic systems, and we restrict to
invertible-substrate defect networks. Moreover, we consider
only a certain subset of invertible-substrate defect networks,
which we call “in-cohomology.” Roughly, this corresponds
to requiring that the data on each k-cell 
 correspond to an
in-cohomology SPT phase, that is, one constructed from a
class in group cohomology Hk+1(G
, U(1)). This is not quite
the precise statement because in general the data on a k-cell
in an invertible-substrate defect network is a torsor over G


SPT phases, hence cannot be canonically identified with an
element of Hk+1(G
, U(1)). Nevertheless, there is a well-
defined notion of the data on a k-cell being in-cohomology,
as we discuss in Appendix E.

The phases constructed from classes in Hd+1(G, U(1)) are
known not to be the most general bosonic invertible topologi-
cal phases with G symmetry [40–43]. For example, for d = 2
they do not include the so-called Kitaev E8 state [44,45],
which exists even for G = 1. Accordingly, in-cohomology
defect networks are only a subset of all possible invertible-
substrate defect networks. Further, working with group coho-
mology invariants restricts the type of deformations we can
apply to our states. We discuss how this affects our LSM
criterion later in Sec. V E.

For in-cohomology defect networks, the pictures we have
previously introduced can be expressed in a relatively con-
crete mathematical way, and one which allows for explicit
computations, in terms of equivariant homology (see also
Refs. [25,38]).
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Equivariant homology is something that is defined in terms
of a space X and a group G acting on it. It is a kind of
generalization of cellular homology of X , agreeing with it for
G = 1. It is also closely related to group cohomology (not
group homology) of G. Cellular homology is a standard notion
from elementary algebraic topology, and group cohomology
is by now familiar to physicists through the bosonic SPT
classification. We will first review both of these notions,
before moving on to equivariant homology.

A. Cellular homology

Let X be a space with a cell decomposition (specifically a
regular CW complex) and A be some additive Abelian group.
A (cellular) k chain is a formal linear combination (with
coefficients in A) of oriented k-cells σ , such that if σ̄ is σ

with the opposite orientation, then σ̄ = −σ . For our purposes,
since we will want to consider noncompact spaces such as
X = Rn, we will allow infinite linear combinations. This gives
rise to what is known as “Borel-Moore” homology.2 These
generate an Abelian group denoted Ck (X, A) where the empty
k chain is the identity and the oriented k-cells with weight 1
generate over A. An orientation of σ determines an orientation
of the (k − 1)-cells τ ⊂ ∂σ , and we use this to define a linear
map called the boundary operator

∂ : Ck (X, A) → Ck−1(X, A) (21)

on generators as

∂σ =
∑
τ⊂∂σ

τ, (22)

where each τ is given the orientation induced by σ . A k chain
V with ∂V = 0 is called a k cycle and the group of k cycles is
denoted Zk (X, A). Likewise, the image under ∂ of Ck+1(X, A)
is called the group of boundaries, and denoted Bk (X, A). We
have ∂2 = 0 so Bk (X, A) � Zk (X, A). We obtain a group

Hk (X, A) = Zk (X, A)/Bk (X, A) (23)

called the kth homology of X with coefficients in A.

B. Group cohomology

Now, let M be some additive Abelian group with an action
of G (sometimes abbreviated as a G module). A G k cochain
with values in M is a map

α : G× k· · · ×G → M. (24)

(In the case where G and M are continuous we require
cochains to be measurable functions [46]; see Appendix C 3
for more details.) These form a group Ck (G, M ) under ad-
dition of values, where the constant map to 0 ∈ M is the
additive identity in Ck (G, M ). We define a linear map called
the (group) coboundary operator

δ : Ck (G, M ) → Ck+1(G, M ) (25)

2This differs from ordinary homology. In particular, for us
Hn(Rn,Z) = Z and H0(Rn,Z) = 0.

according to

(δα)(g1, . . . , gk+1)

= g1α(g2, . . . , gk+1)

+
p∑

i=1

(−1)iα(g1, . . . , gi−1, gigi+1, gi+2, . . . , gk+1)

+ (−1)k+1α(g1, . . . , gk ), (26)

where in the first term we use the action of G on M. A k
cochain α with δα = 0 is called a k-cocycle and the group of
k-cocycles is denoted Zk (G, M ). We have δ2 = 0. We denote
the group of k coboundaries [i.e., the image of Ck−1(G, M )
under δ] by Bk (G, M ). The kth group cohomology with coef-
ficients in M is defined as

Hk (G, M ) = Zk (G, M )/Bk (G, M ). (27)

In some cases, it will be more convenient to use homoge-
neous cochains (whereas the cochains defined above are called
inhomogeneous). A homogeneous G k-cochain with values in
M is a map

ν : G× k+1· · · ×G → M (28)

which satisfies the homogeneity condition

gν(g1, . . . , gk+1) = ν(gg1, . . . , ggk+1). (29)

Homogeneous cochains are in one-to-one correspondence
with inhomogeneous cochains: a homogeneous cochain can
be constructed from an inhomogeneous cochain according to

ν(g1, . . . , gk+1) = g1α
(
g−1

1 g2, g−1
2 g3, . . . , g−1

k gk+1
)
, (30)

while an inhomogeneous cochain can be constructed from a
homogeneous cochain according to

α(g1, . . . , gk ) = ν(1, ĝ1, . . . , ĝk ), (31)

where ĝl = g1g2 . . . gl . In terms of the homogeneous
cochains, the coboundary operator (26) becomes

(δν)(g1, . . . , gk+2)

=
k+2∑
i=0

(−1)iν(g1, . . . , gi−1, gi+1, . . . , gk+2), (32)

that is, for each term of the sum, each of g1, . . . , gk+2 are
included in the argument of ν except gi. One sees that the
correspondence between homogeneous and inhomogeneous
k-cochains respects δ.

C. Equivariant homology

Now, let us suppose our space X with a cell decomposition
admits an action of G such that for each g ∈ G, each k-cell σ

maps bijectively to another k-cell gσ . Likewise, if σ has an
orientation, gσ receives an orientation as well. We extend this
by A linearity to a G action on Ck (X, A). Taking M = Cp(X, A)
we form the group

Qp
q = C p(G,Cq(X, A)). (33)

We typically organize these groups in a grid in the plane where
q runs along the x axis and p along the y axis (see Fig. 8).
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FIG. 8. A graphical representation of the double complex. Each
square represents an Abelian group Qp

q = C p(G, Cq(X, A)). The
group of equivariant r-chains, CG

r (X, A), is the direct sum along the
rth diagonal (highlighted). The equivariant boundary operator D goes
from CG

r (X, A) → CG
r+1(X, A) and is constructed out of the horizontal

maps ∂ (shown in blue) and vertical maps δ (shown in red) that link
the rth and (r + 1)th diagonals.

Accordingly, the boundary operator on cellular chains defines
horizontal maps

∂p,q : Qp
q = C p(G,Cq(X, A))

∂−→ C p(G,Cq−1(X, A)) = Qp
q−1, (34)

where ∂ acts on the values of the cochains, while the cobound-
ary operator on group cochains gives vertical maps

δp,q : Qp
q = C p(G,Cp(X, A))

δ−→ C p+1(G,Cq(X, A)) = Qp+1
q . (35)

These maps satisfy ∂p,q∂p,q+1 = 0, δp+1,qδp,q = 0, and

∂p+1,q+1δp,q+1 = δp,q∂p,q+1 as maps Qp
q+1 → Qp+1

q . (36)

This whole structure is known as a double complex. We will
sometimes drop the degrees on δp,q and ∂p,q when they can be
inferred from context or when the formulas hold at arbitrary
degree. For instance, we can write the above as

∂δ = δ∂. (37)

An equivariant r-chain is defined to be an element of the
direct sum

Qr :=
d⊕

k=0

Qk−r
k =

d⊕
k=0

Ck−r (G,Ck (X, A)). (38)

This direct sum is along the slope −1 diagonals of the double
complex (see Fig. 8). We write CG

r (X, A) for the Abelian
group of equivariant r chains. Note that the target of ∂k+1−r,k+1

from the (k + 1)st piece, namely Qk+1−r
k , a summand of Qr−1,

is the same as the target of δk−r,k from the kth piece (see

Fig. 8). This allows us to define the total boundary

Dr : Qr → Qr−1 (39)

on equivariant chains according to

(Drβ )k = ∂k−r+1,k+1(β )k+1 + (−1)rδk−r,k (β )k, (40)

or simply

D = ∂ + (−1)rδ, (41)

where (α) j denotes the projection onto the Q j−r
j summand

of Qr . The signs are chosen so D2 = 0. An equivariant chain
in the kernel of D is called an equivariant cycle, the group
of these denoted ZG

r (X, A) ⊂ CG
r (X, A); and one in the image

is called an equivariant boundary, the group of these denoted
BG

r (X, A) ⊂ CG
r (X, A).

We define the equivariant homology

HG
r (X, A) := ZG

r (X, A)/BG
r (X, A). (42)

As an aside, we note there is another kind of equivariant
homology (sometimes called “Borel equivariant homology”),
which is quite different from this one. The version we have
presented is a special case of the kind of equivariant homology
discussed in Ref. [38] (despite the fact that in that reference
their formulation was referred to as “Borel equivariant homol-
ogy” in a nonstandard usage). See also Ref. [25]; that work as-
sumed a mathematical object called an “equivariant spectrum”
that was there left unspecified. The equivariant homology of
this work and Ref. [38] can be viewed as corresponding to a
particular choice of equivariant spectrum.

D. Anomalous textures as equivariant chains

The data of an anomalous texture, as introduced in Sec. II,
is conveniently packaged as an equivariant −2-cycle. In par-
ticular, if we compare the definition of equivariant homology
with the definition of anomalous texture, we find that anoma-
lous textures as defined in Sec. II are classified by the equiv-
ariant homology HG

−2(�, U(1)), where � is interpreted as a
space containing only 0-cells; indeed, we already introduced
this notation earlier. The data ωs discussed in Sec. II corre-
spond to an element of C2(G,C0(�, U(1))) = CG

−2(�, U(1));
the associativity condition (7) corresponds to restricting to
equivariant cycles in Z−2(�, U(1)), and the gauge freedom
Eq. (8) corresponds to modding out by equivariant boundaries
in B−2(�, U(1)).

We assume that we have chosen the cell decomposition
of X such that all the points in � map into vertices of
X . Then there is a natural inclusion map ZG

−2(�, U(1)) →
Z2(G,C0(X, U(1))) � ZG

−2(X, U(1)). We find that an anoma-
lous texture that gives an ω,ω′ ∈ Z2(G,C0(X, U(1))) is triv-
ial if and only if there exists λ ∈ Z2(G,C1(X, U(1))) such that
∂λ = ω.

We can write this in a compact way by introducing
the 1-skeleton X1 of X , which is the union of all the 0-
and 1-cells of X . Then we have that Z2(G,C1(X, U(1))) =
Z2(G,C1(X1, U(1)) = CG

−1(X1, U(1))). So we see that an
anomalous texture is trivial in lattice homotopy equivalence
if and only if it gives trivial map class under the inclu-
sion map HG

−2(�, U(1)) → HG
−2(X1, U(1)). As we discuss in
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Appendix F, this can also be understood in the context of a
spectral sequence.

As we have already alluded to, however, an anomalous tex-
ture that is nontrivial in lattice homotopy equivalence might
still be cancelable by an invertible-substrate defect network
which is nontrivial on higher-dimensional cells. The above
formulation already hints what we need to do to find the
general criterion, namely, study the image of the anomalous
texture in HG

−2(X, U(1)) rather than H−2(X1, U(1)). In the next
subsection, we will make this precise.

E. General classification of defect networks
and anomalous textures

Equivariant homology allows us to compactly express the
equivalence classes of defect networks described in Sec. III A,
where all defects involved are described by group coho-
mology. We refer to this as the in-cohomology equivalence
relation.

Theorem 1. The in-cohomology equivalence classes of G-
symmetric nonanomalous invertible-substrate defect networks
on a space X are in one-to-one correspondence with classes in
equivariant homology HG

−1(X, U(1)).
In Sec. V G we relate this to the “crystalline equivalence

principle” of Ref. [29], which offers an isomorphic classifica-
tion.

A closely related result is as follows:
Theorem 2. Let [ω] ∈ HG

−2(�, U(1)) be an anomalous tex-
ture. Then the anomalous texture can be canceled by an
invertible-substrate in-cohomology defect network on X if
and only if the image of [ω] is trivial under the map
HG

−2(�, U(1)) → HG
−2(X, U(1)) induced by the inclusion

� → X .
The relationship between Theorems 1 and 2 is an aspect

of the bulk-boundary correspondence for crystalline SPTs.
Indeed, in Sec. III B we described how to associate to an
anomalous texture on X an anomalous defect network on X ×
R�0 which realizes the anomalous texture on its boundary.
This is equivalently captured by an anomaly-free defect net-
work on X × R. We show in Appendix E that this construction
defines an isomorphism

HG
−2(X, U(1)) 
 HG

−1(X × R, U(1)) (43)

such that the invariant of the anomalous texture in Theorem 2
is mapped to the invariant of the defect network in Theorem 1.
In other words, an anomalous texture can be canceled by an
invertible state if and only if it defines a trivial SPT in one
higher dimension, as expected.

Finally, let us observe that by replacing X → X1 (the 1-
skeleton of X ), we find that an anomalous texture can be
canceled by a 1-skeletal defect network if and only if it is
trivial in lattice homotopy, as expected.

There are two ways one can think about deriving Theorems
1 and 2. First of all, we show in Appendix B that every element
of ZG

−1(X, U(1)) can be used to construct a concrete gapped
symmetric lattice wave function, and that wave functions
constructed from two equivariant chains that correspond to
the same class in HG

−1(X, U(1)) can be related by a symmetric
finite-depth quantum circuit (that is, they are in the same
SPT phase). Moreover, we also show in Appendix B that if

an anomalous texture defines a trivial class in HG
−2(X, U(1)),

which means it can be written as a boundary of a chain
in CG

−1(X, U(1)), then this chain tells us how to construct a
gapped symmetric lattice wave function in the presence of the
microscopic anomalous texture. Such considerations, though
suggestive, do not completely establish Theorems 1 and 2;
for example, they do not prove the “only if” direction in
Theorem 2. However, in Appendix E we prove Theorems 1
and 2 in full through a more abstract argument based on the
in-cohomology model of defect networks.

Evaluating the “in-cohomology” assumption

Theorems 1 and 2 are statements about the in-cohomology
model of defect networks. So, in general one might need to ask
whether results derived based on Theorem 1 still apply if one
talks about general invertible-substrate defect networks rather
than in-cohomology defect networks. (Of course, the portions
of Theorems 1 and 2 that can be established by the explicit
lattice constructions of Appendix B do not require any further
justification.) First, it is clear that in general one can consider
defect networks built from beyond-cohomology components,
and therefore the classification from Theorem 1 is not com-
plete. However, one can also ask whether a nontrivial class
in the in-cohomology model, i.e., in HG

−1(X, U(1)), can ever
become trivial as an invertible-substrate defect network (be-
cause the class of deformations one is allowed to consider in
invertible-substrate defect networks is larger).

However, we do not expect this to happen, at least in low
spatial dimensions. The reason is that one can show [29,30]
that the classification of invertible-substrate defect networks
obeys the crystalline equivalence principle, that is, there is
a one-to-one correspondence between the classification of
invertible-substrate defect networks with spatial symmetry
G and the classification of invertible phases with internal
symmetry G. Moreover, one can similarly show that the
classification of in-cohomology defect networks with spatial
symmetry G is in one-to-one correspondence with the clas-
sification of in-cohomology SPTs with internal symmetry G.
But with internal symmetries it is believed [43] that a phase
that looks nontrivial in group cohomology is always non-
trivial in the true classification, at least in spatial dimension
d < 7.

For similar reason, we expect that if an anomalous texture
cannot be canceled by an in-cohomology defect network (the
condition for which is given by Theorem 2), then it cannot
be canceled by an invertible-substrate defect network either.
The reason is that, following the discussion of Appendix E,
even without making in the in-cohomology assumption we
still expect there to be a map from anomalous textures in d
spatial dimensions into SPT phases in d + 1 spatial dimen-
sions, such that the anomalous texture can be canceled by
an invertible-substrate defect network in d dimensions if and
only if the SPT phase in d + 1 spatial dimensions is trivial.
Then, the result follows from our discussion in the preceding
paragraph provided that d < 6.

F. A simplification for direct product symmetry groups

As we mentioned in Sec. II B, there is a simplification in
cases where the symmetry decomposes as G = Gspatial × Gint
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for some internal symmetry Gint. Then, the data associated
with a site s in the anomalous texture can be decomposed
using the Künneth formula as

H2(Gs, U(1))

= H2(Gspatial,s × Gint, U(1)) (44)

= H2(Gspatial,s, U(1))H1(Gspatial,s,H1(Gint, U(1)))

×H2(Gint, U(1)), (45)

where Gspatial,s is the subgroup of Gspatial that leaves s fixed.
There is also a Künneth formula for the equivariant homol-

ogy (see Appendix D), which here reads as

HG
−2(X, U(1)) =

d+2⊕
k=0

H
Gspatial

−2+k (X,Hk (Gint, U(1))). (46)

Under the map from anomalous textures into equivariant
homology, the first, second, and third factors in Eq. (45) map
into the k = 0, 1, 2 factors in Eq. (46). Importantly, this means
that we can consider the three factors in Eq. (D3) separately:
there is a traditional LSM theorem (i.e., the anomalous texture
cannot be canceled by an invertible-substrate defect network)
if and only if the image of any one of the three factors in
Eq. (46) is nontrivial in the respective equivariant homology.

G. Relationship with anomalies/SPT phases with
internal symmetries

An important property of equivariant homology is that it
reduces to group cohomology in the case where X is Rd . We
have

HG
k (Rd , A) ∼= Hd−k (G, Aor ). (47)

Here, Aor is the G module whose G action is given by g ∗ a =
s(g)g · a, where (g · a) is the G action for A, and s(g) = −1 if
and only if g has orientation-reversing action on Rd , otherwise
s(g) = 1. In particular, in-cohomology crystalline SPTs on Rd

are classified by

HG
−1(Rd , U(1)) ∼= Hd+1(G, U(1)or ), (48)

which is the same as the classification of in-cohomology SPTs
with internal symmetry G, but where the orientation-reversing
unitary elements of G correspond to antiunitary symmetries.
This is an example of the “crystalline equivalence principle”
of Ref. [29].

Further, the in-cohomology LSM anomaly of an anoma-
lous texture on Rd is an element of

HG
−2(Rd , U(1)) ∼= Hd+1(G, U(1)or ), (49)

which also classifies in-cohomology anomalies for an internal
symmetry G.

For some purposes (e.g., for gapless systems as we briefly
mention in Sec. X), it will be convenient to have an ex-
plicit construction of the map from anomalous textures into
Hd+2(G, U(1)or ), which we will now provide. Recall that an
anomalous texture on a lattice � can be described by an
element of HG

−2(�, U(1)).
For greater generality, let us construct a map from

HG
−m(�, A) into Hd+m(G, Aor ). We call this map the equiv-

ariant push forward. Let

�p,q = {ω ∈ C p(G,Cq(Rd , A)) | δω = ∂ω = 0}.
Recall that an element of HG

−m(�, A) gives rise to an element
of Zm(G,C0(X, A)) � �m,0. Then, if q < d , then for any ω ∈
�p,q we can write ω = ∂α for some α ∈ C p(G,Cq+1(X, A))
[here we used the fact3 that Hq(Rd , A) = 0 for q < d]. Then,
we see that ∂δα = δ∂α = 0 and δδα = 0. So δα ∈ �p+1,q+1.
So if we start from �m,0, we just need to apply this procedure
iteratively to obtain an element ω ∈ �d+m,d . Now, we use the
fact that Hd (Rd , A) = A. Concretely, this corresponds to the
fact that a closed d chain on Rd is just a superposition of
all the d-cells on Rd with the same coefficient. So we obtain
an element of Cm+d (G, A). The fact that δω = 0 ensures that
this gives a class in Hm+d (G, Aor ) [the reason why we have
coefficients in Aor is that orientation-reversing elements of
G act nontrivially on Hd (Rd , A)]. One can check that the
element of Hm+d (G, Aor ) so obtained does not depend on
any of the arbitrary choices [i.e., choice of representative in
Z p(G,C0(X, A)) for a class in H−2(�, U(1)), and, at each
iteration, choice of α such that δα = ω] made along the
way. For further detail, the relationship to spectral sequence
calculations, and a generalization, see Appendix F.

VI. EXHAUSTIVE COMPUTATIONS FOR
QUANTUM MAGNETS

As mentioned, the equivariant homology formulation of
the problem introduced in the previous section allows for ex-
plicit calculations on a computer. We give more details about
the algorithms in Appendix G; the code we used to implement
them can be found at [47]. Here we will state the results
that we have obtained using this technique. Specifically, we
have searched for cases in which the lattice homotopy equiv-
alence relation discussed in Sec. II B fails to give the correct
criterion for a traditional LSM theorem, that is, there is an
anomalous texture which is nontrivial in the lattice homotopy
sense, but nevertheless admits an invertible ground state, as
represented by an invertible-substrate defect network. Our key
result is that there is no such anomalous texture for any of
the symmetry groups that are relevant for quantum magnets.
Specifically, our exhaustive computational search has ruled
out such a possibility in the following cases, where Gspace is
any of the 17 wallpaper groups in two spatial dimensions or
any of the 230 space groups in three spatial dimensions:

(1) G = Gspace × Gint, where Gint is any group such that
H2(Gint, U(1)) = Z2, and the anomalous texture just corre-
sponds to putting projective representations of Gint on sites.

(2) G = Gspace × ZT
2 , and the microscopic degrees of

freedom giving rise to the anomalous texture are spins which
transform like a spin-orbit-coupled electron spin under spatial
symmetry and time reversal.

(3) G = Gspace, with no internal symmetry (for exam-
ple, quantum magnets with spin-orbit coupling and broken

3We are using noncompactly supported (i.e., Borel-Moore) homol-
ogy as discussed in Sec. V A, so the only nontrivial homology group
of Rd is Hd (Rd , A) = A.
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time-reversal symmetry). Here, there is no restriction on the
anomalous textures considered.

Cases 1 (for any choice of Gint) and 2 in fact are covered
by a single computation any given Gspace, by exploiting the
Künneth decomposition for the equivariant homology, as dis-
cussed in Appendix G.

In particular, this covers all the possible symmetries of
quantum magnets discussed in Sec. II A. Therefore, for quan-
tum magnets we have the result that there is a traditional LSM
theorem if and only if the anomalous texture is nontrivial in
the lattice homotopy sense. Moreover, since LSM theorems
that enforce nontrivial SPT phases always come from anoma-
lous textures that are nontrivial in the lattice homotopy sense,
as discussed in Secs. IV B and VIII, we conclude that there
are no such results for the symmetry groups considered here.

VII. EQUIVARIANT PUSH FORWARD AND LSM
THEOREMS FOR TRANSLATIONS AND POINT GROUPS

In this section, we present some results presenting the LSM
anomaly associated to G = Gint × Zd (internal symmetry
times translations) and to G = Gint × Gpt (internal symmetry
times point group) as elements of the corresponding group
cohomology Hd+2(G, U(1)). This is equivalent to computing
the equivariant push forward of the anomalous texture as
decribed in Sec. V G. The explicit calculations of the descent
sequence can be found in Appendices H and I, respectively.

A. Translation symmetry and the classic LSM theorem

In the case that all spatial symmetries are translations, G =
Gint × Zd , the descent sequence takes a particularly simple
iterative form we describe in Appendix H. Here, we just
describe the result of the calculation.

Let us suppose all of � is a single Zd orbit of a site s. The
isotropy group of s is Gint and an anomalous texture defines a
class

α = ωs|Gint ∈ H2(Gint, U(1)), (50)

which we can also gives a class in H2(G, U(1)) by the
projection G → Gint. We also define cocycles

τ j ∈ H1(Zd ,Z) ∼= Zd , j = 1, . . . , d (51)

which have τ j (ek ) = δ jk , where {ek} are the generators of
Zd . (This is sufficient to determine τ j uniquely, by linearity.)
Again, by projection G → Zd , we obtain corresponding τ j ∈
H1(G,Z). We find the LSM anomaly is

τ1 ∪ · · · ∪ τd ∪ α ∈ Hd+2(G, U(1)), (52)

where ∪ is the so-called “cup product” on cohomology [48].
This means that our anomalous texture is equivalent in equiv-
ariant homology to

τ1 ∪ · · · ∪ τd ∪ α · [Rd ] ∈ Zd+2(Zd × Gint,Zd (Rd , U(1))),

(53)

where [Rd ] ∈ Zd (Rd ,Z) is the fundamental cycle of Rd .
Another way to say this is that the Künneth formula shows

that

Hd+2(G, U(1)) ∼= Hd (Zd ,H2(Gint, U(1))) × · · · , (54)

where we ignore the other factors. Moreover, we have

Hd (Zd ,H2(Gint, U(1))) ∼= H2(Gint, U(1)), (55)

which reflects the total projective class of Gint per unit cell.

B. Point-group symmetry

Next, we study the case where the spatial symmetry is
just a point group Gpt acting on Rd (which always leaves the
origin fixed). In that case, by lattice homotopy equivalence
(see Sec. II B) one can always concentrate the anomalous
texture at the origin. Again, the details of the descent sequence
can be found in Appendix I, here we just describe the results.

We split the symmetry group as G = Gint × Gpt, where
Gpt is the point group. The isotropy group of the origin is
the entire group, but we restrict our attention to anomalous
textures where only Gint acts projectively, which is captured
by a class

α ∈ H2(Gint, U(1)). (56)

The action of Gpt is linear on Rd so it defines an element called
the Euler class

e(Gpt ) ∈ Hd (Gpt,Z
or ). (57)

We find the LSM anomaly is

e(Gpt ) ∪ α ∈ Hd+2(G, U(1)or ). (58)

In other words, if we use the Künneth formula to write

Hd+2(G, U(1)or ) = Hd (Gpt,H2(Gint, U(1))or ) × · · · (59)

then the anomalous texture maps into the first factor, and
the resulting class is induced from the Euler class by the
homomorphism on coefficients

σα : Zor → H2(Gint, U(1))or, m �→ mα. (60)

We proceed to describe the Euler class for several point groups
in d = 1, 2, 3, beginning with some general facts about Euler
classes.

An immediate corollary of the formula (58) is that if the
point group G preserves an axis, then the LSM anomaly is
trivial. Indeed, in this case we can in lattice homotopy send
the projective representation at the origin along this axis to
infinity symmetrically.

More generally, we can define a Euler class e(V ) ∈
Hk (G,Zdet V ) for any k-dimensional linear G representation
V , where the superscript det V denotes twisting by the de-
terminant det V ∈ H1(G,Z2) of the representation. If the
representation of G on Rd may be written as a direct sum
V1 ⊕ V2 of G representations, then

e(V1 ⊕ V2) = e(V1) ∪ e(V2). (61)

This helps in the computation of the LSM anomaly for simple
point groups.

Finally, we note that in odd dimensions, all Euler classes
are 2-torsion, meaning 2e(V ) = 0. This strongly constrains
the behavior of point-group LSM theorems in d = 3. This
2-torsion phenomenon of the point-group LSM anomaly can
be seen in lattice homotopy, by choosing a Gpt-invariant
polyhedron encircling the origin, one can bring in from in-
finity a copy of a projective Gint representation α along a
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ray passing through the centroid of each (0, 2, . . .)-cell of
the polyhedron and a −α along a ray passing through the
centroid of each (1, 3, . . .)-cell of the polyhedron. By Euler’s
formula that relates the number of vertices, edges, and faces
of a polyhedron (or its higher-dimensional analog), in odd
dimensions the result will change the projective representation
at the origin by 2α. Thus, in odd dimensions, the anomalous
texture 2α is anomaly free for any α.

Now, we compute the Euler class for all point groups in
d = 1, 2, 3, barring the polyhedral point groups in d = 3,
whose group cohomology does not have a simple form. For
d = 1, the only nontrivial point group is the reflection group
D1 
 Z2. If we write the generator of H1(D1,Z2) as r, then
we get a natural lift to

e(D1) = r ∈ H1(D1,Z
r ), (62)

by embedding Z2 ∼ [0, 2) ⊂ Z, and where Zr indicates
twisted coefficients, i.e., Zr has differential

α �→ dα − 2r ∪ α. (63)

The subscript of Zr also indicates that det V = r ∈
H1(D1,Z2) for this representation.

In d = 2 there are two infinite families of point groups:
cyclic Cn and dihedral Dn. We have

e(Cn) = dα

n
∈ H2(Cn,Z), (64)

where α ∈ H1(Cn,Zn) is a generator, lifted to C1(Cn,Z) by
the embedding Zn ∼ [0, n) ⊂ Z and likewise

e(Dn) = dα − 2r ∪ α

n
∈ H2(Dn,Z

r ), (65)

where r ∈ H1(Dn,Z2) is the generator corresponding to a
reflection and α ∈ H1(Dn,Zr

n) is a generator corresponding
to a rotation, both suitably lifted. Both of the Euler classes are
thus a sort of Bockstein operation.

In d = 3 there are several infinite families of so-called ax-
ial point groups and one finite family of so-called polyhedral
point groups. First, we discuss the axial point groups. We
indicate them by their corresponding Frieze group. All of their
3D representations split into a sum of a rank-1 bundle (along
the axis) and a rank-2 bundle (perpendicular to the axis). We
have

e(p1) = 0, (66)

e(p11g) = α ∪ dα

2n
∈ H3

(
Zα

2n,Z
α
)
, (67)

e(p11m) = r ∪ dα

n
∈ H3(Zα

n × Dr
1,Z

r
)
, (68)

e(p1m1) = 0, (69)

e(p211) = r ∪ dα − 2r ∪ α

n
∈ H3

(
Dα,r

n ,Z
)
, (70)

e(p2mg) = α ∪ dα − 2r ∪ α

n
∈ H3

(
Dr,α

n ,Zr+α
)
, (71)

e(p2mm) = r̃ ∪ dα − 2r ∪ α

n
∈ H3(Dr̃

1 × Dα,r
n ,Zr+r̃ ). (72)

We have indicated the degree-1 generators of cohomology by
the superscripts (see our discussion about d = 2 above). The

two that vanish, p1 and p1m1, fix the axis. For the others, the
first term appearing in the Euler class indicates the Z2 quotient
of G which reflects the axis. We note that only p211 is the only
chiral group with a nonvanishing Euler class.

VIII. SPT-LSM THEOREMS

One advantage of our general framework is that it can
capture not just when an LSM anomaly can be trivialized,
but also how it can be trivialized. Thus, we can actually state
stronger constraints on the ground state than the traditional
LSM theorem does. As we discussed in Sec. IV, the general
statement is that the ground state needs to be described by
a defect network that can cancel the microscopic anomalous
texture. There are cases where, even though invertible ground
states are possible, they always must be nontrivial SPT phases
[17,21], i.e., we cannot have a completely trivial ground state
without breaking the symmetry explicitly or spontaneously.
We call such a result an SPT-LSM theorem.

For bosonic systems, we can use the equivariant homology
framework of Sec. V to determine the nature of the possible
ground states. Recall that an anomalous texture corresponds
to an equivariant −2-cycle α ∈ ZG

−2(X, U(1)). This anomalous
texture is trivial in equivariant homology iff α = Dβ for some
equivariant −1 chain β. In this case, β tells us about the defect
network that cancels the anomaly. For example, β represents
a r-skeletal defect network if its components βk are zero for
k > r.

If the anomaly can be canceled by an invertible-substrate
defect network, but not any k-skeletal defect network for k <

d , then the top-dimensional cells must carry nontrivial phases.
Recall that these top-dimensional cells carry invertible phases
with symmetry Gint, the subgroup of internal symmetries,
since if a symmetry leaves top-dimensional cells invariant
it must be internal. In this case, we have a “strong-SPT
LSM theorem”: if the ground state is invertible, it must at
least be a nontrivial Gint-SPT. An example of such a result
occurs in fermionic systems with C2 rotation symmetry and a
microscopic Majorana zero mode at the origin, as discussed in
Sec. IV A 2. In bosonic systems, it can occur in the presence of
magnetic translations or nontrivial extensions of a point-group
symmetry by an internal symmetry, as discussed below. In
particular, we will be able to recover the result of Ref. [21]
from our general framework.

One can also envision “crystalline-SPT-LSM” theorems,
where the anomalous texture enforces at the minimum that
the ground state be a nontrivial crystalline SPT. However,
there is a subtlety in what “nontrivial” means in this context.
Usually, the trivial phase is the one that contains a product
state, but in the presence of nontrivial anomalous texture, there
are no strict product state ground states. What one can instead
do is try to diagnose a nontrivial crystalline SPT though the
“higher-order,” i.e., subdimensional, gapless modes that are
enforced on the boundary by the symmetry [49–52]. Note that
zero-dimensional gapless modes, which in bosonic systems
are just characterized by projective representations, are not
particularly well defined in the presence of a bulk anomalous
texture since we can just push projective representations from
the bulk onto the boundary. Nevertheless, we expect that
higher-dimensional gapless modes remain well defined, so
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that there can be LSM theorems that guarantee nontrivial
kth-order SPTs for k < d . This corresponds to cases where the
anomalous texture can be canceled by a (d − k + 1)-skeletal
defect network.

In the remainder of this section we will go into more detail
on strong SPT-LSM theorems.

A. Strong SPT-LSM with magnetic translations

As a first concrete example, we consider a generic lattice
� ⊂ Rd with translation group Zd and internal symmetry
group Gint. We assume for simplicity that � consists of a
single Zd orbit. Thus, an anomalous texture on � is deter-
mined by the class of projective representation of Gint at any
of the sites, which we denote α ∈ H2(Gint, U(1)). Recall from
Sec. VII that in the case where G = Zd × Gint, we can repre-
sent the corresponding LSM anomaly in group cohomology
by

τ1 ∪ · · · ∪ τd ∪ α ∈ Hd+2(Zd × Gint, U(1)), (73)

where τ j ∈ H1(Zd , U(1)) gets interpreted as an element of
H1(G, U(1)) through the projection G → Zd , and similarly
for α.

Now, suppose we consider the case where G fails to be
a direct product. That is, we make a modification to the
group multiplication law such that we have a nontrivial central
extension

Gint → Gβ → Zd , (74)

where

β ∈ H2(Zd , Z (Gint )) (75)

classifies the extension. Here, Z (Gint ) ⊂ Gint denotes the
center of Gint. β is determined by a choice of commuta-
tion relations t̂1t̂2t̂−1

1 t̂−1
2 ∈ Z (Gint ) for each pair of translation

generators. On the other hand, it determines a commutation
relation by

t̂1t̂2t̂−1
1 t̂−1

2 = β(t1, t2)β(−t1,−t2). (76)

We thus interpret t̂1, t̂2t̂−1
1 t̂−1

2 as a Gint flux �i j ∈ Gint going
through the plaquette spanned by t1 and t2. For this reason,
translations which exist in an extension as above are referred
to as magnetic translations. We can write a cocycle represen-
tative for β as

β =
∑

1�i< j�d

�i jτi ∪ τ j . (77)

Since the magnetic symmetry has the same isotropy group,
namely Gint for each site as G0 had, our original anomalous
texture may be considered an anomalous texture also for
Gβ . In general, the descent sequence could yield an anomaly
different from (73). However, there is a large enough set
of symmetry classes to illustrate the SPT-LSM phenomenon
where we can arrive at the same anomaly.

1. Split internal symmetry and SPT-LSM

To this end, we momentarily restrict our attention to inter-
nal symmetries of the form

Gint = Gproj × Gflux. (78)

We further assume that in our anomalous texture, only Gproj

acts projectively, by α ∈ H2(Gproj, U(1)), and that the mag-
netic symmetry has �i j ∈ Z (Gflux) for all i, j. This guarantees
that α has an extension to H2(Gβ, U(1)). Using this extension
in the spectral sequence of Appendix H, we find the same
LSM anomaly cocycle (73).

Let m be the order of α, that is the smallest positive integer
such that mα = 0 ∈ H2(Gproj, U(1)). Some examples are as
follows:

(i) A lattice of spin 1
2 ’s with Gproj = SO(3) has m = 2.

(ii) A lattice of SU(n) fundamentals with Gproj = PSU(n)
has m = n.

(iii) A lattice of Kramers doublets with Gproj = ZT
2 has

m = 2.
We assume for the rest of the discussion that m is finite,

as it is for all compact Lie groups. We can take α such that
mα ∈ Z.

To simplify the discussion we now focus on d = 2 for
which

β = �τ1 ∪ τ2, (79)

where � ∈ Z (Gflux) represents the flux per plaquette. In this
case, there is an SPT-LSM theorem if we can find a homo-
morphism

f : Gflux → Zm (80)

such that

f (�) = 1 mod m. (81)

Indeed, a universal property of the extension cocycle is that
there is a 1-cochain A ∈ C1(Gβ, Z (Gint )) with

δA = β = �τ1 ∪ τ2. (82)

Using f (A) (with arbitrary extension of f to Gproj) we can
write the LSM anomaly as a coboundary

τ1 ∪ τ2 ∪ α = δ( f (A) ∪ α) mod 1. (83)

Indeed, by the linearity of f ,

δ f (A) = f (δA) = f (�)τ1 ∪ τ2 = τ1 ∪ τ2 mod m. (84)

Thus, f (A) ∪ α defines an invertible defect network which
cancels the LSM anomaly of the texture.

The cochain A has the additional property that when re-
stricted to Gint, it is the tautological 1-cocycle which generates
H1(Gint, Gint ). Thus, when we look at our invertible defect
network as a Gint defect network, it is anomaly free, and
defines the Gint-SPT

f (A) ∪ α ∈ H3(Gint, U(1)). (85)

There is some ambiguity in the SPT (85) given by different
choices of the function f in (80). For instance, the choice of

f |Gproj : Gproj → Zm (86)

is completely arbitrary since it does not affect the value of f
on � ∈ Gflux. This can shift the pure-Gproj SPT class in (85),
and by choosing f |Gproj to be the zero map, we can arrange
our defect network to be in the trivial pure-Gproj SPT and
still cancel the LSM anomaly. On the other hand, we cannot
choose f |Gflux to be the zero map because of the condition

224437-16



TOPOLOGICAL THEORY OF LIEB-SCHULTZ-MATTIS … PHYSICAL REVIEW B 101, 224437 (2020)

(81). Thus, we always find ourselves in some nontrivial mixed
Gproj × Gflux SPT.

The simplest examples are made by taking Gflux = Zm.
Then, we can choose an f : Zm → Zm satisfying f (�) = 1
iff � is coprime to m. Taking Gproj = SO(3) and a lattice of
spin 1

2 ’s, with Gflux = Z2 and a π -flux per plaquette, the LSM
anomaly is trivialized and we find the mixed Z2 × SO(3) SPT
with class

1
2 A ∪ w2(SO(3)) ∈ H3(Z2 × SO(3), U(1)). (87)

This SPT is characterized by the Z2 π flux carrying a spin
1
2 . Since there is a π flux per plaquette, we can pair them
into singlets with the spin 1

2 ’s on the sites in a translation-
invariant manner, hence the LSM anomaly is trivialized. All
the examples constructed this way have a similar intuitive
picture, because of the form of (85).

2. More general approach

In this section, we consider a more general setup, where
there are internal symmetries which act both projectively and
are involved in the magnetic translations. In this case, it is not
as simple to use the method in Appendix H to compute the
group cohomology anomaly. However, one can still show that
only

τ1 ∪ · · · ∪ τd ∪ α ∈ Hd+2(Gβ, U(1)) (88)

satisfies the condition that breaking any translation symmetry
trivializes the anomaly and compactifying on a torus of one
unit cell yields the projective symmetry action of Gint in class
α ∈ H2(Gint, U(1)).

Note that α does not necessarily extend to a class in
H2(Gβ, U(1)), but intuitively for any lift α̂, δα̂ is proportional
to β, and τ1 ∪ · · · ∪ τd ∪ β = 0. More rigorously, one can
check that because H∗(Zd , A) vanishes above degree d with
any coefficient group A, there is nowhere for the differentials
in the Lyndon-Hoschild-Serre (LHS) spectral sequence em-
anating from (88) to land, so (88) forms a cocycle. However,
there are differentials which can make (88) exact, in particular,
coming from (82). In this case, we can have an SPT-LSM
theorem.

An example in d = 2 with Gint = ZC
2 × ZT

2 , where ZT
2

is an order-2 time-reversal symmetry, and ZC
2 is an order-2

unitary symmetry, has projective symmetry class
1
2 A ∪ A ∈ H2(Z2 × ZT

2 , U(1)
)
, (89)

where A is the Z2 cohomology generator. This projective
symmetry class can be realized as

T 2 = 1, C2 = −1, CTCT = 1, (90)

e.g., in a 2D Hilbert space with T given by complex conju-
gation and C = iσ y. We consider a magnetic translation with
a Z2 π flux per unit cell. The modification (82) from this
extension is

δA = τ1 ∪ τ2. (91)

Thus, the anomaly (88) is exact, given by

δ
(

1
2 A ∪ A ∪ A

) = 3
2 A ∪ A ∪ τ1 ∪ τ2 = 1

2 A ∪ A ∪ τ1 ∪ τ2,

(92)

where we canceled an integer piece A2τ1τ2. This is the only
SPT phase available in this symmetry class, so it is forced
by anomaly cancellation. Note that the 1

2 A3 SPT we found
may be protected just by the unitary Z2, but without time
reversal there is no anomaly, so we could also trivialize the
anomalous texture without introducing a nontrivial SPT, e.g.,
by rephasing the C operator to σ y. We note that by a change
of basis T �→ CT , we can reexpress this example in terms
of a split symmetry with a CT -Kramers doublet per site.
In that sense, the approach taken here for this example was
unnecessary, but we hope it illustrates the general nature of
these computations.

We end this section with a proof of Theorem II from
[21]. Let ω ∈ Z3(Gint, U(1)). Using A ∈ C1(Gβ, Z (Gint )), de-
scribed above, we define an extension of ω to Gβ by

ω̂(g1, g2, g3) = ω(A(g1), A(g2), A(g3)). (93)

Since Z (Gint ) is Abelian, [ω] has a representative by a trilinear
cocycle. One can use this trilinearity and the cocycle equation
to derive a “chain rule”

δω̂ = ω(δA, A, A) − ω(A, δA, A) + ω(A, A, δA). (94)

Using the expression (82) for δA, we can write

(δω̂)(g1, g2, g3, g4) (95)

= ω(�, g3, g4)τ1(g1)τ2(g2)

−ω(g1,�, g4)τ1(g2)τ2(g3) (96)

+ω(g1, g2,�)τ1(g3)τ2(g4). (97)

Observe that this is precisely what we computed above. Then,
we use the fact that the cohomology H2(Z2,H2(Gint, U(1)))
is generated by cup products, so there is a universal cohomol-
ogy operation we can add to the above so that

δ(ω̂ + · · · ) (98)

= [ω(�, g1, g2) − ω(g1,�, g2)

+ω(g1, g2,�)]τ1(g2)τ2(g3). (99)

Thus, we can trivialize the LSM anomaly with the Gint-SPT ω

and magnetic flux � ∈ Gint if

ω(�, g1, g2) − ω(g1,�, g2) + ω(g1, g2,�) = −α (100)

in H2(Gint, U(1)). The converse follows from the fact that
there is only one differential in the LHS spectral sequence,
from H3(Gint, U(1)) → H2(Z2, H2(Gint, U(1))), which can
trivialize the LSM anomaly.

B. Strong SPT-LSM for point groups

Another simple case to consider is SPT-LSM theorems
for an anomalous texture occupying a single point. For
G0 = Gpt × Gint, with only Gint acting projectively, the LSM
anomaly again a simple form in (58):

e(Gpt ) ∪ α, (101)

where α ∈ H2(Gint, U(1)) describes the projective represen-
tation of the internal symmetries. The strategy to find an
SPT-LSM theorem is the same as with translations: we look
for an extension

Gint → Gβ → Gpt (102)
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such that the Euler class e(Gpt ) becomes exact in Hd (Gβ,Zm),
where m is the order of α, as before.

The simplest cases to study are where the internal symme-
try splits into

Gint = Gspin × Gproj, (103)

where now Gspin plays the role of Gflux in the translation
case, so named because it is the part of the symmetry group
involved in spin-orbit coupling. That is, we take our extension
cocycle β to be valued in Z (Gspin ), so Gproj remains as a split
factor in Gβ . Meanwhile, we also assume that only Gproj acts
projectively in the anomalous texture, so that we may use the
analysis of Appendix I to derive the same LSM anomaly for
Gβ .

To construct some examples, we begin with d = 2. The
Euler class for the cyclic point groups may be written

e(Cn) = dA

n
, (104)

where A ∈ H1(Zn,Zn) is the generator of the cohomology
ring. The LSM anomaly associated to a projective Gproj repre-
sentation with class α ∈ H2(Gproj ) siting at the rotation center
can thus be expressed in group cohomology as

dA

n
∪ α. (105)

We are looking for extensions of Cn by Gspin such that dA/n
is exact modulo the order m of α. As with translations, the
simplest choice to take Gspin = Zm and dA/n ∈ H2(Cn,Zm)
to classify the extension, i.e., a 2π rotation amounts to a Zm

generator. In this case, we find a mixed Gspin × Gflux SPT with
class

C ∪ α, (106)

where C ∈ H1(Gspin, Gspin ) is the cohomology ring generator.
All the examples of α’s from the previous section may thus
be ported into this setting. As before, there is an ambiguity
which leads to the symmetry-enforced SPTs forming a torsor
over H3(Gspin, U(1)), in this case an ambiguity by the SPTs

k

m
C3 ∈ H3(Gspin, U(1)) (107)

for k ∈ Zm.
There is also a simple family of examples in d = 3, where

we make use of the Wu formula

e(Gpt ) = Sq1w2(Gpt ), (108)

where w2(Gpt ) is the second Stiefel-Whitney class of the
action of Gpt on R3, and Sq1 is the first Steenrod square, or
the Bockstein. We take Gflux = Z2 and β = w2(Gpt ), which
means Gβ acts in a half-spin representation on the anomalous
texture. As before, we obtain a cochain A ∈ C1(Gβ,Z2) with
δA = w2(Gpt ). Then, by the linearity of Sq1,

δSq1A = Sq1w2(Gpt ) = e(Gpt ). (109)

This leads us a to symmetry-enforced mixed SPT with class

Sq1A ∪ α ∈ H4(Z2 × Gproj, U(1)), (110)

where α ∈ H2(Gproj, U(1)) is a projective symmetry class.

IX. RIGOROUS STATUS OF OUR RESULTS

Throughout this paper, we have stated results assuming
that the general framework of Refs. [29,30] holds. However,
this framework is based on various assumptions. Therefore, it
would be nice to find proofs of our LSM criterion from first
principles, independently of this framework.

First of all, we point out that the arguments of Sec. I of
Ref. [30] (which did not require any assumptions about the
framework classifying crystalline topological phases) showed
that if there is a symmetric gapped ground state whose corre-
lations go strictly to zero at distances greater than some scale
ξ smaller than the size of the cells introduced in Sec. III A,
then it must be deformable to a defect network form. Less
rigorously, one can argue that the same ought to be true
for a state with finite correlation length ξ that is much less
than the size of the cells. By similar arguments, one finds
that if such a state exists in the presence of a microscopic
anomalous texture, it must be deformable to a degree-0 defect
network with whose emergent anomalous texture cancels the
microscopic anomalous texture. However, given that a typical
ground state in a realistic system would not satisfy such a
condition on the correlation length, such a conclusion may
not be very satisfactory. Moreover, the statement that bosonic
invertible-substrate defect networks and their anomalies are
described by equivariant homology, as discussed in Sec. V,
does depend on the “in-cohomology” model of defect net-
works, which is difficult to justify from first principles.

In the remainder of this section, we will give a partial proof,
starting from first principles, of the LSM criterion in terms
of equivariant homology from Sec. V, for spatial dimensions
d � 2.

A. Assumptions and statement of the theorem

We consider the case where the full symmetry group G
decomposes as the product G = Gint × Gspatial, where Gint

acts internally, and Gspatial acts on X = Rd . Recall that in
this case we can exploit the Künneth formula for equivariant
homology, as discussed in Sec. V F. Let P := H2(Gint, U(1)).
We want to show that if the anomalous texture leads to a
nontrivial element in the HG

0 (Rd , P) factor of Eq. (46), then a
gapped symmetric ground state cannot be an invertible state.
(In particular, this will cover cases 1 and 2 in the relevant
symmetries for quantum magnets discussed in Sec. II A).

We now formally state the following assumptions which
we believe to be eminently reasonable:

Assumption 1. The space of Gint-symmetric gapped ground
states in d spatial dimensions that are in the trivial phase if
the symmetry is neglected can be formalized as a topological
space �d , such that the classification of Gint-symmetric SPT
phases corresponds to π0(�d ). Moreover, there is a Gspatial

action on �d corresponding to the action of Gspatial on states.
Assumption 2. The group cohomology classification of

SPT phases in (1+1)D with Gint symmetry in one spatial
dimension is correct, at least as a partial classification, in the
sense that there is a homomorphism

π0(�1) → H2(Gint, U(1)) = P, (111)

such that the representative ground states constructed, for
example, in Ref. [46] map to the appropriate elements of P.
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Assumption 3. There is a map from π1(�2) → π0(�1), and
in particular (via Assumption 1) a map π1(�2) → P. This
represents the (1+1)D SPT phase pumped to the boundary
when the bulk state goes through a loop [53].

Now we can state our main theorem:
Theorem 3. Consider a system with symmetry G =

Gspatial × Gint, where Gint is finite, and a representation of this
symmetry with an anomalous texture in d � 2 spatial dimen-
sions that is nontrivial only in the third factor of Eq. (45),
and leads to a nontrivial element in equivariant homology
HG

0 (Rd , P). Then, given Assumptions 1–3, any gapped sym-
metric ground state |
〉 cannot be in the trivial Gint SPT phase.

We can immediately strengthen this result in a few ways.
First, the restriction of finite Gint obviously does not prevent
us from considering continuous internal symmetry groups
such as SO(3), so long as there is a subgroup that gives the
same H2(Gint, U(1)); for example, for Gint = SO(3) we can
just consider the Z2 × Z2 subgroup generated by π rotations
about two orthogonal axes.

Second, we can rule out other phases than just the trivial
Gint SPT phase. Suppose that that the ground state is a
nontrivial Gint SPT phase (or invertible phase). Furthermore,
suppose that the inverse SPT phase can also be realized in
a different system with Gspatial × Gint symmetry, with spins
not carrying any projective representations of Gint (that is,
trivial anomalous texture). For group-cohomology phases,
the construction of Ref. [46] (combined with the observa-
tion one can always find a Gspatial-invariant triangulation and
branching structure [29]) gives an explicit such realization;
we conjecture that it is always possible for any bosonic SPT
(or invertible) phase. (However, the analogous statement is
not true for fermions, as the p + ip superconductor example
from Sec. IV A 2 demonstrates.) Then, we can adjoin this
inverse SPT without changing the anomalous texture, and the
resulting state is now in the trivial Gint SPT phase. Therefore,
to rule out any invertible ground state (satisfying the condition
mentioned), it is sufficient to rule out a ground state that is in
the trivial Gint SPT phase.

Second, we can lift the assumption that the anomalous
texture is nontrivial only in the third factor of Eq. (45).
To see this, suppose we have a ground state |
〉 that is
invariant under a representation of Gspatial × Gint (possibly
with anomalous texture). Let U (g) be the representation
of Gint and S(g) be the representation of Gspatial. Then,
observe that the complex-conjugated state |
∗〉 is invari-
ant under the complex-conjugated representation, which has
the opposite anomalous texture. Now, consider layering two
copies of |
〉 and one copy of |
∗〉, i.e., consider the state
|
〉ABC = |
〉A ⊗ |
〉B ⊗ |
∗〉C . This state is invariant under
UA(g), UB(g), and U ∗

C (g), for g ∈ Gint where UA(g), etc.,
denotes the representation of Gint acting on the respective
layer, and similarly it is invariant under SA(g), SB(g), S∗

C (g) for
g ∈ Gint. In particular, |
〉ABC is invariant under the represen-
tation of Gspatial × Gint generated by SA(g)S∗

C (g), g ∈ Gspatial,
and UA(g)UB(g)U ∗

C (g), g ∈ Gint. The anomalous texture of
this new representation is the same as the original one in
the third factor of Eq. (45), but the other two factors have
been canceled off. Moreover, if |
〉 is invertible, then so
is |
〉ABC .

The rest of Sec. IX will be devoted to a proof of
Theorem 3.

B. Defining the Hilbert space and symmetry

For concreteness, for a given an anomalous texture p
we will want to consider a “canonical” representation Up(g)
with that anomalous texture. This canonical representation
has the property that Up(g) ⊗ Up(g)∗ admits a symmetric
product state ground state. To prove the theorem for general
anomalous textures, we will need to consider tensor products
Up(g) ⊗ U ′

0(g), where U ′
0(g) is some representation of G that

admits a product state symmetric ground state. Let us show
that it is sufficient to prove Theorem 3 for representations
of this form. Suppose that U ′

p(g) is some representation of G
with anomalous texture p. The tensor product representation
U ′

p(g) ⊗ Up(g)∗ defines a trivial anomalous texture, so it ad-
mits a symmetric product ground state, perhaps after enlarging
the onsite Hilbert space by another representation defining a
trivial anomalous texture. We denote the result U ′

0(g).
Then, we can consider the tensor product representa-

tion U ′′
p (g) = Up(g) ⊗ U ′

0(g). We see that U ′′
p (g) still has the

anomalous texture p. Moreover, if U ′
p(g) admits a symmetric

gapped ground state that is in the trivial Gint phase, then so
does U ′

p(g) ⊗ U ∗
p (g) ⊗ Up(g) and therefore so does U ′′

p (g). In
what follows, for brevity we will ignore the possibility of a
nontrivial U ′

0(g), but it is easy to fix the arguments to take it
into account.

Next, we will define our canonical representation Up(g).
We assume that we have a triangulation of the space X with
branching structure, i.e., an orientation of all edges so that no
face forms a cycle, such that Gspatial acts on the triangulation in
such a way that the branching structure is invariant under the
Gspatial action. This is a special case of a cell decomposition
as introduced in Sec. III A, and we require the same condition
on the G action that we mentioned there. We assume that the
Hilbert space of the system corresponds to a spin carrying a
|Gint|-dimensional Hilbert space at each 0-cell in the triangu-
lation. (We can also have some additional degrees of freedom
not transforming under Gint at each site; these will not affect
the argument.) We assume that the Gspatial action is just by
permutation of the Hilbert space of the sites, and we write this
action as S(g), g ∈ Gspatial.

For each element of π ∈ P = H2(Gint, U(1)), we let
ωπ (g1, g2) be a corresponding 2-cocycle. We can always
choose ωπ so that it is multiplicative in π , i.e., ωπ1+π2 =
ωπ1ωπ2 . We will also want to work with the corresponding
homogeneous cocycle νπ (g1, g2, g3), which satisfies the ho-
mogeneous cocycle condition δνπ = 0 with δ given by 32.
Moreover, we define a collection of unitary operators uπ (g),
g ∈ Gint, acting on C|Gint | according to

uπ (g)|h〉 = ωπ (g, h)|gh〉. (112)

One can check that uπ (g) is a projective representation of Gint.
Indeed, we have [recall the definitions of μ(g), σ (g) from
Sec. II]

uπ (g)Kμ(g)uπ (h)Kμ(h)|k〉 (113)

= ωσ (g)
π (h, k)Kμ(g)uπ (g)|hk〉 (114)
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FIG. 9. A 1-chain α ∈ C1(Rd , P) intuitively corresponds to spa-
tial arrangements of 1D SPTs classified by P = H2(Gint, U(1)), i.e.,
a 1-skeletal defect network. Such a configuration is represented by
the wave function |
α〉. This wave function is symmetric under Gint

in the presence of an anomalous texture described by the boundary
∂α ∈ C0(Rd , P).

= ωσ (g)
π (g, hk)ωπ (h, k)|ghk〉 (115)

= ωπ (g, h)ωπ (gh, k)|ghk〉 (116)

using the cocycle condition, whereas

uπ (gh)Kμ(gh)|k〉 = ωπ (gh, k)|ghk〉. (117)

So, we conclude that

uπ (g)Kμ(g)uπ (h)Kμ(h) = ωπ (g, h)uπ (gh)Kμ(gh), (118)

and we see that the class of the projective representation
precisely corresponds to π . Then, for an anomalous texture,
which is represented by a 0-chain p ∈ C0(X, P), we define the
Hilbert space ⊗

s∈X0

C|Gint | (119)

with Gint acting by

Up(g) =
(⊗

s∈X0

ups (g)

)
Kμ(g). (120)

Thus, the canonical action of G = Gint × Gspatial, i.e., Up(g),
is generated by Up(g), g ∈ Gint, and S(g), g ∈ Gspatial.

C. Chains, states, and pumps

In this section, we will prove some technical results that
will be useful later on. Specifically, we give a construction
showing that any 1-chain α ∈ C1(Rd , P) gives a state |
α〉
defined on the degrees of freedom introduced in the previ-
ous subsection, which is Gint symmetric with the anomalous
texture ∂α ∈ C0(X, P). Then, we show that any 2-chain β ∈
C1(Rd , P) gives a continuous family of states connecting |
α〉
and |
α+∂β〉.

Lemma 1. Wave function. For every 1-chain α ∈
C1(Rd , P), there is a corresponding state |
α〉 in the Hilbert
space (119) above, such that

(1) U∂α (g)|
α〉 = |
α〉 for all g ∈ Gint, and
(2) |
gα〉 = S(g)|
α〉 for all g ∈ Gspatial.
The physical interpretation is shown in Fig. 9.

Proof. In fact, this is a special case of the construction from
Appendix B, but for completeness we give the proof here as
well. Here and in what follows, we will use the notation |�g〉 to
denote |g1, . . . , gN 〉, that is, a basis state in the Hilbert space
of the whole system, where N is the number of vertices.

Let ναl (g1, g2, g3) be the homogeneous 2-cocycle associ-
ated to αl ∈ Z2(Gint, U(1)) where l is an oriented edge in X1.
We define

|
α〉 =
∑

�g

⎛
⎝ ∏

s1s2=l∈X1

ναl

(
1, gs1 , gs2

)⎞⎠|�g〉, (121)

where the product is over all edges l oriented from s1 to s2.
Then, we have

〈�g|U∂α (g)|
α〉 (122)

=
(∏

s∈X0

ν(∂α)s (1, g, gs)

)⎛
⎝ ∏

s1s2=l∈X1

ναl

(
g, gs1 , gs2

)⎞⎠ (123)

=
∏

s1s2=l∈X1

ναl

(
1, g, gs1

)
ν−1

αl

(
1, g, gs2

)
ναl

(
g, gs1 , gs2

)
(124)

=
∏

s1s2=l∈X1

ναl (1, gs1 , gs2 ) (125)

= 〈�g|
α〉. (126)

The statement for the Gspatial permutation action is clear. �
Lemma 2. Grouping. Let ω ∈ C0(Rd , P) be invariant un-

der the action of Gspatial on Rd , and suppose that Gspatial

includes a Z × Z translation subgroup. Then there exists an
α ∈ C1(Rd , P) with ∂α = ω and a grouping of sites into finite
sets such that |
α〉 is a product state over the grouped sites.

Proof. First we can try just grouping vertices of the triangu-
lation according to which translation unit cell they fall in. Let
S be the set of vertices within a single unit cell, and define
ωtot = ∑

s∈S ωs. Now, recall that we assumed Gint is finite,
from which it follows that P is finite. Therefore, there must be
some integer k such that kωtot = 0. Hence, we simply group k
unit cells together and now we have that ωtot = ∑

s∈S ωs = 0
for each new group S . Our choice of grouping then ensures
that we can choose an α ∈ C1(Rd , P) such that αl = 0 for
any link l hat connects two sites within different groups.
Examining the form of the wave function (121) then reveals
that it is then a product state between the groups. �

Lemma 3. Wave-function deformation For every 2-chain
β ∈ C2(Rd , P) and 1-chain α ∈ C1(Rd , P) there is a corre-
sponding family of states |�β (t )〉, t ∈ [0, 1] satisfying the
following properties:

(1) |�α
β (0)〉 = |
α〉.

(2) |�α
β (1)〉 = |
α+dβ〉.

(3) Udα (g)|�α
β (t )〉 = |�α

β (t )〉 for any g ∈ Gint .
(4) S(g)|�α

β (t )〉 = |�gα
gβ (t )〉 for any g ∈ Gspatial.

The physical interpretation is shown in Fig. 10.
Proof. First of all, observe that

〈�g|
α+dβ〉
〈�g|
α〉 (127)

=
∏

s1s2=l∈X1

ν(dβ )l (1, gs1 , gs2 ) (128)
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FIG. 10. If a 1-chain α′ ∈ C1(Rd , P) can be expressed as α′ =
∂β for some β ∈ C2(Rd , P), then it represents a configuration which
can be created out of the trivial product state. Roughly, we can
imagine that on each 2-cell σ , we pump the 1D SPT described by
βσ onto the boundary of the 2-cell. For example, this figure depicts a
configuration of 1D SPTs (on the boundary of the shaded squares)
being created out of the vacuum by a 2D pump on the shaded
squares. More generally, two defect networks α, α′ ∈ C1(Rd , P) can
be related by such a pumping process whenever α − α′ = ∂β.

=
∏

s1s2s3=σ∈X2

νβσ
(1, gs1 , gs2 )νβσ

(1, gs2 , gs3 )ν−βσ
(1, gs1 , gs3 )

(129)

=
∏

s1s2s3=σ∈X2

νβσ
(gs1 , gs2 , gs3 ). (130)

Now, we can define a state |�α
β (t )〉 according to

〈�g|�α
β (t )〉

〈�g|
α〉 =
∏

{s1,s2,s3}∈σ

et log νβσ (gs1 ,gs2 ,gs3 ), (131)

where we choose some fixed branch of the complex
logarithm. �

Lemma 4. Pumping. Let β1, β2, . . . , βn ∈ C2(R2, P), and
α ∈ C1(R2, P), with

∑n
i=1 ∂βk = 0. Then βtot := ∑n

k=1 βk

must have βσ = p for all σ , for some fixed p ∈ P. Now
consider the loop obtained by composing the paths

∣∣�α
β1

〉
,
∣∣�α+∂β1

β2

〉
, . . . ,

∣∣�α+∂β1+···+∂βk−1
βk

〉
. (132)

Then this loop, which determines an element of π1(�2), maps
into p via the map π1(�2) → P of Assumption 3. More
concretely, in the presence of a boundary this loop pumps the
1D SPT phase classified by p onto the boundary. This is in
agreement with the intuitive picture of Fig. 10.

Proof. Now consider some region Y in Rd comprising
some subset of the vertices, links, and triangles in the triangu-
lation. We can define the truncated state |
 (Y )

α 〉 according to
Eq. (121) (but restricted to Y ), and similarly we truncate the
states (131) by restricting to Y . Then, we compose the paths
(132) as before, and we find that the end-point state is given

by

〈�g|
 ′(Y )
α 〉

〈�g|
 (Y )
α 〉 =

∏
s1,s2,s3=σ∈Y2

νp
(
gs1 , gs2 , gs3

)
. (133)

=
∏

s1s2=l∈(δY )1

νp
(
1, gs1 , gs2

)
, (134)

where we get to the second line by following a calculation
similar to Eqs. (128)–(130) in reverse. We recognize Eq. (134)
as the wave function of a 1D SPT classified by p [46]. In
other words, if we bring in additional degrees of freedom on
the boundary, transforming nonprojectively under Gint, and
initially in a product state, then |
 ′

α (Y )〉 is equivalent by a
Gint-symmetric finite-depth quantum circuit on the boundary
to |
α (Y )〉 ⊗ |ψp(∂Y )〉, where |ψp(∂Y )〉 is the ground state of
a 1D SPT classified by p on the boundary. �

D. Homotopy theoretic obstructions to
a Gspatial-invariant ground state

Consider some arbitrary ψ ∈ �d (not necessarily invariant
under Gspatial, though it is invariant under Gint by the definition
of �d ). We will define a series of “obstructions” that, as we
will see, prevent ψ from being deformed, in the presence of
the Gint symmetry, to a state that is invariant under Gspatial.

Let us first establish some notation. A pointed space is
a pair (A, a), where A is a space and a ∈ A is some choice
of ‘base point.” A based map between based spaces (A, a)
and (B, b) is a map f : A → B such that f (a) = b. We will
treat the k sphere Sk as a pointed space with some choice of
base point. Moreover, we also treat �d as a pointed space,
using ψ as the base point. The kth homotopy group πk (�d )
is the set of homotopy classes of based maps f : Sk → �d .
[Generally, π0 of a space need not be a group, but in this case
since π0(�d ) classifies SPT phases it will inherit an Abelian
group structure.]

A path in �d from φ to φ′ is a continuous map μ : [0, 1] →
�d with μ(0) = φ and μ(1) = φ′. We will also write

φ
μ−→ φ′. (135)

The Gspatial action on �d induces a Gspatial action on paths: if

a path φ
μ−→ φ′, for φ, φ′ ∈ �d , is represented as a function

μ : [0, 1] → �d with μ(0) = φ,μ(1) = φ′, then we have a
path gφ

gμ−→ gφ′ with (gμ)(s) = gμ(s). A based loop in �d is
a based map � : S1 → �d ; observe that this is equivalent to a
path from ψ to itself.

Now, let w1(g) = [ψ] − [gψ], where [·] denots the con-
nected component in π0(�d ) of a state. We call this the first
obstruction. If the first obstruction vanishes, then there exists
a continuous path

ψ
λ(g)−−→ gψ (136)

We can define a Gspatial action on π1(G) according to [�] �→
[g ∗ �], where [·] denotes the homotopy class of a based loop,
and we have defined(

ψ
g∗�−→ ψ

) = (
ψ

λ(g)−−→ gψ
g�−→ gψ

λop(g)−−−→ ψ
)
, (137)
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where g� is the action on � treating it as a special case of a
path, and λop denotes the path traversed in the opposite direc-
tion. Then, we can define an element w1(g1, g2) ∈ π1(�d ) to
be the homotopy class of the based loop

. (138)

This defines a group cochain w2 ∈ C2(Gspatial, π1(�d )).
One can then show that δw2 = 0 by observing
that g1 ∗ w2(g2, g3) + w2(g1, g2g3) and w2(g1, g2) +
w2(g1g2, g3) are both equal to the homotopy class of the
based loop

. (139)

One can also show that if we chose a different path λ′(g) in
Eq. (136) that this only causes a shift w1 → w1 + δk1, where
k1(g) is the homotopy class of the based loop

(140)

Hence, we obtain a class in H2(Gspace, π1(�d )), the second
obstruction. [If π1(�d ) is non-Abelian, then this requires
a definition of group cohomology with non-Abelian coeffi-
cients. In fact, one can give an argument that π1(�d ) should
be Abelian,4 but this is not actually essential for our proof.]

More generally, if the second obstruction vanishes then
we can define a third obstruction, and so on. These higher
obstructions would be useful when proving LSM results in
higher spatial dimensions.

The important thing about these obstructions is that they all
vanish if the state ψ is itself Gspatial invariant. Indeed, clearly
w1(g) = 0 in that case, and we can take λ(g) to be the trivial
path, which ensures that w2(g1, g2) = 0. Moreover, one can
easily check that the first nonvanishing obstruction takes the
same value for any two states ψ,ψ ′ that are connected by a
continuous path in �d . It follows that the obstructions must all
vanish for any state ψ that is connected by a continuous path
in �d to a Gspatial-invariant state.

E. Descent procedure

In Theorem 3, the assumption is that the anomalous texture
gives a nontrivial element of H

Gspatial

0 (X, P). As we noted in
Sec. V G, there is an isomorphism

H
Gspatial

0 (Rd , P) ∼= Hd (Gspatial, P). (141)

4Since �d should be equipped with a tensor product corresponding
to stacking, we can use the Eckmann-Hilton argument [54,55].

Thus, a convenient way to check if an anomalous texture gives
a nontrivial element of the left-hand side is to compute its
image in the right-hand side. To do this, we can use the descent
sequence described in Sec. V G. For concreteness, we will
review it again here for the case d = 1 or d = 2.

We start from ω ∈ C0(Gspatial,C0(R2, P)) = C0(R2, P)
representing an anomalous texture. We define ω(0) = ω. We
know that δω(0) = 0 and ∂ω(0) = 0 (the latter because the
boundary of a 0-chain is always zero). Because the homol-
ogy H0(Rd , P) is trivial, this means that there exists α(0) ∈
C0(Gspatial,C1(R2, P)) such that ∂α(0) = ω(0). Now, define
ω(1) = δα(0) ∈ C1(Gspatial,C1(Rd , P)). Observe that by con-
struction δω(1) = 0, and moreover

∂ω(1) = ∂ (δα(0) ) = δ(∂α(0) ) = δω(0) = 0. (142)

For each g ∈ G, ω(1)(g) defines an class in H1(R1, P). In
the case d = 1 we have H1(R1, P) ∼= Por, and so for each
g ∈ Gspatial we get an element μ(g) ∈ Por (recall the notation
means that orientation-reversing elements act by complex
conjugation on P). More concretely, in the cellular picture of
C1(Rd , P), one finds that ω(1)(g) ∈ C1(R2, P) assigns μ(g) to
each 1-cell of R2. We can think of μ as a group cochain μ ∈
C1(Gspatial, Por ), and hence we get an element of the group
cohomology H1(Gspatial, Por ).

Meanwhile, for d = 2 we have H1(R2, P) = 0, and hence
we can write ω(1) = ∂α(1) for α(1) ∈ C1(Gspatial,C2(R2, P)).
Finally, we define ω(2) = δα(1) ∈ C2(Gspatial,C2(R2, P)), and
similarly to before we can show that δω(2) = 0 and ∂ω(2) =
0. As before, since H2(R2, P) ∼= Por we obtain an element
μ(g1, g2) ∈ Por, which defines a class in H2(Gspatial, Por ).

The goal now is to show that if the element of
Hd (Gspatial, Por ) obtained from this descent procedure is non-
trivial, then the system does not admit a (Gspace × Gint)-
invariant ground state which is in the trivial Gint SPT phase.

F. Bringing it all together

Now, we can complete the argument. As described in
Sec. IX B, we are free to assume that the Hilbert space and
action of the symmetry are as defined in Sec. IX B. The idea
now is to show that the descent sequence from Sec. IX E is
closely related to the obstruction computation of Sec. IX D by
using the results of Sec. IX C.

Indeed, since ω = ∂α(0), we see that the state |
α(0)〉 con-
structed in Lemma 1 is invariant under the Gint action Uω(g).
We use |
α(0)〉 as the base-point state ψ from which the
obstructions were computed in Sec. IX D. Then, we also have
gψ = |
gα(0)〉. We will choose α(0) such that |
α(0)〉 such that
it is a product state upon grouping of sites (that we can do this
is ensured by Lemma 2). In particular, this implies that |
α(0)〉
is in the trivial Gint SPT phase.

If d = 1, then one can check that if gα(0) − α(0) �= 0, i.e.,
the descent sequence is producing a nontrivial element of
H1(Gspatial, Por ), then this implies that |
α(0)〉 and |
gα(0)〉 are
in different Gint SPT phases, and therefore the first obstruction
is nontrivial.

Meanwhile, if d = 2, then we have gα(0) − α(0) =
δα(0) = ∂α(1). Hence, Lemma 3 shows that the first
obstruction vanishes, and we can define λ(g)[t] =
|�α(1)(g)

α(0) (t )〉. Then, we can apply Lemma 4 with
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α = α(0), β1 = α(1)(g1), β2 = g1α
(1)(g2), β3 = −α(1)(g1g2),

which gives βtot = (δα(1) )(g1, g2) and p = μ(g1, g2).
So we see that if the descent sequence is producing a
nontrivial element of H2(Gspatial, Por ), then the image
of the second obstruction under the homomorphism
H2(Gspatial, π1(�2)) → H2(Gspatial, Por ) induced by the
Gspatial-equivariant homomorphism π1(�2) → Por postulated
in Assumption 3 is nontrivial [here one needs to check that
the statement of Gspatial equivariance is indeed consistent with
the definition of the action on π1(�d ) defined in Sec. IX D
and the constructions of Sec. IX C]. This implies that the
second obstruction itself is nontrivial.

Now we can prove Theorem 3. Suppose that there exists
a (Gspatial × Gint)-invariant ground state |
inv〉 which is in the
trivial Gint phase. Then, since the state |
α(0)〉 is also in the
trivial Gint phase, it follows that |
inv〉 and |
α(0)〉 can be
continuously connected in the space of Gint-invariant ground
states. But by the arguments of Sec. IX D, this is incompatible
with nontriviality of the obstruction. This completes the proof
of Theorem 3.

X. DISCUSSION

A. Relation to prior works

Recently, there have been several advances in classifica-
tion and construction of crystalline SPT phases and some
discussion of their application to LSM theorems. The idea
that the LSM theorem can be understood as an anomaly
has presumably been around a long time, for instance [11]
explored the connection between so-called “weak” SPTs and
LSM theorems by studying their anomalous textures on the
boundary in the presence of dislocations.

In Ref. [29], the present authors gave a classification of
crystalline SPTs based on topological response to crystal
defects. Real-space techniques for constructing and classify-
ing crystalline SPTs [18,28] were also developed around the
same time and eventually Ref. [30] put this approach on the
most general footing, and showed that it is equivalent to the
framework of Ref. [29]. Reference [26] independently proved
a subset of this result. Meanwhile, Ref. [25] supplied the key
insight that the real-space picture can be most naturally formu-
lated as an equivariant homology theory, but did not commit to
a specific (mathematically defined) homology theory, instead
performing computations in particular cases based on physical
arguments (we did similar computations in Sec. IV). Another
approach based on invertible topological quantum field the-
ories (TQFTs), that also leads to an equivariant homology
theory, appeared in Ref. [38].

The application of the real-space picture of crystalline
SPTs to LSM theorems was mentioned in each of [25,26,30].
In the case of Refs. [26,30], it was not the main focus of
these works, and no computations were performed there or
systematic theory developed. In Ref. [25] some computations
were performed (based on physical arguments), but not an
exhaustive calculation as we did in Sec. VI, for example.
Also, by contrast to Ref. [25], which merely postulated
the existence of some equivariant homology theory, we de-
rived our results from the existing framework for crystalline
SPTs [29,30].

B. Future directions

In this paper, we have given a comprehensive framework
to understand the constraints on ground states in quantum
systems comprised microscopically of half-integer spins (or,
more generally, projective symmetry action on sites). We
focused mainly on bosonic systems, but an important problem
is to extend to fermion systems, and also to go beyond the in-
cohomology approximation for bosonic systems (though we
do not expect the latter to change the criterion for a traditional
LSM theorem, as we discussed in Sec. V E). In principle,
it is clear what one should do; the defect network/anomaly
cancellation picture from Sec. IV should be valid generally,
and in terms of abstract mathematical formalism the discus-
sion in Appendix E is also general, and one just needs to
replace the Eilenberg-MacLane spectrum with something else
(probably oriented cobordism for bosons, and spin cobordism
for fermions [56]). However, the outstanding question (which
is a question of mathematics, not physics) is how to turn this
into a practical computational method, analogous to what we
did in Sec. V C and Appendix G.

A traditional LSM result tells us when a system is al-
lowed to have a symmetric gapped ground state that is not
topologically ordered. Nevertheless, the anomaly matching
picture makes clear that there are also nontrivial constraints on
any ground state that could arise, whether it be spontaneous
symmetry breaking, or gapless, or topological ordered. In
this paper, we have already partially laid the groundwork
for such studies. For example, for a gapped ground state in
either a bosonic or fermionic system, we have identified the
relevant criterion: the topological phase must be described by
a 0-degree anomalous defect network with the right anoma-
lous texture. Meanwhile, for gapless ground states, generally
spatial symmetries act like internal symmetries on the fields
in the low-energy field theory describing the system (see [20]
for a recent discussion of this in a related context). Thus,
provided that one knows how to compute the anomaly of an
internal symmetry in some gapless field theory, we expect
that this anomaly should match the one computed from the
microscopic anomalous texture through the descent sequence
constructed in Sec. V G.

Meanwhile, there is another class of results that constrain
the ground state given microscopic data, which are sometimes
also called LSM theorems [6,7,10,57,58]. These occur for a
system for which there is, at least, a U(1) charge-conservation
symmetry and discrete translation symmetry. This allows one
to define the filling, that is, the average charge per unit cell. It
is known, for example, that when the filling is not an integer,
any gapped symmetric ground state must be topologically
ordered. Unlike the LSM results we have discussed in this
paper, this result is not obviously related to being on the
boundary of a crystalline topological phase. For example, we
cannot think of a one-dimensional system at fractional filling
as the boundary of an SPT because H3(Z × U(1), U(1)) =
H3(U(1), U(1)) = Z, i.e., there are no mixed Z × U(1) SPTs
in two dimensions. Hopefully, there will eventually be a
general framework to understand these results, analogous to
the one developed here.

Note added. Recently, another preprint appeared [59]
discussing general approaches to LSM theorems, with a
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particular focus on SPT-LSM theorems. Our results agree with
theirs where they overlap.
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APPENDIX A: SHAPIRO’S LEMMA AND THE
CLASSIFICATION OF ANOMALOUS TEXTURES

In this Appendix, we show a correspondence between two
ways of thinking about an anomalous texture on a lattice �

with a symmetry group G. We do this by invoking general
lemma, called Shapiro’s Lemma [48], which will also be
useful for us for other applications.

Let S denote a (discrete) set with a G action. Suppose M
is a G module. We define the Abelian group Ck

G(S, M ) of S-
dependent k-cochains to comprise functions

S × (G)k → M. (A1)

For instance, ωs above has k = 2 and S = �. We define the
coboundary map

δk : Ck
G(S, M ) → Ck+1

G (S, M ), (A2)

(δα)(s; g1, . . . , gk+1)

= g1α(g−1
1 s; g2, . . . , gk+1) + (−1)i+1α(s; g1, . . . , gk )

+
p∑

i=1

(−1)iα(s; g1, . . . , gi−1, gigi+1, gi+2, . . . , gk+1).

(A3)

We then define the cohomology

Hk
G(S, M ) = ker δk/ im δk−1. (A4)

This is a special case of the equivariant cohomology as
introduced in Appendix C 1 (hence the notation), but that will
not concern us here. Observe that, in particular, H2

G(�, U(1))
agrees with the definition of the group of anomalous textures
given in Sec. II.

Shapiro’s Lemma [48] is then the statement that

Hk
G(S, M ) ∼=

⊕
[s]∈S/G

Hk (Gs, M ), (A5)

where the sum is over one representative for each G orbit of
S. This result implies the classification of anomalous textures
discussed in Sec. II.

It is easy to construct the isomorphism from the left-hand
side of Eq. (A5) to the right-hand side, we just restrict the
cocycles in Ck

G(S, M ) to {s} × Gs for some s in each orbit.
Constructing the inverse isomorphism is much trickier, and
we will now spend some time to do this in the case k = 2.

Inverse isomorphism

First of all, let us introduce a simplicial complex S//G
defined as follows. The vertices of S//G are given by the
elements s ∈ S. The edges s → s′ are given by the elements
g ∈ G for which g(s) = s′. Then, we add a 2-simplex for every
composable triple g1, g2, g3 with g1g2 = g3. Then, we add
higher simplices for all higher relations in the group amongst
composable edges.

The 2-simplices in S are given by triples (s, g1, g2) with
s ∈ �, g1, g2 ∈ G. One sees that an anomalous texture is just a
class [ω] ∈ H2(S//G, U(1)). S//G is known as the homotopy
quotient, and one can check that its simplicial cohomology
H•(S//G, M ) is the same as H•

G(S, M ). Shapiro’s Lemma
(A5) then follows from the homotopy equivalence

S//G =
⊔

s

BGs, (A6)

where
⊔

s denotes a disjoint union, ranging over a representa-
tive s for each G orbit of S. Here, BGs is the classifying space
of Gs, BGs 
 �//Gs.

The homotopy equivalence (A6) has a particularly simple
form. For a fixed s ∈ S, we have a simplicial embedding
BGs ↪→ S//G where the unique vertex of BGs is the s vertex
of S//G. The g ∈ Gs edges of BGs are the edges in S//G which
go from s → s (since all such g by definition fix s). All higher
simplices of BGs are there to impose relations in Gs and so are
present as well in S//G.

Let us now discuss how to construct the inverse isomor-
phism in Eq. (A5). Let us fix an s ∈ S and consider its orbit
O(s). (We can do the procedure we are about to describe
separately for each orbit.) We start from a cocycle αs ∈
Z2(Gs, M ), and we want to construct a cocycle ω : O(s) ×
G × G → M satisfying δω = 0 and which restricts to αs on
{s} × Gs × Gs. Geometrically, what we we need is to find a
retraction O(s)//G → BGs, where O(s) is the orbit containing
s ∈ S. One way to do it is to choose, for each s′ ∈ O(s),
an element g(s, s′) ∈ G with g(s, s′)(s) = s′ and g(s, s) = 1.
Geometrically, we collapse O(s)//G along the tree defined by
these elements. Algebraically, we define ωs inductively using
the cocycle condition:

(i) ωs(g1, g2) = αs(g1, g2) when g1, g2 ∈ Gs.
(ii) ωs(g1, g2) = 1 whenever g2g1 = g(s, s′) for some

s′. This requires αs satisfy a normalization condition
αs(g, g−1) = 1, which is always possible by rephasing the
operators in the projective representation to which it corre-
sponds.

(iii) When g1 ∈ Gs and g2 : s → s′, we study a tetrahedron
with backbone

s
g−1

1 g−1
2 g(s,s′ )−−−−−−→ s

g1−→ s
g2−→ s′ (A7)

and find by the cocycle condition and the first two conditions

ωs(g1, g2) = αs
(
g−1

1 g−1
2 g(s, s′), g1

)
. (A8)

(iv) When g1(s) = s′, g2(s0′) = s′′, we study a tetrahedron
with backbone

s
g−1

1 g−1
2 g(s,s′′ )−−−−−−−→ s

g1−→ s′ g2−→ s′′ (A9)
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which reduces us to the previous case:

ωs(g1, g2) = ωs
(
g−1

1 g−1
2 g(s, s′′), g1

)
(A10)

from which we obtain

ωs(g1, g2) = αs
(
g(s, s′′)g2g(s, s′), g−1

1 g−1
2 g(s, s′′)

)
. (A11)

(v) Finally, in the general case of g1(s′) = s′′, g2(s′′) = s′′′
but all vertices still in the orbit of s, we use a tetrahedron with
backbone

s
g−1

1 g−1
2 g(s,s′′′ )−−−−−−−→ s′ g1−→ s′′ g2−→ s′′′, (A12)

which reduces us to the previous case:

ωs′ (g1, g2) = ωs
(
g−1

1 g−1
2 g(s, s′′′), g1

)
. (A13)

Moving two steps more we find

ωs′ (g1, g2) = αs(x, y), (A14)

where

x = g(s, s′′′)−1g−1
2 g(s, s′′)−1g(s, s′′′)−1g2g1g(s, s′), (A15)

y = g(s, s′′)g2g(s, s′′′). (A16)

APPENDIX B: EQUIVARIANT CHAINS AND LATTICE
WAVE FUNCTIONS

Let G be a finite group (see below for some generalizations
to infinite discrete groups). We want to show that certain
equivariant chains introduced in Sec. V give rise to concrete
lattice wave functions.

We work in terms of a lattice system defined on the vertices
of a G-invariant triangulation X with G-invariant branching
structure, where each vertex carries a Hilbert space with a
basis labeled by G (see below for what one can do if G is
infinite). The representation U (g) of G on the lattice Hilbert
space corresponds to permuting the vertices according to the
action of G on X combined with the onsite action |h〉 → |gh〉
and acting with Cσ (g), where C is complex conjugation in the
G-labeled basis.

Recall that an equivariant −1-chain α ∈ CG
−1(X, U(1)) con-

sists of data (α0, . . . , αd ) where αk ∈ Ck+1(G,Ck (X, U(1))).
For the purposes of this section, we work with the homoge-
neous group cochains from Sec. V B, and we will also write
the group law in U(1) multiplicatively rather than additively
to reflect the identification of U(1) with the complex numbers
of unit modulus.

Then, we can construct a corresponding wave function

|
α〉 =
∑

�g

(
d∏

k=0

wα
i (�g)

)
|�g〉, (B1)

where �g is a shorthand for g1, . . . , gN (where N is the number
of vertices), and

wα
k (�g) =

∏
s1...sk+1=σk∈Xk

αk
(
1, gs1 , . . . , gsk

)
σk

, (B2)

where the sum is over all k-simplices σk , and {s1, . . . , sk+1}
are the vertices of the simplex, ordered according to the
branching structure. Moreover, the orientation of σk , which

is needed to define the sign of ασk is also determined by this
ordering (see the definition of k-chain in Sec. V A).

Next, we show that if α is an equivariant cycle, then |
α〉
is invariant under U (g). Indeed, we compute

〈�g|U (g)|
α〉
〈�g|
α〉 =

d∏
k=0

vα
i (g; �g), (B3)

where

vα
i (g; �g) (B4)

=
∏

s1...sk+1=σk∈Xk

α
σ (g)
k

(
1, g−1gs1 , . . . , g−1gsk+1

)
g−1σk

αk
(
1, gs1 , . . . , gsk+1

)
σk

(B5)

=
∏

s1...sk+1=σk∈Xk

αk
(
g, gs1 , . . . , gsk

)
σk

αk
(
1, gs1 , . . . , gsk+1

)
σk

(B6)

=
∏

s1...sk+1=σk∈Xk

(δαk )
(
g, 1, gs1 , . . . , gsk+1

)
σk

×
∏

s1...sk+1=σk∈Xk

(∂αk )−1(g, 1, gs1 , . . . , gsk )σk−1 , (B7)

where we have used the homogeneous condition on the
cochains and the definitions of δ and ∂ . We see that if α

is an equivariant cycle, then by definition δαk (∂αk−1)−1 =
1, hence, |
α〉 is invariant under U (g) [to compare with
D defined according in Eq. (40) we have rewritten U(1)
multiplicatively].

Next, we consider the case where α = Dβ for some equiv-
ariant 0-chain β = (β0, . . . , βd ). Then, one can check that

|
Dβ〉 =
∑

�g

⎛
⎝ d∏

k=0

∏
s1...sk+1=σk∈Xk

βk
(
σk; gs1 , . . . , gsk+1

)⎞⎠|�g〉,

(B8)

which is related to |
0〉 by the finite-depth quantum circuit

Uβ =
∑

�g

⎛
⎝ d∏

k=0

∏
s1...sk+1=σk∈Xk

βk
(
σk; gs1 , . . . , gsk+1

)⎞⎠|�g〉〈�g|,

(B9)

which from the homogeneous condition on βk is manifestly
G symmetric at each layer. Similarly, one can show that |
α〉
and |
α+Dβ〉 are related by a symmetric finite-depth quantum
circuit.

Finally, we can also show that if we have an anoma-
lous texture represented by an equivariant −2-cycle γ ∈
ZG

−2(X, U(1)) such that Dα = γ for some equivariant −1-
chain α, then it can be canceled by an in-cohomology wave
function as above. First, we define the symmetry action cor-
responding to the anomalous texture according to Uγ (g) =
Tγ (g)U (g), where U (g) is as defined above, and

Tγ (g) =
∑

�g

⎛
⎝ d∏

k=0

∏
s1...sk+1=σk∈Xk

γ
(
g, 1, gs1 , gs2 , . . . , gsk

)
σk

⎞
⎠

× |�g〉〈�g|. (B10)
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Comparing with Eq. (B7), we see that indeed if Dα = γ , then
Uγ (g)|
α〉 = |
α〉.

We end this Appendix with some comments about infinite
symmetry groups. In particular, if G is an infinite group acting
on Rd that contains translations Zd as a normal subgroup,
such that Gpt := G/Zd is finite, then we can also perform an
analogous construction. We exploit the “rolling” isomorphism
HG

k (Rd , U(1)) ∼= H
Gpt

k (T d , U(1)), where T d = Rd/Zd is a
d-dimensional torus.

Therefore, given a G-equivariant −1-cycle on Rd , we
produce a Gpt-equivariant −1-cycle on the torus, hence, by
our construction above a wave function on the torus with a
|Gpt|-dimensional Hilbert space at each vertex. We can also
use this idea to define a G-symmetric wave function on Rd .
We take the onsite Hilbert spaces to still be labeled by Gpt,
with U (g)|h〉 = |ϕ(g)h〉 where ϕ : G → Gpt is the quotient
homomorphism. Then, we replace Eq. (B2) with

wα
k (�g) =

∏
s1...sk+1=σk∈Xk

α
(
1, gs1 , . . . , gsk

)
φ(σk ), (B11)

where φ : Rd → T d is the quotient map. Then, all the above
manipulations proceed as before. In a similar way, we can also
discuss deformations, anomalous textures, and ground-state
wave functions in the presence of anomalous textures on Rd

while retaining a finite onsite Hilbert space labeled by Gpt.

APPENDIX C: ASPECTS OF EQUIVARIANT HOMOLOGY
AND COHOMOLOGY

1. Equivariant cohomology and duality

In this Appendix, we relate equivariant homology to the
Borel equivariant cohomology used to classify crystalline SPT
phases in [29,30]. We will use a discrete coefficient group,
which is typically A = Z, and in Appendix C 3 we will discuss
the relationship to U(1) coefficients.

First, we recall the definition of cellular cohomology,
which is dual to cellular homology defined in Sec. V A.
We denote by Ck (X, A) the Abelian group of chains with
coefficients in A on a space X with cell decomposition, and
we define a (cellular) k-cochain to be a map

α : Ck (X,Z) → A (C1)

and these form a group denoted Ck (X, A). We denote the
pairing of α with a k-cycle � ∈ Ck (X,Z) by∫

�

α. (C2)

This map is linear in both � and α, like familiar integration,
and the set of these values over � defines α, by definition. We
define a map

d : Ck (X, A) → Ck+1(X, A) (C3)

called the (cellular) coboundary map by∫
�

dα =
∫

∂�

α, (C4)

compare Stokes’ theorem. d2 = 0 as before. We denote the
kernel of d as Zk (X, A), whose elements are (cellular) k-
cocycles, and the image of d in Zk (X, A) as Bk (X, A), the

group of exact (cellular) k-cocycles. We obtain a group

Hk (X, A) = Zk (X, A)/Bk (X, A) (C5)

called the kth cohomology of X with coefficients in A.
We can also relate cellular cohomology to group coho-

mology. There is a simplicial complex called the classifying
space BG for which the cellular k-cochains on BG valued
in A are exactly the group k-cochains valued in A, and the
cellular coboundary map equals the group coboundary with
trivial action on the coefficients. Thus,

Hk (BG, A) = Hk (G, A). (C6)

The existence of BG allows topological proofs of many the-
orems in group cohomology. It is also possible to generalize
this to account for nontrivial G modules M, but on the left-
hand-side we have to use local coefficients [60].

Given a G-equivariant cell complex of X , we can also
define the double complex

C p(G,Cq(X, A)), (C7)

using the dual action of G on Cq(X, A) induced by its action
on X . Taking k = p + q, we can define a total differential

� = δ + (−1)kd (C8)

on this double complex as before. The cohomology of �

defines the equivariant cohomology H p+q
G (X, A). Like group

cohomology, this cohomology is equivalent to cellular co-
homology of a classifying space, known as the homotopy
quotient X//G:

Hk
G(X, A) = Hk (X//G, A). (C9)

A construction for X//G in the case that X is discrete is
discussed in Appendix A. A general description can be found
in [29]. Equivariant theories constructed using a classifying
space are called Borel equivariant cohomology.

Now, suppose X is a closed n manifold. It has a dual
cell complex X ∨ whose k-cells meet the (n − k)-cells of X
transversely at their so-called barycenters. Two cells meeting
in such a way are dual and are denoted σ ∈ Xn−k , σ∨ ∈ X ∨

k . If
X has an orientation, we can use it to associate orientations of
σ with orientations of σ∨. This gives us an isomorphism

I : Ck (X, A) → Cn−k (X ∨, A) (C10)

by sending σ with its orientation to the indicator cocycle
on σ∨ with its dual orientation and extending to an A-linear
function. This map satisfies

I (∂σ ) = dI (σ ). (C11)

It therefore gives us an isomorphism of bicomplexes by map-
ping the coefficients

C j (G,Ck (X ∨, Aor )) → C j (G,Cn−k (X, A)), (C12)

Id = ∂I, Iδ = δI, (C13)

where the superscript “or” on the left-hand side indicates
that orientation-reversing elements of G swap the sign of the
coefficients, because we used an orientation to define the map,
which might not be G invariant. This twist is necessary for
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Iδ = δI since δ involves the G action. This descends to an
isomorphism on the homology of the total complexes:

Hk
G(X, Aor ) = HG

n−k (X, A). (C14)

Note that Hk
G(X ∨, Aor ) = Hk

G(X, Aor ) since X and X ∨ are
isomorphic G spaces (cohomology does not depend on the cell
complex).

In the case that X is not compact, but still lacks boundary,
then we can still form the dual cell complex as above. It is
clear that it has the same properties for Borel-Moore homol-
ogy and cohomology, so again (C14) holds.

2. Relative equivariant homology and cohomology

Suppose X is a cell complex and Y is a subcomplex. We
define the group of relative A-valued k-cochains Ck (X,Y, A)
to be the subgroup of Ck (X, A) which are zero on Ck (Y,Z).
Clearly, the coboundary map d preserves this property, i.e., it
defines a map Ck (X,Y, A) → Ck+1(X,Y, A). This allows us to
define the relative cohomology Hk (X,Y, A) as the cohomol-
ogy of d restricted to these relative k-cochains.

If there is a cellular G action on X such that Y is G in-
variant, then we can likewise define the bicomplex of relative
equivariant cochains

C p(G,Cq(X,Y, A))

with the restricted coboundary map d and the usual group
coboundary map δ. The cohomology of the total differential
� = δ + (−1)p+qd defines the relative equivariant cohomol-
ogy Hk

G(X,Y, A).
There is also relative equivariant homology. We take

ZG
r (X,Y, A) to be the equivariant r-chains satisfying the re-

laxed cycle condition Dβ ∈ CG
r (Y, A), where we have used the

inclusion map CG
r (Y, A) → CG

r (X, A). We have CG
r (Y, A) ⊂

ZG
r (X,Y, A) and we define

HG
r (X,Y, A) = ZG

r (X,Y, A)/BG
r (X, A) ⊕ CG

r (Y, A). (C15)

This allows us to form a version of Poincaré duality for
spaces with boundary, known as Poincaré-Lefschetz duality.
Indeed, if X is an n manifold with boundary and a cell com-
plex, one can still construct a dual cell complex by forming the
coned space C∂X ∪ X , which is a boundaryless cell complex,
forming the dual as usual, although the dual region of the
cone point will not be a cell unless ∂X is a sphere. We
simply remove it to find X ∨. This has the nice property that
∂ (X ∨) = (∂X )∨. It is easy to check that if σ ∈ Xk , then we
have

I (∂σ ∩ ∂X ) = i∗I (σ ), (C16)

where i : ∂X → X is the inclusion. The properties are dis-
cussed in detail in Chap. 1 of [61]. This means that in the case
with boundary, we have the more general Poincaré-Lefschetz
duality

Hk
G(X, Aor ) = HG

n−k (X, ∂X, A) (C17)

between equivariant cohomology and relative equivariant ho-
mology. Likewise, we also have

Hk
G(X, ∂X, Aor ) = HG

n−k (X, A). (C18)

3. Continuous groups and U(1) vs Z coefficients

In this section, we describe how to work with continuous
coefficient groups A, especially A = U(1), and how the calcu-
lations relate to A = Z.

All the groups G we study are locally compact Lie groups.
For these we can define the (left) Haar measure on the identity
component and translate it to all other components using
the left action of G on itself; we can do the same thing for
the coefficient group A. This defines a product measure on
G × · · · × G and we take our cochains used to define group
cohomology in Sec. V B to be measurable cochains G × · · · ×
G → A for any topological Abelian group A, thus defining
the so-called measurable group cohomology. That this is the
appropriate version of group cohomology for discussing SPT
phases has long been known [46]. Note that if either of A or G
is discrete, then all cochains are measurable.

This version of group cohomology has the property that for
any compact Lie group G, we have

Hn(G,R) = 0, ∀ n > 0. (C19)

From this, one can use the long exact sequence in cohomology
induced by the short exact sequence of coefficient groups

0 → Z → R → U(1) → 0 (C20)

to show that

Hn(G, U(1)) = Hn+1(G,Z), ∀ n > 0. (C21)

This map is given by lifting a U(1) = R/Z-valued n-cocycle
to a R cochain; applying the group differential δ then gives
Z-valued (n + 1)-cocycle. This map is known as the Bock-
stein. In turn, by definition of BG, we have Hn+1(G,Z) =
Hn+1(BG,Z), so we obtain

Hn(G, U(1)) = Hn+1(BG,Z), ∀ n > 0. (C22)

Let us now extend these statements to equivariant ho-
mology and cohomology. We define measurable equivariant
homology and cohomology by taking our equivariant chains
and cochains to be measurable functions G × · · · × G →
Ck (X, U(1)) or Ck (X, U(1)), respectively, where the chains
and cochains on X are the “discrete” ones which take constant
values over cells. We will show that for a group G with a an
action on X such that the isotropy group G
 of any cell 
 is
compact, then we have a generalization of Eq. (C21), namely,

Hn
G(X, U(1)) = Hn+1

G (X,Z), ∀ n > dim X (C23)

HG
n (X, U(1)) = HG

n−1(X,Z), ∀ n < 0. (C24)

For brevity, we describe the first isomorphism, but the second
is derived by the same technique.

The point is to again use the short exact sequence

0 → Z → R → U(1) → 0, (C25)

which gives a long exact sequence of cohomology groups
which includes, for each n,

Hn
G(X,R) → Hn

G(X, U(1)) → Hn+1
G (X,Z) → Hn+1

G (X,R).

(C26)

The middle map is the Bockstein we are interested in. Now,
Hn

G(X,R) may be computed by the isotropy spectral sequence
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of Appendix F, with E1 page given by the sum of Hk (Gσ ,R)
for (n − k)-cells σ , one for each G orbit, where Gσ is the
isotropy group of σ , which is compact by assumption. If
n > dim X , then k > 0, so we can use Eq. (C19) and find
that the E1 page vanishes in these degrees. Thus, Hn

G(X,R) =
Hn+1

G (X,R) = 0 and so the Bockstein is an isomorphism, as
claimed.

Finally, let us also note that similar results hold for relative
equivariant homology and cohomology, and can be proven by
similar techniques.

APPENDIX D: KÜNNETH SPLITTING FOR Gspatial × Gint

We consider a symmetry of the form G = Gspatial × Gint,
where Gint is an (possibly antiunitary) internal symmetry.

If X is a space with a Gspatial action and a trivial Gint action,
then the homotopy quotient splits as

X//G = X//Gspatial × BGint. (D1)

This gives us Künneth splittings for various cohomology
groups we are interested in. For instance, if we take U(1) (with
possibly G action), we have

Hk
G(X, U(1)) 


⊕
p+q=k

H p
Gspatial

(X,Hq(Gint, U(1))), (D2)

with the induced Gspatial action on Hq(Gint, U(1)).
We can apply this to anomalous textures as follows. At a

given site s, let Gspatial,s � Gspatial be the subgroup of Gspatial

that leaves s invariant. Then, the full isotropy group at s is
Gs = Gspatial,s × Gint. The data of the anomalous texture at site
s is an element of H2(Gint × Gs, U(1)), which we can expand
using the Künneth formula as

H2(Gint × Gs, U(1)) = H2(Gspatial, U(1))

⊕ H1(Gspatial,H1(Gint, U(1)))

⊕ H2(Gint, U(1)). (D3)

It is also possible to prove a Künneth splitting for
equivariant homology from the equivariant chains defini-
tion. This is done by noting that an equivalent complex to
Cp(G,Cq(X, M )) is

=
⊕

p1+p2=p

C p1 (Gspatial,Cq(X,Cp2 (Gint, M ))), (D4)

where now

δ = δspatial + (−1)p1δint, (D5)

where the right-hand side are the differentials of the Gint and
Gspatial parts, separately. We thus obtain a triple complex.
It is easy to show that the total cohomology of this triple
complex reduces to the shifted sum of cohomologies of double
complexes obtained by taking cohomology with respect to δint

(i.e., the spectral sequence degenerates at the second page).
The nth double complex is

C p(Gspatial,Cq(X,Hp+n(Gint, M ))), (D6)

which contributes to equivariant homology in degree p + n −
q. Thus, we find

HG
n (X, M ) =

⊕
k

H
Gspatial

n+k (X,Hk (Gint, M )). (D7)

APPENDIX E: SMOOTH STATES AND
ANOMALY IN-FLOW

In Refs. [29,33] we introduced the picture of “smooth
states.” The idea is that the space of ground states in d dimen-
sions is assumed to be described by some space �d , which (in
the case where we are discussing invertible phases) satisfies
the property that the based loop space of �d is homotopy
equivalent to �d−1 (that is, �• forms an � spectrum) [34,62–
64]. A smooth state on a d-dimensional manifold X with
a G action is then5 a continuous map X//G → �d , where
X//G = (X × EG)/G is the “homotopy quotient” of X by
G, where EG is a contractible space on which G acts freely.
The homotopy classes of such maps defines the “generalized
cohomology” hd (X//G).

As we showed in Ref. [33], smooth states are very closely
connected to anomaly-free defect networks, in the sense that
they have the same classification under an appropriate equiv-
alence relation. If the defect networks are defined in terms
of a cell decomposition of X , then the argument makes use
of the dual cell decomposition X ∨, such that a dual k-cell
corresponds to a (d − k)-cell in the original cell decomposi-
tion. Following similar arguments to Ref. [33], we can also
see that degree-0 anomalous defect networks correspond to
maps X ∨

d−1//G → �d , where X ∨
d−1 is the (d − 1) skeleton of

the dual-cell decomposition, that is, the union of all the dual
k-cells for k � d − 1.

Moreover, the arguments of Ref. [33] also show that
degree-0 anomalous smooth states correspond to maps
X ∨

d−1//G → �d , which are classified by hd (X ∨
d−1//G),

whereas an anomalous texture corresponds to a map X//G →
�d+1,6 that reduces to the trivial map on X ∨

d−1//G; homotopy
classes of such maps correspond to the relative generalized
cohomology hd+1(X//G, X ∨

d−1//G). We can then invoke the
long exact sequence of a pair (which follows from the ax-
ioms of generalized cohomology, or equivalently from the
�-spectrum property of �•), of which a portion looks like

· · · → hd (X ∨
d−1//G)

s1−→ hd+1(X//G, X ∨
d−1//G)

s2−→ hd+1(X//G) → · · · . (E1)

The arrow s1 is telling us the anomalous texture associated
to a degree-0 anomalous smooth state, and the arrow s2

(inclusion), combined with the isomorphism hd+1(X//G) ∼=
hd+1([X × R]//G), is telling us the invertible crystalline
topological phase in d + 1 spatial dimensions which hosts our

5In the case where G contains orientation-reversing or antiunitary
symmetries, this definition needs to be extended to take into account
a twist [33]. For simplicity, we assume in this section that G does not
contain such symmetries, but the arguments can easily be extended
to the general case.

6X and X ∨ are identical as G spaces; it does not matter which we
use in computing the cohomology.
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anomalous texture appears at the boundary. The fact that this
sequence is exact is precisely the claim we made in Sec. III C,
namely, that an anomalous texture can be canceled by an
invertible-substrate defect network if and only if corresponds
to a trivial crystalline topological phase in d + 1 dimensions.

In general, the correct choice of �• is not known, although
for invertible states in bosonic systems it is conjectured to be
the spectrum of oriented cobordism [43]. However, the results
of Sec. V are derived by making the “ordinary cohomology”
approximation; that is, we approximate �d by the Eilenberg-
MacLane space K (Z, d + 2). The model of defect networks
that results from making this approximation corresponds to
what we call the “in-cohomology” defect networks. Note that
for phases with internal symmetry G, which are classified
by homotopy classes of maps BG → �d , the ordinary coho-
mology classification gives a classification of Hd+2(BG,Z)
(where BG = EG/G is the classifying space), which in most
cases of interest is isomorphic to the group cohomology with
U(1) coefficients, Hd+1(G, U(1)) (see Appendix C 3). This
classification is known not to be complete even for bosonic
systems [40–43]; for example, it fails to capture the Kitaev E8

state [44,45] in two spatial dimensions, which does not require
any symmetry to protect it (G = 1). Therefore, by making this
approximation we are restricting ourself to defect networks
that are not built out of such “beyond (ordinary) cohomology”
components.

Let us now show, however, that if we make this ordinary
cohomology approximation, then the results of Sec. V fol-
low. First of all, in the ordinary cohomology approximation,
one finds that homotopy classes of maps X//G → �d are
classified by the ordinary cohomology Hd+2(X//G,Z). From
a cellular description of X//G one can show that this is
equivalent to the equivariant cohomology Hd+2

G (X,Z) defined
in Appendix C 1, which moreover (see Appendix C 3) is
equivalent in the cases of interest to us to Hd+1

G (X, U(1)).
By Poincaré duality (see Appendix C 1), this is also equiv-
alent to the equivariant homology HG

−1(X, U(1)). This gives
Theorem 1.

We also find in the ordinary cohomology approximation
that hd+1(X//G, X d−1//G) reduces to the equivariant relative
cohomology Hd+3

G (X, Xd−1,Z) introduced in Appendix C 2.
By duality, this is equivalent to equivariant homology
H−2(X0,Z), where X0 is the 0-skeleton of the original cellu-
lation of X (as opposed to the dual one), and the map s2 in
Eq. (E1) corresponds in homology to the map

HG
−2(X0,Z) → HG

−2(X,Z) (E2)

induced by the inclusion X0 → X . Interpreting this map in
terms of equivariant chains, and again invoking the results of
Appendix C 3, we obtain Theorem 2.

Finally, let us note that we can also repeat the arguments
above for k-skeletal defect networks, which correspond to
smooth states that restrict to the constant map on X d−k−1//G.
One finds that Theorems 1 and 2 still hold when X is replaced
with the k skeleton Xk .

By similar arguments to the above, we can also derive the
general statement that in equivariant homology, the boundary
anomaly of a defect network on a (d + 1)-dimensional space

X with a G-symmetric boundary is given by boundary map

∂ : HG
−1(X, ∂X, U(1)) → HG

−2(∂X, U(1)), (E3)

which is Poincaré-Lefschetz dual to the ordinary restriction
map in equivariant cohomology

i∗ : Hd+2
G (X, U(1)) → Hd+2

G (∂X, U(1)), (E4)

where i : ∂X → X is the inclusion map.
In the case of a half-cylindrical space X × R�0, these

restriction maps are isomorphisms because X × R�0 equiv-
ariantly contracts to X . That is,

HG
−2(X, U(1)) ∼= HG

−1(X × R�0, X, U(1)), (E5)

which in this case is also isomorphic to HG
−1(X × R, U(1))

since we are using Borel-Moore chains.

APPENDIX F: SPECTRAL SEQUENCES

In this Appendix, we develop some computational tech-
niques for equivariant homology and cohomology, based on
the double complex introduced in Sec. V C:

Qp
q = Cp(G, Cq(X, A)), (F1)

D = ∂ + (−1)p+qδ. (F2)

A reference for this is Chap. 7 of [48]. We focus on equivariant
homology but it is easy to dualize Cq to Cq and work with the
double complex with δ and d , obtaining spectral sequences for
equivariant cohomology as well.

A spectral sequence is a method for computing the coho-
mology of D in terms of cohomologies of ∂ and δ. Any dou-
ble complex like Q admits two different spectral sequences,
depending on whether we first take cohomology with respect
to δ or ∂ first. In the first case, we get

E p,q
1 = ker δ/im δ = Hp(G,Cq(X, A)). (F3)

In the second

Ẽ p,q
1 = ker ∂/im ∂ = C p(G, Hq(X, A)). (F4)

The former can be simplified by splitting the coefficients
along the orbits [σ ] of q-cells of X under the G action,
with isotropy group Gσ , and using Shapiro’s lemma of
Appendix A. We have

E p,q
1 =

⊕
[σ ]∈Xq/G

Hp(Gσ , A). (F5)

For this reason, we call the spectral sequence beginning with
E1 the isotropy spectral sequence. The one beginning with
Ẽ1 we will refer to as the Serre spectral sequence since it
is Poincaré dual to the spectral sequence of the fibration
X → X//G → BG. The isotropy spectral sequence is more
convenient for simplifying calculations in contractible space
X = Rd since in the other case already at the first “page” we
have Ẽ p,d

1 = C p(G, A), all others zero. Thus, we will mostly
focus on defining the differentials for the isotropy spectral
sequence.

Let [ω0] ∈ E p,q
1 , i.e., ω0 ∈ Cp(G,Cq(X, A)) and δω0 = 0.

As in Sec. V C we define r = q − p. ω0 does not necessarily
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define an equivariant cycle since

Dω0 = ∂ω0 + (−1)rδω0 = ∂ω0. (F6)

As we have described in Sec. V C, all equivariant cycles can
be written as a sum

ω0 − ω1 + · · · (F7)

with

ω j ∈ C p− j (G,Cq− j (X, A)). (F8)

The idea of the spectral sequence is to iteratively compute the
ω j’s to construct an equivariant cycle from ω0.

That is, we want to find an ω1 ∈ C p−1(G,Cq−1(X, A)) such
that

D(ω0 − ω1) ∈ C p−2(G,Cq−1(X, A)). (F9)

To have (F9) we need

δω1 = ∂ω0. (F10)

Since ∂δ = δ∂ , δDω0 = 0, we get a class

[Dω0] ∈ E p+1,q
1 , (F11)

and since E p+1,q
1 is the cohomology with respect to δ, we see

that the existence of ω1 satisfying (F9) is equivalent to

[Dω0] = 0. (F12)

This motivates the definition of a map known as the first
differential of the spectral sequence:

d1 : E p,q
1 → E p+1,q

1 , (F13)

given by [Dω0] = [∂ω0], noting that Dδ = δD so we get a
well-defined map in cohomology, i.e., [Dω0] only depends on
[ω0]. Likewise, we define

d̃1 : Ẽ p,q
1 → Ẽ p,q−1, (F14)

d̃1[ω̃0] = [δω̃0]. (F15)

Observe the Ẽ1 differentials go the other direction.
Summarizing so far, an element of E1 has a chance to grow

to become an equivariant cycle iff it has vanishing d1. On the
other hand, it could be that

ω0 = ∂ω−1 (F16)

for some ω−1 ∈ E p,q+1
1 , i.e., d1ω−1 = ω0. In this case ω0 gives

rise to an equivariant boundary. So if we are interested only in
the equivariant homology class that ω0 potentially gives rise
to, we are interested in its cohomology class with respect to
d1. The same is true for the isotropy spectral sequence.

This motivates the second page of the spectral sequence by

E p,q
2 = ker d1/im d1 (F17)

and likewise for Ẽ p,q
2 . These are equivalence classes of ω0 for

which there exists an ω1 satisfying (F9). We find

Ẽ p,q
2 = Hp(G, Hq(X, A)), (F18)

which matches the Serre spectral sequence of X → X//G →
BG, as claimed. On the other hand, the second page of
the isotropy group cannot be phrased in this simple form,
although it can be phrased using sheaf cohomology.

To continue the spectral sequence, we observe

D(ω0 − ω1) = ∂ω1 (F19)

and we want to find an ω2 with

δω2 = ∂ω1 (F20)

so that

D(ω0 − ω1 + ω2) ∈ C p−3(G,Cq−2(X, A)). (F21)

We see we can relax this slightly to finding an −ω′
1 + ω2 with

D(−ω′
1 + ω2) = ∂ω1. (F22)

Then, we can form

ω0 − ω1 − ω′
1 + ω2. (F23)

We can find such a pair (ω′
1, ω2) iff

[∂ω1] = 0 ∈ E p−2,q−1
2 . (F24)

Note that ∂ω1 satisfies (F9) by

D(∂ω1 + 0) = ∂δω1 = δ2ω0 = 0, (F25)

so it indeed defines an element of E p−2,q−1
2 . This motivates the

definition of the second differential

d2 : E p,q
2 → E p−2,q−1

2 , (F26)

which one easily checks is well defined, in particular it
does not depend on the choice of ω1. Furthermore, d2

2 = 0.
Likewise, if there is a pair whose second differential is ω0,
then ω0 defines a null-homologous equivariant cycle.

Therefore, pairs [ω0, ω1] for which an ω2 extension exists
which has the possibility to define a nonzero equivariant
homology class are given by the cohomology of d2, which
defines the third page

E p,q
3 = ker d2/im d2. (F27)

One continues this way to define all the (infinitely many)
pages of the spectral sequence. At the nth page the elements
are equivalence classes of n-tuples [ω0, ω1, . . . , ωn−1] such
that there exists an ωn ∈ C p−n(G,Cq−n(X, A)) with

D[ω0 − ω1 + · · · − (−1)nωn−1] = δωn. (F28)

The nth differential is then given by

dn[ω0, . . . , ωn−1] = [∂ωn], (F29)

where ∂ωn may be extended to an n-tuple satisfying (F28) by
padding with zeros since by construction D∂ωn = 0. This also
makes it clear d2

n = 0.
For any given ω0 ∈ C p(G,Cq(X, A)), the spectral sequence

stops having “outgoing” differentials, that is, dk’s coming
from ω0 after q steps, since C<0(X, A) = 0 eventually there
are no more ω j’s to construct. Likewise, for a d-dimensional
space X , C>d (X, A) so there are also no “incoming” dif-
ferentials after d steps. Thus, we say the spectral sequence
converges absolutely.
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Descent sequence

Let us discuss an application from this point of view,
which is the computation of the LSM anomaly associated to
an anomalous texture. An anomalous texture is described by
ω0 ∈ Z2(G,C0(Rd , U(1))) which we identify as an element
on the E1 page of the isotropy spectral sequence. We observe
Dω0 = 0, so ω0 defines an element of HG

−2(Rd , U(1)) which
we would like to identify as zero or nonzero.

Equivalently, all of the differentials d>1 take ω0 out of the
domain of the spectral sequence since C<0(Rd , U(1)) = 0,
and we would like to see if there is a differential with ω0 in its
image. The general method we describe has to be performed
at each page of the spectral sequence in the computation of
the cohomology of dn. That is, we have described above how
to compute ker dn but now we must describe how to compute
im dn. One can in principle do this page by page, but there is a
more convenient iterative method we refer to as the descent
sequence which in the case of a nonzero LSM anomaly
will moreover give us the isomorphism HG

−2(Rd , U(1)) =
Hd+2(G, U(1)).

First, ω0 is in the image of d1 if we can find an η0 ∈
C2(G,C1(Rd , U(1))) with δη0 = 0, ∂η0 = ω0. In this case, the
anomalous texture is trivial in lattice homotopy, described in
Sec. II B.

Next, ω0 is in the image of d2 if there is a pair η0 ∈
C2(G,C1(Rd , U(1))), η1 ∈ C3(G,C2(Rd , U(1))) with

∂η0 = ω0, (F30)

∂η1 = δη0, (F31)

δη1 = 0. (F32)

We either find a solution or this process continues until we
cannot find a ∂ηn+1 = δηn, meaning that δηn is nontrivial in
homology. For X = Rd this only happens for n = d in which
case we find

δηd ∈ Zd+2(G,Zd (Rd , U(1))).

By Poincaré duality, or simply by looking at the value on a
single d-cell of Rd , we obtain a group cocycle

α ∈ Zd+2(G, U(1)),

which by construction defines an equivalent class in equivari-
ant homology as ω0, being related by

D[η0 − η1 + · · · + (−1)dηd ].

Also note that by shifting ηd by a cycle (which is precisely its
ambiguity) we shift α by a group coboundary, so we have thus
obtained a map

H2(G, Z0(Rd , U(1))) → Hd+2(G, U(1))

which is the equivariant push forward described in Sec. V G.
In Appendices H and I we compute this map explicitly using
this technique.

APPENDIX G: COMPUTING THE LSM CRITERION

In this Appendix, we will give some more details on how
the LSM criterion for quantum magnets can be checked on

a computer. The idea is to work in terms of the equivariant
chains introduced in Sec. V. An equivariant chain gives a
“traditional” LSM theorem (i.e., it guarantees noninvertible
ground state), when it defines trivial element in the equivariant
homology HG

−2(X,U (1)). For computational purposes it is
more convenient to work in terms of HG

−3(X,Z), which is
equivalent as shown in Appendix C 3.

Observe that when X = Rd and the symmetry includes a
space group, then both the cell decomposition of X and the
group are infinite. So, we need a way to convert the problem
into one that only involves a finite amount of data. To do this,
we can use the fact that there if G contains translations as
a normal subgroup (as does any space group), Zd � G, then
there is an isomorphism

HG
• (Rd ,Z) ∼= H

Gpt• (T d ,Z), (G1)

where Gpt = G/Zd and T d = Rd/Zd is the d-torus. This
is the equivariant homology version of the “rolling and un-
rolling” principle discussed in [29]. Therefore, in order to
obtain a finite problem, we can work in terms of anomalous
textures on the torus with respect to Gpt.

Once expressed in this way, determining whether a given
equivariant chain with Z coefficients is exact reduces to finite-
dimensional sparse linear algebra over the ring of integers,
which can be solved using the routines contained in the
software packages SAGE [65] or MAGMA [66]. We will now
discuss various techniques for making this computation more
efficient.

First, we exploit the Künneth decomposition discussed in
Sec. V F whenever possible. In particular, the results of the
exhaustive computational search discussed in Sec. VI (specif-
ically, cases 1 and 2) come from considering the k = 2 factor
in Eq. (46) from Sec. V F, which always gives H

Gspatial

−2 (X,Z2)
in these cases. In case 1, there is no need to consider the other
factors at all since the assumed form of the anomalous texture
ensures that it will never map into any nontrivial element of
these factors. For case 2, however, even if there is no tradi-
tional LSM coming from the k = 2 factor, one might think that
there could be a traditional LSM coming from the other two
factors. However, it turns out that this can never happen in case
2 either. The reason is that the symmetry representation of a
spin-orbit-coupled quantum paramagnet can always be lifted
to a representation of O(3) × Gspatial. The anomalous texture
of this enlarged symmetry group is nontrivial only in the third
factor of Eq. (D3) (which is identical in form to the third factor
for the original symmetry group, hence gives a traditional
LSM if and only it did for the original symmetry group). But,
if there is an invertible ground state which is symmetric under
the enlarged symmetry group, then we can simply perturb it by
adding a small spin-orbit coupling to the Hamiltonian, giving
an admissible ground state for the original symmetry group.

Next, we observe that if all the d-cells in a d-dimensional
space X acted upon by a group G have G
 = 0 (as is gen-
erally the case when G is a pure space group), there is an
important simplification, as follows. Let β ∈ CG

r (X, A) be an
equivariant r-chain whose only nonzero component is β0 ∈
C−r (G,C0(X, A)) (as is always the case when we want β

to represent an anomalous texture). Let λ be an equivariant
r + 1-chain λ ∈ CG

r+1(X, A) such that Dλ = β, and let λd be
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its component in Cd−r−1(G,Cd (X, A)). The fact that β has
only a β0 component implies that δλd = 0.

By Shapiro’s Lemma (see Appendix A; we choose S there
to be a set of labels for the d-cells of X ), this implies that
we can write λd = δμd for some μd ∈ Cd−r−2(G,Cd (X, A)).
Defining an equivariant r + 2-chain μ with dth component μd

(and the rest zero), we find that λ − Dμ has component (λ −
Dμ)d = 0. Moreover, D(λ − Dμ) = Dλ = β (since D2 = 0).
It follows that, without loss of generality, in looking for
equivariant 1-chains which trivialize β such that Dλ = β, we
are free to restrict ourselves to λ having component λd = 0.
From the perspective of the isotropy spectral sequence of
Appendix F, this works because Ed+2,d

1 = 0.
A final speedup can be obtained if we recall that the defi-

nition of group cochains and group coboundaries in Sec. V B
is only one of many possible equivalent definitions [48]. In
general, for any group G, let

· · · → Fn → Fn−1 → · · · → F0 → Z → 0 (G2)

be a free resolution of Z treated as a module over the group
ring Z[G] (that is, an exact sequence of free Z[G] modules).
Then, we can define a group n-cochain of G with coefficients
in M (where M is an Abelian group equipped with com-
patible G action, or equivalently a Z[G] module) to be an
element of Hom(Fn, M ), that is, the group of Z[G]-module
homomorphisms from Fn to M. The coboundary operator
on group cochain is induced from the boundary maps in
Eq. (G2). The “standard” definition of group cochains and
coboundary operator given in Sec. V B comes from a particu-
lar choice resolution known as the “bar resolution.” Any two
free resolutions of Z are chain homotopic, and as such the
group cohomology H•(G, M ) and the equivariant homology
HG

• (X, M ) are isomorphic regardless of the choice of free
resolution F•. The bar resolution is not particularly suited for
computations because the dimension of Fn grows like |G|n.
Therefore, in our computations, we used a routine (which
is based on the algorithm described in Ref. [67]) from the
HAP package [68] of the GAP computer algebra system [69]
to produce more efficient resolutions.

APPENDIX H: DESCENT SEQUENCE FOR THE
CLASSIC LSM THEOREM

In this Appendix we use the descent sequence of Sec. V G
to illustrate the computation of the LSM anomaly associated
with the classical setting of a lattice of projective internal-
symmetry representations.

Let us consider X = R with a cell decomposition with
vertices at the integer coordinates and edges on the open
intervals between them. Let G = Gint × Z have an internal
component Gint (which could be a Lie group) and a translation
component Z. Furthermore, let each site be endowed with the
same projective representation V of Gint, with cocycle α ∈
Z2(Gint,R/ZT ), where R/ZT denotes twisting by antiunitary
elements of Gint. Let us suppose also that translations act by
simply permuting the site spaces.

This situation is described by an anomalous texture∑
s∈�

ωs(g1, g2)[s] =
∑
s∈�

e2π iα(ḡ1,ḡ2 )[s] ∈Z2(G, Z0(X, U(1)T )),

(H1)

which we will write additively

log ω :=
∑
j∈Z

α(ḡ1, ḡ2)[ j] ∈ Z2(G, Z0(X,R/ZT )), (H2)

where [ j] denotes the 0-chain defined by the vertex at coor-
dinate j and ḡ denote the quotient map G → Gint. We have
∂ log ω = 0 and δ log ω = 0.

We wish to construct from ωs a cocycle in Z3(G, U(1)T )
which captures the class of the (2+1)D crystalline SPT phase
for which this anomalous texture forms a symmetric boundary
condition. This is the setup of the classic LSM theorem in
one space dimension [originally with Gint = SO(3) and α

corresponding to a half-integer spin representation V ], and
the non-triviality of the associated (2+1)D phase captures the
ground-state constraint of the LSM theorem.

We define

λ1(g1, g2) =
∑
j∈Z

jα(ḡ1, ḡ2)[ j, j + 1] ∈ C2(G,C1(X,R/ZT )),

(H3)

where [ j, j + 1] denotes the 1-chain of the oriented edge j →
j + 1. λ1 is constructed so that

∂λ1 = log ω. (H4)

We can think of λ1 as an anomalous defect network with a
Gint SPT j[α] ∈ H2(Gint,R/ZT ) along each edge [ j, j + 1].
From this it follows

log ω − (∂ + δ)λ1 = −δλ1 ∈ Z3(G, Z1(X,R/ZT )). (H5)

It remains to compute this cocycle.
We do this directly from the defining Eq. (26) for δ:

(δλ1)(g1, g2, g3) = g1λ1(g2, g3) − λ1(g1g2, g3) (H6)

+ λ1(g1, g2g3) − λ1(g1, g2). (H7)

First, observe that if g1 is internal, that is, it does not include
any translation component and so acts trivially on C1(X,Z),
then

(δλ1)(g1, g2, g3) =
∑
j∈Z

j(δα)(ḡ1, ḡ2, ḡ3)[ j, j + 1] = 0,

(H8)

by virtue of δα = 0. On the other hand, if g1 involves a
translation by l , then we have g1[ j, j + 1] = [ j + l, j + l +
1], and so

(δλ1)(g1, g2, g3)

=
∑
j∈Z

( j − l )(−1)p(g1 )α(ḡ2, ḡ3)[ j, j + 1] (H9)

+ j[−α(ḡ1ḡ2, ḡ3) + α(ḡ1, ḡ2ḡ3)

−α(ḡ1, ḡ2)][ j, j + 1] (H10)

=
∑
j∈Z

−lα(ḡ2, ḡ3)[ j, j + 1], (H11)
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where we have used δα = 0 again, and p(g) is 0 mod 2 if g is
unitary and 1 mod 2 if g is antiunitary. Observe ∂δλ1 = 0, as
expected. If we write τ ∈ Z1(G,Z) for the 1-cocycle where
τ (g) = l , the number of unit translations in the symmetry
element g, then we have

−δλ1 = (τ ∪ α)
∑
j∈Z

[ j, j + 1], (H12)

where we have used the cup product

(τ ∪ α)(g1, g2, g3) = τ (g1)α(ḡ2, ḡ3) ∈ Z3(G,R/ZT ). (H13)

The class [τ ∪ α] ∈ H3(G,R/ZT ) captures the LSM anomaly
of this anomalous texture. As expected, this is precisely the
form of the topological response for a stack of (1+1)D Gint

SPTs classified by α (with projective representation V at one
boundary), as identified by [29].

Let us show the equivalence between the equivariant ho-
mology class of the anomalous texture [ωs] and the group
cohomology class [τ ∪ α]. Suppose there is a 2-cochain η ∈
C2(G,R/ZT ) with δη = τ ∪ α. Then, we may consider

η̃ =
∑
j∈Z

η(g1, g2)[ j, j + 1] ∈ C2(G,R/ZT ), (H14)

which satisfies ∂η̃ = 0, δη̃ = −δλ1. It follows

log ω = (∂ + δ)(λ1 − η̃), (H15)

so log ω is trivial in equivariant homology. Conversely, if (∂ +
δ)ρ = log ω, then

(∂ + δ)(ρ − λ1) = −δλ1 = (τ ∪ α)
∑
j∈Z

[ j, j + 1]. (H16)

However, C2(X,Z) = 0 since X is one dimensional, so ∂ (ρ −
λ1) = 0, from which it follows that

ρ − λ1 = η
∑
j∈Z

[ j, j + 1] (H17)

with η ∈ C2(G,R/ZT ) with

(τ ∪ α)
∑
j∈Z

[ j, j + 1] = (∂ + δ)(λ1− ρ) = (δη)
∑
j∈Z

[ j, j + 1],

(H18)

hence δη = τ ∪ α.
We end this Appendix noting that this discussion extends

straightforwardly to higher dimensions. Indeed, let us con-
sider X = R2 with a cell decomposition adapted to � where
the 2-cells occupy a whole unit cell. We first construct λ1 ∈
C2(G,C1(X,R/ZT )) as above, except only using the first
coordinate of X :

λ1(g1, g2) =
∑
j,k∈Z

jα(ḡ1, ḡ2)[( j, k), ( j + 1, k)], (H19)

where the lattice coordinates are written in an integer basis
as ( j, k), and [( j, k), ( j + 1, k)] is the 1-chain corresponding
to the oriented edge from ( j, k) to ( j + 1, k). Then, defining
τ1(g) ∈ Z1(G,Z) to be the number of unit translations g does

along the first coordinate, we find

log ω − (∂ + δ)λ1 =
∑
j,k∈Z

(τ1 ∪ α)[( j, k), ( j + 1, k)].

(H20)
Then, we define

λ2(g1, g2, g3) =
∑
j,k∈Z

k(τ1 ∪ α)(g1, g2, g3)�( j, k), (H21)

where �( j, k) is the 2-chain of the unit cell with ( j, k) in the
lower left corner. λ2 is constructed so

log ω − (∂ + δ)λ1 = ∂λ2. (H22)

We find by a computation analogous to the above that

log ω − (∂ + δ)(λ1 + λ2) = (τ2 ∪ τ1 ∪ α)
∑
j,k∈Z

�( j, k),

(H23)

where τ2(g) ∈ Z1(G,Z) is defined like τ1 as the number of
unit translations g does along the second coordinate. Thus, the
LSM anomaly is τ2 ∪ τ1 ∪ α ∈ H4(G,R/ZT ). This captures
the topological response of a (3+1)D array of (1+1)D SPTs
labeled by α, as identified by [29]. In general dimensions we
will find the LSM anomaly τd ∪ · · · ∪ τ1 ∪ α. This class is
nontrivial iff α is, so we reproduce the classic LSM constraint.

APPENDIX I: DESCENT SEQUENCE FOR
POINT-GROUP LSM THEOREMS

In this Appendix we use the descent sequence of Sec. V G
to compute the LSM anomaly associated to point groups
pinning a projective internal symmetry representation.

We consider X = Rd with a pointlike anomalous texture
at the origin. We take our symmetry group G to act by linear
orthogonal transformations G → O(d ), some of which may
be internal. The anomalous texture is thus captured by ω0 ∈
H2(G, U(1)). As in Appendix H, the resulting LSM anomaly
will be of the form

LSM(ω0) = e(X ) ∪ ω0 ∈ Hd+2(G, U(1)or ), (I1)

where

e(X ) ∈ Hd (G,Zor ) (I2)

is a special class associated to any linear representation
G → O(d ) called the Euler class. The twisting indicates that
orientation-reversing elements of G negate Z.

To construct the Euler class, we let G → O(d ) define an
Rd -vector bundle E over the classifying space BG. We then
iteratively construct a generic section of this vector bundle
sk → E over each k skeleton of BG up to k = d .

In the first step, this section over the 0 skeleton assigns
a point s0(�) �= 0 ∈ Rd to the base point of BG. Then, we
proceed to the 1 skeleton, on which it assigns a path s1(g)
from s0(�) to g · s0(�) to each g ∈ G. If d = 1, then this path
will generically cross 0 ∈ R on some edges. We count this
crossing with a sign according to some local orientation of E
and it defines a cocycle e(E , s) ∈ Z1(BG,Zor ).

If d > 1, this path does not generically cross 0 and we
continue. Always in the stage of extending the section over
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the d skeleton we encounter some unavoidable zeros, and
count them with a local orientation of E to obtain the Euler
class e(E , s) ∈ Zd (BG,Zor ). It can be shown that this class is
independent of the chosen section.

We will show how this construction is implemented in real
space by the descent sequence. This will prove the formula
(I1). We assume for simplicity that the cell complex of X is
composed of open cones with the origin at the tip. It is always
possible to find such an equivariant cell complex. Then, by
intersecting the unit sphere with this cell complex we obtain a
cellulation of Sd−1 ∈ Rd . The sections sk we construct will be
cellular maps into this unit sphere.

The first step in the spectral sequence is to choose a ray r1

from the origin and place ω0 on it to form a −1-chain

c1(g1, g2) = ω0(g1, g2)[r1] ∈ C2(G,C1(X, U(1))), (I3)

where [r1] ∈ C1(X,Z) is the 1-chain associated to r1 with its
orientation pointing out of the origin. By construction

∂c1 = ω0[0]. (I4)

We associate to this step in the construction a section s0 :
BG0 → Sd−1

0 (subscript denotes the 0 skeleton) by sending
the base point � ∈ BG to the intersection of r1 with the unit
sphere.

The next step is to study δc1. We find, using the cocycle
condition of ω0,

δc1(g1, g2, g3) = ω0(g2, g3)(g1[r1] − [r1]). (I5)

If we are in 1D, we are finished, and we see that

g1[r1] − [r1] = R(g1)[l1], (I6)

where R(g1) = 1 if g1 acts as a reflection and zero otherwise.
On the other hand, we can interpret (g1[r1] − [r1]) ∩ B1 (re-
stricting to the unit interval) as a path from s0(�) to g1s0(�).
We extend our a section s1 : BG1 → B1

1 using this path. We
find that this section vanishes along an edge [g] ∈ BG1 iff
R(g) = 1. Thus, R(g) is the Euler class of this representation
and we deduce (I1) for d = 1.

Let us suppose d > 1. In the case g1[r1] − [r1] �= 0,
they are linearly independent and we can choose a sec-
tor of the plane spanned by g1r1 and r1. Decorating this
sector with ω(g2, g3) defines a −1-chain c2(g1, g2, g3) ∈
C3(G,C2(X, U(1))) with

∂c2 = δc1, (I7)

in accordance with the descent sequence. We use this to define
a section s1 : BG1 → Sd−1

1 by intersecting the chosen sector
for c2(g,−,−) with the unit sphere. Clearly, this section is
nonvanishing and extends s0.

We continue likewise in this way, now studying

δc2(g1, g2, g3, g4) = [ f (g1, g2)]ω(g3, g4), (I8)

where [ f (g1, g2)] ∈ C2(G,C2(X, U(1))). Either these fill
space, in which case we are done (and we find the Euler class
of s1) or they are boundaries of certain polyhedral cones which
define c3(g1, g2, g3, g4). The intersections of these cones with
the unit sphere define the next section, s2 in the series. Always,
once we reach the dimension of space, we find (I1).
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