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Data-driven determination of the spin Hamiltonian parameters and their uncertainties:
The case of the zigzag-chain compound KCu4P3O12
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We propose a data-driven technique to estimate the spin Hamiltonian, including uncertainty, from multiple
physical quantities. Using our technique, an effective model of KCu4P3O12 is determined from the exper-
imentally observed magnetic susceptibility and magnetization curves with various temperatures under high
magnetic fields. An effective model, which is the quantum Heisenberg model on a zigzag chain with eight
spins having J1 = −8.54 ± 0.51 meV, J2 = −2.67 ± 1.13 meV, J3 = −3.90 ± 0.15 meV, and J4 = 6.24 ±
0.95 meV, describes these measured results well. These uncertainties are successfully determined by the noise
estimation. The relations among the estimated magnetic interactions or physical quantities are also discussed.
The obtained effective model is useful to predict hard-to-measure properties such as spin gap, spin configuration
at the ground state, magnetic specific heat, and magnetic entropy.
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I. INTRODUCTION

An effective model in materials science often explains the
origin of physical properties in materials. Many methods have
been developed to construct an effective model for a target
material, and they can be divided into two groups. One is ab
initio calculations, which determine the model parameters in
an assumed effective model by providing only basic informa-
tion of the target material [1–9]. The other is a data-driven
approach in which model parameters are determined to fit the
experimentally measured data in the target material [10–15].

In the latter case, many trials are conducted to find the
appropriate model parameters to describe the experimental
results. Data-driven analyses based on machine learning have
been extensively exploited to avoid this cumbersome task.
Data-driven techniques are becoming indispensable in ma-
terials science because they should accelerate the discovery
of novel materials [16–28] and deepen our understanding of
materials [29–36]. From the viewpoint of effective model esti-
mations, data-driven techniques are also efficient to accelerate
automatic searches for appropriate model parameters [37] and
to extract relevant model parameters [38–40].
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This paper estimates a spin Hamiltonian as an effective
model of KCu4P3O12 by a data-driven approach. Figure 1
shows the crystal structure of KCu4P3O12 (a = 7.433 Å, b =
7.839 Å, c = 9.464 Å, α = 108.28◦, β = 112.68◦, γ =
92.73◦, and space group is P1̄) [42]. Cu II ions have S = 1/2
isotropic Heisenberg spin, but their magnetic properties have
not yet been reported. As will be explained later, the lattice
structure of the Cu ions can be regarded as a zigzag chain
consisting of eight Cu ions. Thus, the quantum Heisenberg
model on a zigzag chain is the target of the spin Hamiltonian
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FIG. 1. Crystal structure of KCu4P3O12 drawn by VESTA [41].
The black box indicates a unit cell.
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of KCu4P3O12 to be estimated. We determine the superex-
change interactions between Cu ions with uncertainty in this
target model by a data-driven approach in which the exper-
imentally measured susceptibility and magnetization curves
are inputted. Once an estimated spin Hamiltonian is estab-
lished, theoretical analysis of the Hamiltonian predicts various
magnetic properties which cannot be or have not been mea-
sured. These properties include the magnetic specific heat,
magnetic entropy, spin configuration, and spin gap. These pre-
dictions are helpful to propose a further experimental plan and
design.

The rest of the paper is organized as follows. Section II
shows the experimental results of the magnetic susceptibil-
ity and magnetization curves as functions of temperature
in KCu4P3O12 along with the experimental methods. Sec-
tion III explains our data-driven approach to estimate a spin
Hamiltonian. The posterior distribution of model parameters
given in the data is constructed by a statistical noise model
with respect to the experimental observations and the prior
distribution of the model parameters. Plausible model pa-
rameters are determined by the maximizer of the posterior
distribution. Furthermore, a systematic method which allows
the statistical uncertainty of the model parameters to be
evaluated is presented to estimate the amplitude of noise
in the noise model. Under our formulation, multiple types
of physical quantities can be used to estimate the effective
model. Section IV explains the results of the spin Hamiltonian
estimation with uncertainty from our data-driven approach.
First, we assume the shape of the target spin Hamiltonian for
KCu4P3O12 from the viewpoint of the crystal structure. Next,
since the L2 regularization is adopted as a prior distribution
to suppress an increase in the absolute values of the magnetic
interactions, the determination of the hyperparameter in the
L2 regularization is discussed. Subsequently, by considering
the observation noise, four types of magnetic interactions are
estimated with error bars in a target spin Hamiltonian, and
their relationships are discussed in relation to the distributions
of sampling data by the Monte Carlo method. Finally, various
magnetic properties of KCu4P3O12 are predicted. Section V
presents the discussion and summary.

II. EXPERIMENTALLY MEASURED
MAGNETIC PROPERTIES

Figure 2(a) shows the temperature dependence of the mag-
netic susceptibility with a magnetic field of 0.01 T, which
was measured by a superconducting quantum interference
device magnetometer magnetic property measurement sys-
tem (Quantum Design). Crystalline KCu4P3O12 powder was
synthesized by a solid-state reaction. Even at sufficiently low
temperatures, a finite constant value of susceptibility remains.
The inset of Fig. 2(a) shows the susceptibility upon removing
this constant term. These data are used in the data-driven
approach. Figure 2(b) shows the magnetization curves at tem-
peratures of 1.3, 4.2, 20, 30, and 50 K. These magnetization
curves were measured using an induction method with a
multilayer pulsed field magnet installed at the Institute for
Solid State Physics, The University of Tokyo. Although a high
magnetic field is imposed (�40 T), the magnetization is not

FIG. 2. (a) Magnetic susceptibility with 0.01 T for KCu4P3O12.
The inset shows the results where the constant term in the suscepti-
bility is removed. (b) Magnetization curves at various temperatures
for KCu4P3O12.

saturated. From the electron spin resonance (ESR) measure-
ments, the g factor of Cu ions is determined to be 2.08.

III. DATA-DRIVEN APPROACH TO ESTIMATE AN
EFFECTIVE MODEL WITH UNCERTAINTY

A. Posterior distribution for effective model estimation

Our developed effective model estimation method in
Ref. [39] is based on Bayesian statistics. We consider that
the target Hamiltonian to be estimated has K types of model
parameters: x = (x1, . . . , xK ). Let yex = {yex(gl )}l=1,...,L be
the set of experimentally measured physical quantities. This
set depends on the external parameter gl , where the number
of data is L. Using Bayes’s theorem, the posterior distribution
P(x|yex), which is the conditional probability of the model
parameters given experimental data, is expressed as

P(x|yex) ∝ P(yex|x)P(x), (1)

where P(x) is the prior distribution of the model parameters
and P(yex|x) is the likelihood function of yex given x. Assum-
ing that the observation noise for the measurements follows
a Gaussian distribution with a mean of zero and a standard
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deviation of σ , the likelihood function is given by

P(yex|x) =
(

1

2πσ 2

) L
2

× exp

{
− 1

2σ 2

L∑
l=1

[yex(gl ) − ycal(gl , x)]2

}
. (2)

Here, {ycal(gl , x)}l=1,...,L, which is expressed as ycal(x), are
the physical quantities calculated from the Hamiltonian at the
external parameter gl theoretically.

To express the posterior distribution briefly, we introduce
the “energy function” as a function of x, and the noise σ is
given by

E (x, σ ) = �(x, σ ) − ln P(x), (3)

where the error function �(x, σ ) is

�(x, σ ) = 1

2σ 2

L∑
l=1

[yex(gl ) − ycal(gl , x)]2. (4)

Then, the posterior distribution is expressed as

P(x|yex) ∝
(

1

2πσ 2

) L
2

exp [−E (x, σ )]. (5)

From the viewpoint of the maximum a posteriori (MAP)
estimation, plausible model parameters to explain yex are
regarded as the maximizer of Eq. (5). Correspondingly,
the MAP estimation is reduced to a minimization problem
of the energy function. To search for the maximizer of Eq. (5)
or the minimizer of Eq. (3), various optimization techniques
such as the steepest-descent method, Markov chain Monte
Carlo (MCMC) method [39], and Bayesian optimization [37]
can be used.

Selecting the prior distribution of the model parameters
P(x) is important to obtain a physically appropriate Hamil-
tonian [39]. The prior distribution for the effective model
estimation can be regarded as regularization terms in the
minimization problem [43]. The most common are L1 (least
absolute shrinkage and selection operator, LASSO) and L2

(ridge) regularization with corresponding prior distributions
P(x) = exp(−λ|x|) and P(x) = exp(−λ‖x‖2), respectively,
where the hyperparameter λ determines the strength of reg-
ularization. If the L1 regularization is applied, model param-
eters with large contributions can be selected based on the
feature selection. On the other hand, the L2 regularization
suppresses the increase in the absolute values of the model
parameters. Depending on the situation and purpose, it is
necessary to select the proper prior distribution.

B. Observation noise estimation

To obtain the uncertainty of the model parameters by a
MAP estimation, the width of the posterior distribution around
the maximizer must be estimated. The noise amplitude σ is
crucial to estimate the uncertainty [44–47]. In our framework,
the noise amplitude σ is considered to be a hyperparameter,
and a plausible value is determined by minimizing the Bayes
free energy F (σ ), defined as

F (σ ) := − ln Z (σ ), (6)

where Z (σ ) is the normalization of the posterior distribution
given by

Z (σ ) =
(

1

2πσ 2

) L
2
∫

	x

dx exp [−E (x, σ )], (7)

where 	x is the support of the posterior distribution de-
termined by the prior distribution. To evaluate F (σ ), it is
convenient to extend the posterior distribution P(x|yex) to
Pβ (x|yex) with a “finite temperature,” which is defined as

Pβ (x|yex) := 1

Zβ (σ )

(
1

2πσ 2

) L
2

exp [−βE (x, σ )], (8)

where β is the inverse temperature and Zβ (σ ) is the normal-
ization. By using Zβ (σ ), the Bayes free energy is calculated
as

F (σ ) = −
∫ 1

0
dβ

[
d

dβ
ln Zβ (σ )

]
− ln Z0(σ )

=
∫ 1

0
dβ〈E (x, σ )〉β + L

2
ln(2πσ 2) − ln

∫
	x

dx,

(9)

where the ensemble average 〈E (x, σ )〉β with respect to Eq. (8)
can be obtained by the MCMC method. Here, the third term
on the right-hand side of Eq. (9) does not depend on σ and is
omitted below. The noise amplitude of the experimental data
σ ∗ is evaluated as the value where F (σ ) is minimized. By
MCMC sampling from Eq. (5) with fixed σ ∗, the uncertainty
of the model parameters can be evaluated.

C. Multiple sets of physical quantities

In our experiments with KCu4P3O12, six different sets of
physical quantities, that is, the susceptibility and the mag-
netization curves under different temperatures, are obtained.
Then different types of physical measurements are likely to
be combined in our estimation problem.

For simplicity, the different physical quantities are as-
sumed to be independently obtained. Then the likelihood
function of a series of experimental results is defined as

P
(
yex

1 , yex
2 , . . . , yex

N

∣∣x) ∝
N∏

n=1

P
(
yex

n

∣∣x)
, (10)

where the index n denotes the type of physical quantities and
N is the total number of types. Thus, the posterior distribution
is written as

P(x
∣∣yex

1 , yex
2 , . . . , yex

N

)
∝

N∏
n=1

(
1

2πσ 2
n

) Ln
2

exp[−E (x, σ1, . . . , σN )], (11)

where Ln is the number of data points for the nth-type mea-
surement and the energy function is a weighted sum given as

E (x, σ1, . . . , σN )

=
N∑

n=1

{
1

2σ 2
n

Ln∑
l=1

[
yex

n (gl ) − ycal
n (gl , x)

]2

}
− ln P(x).

(12)
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FIG. 3. Lattice structure of the target Hamiltonian for
KCu4P3O12. This zigzag chain is constructed by eight Cu ions. Cu
ions with the same index have equivalent positions when consi-
dering symmetry.

This means that the posterior distribution significantly de-
pends on both Ln and σn.

In this paper, for simplicity, the number of data points for
all inputted physical quantities is arranged as Ln = L for all
n. Furthermore, the case where σn does not depend on the
type of physical quantities is considered. That is, the standard
deviation of the observation noise is the same for all types of
physical quantities: σn = σ for all n. To make this assumption
more realistic, the contributions of each type of physical
quantity are arranged, and the following normalization is
imposed:

yex
n (gl ) → yex

n (gl ) − minl
[
yex

n (gl )
]

maxl
[
yex

n (gl )
] − minl

[
yex

n (gl )
] , (13)

ycal
n (gl ) → ycal

n (gl ) − minl
[
yex

n (gl )
]

maxl
[
yex

n (gl )
] − minl

[
yex

n (gl )
] . (14)

By using the normalization, the upper and lower bounds for
each type of physical quantity are 1 and 0, respectively.

IV. SPIN HAMILTONIAN ESTIMATION

A. Target Hamiltonian

Our model estimation method assumes the shape of the
target Hamiltonian to be estimated. KCu4P3O12 has a compli-
cated three-dimensional structures (Fig. 1). On the other hand,
by focusing on only the superexchange interactions, that is,
the Cu-O-Cu paths in the crystal structure, the lattice structure
of the Cu ions is approximated by a set of independent zigzag
chains. Each chain has eight Cu ions, and the bond lengths
between the Cu ions are smaller than 3.2 Å. Note that this ap-
proximation should be valid except for extremely low temper-
atures. For low temperatures, weak interactions besides these
superexchange interactions may affect magnetism [14,15,48],
and this approximation is poor. In this paper, by focusing on
the magnetic properties except for those at low temperatures,
the target Hamiltonian is set to a Heisenberg model on a chain
with eight spins. Figure 3 shows the lattice structure.

Although symmetry considerations imply that there are
seven types of nearest-neighbor interactions in each chain,
only four types of independent interactions appear (i.e., J1,
J2, J3, and J4 in Fig. 3). Furthermore, since the magnetic ion
is Cu, anisotropy should not be considered. Consequently, the
target Hamiltonian with isotropic Heisenberg spins is written

as

H(x) = −
7∑

i=1

Ji,i+1
(
ŝx

i ŝx
i+1 + ŝy

i ŝy
i+1 + ŝz

i ŝ
z
i+1

)
, (15)

where J1 = J1,2 = J7,8, J2 = J2,3 = J6,7, J3 = J3,4 = J5,6, and
J4 = J4,5. Here, (ŝx

i , ŝy
i , ŝz

i ) are the S = 1/2 Pauli matrices on
ith site. The magnetic properties of this target quantum Hamil-
tonian can be easily calculated by the exact diagonalization
method. If an effective model with a large number of spins
needs to be estimated, another simulation method such as
the Monte Carlo method or mean-field calculation should be
performed.

Since many magnetic interactions are already trimmed,
there is no need to use the L1 regularization for the prior
distribution. On the other hand, large magnetic interactions
are not preferable for the physical sense. To avoid an increase
in the absolute values of the estimated magnetic interactions,
we adopt the L2 regularization as the prior distribution. Fur-
thermore, to estimate an effective model to roughly capture
the magnetic properties under wide temperature and magnetic
field ranges, six types of physical quantities (N = 6) measured
in KCu4P3O12 (see Fig. 2) are used as inputted data. In
addition, the number of data points in each inputted physical
quantity is fixed as L = 100.

B. Determination of the hyperparameter
in the L2 regularization

To determine the hyperparameter λ in the L2 regularization,
the maximizer of the posterior distribution is analyzed. Since
σ does not generally depend on the value of the model param-
eters from the viewpoint of a MAP estimation, we search for
the minimizer of the following equations:

E ′(x, α) = �′(x) + α‖x‖2, (16)

�′(x) =
N∑

n=1

L∑
l=1

[
yex

n (gl ) − ycal
n (gl , x)

]2
, (17)

where α := 2σ 2λ and E ′(x, α) and �′(x) are the energy
function and error function normalized by 1/2σ 2. Note that
determining the plausible value of α is equivalent to deciding
the hyperparameter λ in the L2 regularization depending on σ .

The minimizer of E ′(x, α) is searched by the MCMC
method where the probability distribution is proportional to
exp[−E ′(x, α)]. The MCMC samplings are performed by
the EMCEE package [49,50] for various α. In each MCMC
sampling, the stretch move [51] is used for the update scheme
of states, and 8000 states are sampled. Among the sampled
states with fixed α, the model parameters x∗ such that E ′(x, α)
is minimized are selected. As mentioned in Sec. III A, this
optimization of E ′(x, α) can also be performed by various fast
optimization techniques instead of MCMC. Figure 4 shows
the α dependence of E ′(x∗, α), �′(x∗), and ‖x∗‖2. Here, all
experimental results, that is, the magnetic susceptibility with
0.01 T and magnetization curves at five temperatures (1.3, 4.2,
20, 30, and 50 K), for KCu4P3O12 are inputted. The result
of E ′(x∗, α) shows an elbow curve, indicating a boundary
between regions, where, in each part, the regularization is
effective or ineffective. Thus, the appropriate α is selected
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FIG. 4. (a) Hyperparameter α dependence of E ′(x∗, α), where x∗

is the magnetic interactions so that E ′(x, α) is minimized with a fixed
α. Dashed lines are a visual guide. (b) α dependence of �′(x∗). (c) α

dependence of ‖x∗‖2.

as the elbow position. That is, α∗ = 10−2 because we want
to find the spin Hamiltonian not only to explain the exper-
imental results but also to obtain magnetic interactions that
are as small as possible. This is similar to the determination
technique of the cluster number in clustering analysis [52,53].

In the error function �′(x∗), the elbow curve is also ob-
served, but the elbow position deviates in E ′(x∗, α). Prefer-
ably, �′(x∗) is a small value at α∗ = 10−2, and if the value
of α decreases, the error is almost unchanged. In addition,
‖x∗‖2 monotonically decreases against α, and it becomes suf-
ficiently small at α∗ = 10−2. In this stage, the estimated mag-
netic interactions (i.e., x∗) at α∗ = 10−2 are J1 = −6.65 meV,
J2 = −5.49 meV, J3 = −4.96 meV, and J4 = 6.92 meV. The
absolute values of these interactions are proper in Cu sys-
tems [14,15]. These facts indicate that the L2 regularization
is useful to estimate a spin Hamiltonian with small magnetic
interactions.

C. Evaluation of the uncertainty and distribution
of sampling data

To evaluate the uncertainty of the estimated magnetic
interactions, the noise amplitude is assessed according to
Sec. III B. Here, the Bayes free energy in the estimation
problem for KCu4P3O12 is given by

F (σ ) =
∫ 1

2σ2

0
dβ〈E ′(x, α∗)〉β + NL

2
ln(2πσ 2), (18)

FIG. 5. (a) Inverse temperature β dependence of 〈E ′(x, α∗)〉β by
MCMC. (b) Bayes free-energy dependence on the noise amplitude
σ . The inset is the enlarged view.

where N = 6 and L = 100. Figure 5(a) shows the inverse
temperature β dependence of 〈E ′(x, α∗)〉β by MCMC cal-
culations using the EMCEE package, where the Monte Carlo
step is 8000. The average values of eight independent runs are
plotted, and the error bars denote the 95% confident intervals.
〈E (x, α∗)〉β monotonically decreases as a function against β.
Using the results of 〈E ′(x, α∗)〉β , Fig. 5(b) shows the σ depen-
dence of F (σ ), which is calculated by numerical integration
with the trapezoidal rule. The minimum value of F (σ ) is ob-
tained at 2σ ∗2 = 10−2. This value is a plausible standard devi-
ation for the observation noise. This means that the noise am-
plitude is ∼7% when the six types of physical quantities are
inputted.

Using the appropriate observation noise, MCMC sampling
is performed around the estimated magnetic interactions in
Sec. IV B when the probability distribution is proportional
to exp[−E ′(x, α∗)/2σ ∗2] with 2σ ∗2 = 10−2 and α∗ = 10−2.
Figure 6 shows the scatterplots of the sampling results for all
combinations of J1, J2, J3, J4, and E (x, α∗). Here, the last
3000 sampling results in the MCMC with 8000 Mote Carlo
steps are plotted. First, we determine the estimated magnetic
interactions, and the error bars for the 95% confidence interval
are evaluated by these distributions as

J1 = −8.54 ± 0.51 meV, (19)

J2 = −2.67 ± 1.13 meV, (20)

J3 = −3.90 ± 0.15 meV, (21)

J4 = 6.24 ± 0.95 meV. (22)

Note that the inputted experimental results (Fig. 2) are not
noisy, and the evaluated error bars for the estimated in-
teractions are sufficiently small. Thus, to consider noisier
cases, artificial noises are added to the experimental results
of KCu4P3O12. Figures S1 and S2 in Supplemental Material
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FIG. 6. Scatterplots of the sampling results for all combinations
of J1, J2, J3, J4, and E ′(x, α∗) by MCMC around the estimated
magnetic interactions. Here, the probability distribution in MCMC
is proportional to exp[−E ′(x, α∗)/2σ ∗2] with 2σ ∗2 = 10−2 and α∗ =
10−2.

[54] show the estimation results depending on the artificial
noise. We confirm that if the artificial noise is increased,
the value of σ ∗ by our noise estimation is also increased,
and consequently, the error bars for the estimated interactions
become large. Thus, we conclude that our estimation method
can be applied to the noisy experimental results and correctly
evaluate the uncertainty in the estimated effective model.

Next, from the distributions of magnetic interactions
(Fig. 6), the region of J3 realizing good fitting is narrower

compared to that of the other interactions. That is, J3 is the
most sensitive. In contrast, changing J2 has a smaller impact
on the fitting error, indicating J2 has the highest uncertainty.
Furthermore, we can see that J2 and J3 are positively corre-
lated, while J1 is negatively correlated with J2 and J3. If J1

increases, J2 and J3 should decrease to maintain the good
fitting. On the other hand, J4 is almost independent of the
magnetic interactions. Consequently, J4 can be freely tuned
within the error bar. We discuss these extracted correlations
from physical insights. Considering the lattice symmetry, J2

and J3 are placed in a similar environment; for example, there
are two places in the lattice, and the interacting spins are not
edge spins. Thus, J2 and J3 would have a positive correlation.
Furthermore, J1 is an antiferromagnetic interaction as well as
J2 and J3, and J1 should become smaller with increasing J2 and
J3 to keep the energy scale of antiferromagnetic interactions in
the Hamiltonian, which means that J1 is negatively correlated
with J2 and J3. We note that these correlations obtained in
the estimation strongly depend on the target Hamiltonian and
estimated interaction parameters. Thus, these discussions are
correlations of the estimated interaction parameters in the
effective model, not correlations of the magnetic interactions
in real materials. However, these extracted correlations can
deepen the understanding of properties of the estimated effec-
tive model.

Figure 7(a) compares the physical quantities between the
experimental and calculated results using the estimated spin
Hamiltonian with J1 = −8.54 meV, J2 = −2.67 meV, J3 =
−3.90 meV, and J4 = 6.24 meV. A good fit can be obtained
except for the low-temperature magnetization curves. In par-
ticular, for 1.3 K, the fitting result is worse, and the 1/4
magnetic plateaulike behavior is observed in the calculation
results. Since our target Hamiltonian has only eight spins, the
appearance of such a plateau cannot be avoided at low temper-
atures. To describe the low-temperature magnetizations, the
target Hamiltonian must include further magnetic interactions
besides the four interactions.

FIG. 7. (a) Comparison plots of the magnetic susceptibility with 0.01 T and the magnetization curves with various temperatures between the
experimental and calculated results by the estimated spin Hamiltonian. (b) Scatterplots of the errors between the experimental and calculated
results, which are independently evaluated in the susceptibility and five types of magnetization curves.
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FIG. 8. (a) Spin gap value and spin configuration at the ground state without a magnetic field obtained by the estimated spin Hamiltonian
for KCu4P3O12. Temperature dependences of (b) the magnetic specific heat, (c) magnetic entropy, and (d) magnetic entropy change when the
magnetic field changes from H to 0 T are plotted.

Moreover, Fig. 7(b) shows the scatterplots of the sampling
results using the same MCMC as in Fig. 6 for all combinations
of errors between the experimental and calculated results,
i.e.,

∑L
l=1[yex

n (gl ) − ycal
n (gl , x)]2. The errors of susceptibility

and magnetization curves with 50, 30, and 20 K have strong
correlations. For example, susceptibility has a positive corre-
lation with magnetization below 50 K, but it has a negative
correlation with magnetizations under 30 and 20 K. This
means that if the susceptibility is fitted, the magnetization
under 50 K is naturally fitted, while the fittings of mag-
netizations with 30 and 20 K become worse. On the other
hand, magnetization curves with 4.2 and 1.3 K are almost
independent of the other errors around the estimated magnetic
interactions. In this way, by drawing the distributions of the
magnetic interactions or physical quantities by MCMC, their
relations can be understood, and the characteristics of the
estimated spin Hamiltonian can be extracted.

D. Prediction of the magnetic properties

The most important benefit from estimating the effective
model is predicting magnetic properties that cannot be easily
or have not been measured. Thus, the value of the spin gap,

which is the energy gap between the ground and excited
states; the spin configuration at the ground state without a
magnetic field; and the temperature dependences of magnetic
specific heat and magnetic entropy are calculated (Fig. 8).
The predictions indicate that the magnetic specific heat in
KCu4P3O12 will have a peak around 30 K, but increasing
the magnetic field suppresses this peak [Fig. 8(b)]. In this
magnet, the magnetic entropy will be almost unchanged by
a magnetic field over 20 K [Fig. 8(c)]. Furthermore, to predict
the magnetic refrigeration property [55–60], the change in
magnetic entropy is also evaluated [Fig. 8(d)]. The inverse
magnetocaloric effect will be observed in KCu4P3O12, which
is a characteristic behavior of antiferromagnets [61–64], and
the magnetic entropy change should be quite small. In this
way, using an effective model determined by our data-driven
approach, difficult-to-measure properties can be predicted,
improving the understanding of the magnetic properties of
KCu4P3O12.

V. DISCUSSION AND SUMMARY

We have determined the spin Hamiltonian of KCu4P3O12

using a data-driven approach. The flow of our prescription
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of data-driven approach is as follows. (i) Assume a target
effective model and the posterior distribution. This constitutes
the difference between the experimental and calculated results
obtained by an effective model and the appropriate prior dis-
tribution of model parameters. (ii) Determine an appropriate
hyperparameter in the prior distribution by the elbow method
for the MAP estimation results and estimated model param-
eters. (iii) Obtain a plausible observation noise to minimize
the Bayes free energy. (iv) Perform MCMC samplings using
an estimated noise amplitude around the estimated model
parameters in (ii). From the obtained sampling data distribu-
tions, determine the model parameters with uncertainty. (v)
Predict various properties which cannot be easily measured in
experiments using the estimated effective model.

Our data-driven approach found that the spin Hamiltonian
of KCu4P3O12 is the quantum Heisenberg model on the
zigzag chain with eight spins of J1 = −8.54 ± 0.51 meV,
J2 = −2.67 ± 1.13 meV, J3 = −3.90 ± 0.15 meV, and J4 =
6.24 ± 0.95 meV. In this estimation, the magnetic suscepti-
bility and magnetization curves at various temperatures are
fitted. This model can describe the experimental results with
very small error, except for the extremely low temperature
magnetization curves, demonstrating that such a data-driven
approach is useful to estimate the effective model. Our ap-
proach should be useful in parallel with ab initio calculations.

On the other hand, the results of the data-driven approach
should strongly depend on the inputted data. Actually, we
estimated different magnetic interactions when the inputted
data are only one type of physical quantity (see Figs. S3–S8
in the Supplemental Material [54]). In this case, the fitting
of the inputted quantities is well performed, but the experi-
mental results, which are not used in the estimation, are not
well fitted. This fact means that each physical quantity can
be well described by multiple sets of magnetic interactions.
Consequently, preparing multiple kinds of physical quantities
as the input data will not only estimate model parameters more
uniquely but will also produce a more reliable effective model.

Recently, the parameter estimation for real materials by
data-driven techniques has been frequently performed. These
data-driven techniques are roughly divided into two strategies.
(i) A regression model that explains material parameters from
feature variables such as material composition and structure is
constructed from a large amount of collected data for known

materials [18,65,66]. The aim of this strategy is to predict
parameters in unknown materials using the trained regres-
sion model via the data-driven approach. (ii) The material
parameters are determined by minimizing the discrepancy
between the physical quantities of the target material and
those obtained by a computational model with the material
parameters [67–69]. The aim of this strategy is to understand
properties of the target material through the estimated pa-
rameters in the computational model. The former, however,
requires the preparation of a large number of data sets of mate-
rial compositions and structures paired with target parameters,
i.e., magnetic interactions in our problem. Therefore, for the
purpose of estimating magnetic interactions, the former is
not necessarily suitable, and the latter is more suitable, and
indeed, our method belongs to the latter strategy. Furthermore,
our proposed noise estimation method using MCMC to eval-
uate the uncertainty of estimated parameters can be applied
to various methods belonging to the latter strategy, and we
believe that it is also useful in various data-driven techniques
to estimate material parameters in the computational model.

Our data-driven approach will come into its own when
easy-to-measure properties obtained in the laboratory with
equipment such as a superconducting quantum interference
device are inputted. That is, our data-driven approach can
predict difficult-to-measure properties, which are obtained
with large-scale experimental techniques such as neutron scat-
tering. Therefore, our data-driven approach will reduce the
cost of materials development and accelerate discoveries of
novel materials.

ACKNOWLEDGMENTS

We thank H. Kitazawa and N. Terada for valuable dis-
cussions and T. Furubayashi for ESR measurements. This
article is supported by the “Materials Research by Information
Integration” Initiative (MI2I) project and JST-Mirai Program
Grant No. JPMJMI18A3. M.H. was partially supported by a
grant for advanced measurement and characterization tech-
nologies accelerating the materials innovation at the National
Institute for Materials Science (NIMS). The computations
were performed on the Numerical Materials Simulator at
NIMS and the supercomputer at Supercomputer Center, In-
stitute for Solid State Physics, The University of Tokyo.

[1] D. Muñoz, I. de P. R. Moreira, and F. Illas, Phys. Rev. B 65,
224521 (2002).

[2] I. I. Mazin, Phys. Rev. B 76, 140406(R) (2007).
[3] K. Nakamura, Y. Yoshimoto, R. Arita, S. Tsuneyuki, and M.

Imada, Phys. Rev. B 77, 195126 (2008).
[4] J. M. Pruneda, J. Íñiguez, E. Canadell, H. Kageyama, and M.

Takano, Phys. Rev. B 78, 115101 (2008).
[5] M. Hirayama, T. Miyake, and M. Imada, Phys. Rev. B 87,

195144 (2013).
[6] M. Nuss and M. Aichhorn, Phys. Rev. B 89, 045125 (2014).
[7] T. Misawa and M. Imada, Nat. Commun. 5, 5738 (2014).
[8] K. Riedl, D. Guterding, H. O. Jeschke, M. J. P. Gingras, and R.

Valentí, Phys. Rev. B 94, 014410 (2016).

[9] M. Hirayama, Y. Yamaji, T. Misawa, and M. Imada, Phys. Rev.
B 98, 134501 (2018).

[10] K. Takubo, T. Mizokawa, J.-Y. Son, Y. Nambu, S. Nakatsuji,
and Y. Maeno, Phys. Rev. Lett. 99, 037203 (2007).

[11] R. Tamura, N. Kawashima, T. Yamamoto, C. Tassel, and H.
Kageyama, Phys. Rev. B 84, 214408 (2011).

[12] R. A. DiStasio, Jr., É. Marcotte, R. Car, F. H. Stillinger, and S.
Torquato, Phys. Rev. B 88, 134104 (2013).

[13] M. Hase, H. Kuroe, V. Y. Pomjakushin, L. Keller, R. Tamura,
N. Terada, Y. Matsushita, A. Dönni, and T. Sekine, Phys. Rev.
B 92, 054425 (2015).

[14] M. Hase, M. Matsumoto, A. Matsuo, and K. Kindo, Phys. Rev.
B 94, 174421 (2016).

224435-8

https://doi.org/10.1103/PhysRevB.65.224521
https://doi.org/10.1103/PhysRevB.76.140406
https://doi.org/10.1103/PhysRevB.77.195126
https://doi.org/10.1103/PhysRevB.78.115101
https://doi.org/10.1103/PhysRevB.87.195144
https://doi.org/10.1103/PhysRevB.89.045125
https://doi.org/10.1038/ncomms6738
https://doi.org/10.1103/PhysRevB.94.014410
https://doi.org/10.1103/PhysRevB.98.134501
https://doi.org/10.1103/PhysRevLett.99.037203
https://doi.org/10.1103/PhysRevB.84.214408
https://doi.org/10.1103/PhysRevB.88.134104
https://doi.org/10.1103/PhysRevB.92.054425
https://doi.org/10.1103/PhysRevB.94.174421


DATA-DRIVEN DETERMINATION OF THE SPIN … PHYSICAL REVIEW B 101, 224435 (2020)

[15] M. Hase, Y. Ebukuro, H. Kuroe, M. Matsumoto, A. Matsuo, K.
Kindo, J. R. Hester, T. J. Sato, and H. Yamazaki, Phys. Rev. B
95, 144429 (2017).

[16] K. Rajan, Mater. Today 8, 38 (2005).
[17] A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704

(2006).
[18] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R.

Ramprasad, Sci. Rep. 3, 2810 (2013).
[19] A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, and I.

Tanaka, Phys. Rev. Lett. 115, 205901 (2015).
[20] T. Ueno, T. D. Rhone, Z. Hou, T. Mizoguchi, and K. Tsuda,

Mater. Discovery 4, 18 (2016).
[21] S. Ju, T. Shiga, L. Feng, Z. Hou, K. Tsuda, and J. Shiomi, Phys.

Rev. X 7, 021024 (2017).
[22] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi,

and C. Kim, npj Comput. Mater. 3, 54 (2017).
[23] H. Ikebata, K. Hongo, T. Isomura, R. Maezono, and R. Yoshida,

J. Comput.-Aided Mol. Des. 31, 379 (2017).
[24] M. Sumita, X. Yang, S. Ishihara, R. Tamura, and K. Tsuda, ACS

Cent. Sci. 4, 1126 (2018).
[25] T. Yamashita, N. Sato, H. Kino, T. Miyake, K. Tsuda, and T.

Oguchi, Phys. Rev. Materials 2, 013803 (2018).
[26] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M.

Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J.
Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A.
Aspuru-Guzik, ACS Cent. Sci. 4, 268 (2018).

[27] Z. Hou, Y. Takagiwa, Y. Shinohara, Y. Xu, and K. Tsuda, ACS
Appl. Mater. 11, 11545 (2019).

[28] K. Terayama, R. Tamura, Y. Nose, H. Hiramatsu, H. Hosono, Y.
Okuno, and K. Tsuda, Phys. Rev. Materials 3, 033802 (2019).

[29] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).
[30] L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and

M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015).
[31] T. L. Pham, H. Kino, K. Terakura, T. Miyake, and H. C. Dam,

J. Chem. Phys. 145, 154103 (2016).
[32] R. Kobayashi, D. Giofré, T. Junge, M. Ceriotti, and W. A.

Curtin, Phys. Rev. Materials 1, 053604 (2017).
[33] T. Suzuki, R. Tamura, and T. Miyazaki, Int. J. Quantum Chem.

117, 33 (2017).
[34] H. C. Dam, V. C. Nguyen, T. L. Pham, A. T. Nguyen, K.

Terakura, T. Miyake, and H. Kino, J. Phys. Soc. Jpn. 87, 113801
(2018).

[35] K. Shiba, R. Tamura, T. Sugiyama, Y. Kameyama, K. Koda, E.
Sakon, K. Minami, H. T. Ngo, G. Imamura, K. Tsuda, and G.
Yoshikawa, ACS Sensors 3, 1592 (2018).

[36] R. Tamura, J. Lin, and T. Miyazaki, J. Phys. Soc. Jpn. 88,
044601 (2019).

[37] R. Tamura and K. Hukushima, PLoS ONE 13, e0193785
(2018).

[38] H. Takenaka, K. Nagata, T. Mizokawa, and M. Okada, J. Phys.
Soc. Jpn. 83, 124706 (2014).

[39] R. Tamura and K. Hukushima, Phys. Rev. B 95, 064407 (2017).
[40] H. Fujita, Y. O. Nakagawa, S. Sugiura, and M. Oshikawa, Phys.

Rev. B 97, 075114 (2018).
[41] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272

(2011).
[42] H. Effenberger, Z. Kristallogr. 180, 43 (1987).

[43] C. M. Bishop, Pattern Recognition and Machine Learning
(Springer, Singapore, 2006).

[44] M. Anada, Y. Nakanishi-Ohno, M. Okada, T. Kimura, and Y.
Wakabayashi, J. Appl. Crystallogr. 50, 1611 (2017).

[45] S. Tokuda, K. Nagata, and M. Okada, J. Phys. Soc. Jpn. 86,
024001 (2017).

[46] K. Obinata, S. Katakami, Y. Yue, and M. Okada, J. Phys. Soc.
Jpn. 88, 064802 (2019).

[47] S. Katakami, H. Sakamoto, and M. Okada, J. Phys. Soc. Jpn.
88, 074001 (2019).

[48] M. Hase, Y. Ebukuro, H. Kuroe, M. Matsumoto, A. Matsuo, K.
Kindo, J. R. Hester, T. J. Sato, and H. Yamazaki, Phys. Rev. B
98, 139901(E) (2018).

[49] EMCEE, http://dfm.io/emcee.
[50] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman,

Publications Astron. Soc. Pacific, 125, 306 (2013).
[51] J. Goodman and J. Weare, Commun. Appl. Math. Comput. Sci.

5, 65 (2010).
[52] R. L. Thorndike, Psychometrika 18, 267 (1953).
[53] R. Tibshirani, G. Walther, and T. Hastie, J. R. Stat. Soc. B 63,

411 (2001).
[54] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.101.224435 for estimation results depend-
ing on artificial noise and the effective model estimation from
each magnetic property.

[55] K. A. Gschneidner and V. K. Pecharsky, Annu. Rev. Mater. Sci.
30, 387 (2000).

[56] A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and
Its Applications (Taylor and Francis, London, 2003).

[57] K. A. Gschneidner, V. K. Pecharsky, and A. O. Tsokol, Rep.
Prog. Phys. 68, 1479 (2005).

[58] K. Matsumoto, T. Kondo, M. Ikeda, and T. Numazawa,
Cryogenics 51, 353 (2011).

[59] V. Franco, J. S. Blázquez, B. Ingale, and A. Conde, Annu. Rev.
Mater. Res. 42, 305 (2012).

[60] V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-
Ramírez, and A. Conde, Prog. Mater. Sci. 93, 112 (2018).

[61] K. G. Sandeman, R. Daou, S. Özcan, J. H. Durrell, N. D.
Mathur, and D. J. Fray, Phys. Rev. B 74, 224436 (2006).

[62] T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L.
Mañosa, A. Planes, E. Suard, and B. Ouladdiaf, Phys. Rev. B
75, 104414 (2007).

[63] R. Tamura, T. Ohno, and H. Kitazawa, Appl. Phys. Lett. 104,
052415 (2014).

[64] R. Tamura, S. Tanaka, T. Ohno, and H. Kitazawa, J. Appl. Phys.
116, 053908 (2014).

[65] L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, npj
Comput. Mater. 2, 16028 (2016).

[66] V. Stanev, C. Oses, A. G. Kusne, E. Rodriguez, J. Paglione, S.
Curtarolo, and I. Takeuchi, npj Comput. Mater. Materials 4, 29
(2018).
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