
PHYSICAL REVIEW B 101, 224415 (2020)
Editors’ Suggestion

Anomalous low-frequency conductivity in easy-plane XXZ spin chains
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Using the framework of generalized hydrodynamics, we compute the low-frequency spin conductivity σ (ω)
of XXZ spin chains with easy-plane anisotropy. We find that for almost all values of the anisotropy −1 <

� < 1, the low-frequency conductivity scales anomalously with frequency, as σ (ω) ∼ 1/
√

ω. We interpret this
anomalous response as a consequence of quasiparticles undergoing Lévy flights. For special values of the
anisotropy, the divergence is cut off at low frequencies, so σ (ω) has a finite dc limit. These results reveal
a hitherto unknown mechanism for anomalous response in integrable systems and also provide a physical
explanation of the discontinuous behavior of the spin Drude weight. We use our approach to recover that
at the isotropic point � = 1, σ (ω) ∼ ω−1/3. We support our results with extensive numerical studies using
matrix-product operator methods.
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I. INTRODUCTION

Integrable models play a crucial part in quantum many-
body physics: On one hand, they are among the few strongly
interacting quantum systems for which exact results exist;
on the other, their dynamics are special by virtue of their
integrability. Integrable systems have extensively many con-
served quantities [1–4] and stable ballistically propagating
quasiparticles, unlike chaotic systems. Although integrabil-
ity is technically a fine-tuned property, many experimen-
tally relevant one-dimensional models—such as the Hubbard,
Heisenberg, and Lieb-Liniger models—are either exactly or
approximately integrable [5]. The dynamics of integrable and
nearly integrable models have been extensively studied, both
theoretically [1–4,6–16] and experimentally in ultracold gases
[17–24] and low-dimensional quantum magnets (see Ref. [25]
and references therein).

Although the exact dynamics of large integrable systems
remains challenging, the recently developed framework of
generalized hydrodynamics (GHD) has shed considerable
light on their coarse-grained properties [26–29,29–47]. The
picture of dynamics that emerges from GHD (as well as com-
plementary methods, such as exact bounds [1,48–54] and nu-
merical studies [55–64]) is rich and counterintuitive. Although
integrable systems host ballistic quasiparticles, transport is
not necessarily ballistic [65–67]. Some conserved quantities
spread through regular or anomalous diffusion [41,42,68,69],
and even when ballistic transport is present, local autocorrela-
tion functions can decay with anomalous exponents [43,44].

The present work addresses the ac conductivity of the XXZ
spin- 1

2 chain, governed by the Hamiltonian

H = J
∑

i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

)
. (1)

Here, Sα
i = σα

i /2 are spin- 1
2 operators with σα

i the Pauli
matrices on site i, the parameter � is the anisotropy, and J is
an overall coupling scale that we will set to unity. We consider
the “easy-plane” regime −1 < � < 1, so we can parametrize
� ≡ cos(πλ). For concreteness we assume the system is at
infinite temperature and in the thermodynamic limit (though
the physics is presumably qualitatively similar at any T >

0 [70]). Spin transport in this model is ballistic, so the
spin conductivity takes the form σ (ω) = Dλδ(ω) + σ

reg.

λ (ω).
Much is known, through exact bounds as well as GHD
[29,37,48,49,54,70,71], about the behavior of Dλ (which is
called the Drude weight); however, the finite-frequency part
has only been studied numerically [55,72–75]. The apparent
behavior of Dλ is remarkable: It appears to be discontinuous
and fractal as a function of λ. When λ = p/q is rational,
several distinct methods [29,37,48,49,54,70,71] lead to the
conclusion that

Dλ = 1

12
(1 − �2) f

(
π

q

)
, f (x) = 3

2

[
1 − sin(2x)

2x

sin2 x

]
. (2)

Equation (2) is a rigorous lower bound on D, which GHD
[29,31,37,38] predicts is saturated. Remarkably, Eq. (2) al-
lows the Drude weight to jump by O(1) as � changes in-
finitesimally: limx→0 f (x) = 1 for any irrational number λ but
is higher by an O(1) amount at an arbitrarily close small-
denominator rational. These jumps in the zero-frequency
spectral weight strongly suggest that the finite-frequency be-
havior must also be nontrivial, motivating our study.

We combine GHD with exact constraints on the low-
frequency behavior to arrive at a unified picture of transport in
this unusual regime. For generic λ, the quasiparticles respon-
sible for spin transport undergo a Lévy flight in addition to
their ballistic motion; this leads to the scaling σ (ω) ∼ 1/

√
ω.
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For rational λ = p/q, this behavior is cut off at frequencies
ω∗

q ∼ 1/q4, giving rise to a finite dc conductivity ∼q2. The
“missing” finite-frequency spectral weight then appears as the
additional Drude weight peak in Eq. (2). This is a nontrivial
consistency check on our results. Finally we compare our
results with extensive simulations using matrix-product op-
erators; the numerical results are consistent with a power-law
divergence of σ (ω), although we cannot access late enough
times to fix the exponent. Our results also explain recent
numerical observations on the λ dependence of finite-time
response functions [76].

II. CONSTRAINTS ON σ(ω)

The high-temperature limit of σ (ω) is given by the Kubo
formula

σλ(ω)=β

∫ ∞

0
dt

∑
x

Cj j (x, t )eiωt =πDλδ(ω)+σ
reg
λ (ω), (3)

in terms of the autocorrelator Cj j (x, t ) of the current j(x) ≡
−i(S+

x S−
x+1 − H.c.):

Cj j (x, t ; λ) ≡ Z−1Tr
[
eiHλt j(x)e−iHλt j(0)e−βHλ

]
. (4)

Here, Z is the partition function and β is the inverse tem-
perature. In what follows we will suppress the subscript
(since we discuss only one correlation function) and define
Cλ(t ) ≡ ∑

x Cj j (x, t ; λ). We will take the β → 0 limit; in this
limit, all response functions including σ (ω) vanish, but the
autocorrelation function (4) is well behaved, and therefore so
is the quantity σ (ω)/β (3): In the following, we will absorb
this factor of 1/β in the definition of σ (ω). The Drude weight
is defined as Dλ ≡ limt→∞ Cλ(t ), and the dc conductivity is
defined as σ dc

λ ≡ limω→0 σ
reg
λ (ω).

The autocorrelator Cλ(t ), at any finite t , must be a con-
tinuous function of � and thus of λ: by the Lieb-Robinson
theorem [77], one can truncate the infinite system on these
timescales to a finite system of size ∝t , and all properties of
finite systems evolve continuously with �. For some small ε,
Eq. (2) implies that one can find nearby values λ, λ + ε such
that Dλ and Dλ+ε differ by a large amount. Even so, locality
implies that |Cλ(t ) − Cλ+ε(t )| remains small until some late
time t∗. One can easily show that t∗ � 1/ε. Equivalently, in
the frequency domain,∫ �

0
dω|σλ(ω) − σλ+ε (ω)|w � C

ε

�
, (5)

where σλ(ω) is the full conductivity (3) at anisotropy λ, � > ε

is generic, and C is a constant of order unity. Changing λ by
ε can only shift spectral weight over frequencies ∼ε. Thus
there is a characteristic frequency ω∗(ε) � ε such that for
ω � ω∗(ε) the conductivity is essentially ε independent. The
drastic rearrangement of spectral weight that gives rise to the
fractal structure of Dλ (2) must happen below this frequency
(Fig. 1).

We now discuss how this constraint relates the ac con-
ductivity of an irrational λ to the dc conductivity of rational
approximants. We approximate the irrational value, denoted
λ∞, by a sequence of rationals {λq = p/q} with increasing
denominators q. We assume that Cλ(t ) decays monotonically

C(t) −Dλ

t

1/q2
1

1/q2
2

q4
2q4

1

1/
√

t

ω

σ(ω)

1/q4
2

FIG. 1. Upper panel: dc conductivity for rational Fibonacci ap-
proximants λq = Fn−1/Fn+1 vs q = Fn+1 to the generic irrational
anisotropy λ∞ ≡ 1/ϕ2 where ϕ is the golden ratio. We find σ dc

λq
∼

qβ with β ≈ 1.93, corresponding to α 
 0.49 in Eq. (7). Lower
panel: relationship between the dc conductivity for approximants,
the crossover timescale, and the ac conductivity for λ∞. Left: the
autocorrelation function C(t ) for λ∞ must follow that of a rational
approximant with a given denominator qi until a crossover timescale
t∗
qi

∼ q4
i (derived in the text). This forces C(t ) ∼ 1/

√
t for λ∞. Right:

in the frequency domain, the “excess Drude weight” at the rational
approximant must precisely match the missing spectral weight in
σ (ω) for ω < ω∗

q ∼ q−4.

at sufficiently late times for all λ; within GHD this assumption
certainly holds. By the reasoning above, until some late time
t∗
q , Cλ∞ (t ) ≈ Cλq (t ) > Dλq . Assuming monotonicity, there-

fore, Cλ∞ (t ) − Dλ∞ > δDq ∼ 1/q2, for all such large q, with
δDq ≡ Dλq − Dλ∞ .

We make the general ansatz Cλ∞ (t ) − Dλ∞ ∼ 1/t1−α [i.e.,
σλ∞ (ω) ∼ ω−α]. This ansatz fixes the crossover timescale t∗

q
for large q, as follows. For t � t∗

q , Cλq (t ) ≈ Cλ∞ (t ), whereas
for t � t∗

q , Cλq (t ) ≈ Dλq . Equating the two forms at t ∼ t∗
q we

find that (t∗
q )1−α ∼ δD−1

q ∼ q2, so

t∗
q ∼ q2/(1−α). (6)

Finally, we relate this to the dc conductivity σ dc
λq

at λq. This
is the integral of Cλq (t ) − Dλq , which follows the power-law
1/t1−α and is cut off at time t∗

q . Combining this result with
Eq. (6) we find that

σ dc
λq

∼ q2α/(1−α), σλ∞ (ω) ∼ ω−α, (7)

where α � 0. Indeed this reasoning can be used to show
that σ (ω) diverges, even without invoking GHD. By Dirich-
let’s approximation theorem, |λq − λ∞| � 1/q2. Therefore,
t∗
q � q2, so Cλ∞ (t ) − Dλ∞ � 1/t . Fourier transforming gives
σ (ω) � | log ω| at low frequencies, establishing a diver-
gence. (This divergence had previously been predicted using
GHD [68].)
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Equation (7) can be derived directly in frequency
space, as follows. Suppose σλ∞ (ω) ∼ ω−α . Then by

Eq. (5),
∫ ω∗

q

0 dω[σ reg
λ∞ (ω) − σ dc

λq
] 
 δDq ∼ 1/q2: The extra

Drude weight at the commensurate point must precisely match
the missing part of the regular spectral weight (Fig. 1). Thus,
[ω∗

q]1−α ∼ 1/q2, so ω∗
q ∼ q−2/(1−α), consistent with Eq. (6)

and ω∗
q ∼ 1/t∗

q .

III. GENERALIZED HYDRODYNAMICS

The argument above shows that σ (ω) must diverge at
low frequencies for irrational λ. However, Eq. (7) does not
determine the exponent α. To do this we adopt the frame-
work of generalized hydrodynamics (GHD) [26,27], which
was recently extended to incorporate diffusion [39–41]. GHD
describes the response of integrable systems in the hydro-
dynamic regime, i.e., when the system is locally in equi-
librium in a generalized Gibbs ensemble [3,4,7,12,78–82].
In this regime, the dynamics of an integrable system maps
onto that of a classical soliton gas [34]. Solitons (i.e., the
quasiparticles of the integrable system) propagate ballistically
but acquire time delays when they scatter elastically off each
other [34,40,83,84]. Gaussian fluctuations of the quasipar-
ticle densities lead to fluctuations of the distance traveled
by each quasiparticle [40]. Each quasiparticle thus follows a
biased random walk. Since the quasiparticles carry conserved
charges, such as spin, these charges also pick up subleading
diffusive corrections to ballistic transport: The variance of
the spin current is related to the variance of quasiparticle
velocities due to collisions. For the dc conductivity σ dc

λq
, we

have the relation [39,41]

σ dc
λq

= 1

4

∑
kl

∫
dθ1dθ2ρk (θ1)ρl (θ2) fk fl |vk (θ1)−vl (θ2)|

×
[
Kdr

kl (θ1 − θ2)

(
mdr

k

ρ tot
k (θ1)σk

− mdr
l

ρ tot
l (θ2)σl

)]2

, (8)

in terms of data from the thermodynamic Bethe ansatz (TBA)
[5]. In this expression, k, l label quasiparticle species and
θi label rapidities, and the other symbols denote properties
(within TBA) of quasiparticles with labels k, θ : ρk (θ ) is the
density of quasiparticles, fk = 1 − ρk (θ )/ρ tot

k (θ ) is related to
their filling factor (independent from θ at infinite tempera-
ture), ρ tot

k (θ ) is the total density of states, vk (θ ) and mdr
k are,

respectively, the dressed velocity—derived from the dressed
dispersion relation—and dressed magnetization, and σk = ±1
is the so-called σ parity of quasiparticle species k. The dressed
kernel Kdr is the solution to an integral equation that has to
be solved numerically [85]. For a brief overview of the TBA
formalism as it applies here see Ref. [85]; for more details we
refer to Ref. [5].

As a generic irrational number, we choose λ∞ = 1/ϕ2

where ϕ is the golden ratio. This number is generic in the
sense that it is poorly approximable by rationals; in this it
resembles almost all real numbers [86]. The TBA for this
number has the advantage of being tractable, with a simple
quasiparticle hierarchy. We have checked other irrationals in
Ref. [85]. The continued fraction expansion of ϕ2 = 1/(2 +
1/(1 + 1/(. . .))). Truncating this expansion by replacing the

last term with 2 gives the series λn = Fn−1/Fn+1, where Fn

is the nth Fibonacci number. The Bethe ansatz solution for
λn involves n quasiparticle species. At zero field, the first
n − 2 quasiparticle species carry no dressed magnetization;
the last two quasiparticle species each carry a magnetization
∼Fn+1 = q and are responsible for the spin Drude weight.
We refer to quasiparticles with larger values of n as being
“larger,” which is true at lattice scale; however, GHD treats
all quasiparticles as pointlike. Spin transport is dominated
by charged quasiparticles; the other, “neutral” quasiparticles
affect spin transport by scattering elastically off the charged
quasiparticles and causing them to diffuse.

GHD yields the following conclusions for spin transport.
Charged quasiparticles move with a characteristic velocity
which saturates to an O(1) value as q → ∞, and as they
move they scatter off neutral quasiparticles. Large neutral
quasiparticles are rare ρn−2 ∼ q−2 but also have an outsized
influence, because their scattering phase shifts are large.
Figure 2 separates out the contributions to σ dc

λq
by quasipar-

ticle index/size: Evidently the dominant contribution comes
from scattering off the largest neutral quasiparticle. Explicitly
evaluating Eq. (8) with the appropriate TBA data we find that
σdc(λq) ∼ q2. This asymptotics can be derived analytically
[85] and is consistent with numerical evaluation of Eq. (8)
(Fig. 1). Using Eq. (7) this means that

σλ∞ (ω) ∼ 1/
√

ω, (9)

and therefore that t∗
q ∼ q4.

IV. SOLITON GAS PICTURE

This long crossover timescale has a physical interpretation
in terms of the semiclassical soliton gas framework [34,40].
The dressed kernel Kdr (θ ) is peaked at θ = 0, with a peak
height that scales as q and a peak width that scales as 1/q
(Fig. 2). The dominant scattering events that a charged particle
experiences are those with large neutral quasiparticles which
have almost the same rapidity and therefore almost the same
velocity (up to ∼1/q). At large q the heaviest neutral quasi-
particle has density 1/q2; fixing its rapidity to a window of
size 1/q reduces the density of dominant scatterers to 1/q3.
Since the two quasiparticles start out spaced at a distance q3

and have a relative velocity ∼1/q, they collide on a timescale
t∗
q ∼ q4. At much shorter timescales, the system is not in local

equilibrium and the asymptotic result (8) does not apply.
One can derive further physical insight by applying the

soliton-gas framework to the motion of the charged quasi-
particle at very large q but for t � t∗

q . In this regime, as
time passes, the charged quasiparticle encounters increasingly
large neutral quasiparticles and therefore picks up increas-
ingly large displacements. On timescale t , the largest collision
will involve a quasiparticle for which q(t ) ∼ t1/4. This quasi-
particle gives a (dressed) displacement [31,34,87] of order
�xdr = Kdr/p′(θ ) ∼ q3 ∼ t3/4 where we have used the fact
that the dressed momentum scales as p′(θ ) ∼ ρ tot (θ ) ∼ q−2.
Therefore, the variance of the position of the charged quasi-
particle scales as t3/2, consistent with our exponent for the
conductivity. Since the charged quasiparticle spreads through
kicks of power-law increasing strength, whose probability
also falls off as a power law, it is a Lévy flight with dynamical
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(a) (b) (c)

FIG. 2. (a) Contributions to the dc conductivity of the charged quasiparticle from scattering off each species of neutral quasiparticle. For
any given n, the dominant source of diffusion is the heaviest neutral quasiparticle n − 2. (b) Rapidity dependence of the dressed kernel for
scattering between the charged quasiparticle and the largest neutral quasiparticle; we find that Kdr

n,n−2(θ ) has a peak of height qn and width
1/qn, as shown by the data collapse. (c) TEBD numerics for the current-current correlator for various n; plots for the larger n stay close to the
n = ∞ value at the accessible times. Inset: Power-law decay of Cλ∞ (t ) − Dλ∞ : Although our time range is limited, our data is consistent with
an exponent 1 − α ∈ ( 1

2 , 3
4 ) (dashed lines).

exponent z = 4/3 [88]. It would be interesting to compare the
spin structure factor to known scaling forms for Lévy flights.

V. TEBD SIMULATIONS

To check our analysis, we have also explicitly evaluated
C(t ) (4). At infinite temperature Eq. (4) takes the form
C(x, t ) = 2−LTr[ j(x, t/2) j(0,−t/2)]. By translation invari-
ance, the operator j(x, t/2) is just a translated version of the
operator j(0, t/2) = − j†(0,−t/2). Thus to evaluate C(x, t )
(4) it suffices to time evolve a single local operator. This can
be done using the time-evolving block decimation method
[89–91] for matrix-product operators [92,93]. This simplifi-
cation allows us to save considerable computational overhead
and study systems in the thermodynamic limit for times up to
t ≈ 60 working at a fixed bond dimension χ = 512. At even
longer times, errors accumulate and give unphysical results
[85], but for t � 60 (Fig. 2) the errors remain small.

Our results are shown in Fig. 2. At the accessible
timescales, data for the larger n stay close to that for n = 4 and
far from their asymptotic values (dashed lines). This confirms
our picture that the decay is a slow process. The inset shows
the evolution of Cλ∞ (t ) − Dλ∞ on a log-log plot; although
our dynamic range is limited, the data support a power law,
with an exponent 1 − α ∈ ( 1

2 , 3
4 ), roughly consistent with our

predictions. Note that at times t ∼ 100 one can only reach
the crossover timescale for q ∼ 3, so we are far from the
asymptotic behavior.

Finally, our results also explain the numerical observation
[76] that Cλ(t ) at a fixed time t has peaks in λ whose width
scales as t−1/2. The crossover timescale for resolving that
the system is δλ from the peak is t ∼ 1/(δλ)2, implying this
result.

VI. DISCUSSION

In closing, we apply our approach to the isotropic point
� = 1 using the rational series λq = 1/q as q → ∞. In that
limit, the Drude weight vanishes Dλ∞ = 0, but we still have
δDq ∼ q−2 from (2). Therefore, Eqs. (7) still hold, but Eq. (8)

now predicts σ dc
q ∼ q, corresponding to α = 1/3. This yields

σλ∞ (ω) ∼ ω−1/3 at the isotropic point, consistent with earlier
results [42,60,94]. The corresponding time scale t∗

q ∼ q3 was
also identified approaching the isotropic point from � > 1
[42]. The Lévy flight mechanism discussed here is different
from the apparent Kardar-Parisi-Zhang mechanism for su-
perdiffusion at � = 1 [44,61,69], in terms of both the dynam-
ical exponents and scaling function. This raises the question
of whether there are “universality classes” of integrable dy-
namics and of what types of dynamical scaling are possible
in integrable models. (Even in the present case, for special
irrational numbers that are closer to their approximants, we
expect longer crossover timescales and thus parametrically
steeper divergences in σ (ω); in the specific instance of Li-
ouville numbers, our arguments imply that σ (ω) ∼ 1/ω up to
sub-power-law corrections.)

Within GHD the ultimate significance of the value α =
1/2 is not obvious. However, the crossover scale t∗

q ∼ q4 ∼
1/|λ∞ − λq|2 resembles a golden rule rate, suggesting the fol-
lowing interpretation: If one starts in an eigenstate of Hλ∞ and
turns on the perturbation δH ≡ Hλq − Hλ∞ , the quasiparticle
structure changes considerably. The quasiparticles at Hλ∞ are
no longer stable, and it is natural to suppose that their decay
rates scale as |λq − λ∞|2, yielding t∗

q ∼ q4. Developing a
golden rule analysis [95] of such quenches between integrable
systems is an interesting topic for future work.
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