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Spin-dependent transport in uranium
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Given the challenges in experimental studies of uranium, the heaviest naturally occurring metal, we present
first-principles calculation for the spin-dependent transport. Showing the largest atomic spin-orbit coupling we
explore the ability of various crystal phases to maximize the charge-to-spin conversion using a fully relativistic
Korringa-Kohn-Rostoker Green’s function method. The transport theory is based on a semiclassical description
where intrinsic and extrinsic, skew scattering, contributions can be separated easily. In addition to the various
crystal phases we analyze the effect of substitutional impurities for γ , hcp, as well as the α phase. We predict a
very high, 104 (� cm)−1, spin Hall conductivity for the metastable hcp-U phase, a giant value five times larger
than for the conventional spin Hall material Pt. We estimated an efficiency of charge-to-spin current conversion
of up to 30%. The spin diffusion length, a crucial parameter in any application, is predicted to be in the range
from 3 to 6.5 nm, compatible with other charge-to-spin conversion materials. Relating our work to the sparse
experimental results, our calculations suggest a γ phase in the thin film rather than the experimentally expected
α phase.
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I. INTRODUCTION

The spin Hall effect (SHE) has attracted interest due to
its potential application in devices requiring the generation
of spin currents such as magnetic random access memory
(MRAM) [1–3]. The spin currents generated via SHE in
nominally nonmagnetic materials can be exploited to switch
the active magnetic layer. In contrast to devices relying on spin
injection, the number of ferromagnet/nonmagnet interfaces
can be reduced, improving the efficiency of the entire de-
vice [4–6]. The microscopic mechanisms of the SHE are typ-
ically grouped into intrinsic and extrinsic contributions. The
former directly connects to the intrinsic electronic structure
of a crystal, and the latter is induced by disordered potentials
in the system such as chemical impurities. Since the driving
mechanism of the SHE is the relativistic coupling of spin and
orbital degrees of freedom, such applications rely on materials
maximizing spin-orbit coupling (SOC) [7–11]. For this reason
the search is on for materials with strong SOC relevant for the
aforementioned applications.

Uranium is a naturally occurring heavy metal and has
been investigated or utilized in past decades for its interesting
properties [12–20]. It has a strong spin-orbit interaction and a
complex phase diagram with several distinct crystal structures
such as α (orthorhombic), β (bct), γ (bcc), and hcp phases.
Uranium is a light actinide with itinerant 5 f electrons. This
property can be exploited in various configurations such as
magnetic multilayer systems [21–25]. The SHE of U was
experimentally reported [26] and was found to be surprisingly
low. However, theoretical studies are sparse and no under-
standing of the experimental results has been put forward.
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This is the motivation for the current work where we inves-
tigate U by computational methods for a better understanding
of the mechanisms governing the SHE in U.

We will use density functional theory (DFT) and the
Korringa-Kohn-Rostoker (KKR) Green’s function method to
investigate the spin-dependent transport properties of various
U phases and the effect of impurities in the bulk phases.
In Sec. II, we introduce the structural details of uranium.
This will be followed by Sec. III briefly introducing the
computational methods in order to account for the intrinsic
SHE and extrinsic SHE. All methods have been derived earlier
and are discussed in detail in Refs. [27–29] and only the most
relevant points will be highlighted here. In Sec. IV A, we
present the results of the intrinsic SHE for three bulk phases
and the extrinsic SHE for all of them doped with different
substitutional impurities. Finally, we will explore the various
relevant parameters such as the spin diffusion length as well
as the impurity concentration in such systems making contact
to the existing experimental literature in Sec. IV B, followed
by a summary of our findings in Sec. V.

II. URANIUM-CRYSTALLINE PHASES

Uranium has a rich phase diagram. Below 935 K it is stable
in the α phase (orthorhombic Cmcm), transforms to the β

phase (bct), and changes to the stable γ phase (bcc) above
1045 K [18]. Although hcp-U does not occur among the bulk
stable phases, it has been observed in thin films up to 100 Å
(∼30 monolayers) [17], making it relevant to analyze the bulk
hcp phase as well. We will focus on three types, α-, hcp-, and
γ -U. Their lattice parameters and crystal structure are summa-
rized in Table I and the x-y plane is defined according to Fig. 1.
All parameters are experimental values [19,30,31], which we
subsequently use for all electronic structure calculations.
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TABLE I. Experimental lattice parameters of γ -, hcp-, and α-U
used for the calculations.

Phase a (Å) b/a c/a y

γ (bcc) 3.467
hcp 2.983 1.836
α (orthorhombic) 2.836 2.075 1.741 0.1017

III. METHODS

For all electronic structure calculations we use the relativis-
tic Korringa-Kohn-Rostoker Green’s function method based
on density functional theory [32–34]. The angular momentum
cutoff is l = 3 and we used the local density approximation
in the Vosko-Wilk-Nusair parametrization [35]. The impurity
cluster contained 65 atoms for γ -U, 69 atoms for hcp-U, and
65 atoms for α-U. The spin-dependent transport is described
by the intrinsic spin Hall effect, arising from the clean crystal,
and the extrinsic spin Hall effect driven by impurity scattering.
Here, we restrict the consideration to the extrinsic skew scat-
tering ignoring the side-jump mechanism. This is a reasonable
approximation in the dilute limit of impurity concentrations
as has been shown previously [36]. The intrinsic SHE only
depends on the electronic structure of the perfect crystal and
arises from spin-orbit-induced near degeneracies and avoided
crossings in the band structure. The equations are expressed
within the semiclassical transport theory where the spin Hall
conductivity (SHC) is described in terms of the Berry cur-
vature [37,38], where we use its implementation in the rela-
tivistic KKR formalism [29,39]. The extrinsic SHE is driven
by the scattering from weak structural disorder or dynamic
perturbations coupled with a spin-orbit interaction of the elec-
tronic states. Here, we only consider the spin-dependent skew
scattering of electrons at substitutional impurities captured in

FIG. 1. Crystal structure of (a) γ -, (b) hcp-, and (c) α-U.

the semiclassical Boltzmann equation [27,40]. The detailed
formalism for both approaches was described previously and
here only the most relevant expressions are highlighted for
convenience.

The intrinsic SHC is expressed via a Brillouin zone integral
over the Berry curvature of all occupied states,

σxy = −e2

h̄

∑
n

∫
BZ

dk
(2π )3

fn(EF , k)�z
n(k), (1)

where the z component of the non-Abelian Berry curvature is
given by

�i j (k) = i〈∇kuik| × |∇ku jk〉
− i

∑
l∈�

〈∇kuik|ulk〉 × 〈ulk|∇ku jk〉. (2)

The states i and j are from the set of degenerate states due
to Kramers degeneracy induced by time and space inversion
symmetry of the system. A detailed discussion of the method
can be found in Ref. [29] (see also Ref. [41]).

For the extrinsic spin Hall effect (skew scattering) the
semiclassical linearized Boltzmann equation is solved [27],

�n(k) = τ n
k

[
vn

k +
∑
k′n′

Pn′n
k′n �n′

(k′)

]
, (3)

where �n(k), τ n
k , vn

k, and Pn′n
k′k are the mean free path, relax-

ation time, Fermi velocity, and scattering rate, respectively.
All those quantities are directly calculated from the relativistic
electronic structure code. After solving the linearized Boltz-
mann equation, the mean free path �n(k) is used to calculate
the spin conductivity in the zero-temperature limit,

σ s = e2

h̄

∑
n

1

(2π )3

∫∫
Ek=EF

dSn∣∣vn
k

∣∣ sn
z (k)vn

k ◦ �n(k). (4)

The charge conductivity is expressed in the same way drop-
ping sn

z (k). The spin expectation value sn
z in the z direction

implies we are considering the charge and spin transport in
the x-y plane. Generally, other elements of the conductivity
tensors might be nonzero and relevant. For cubic systems all
other elements either vanish or are symmetry related [42]. We
will come back to this point in the Sec. IV discussing α-U. The
ratio of spin conductivity and charge conductivity is called the
spin Hall angle (SHA),

θ = σ S
yx

σxx
, (5)

and is often used as a figure of merit quantifying the efficiency
of charge-to-spin current conversion.

IV. RESULTS

A. Intrinsic and extrinsic spin Hall effect

In uranium the narrow 5 f bands combined with the strong
spin-orbit coupling significantly increases the number of near
degeneracies enhancing the Berry curvature, the source of the
intrinsic spin Hall conductivity. Figure 2 shows the intrinsic
SHC σ s

yx of the three phases as a function of energy. Surpris-
ingly, all three show a rather similar functional dependence
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FIG. 2. The calculated intrinsic spin Hall conductivity σ s
yx of γ -,

hcp-, and α-U.

with a roughly similar magnitude until ∼ − 0.8 eV below the
Fermi energy. All of them start with positive conductivities at
low energies, have a transition to negative values, and show
some negative peaks at high energies. The key difference
between the three distinct phases is the energy at which
the SHC becomes significant, subsequently at which point
the transition from positive to negative values happens, and
resulting from that what the actual values at the Fermi energy
are. Those values are summarized in Table II and highlight the
dramatic change over two orders of magnitude going from the
γ phase over the α to the hcp phase.

Experimental studies for the spin-dependent transport in
U are sparse. At room temperature a value for the spin Hall
angle of θ = 0.4% was reported with a SHC of σ s

yx = 1.40 ×
102 �−1 cm−1 [26]. This result is comparable to the value for
γ -U instead of the experimentally expected phase of α-U. In
addition, we found a negative sign of the SHC in all three
phases relative to the sign in Pt (see Table II). However,
from the experimental work it is not clear whether the sign
was considered in detail. In order to derive the experimental
parameters, the spin diffusion length of U was assumed to be
3 nm, the same as Pt, since no data for U were available [26].
This could potentially explain the gap between the theo-
retical and the experimental finding. In addition, structural

TABLE II. The comparison between our calculation of the intrin-
sic SHC and the experimental results for the longitudinal conduc-
tivity σxx and the spin Hall conductivity σ s

yx . The experimental and
theoretical results of Pt are given for reference. The measurement of
all experimental references is the spin pumping method.

Material σxx (�−1 cm−1) σ s
yx (�−1 cm−1)

γ −4.02 × 102

hcp −1.00 × 104

α −2.12 × 103

Expt. U [26] 3.50 × 104 1.40 × 102

Theor. Pt [29,45–47] 1.3–3.2 × 103

Expt. Pt [48–53] 2.0–5.3 × 104 0.5–3.6 × 103

FIG. 3. The spin Hall angle of the γ -U doped with 3d transition
metals. All conventionally magnetic atoms become nonmagnetic as
impurity in γ -U.

inhomogeneities as well as the experiments performed at
room temperatures will make any comparison to the theoret-
ical results difficult. For reference we highlight the situation
for Pt in Table II. While the reported theoretical values for
σ s

yx of Pt are of the order of 103 �−1 cm−1, the experimentally
observed values range from 0.5 × 103 to 3.5 × 103 �−1 cm−1.
The importance of crystal quality in determining the transition
between the intrinsic to the extrinsic regime in Pt has been
highlighted in detail by Sagasta et al. [43]. Similarly, the effect
of temperature has been studied for Pt in detail, showing a
much smaller effect than in noble metals such as Au [44].
For uranium no further experimental work on the SHE ex-
ists, implying the transition between the superclean metal
(dominance of extrinsic effects) and the moderately dirty
regime (dominance of the intrinsic mechanism) is not clear
from the experimental data. In the following we will consider
the extrinsic mechanism to make predictions at which point
such a transition should occur for the various phases of U.
Nevertheless, it should be highlighted that σ s

yx for hcp-U is
two orders of magnitude larger than the experimental result.
This suggests that metastable hcp-U is a viable choice in order
to maximize the charge-to-spin current conversion in actual
microscopic devices.

To understand the full picture of the SHE in U, we proceed
to calculate the extrinsic SHC for the three U structures doped
with a series of 3d transition metals as well as with Ga for
its similar electronic configuration. For γ -U, interestingly,
we find all doped impurities remain nonmagnetic, including
conventionally magnetic elements, such as Fe, Co, and Ni.
Figure 3 shows the SHA θ for the γ -U with the various
substitutional impurities. Working in the dilute limit implies
that all conductivities arising from impurity scattering will be
inversely proportional to the impurity concentration leaving
the SHA [Eq. (5)] to be concentration independent. The mag-
nitude of SHA is the largest for the Sc impurity and decreases
as the number of 3d electron increases for the impurity atom.
The transition from negative to positive values occurs between
V and Cr, at almost half filling of Zd = 4 at the impurity site
resulting from the self-consistent impurity solver. The SHA
shows the largest positive value for the Co impurity (Zd = 8)
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FIG. 4. The spin Hall angle for various substitutional 3d im-
purities in the hcp-U. Dashed line: Cr, Fe, and Co are magnetic
impurities. Solid line: All impurities are forcedly nonmagnetic.

and reverses to negative SHA beyond Cu, reaching −1.5% for
the Ga impurity (Zd = 10.5).

Surprisingly, the SHA trend is consistent with the pre-
diction for Cu doped with 5d impurities reported by Fert
et al. [54]. This concurrence demonstrates that the resonant
scattering between j = 5/2 and j = 3/2 in d orbitals predom-
inates in the transport properties of γ -U, despite the consid-
erable f -orbital character of electrons in the valence bands
as well as in the conduction bands. The contribution from d
electrons can be attributed to the strong f -d hybridization in
the uranium, allowing a certain charge transfer between f and
d bands and consequently enhancing the coupling between the
host atoms and impurities.

For hcp-U, the Cr, Fe, and Co impurities become magnetic,
showing antiferromagnetic (AFM) coupling with the induced
moments in the surrounding U. All other impurities remain
nonmagnetic. In Fig. 4 we summarize the results for the
SHA comparing the magnetic impurities to the same systems
constrained to the nonmagnetic solution. For the constrained
nonmagnetic systems, the trend is roughly similar to that of
the γ -U, with the first sign change occurring between the
Sc and Ti impurities already. The absolute values are very
similar to the γ -U systems. When Cr, Fe, and Co are con-
sidered as magnetic impurities with corresponding moments
of 1.99μB, 2.38μB, and 0.86μB, respectively, all SHA values
decrease and for Fe, showing the largest moment, we find a
dramatic decline from 1.5% to 0.2%. In Fig. 5(a) we show
the corresponding results for the SHA in α-U with various
3d impurities. Given the reduced symmetries, the different
elements, indicated as θyx and θxy, are no longer equiva-
lent [42,55,56]. Nevertheless, their trends are almost identical.
For α-U we find Cr, Mn, and Fe to exhibit magnetic moments
of 1.09μB, 2.37μB, and 1.93μB, respectively, again ordering
antiferromagnetically relative to the induced moments in the
surrounding U. As before we show the nonmagnetically con-
strained systems for comparison. The principle structure is
similar to the previous two phases with the maximum, in the
nonmagnetic case, at the Mn impurity.

FIG. 5. (a) The spin Hall angle for various substitutional 3d
impurities in the α-U. (b) The difference and average of the spin Hall
conductivity in the x and y directions in α-U. Dashed lines show
Cr, Mn, and Fe as magnetic impurities and for the solid lines all
impurities are forcedly nonmagnetic.

In order to highlight the reduced symmetry in α-U we sum-
marize the symmetric and antisymmetric SHC, 1

2 (σ s
yx − σ s

xy)
and 1

2 (σ s
yx + σ s

xy), respectively, in Fig. 5(b). In contrast to cu-
bic systems, α-U shows a small but nonvanishing symmetric
part for the SHC, but most of the structure visible in Fig. 5(a)
is induced by the conventional antisymmetric contribution.
Nevertheless, the symmetric contribution should be sizable
enough to be picked up in a detailed experimental analysis.

For the 3d impurities we demonstrated that the d-orbital
resonant scattering is predominant, giving the characteristic
dependencies as introduced in Ref. [54]. While the predicted
skew-scattering-induced SHAs are sizable, they do not ex-
ceed more than 1.5%. Previously, it has been shown that in
simple heavy metallic hosts light impurities can induce large
SHAs [27]. In Fig. 6 we present our results for a number of
light elements in comparison to the 3d series as well as Mo.
All impurities in the γ -U remain nonmagnetic while for hcp-U
Fe and Ni and for α-U Fe become magnetic. Given that the
symmetric contributions are small in α-U we present σ s

yx only.
The results for B, C, and N are similar to the first few elements
of the 3d series and no drastic enhancement can be identified.
Not surprisingly, the SHA for Mo, a 4d impurity with roughly
the same charge as Cr (Zd = 5), shows roughly the same SHA
to Cr.

While B and C impurities can induce a large SHA compa-
rable to Fe, Co, and Ni in γ - and hcp-U, the corresponding
SHA is suppressed in α-U. Evidently, the simple relation of
the large relative change of the SOC of the host versus the
impurity as identified of simple metals [27] does not hold for
the far more complex electronic structure of the various U
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FIG. 6. The comparison of the spin Hall angle of the γ -, hcp-,
and α-U doped from light to moderately heavy impurities. The Fe
and Co in the hcp-U and Fe in the α-U are magnetic. The dashed line
is indicating the experimentally found SHA [26].

crystalline phases where predictions from simple qualitative
models fail. The experimental SHA [26], θ , is indicated as a
dashed line in Fig. 6, showing reasonable agreement with our
quantitative predictions.

B. Spin diffusion length and dilute concentration

In our calculations, the extrinsic SHA for α-U is consis-
tent with the experimental observation while our calculated
intrinsic SHC of α-U is one order of magnitude too large. For
further insight into the spin-dependent transport in realistic
U systems, we analyze the spin diffusion length and the
total spin Hall angle in the dilute limit combining extrinsic
and intrinsic contributions. In a free-electron model, the spin
diffusion can be expressed as [28,57,58]

lsf =
√

3

2

π

k2
F G0

√
τsf

τ
σ expt

xx , (6)

where kF , Go, τsf, τ , and σ
expt
xx are the Fermi wave vector,

the conductance quantum of 2e2

h , the spin-flip scattering time,
the momentum relaxation time, and the longitudinal charge
conductivity, respectively.

Measuring the impurity concentration in experiments is
challenging. However, in the dilute limit the concentration is
inversely proportional to the longitudinal charge conductiv-
ity [28,59,60], suggesting that we can estimate an experimen-
tal impurity concentration as

cexpt = σ calc
xx

σ
expt
xx

c0, (7)

where c0 is the nominal impurity concentration of 1 at. % in
our calculations for each structure. To estimate lsf and cexpt,
we assume σ

expt
xx = 3.5 × 10−2 (μ� cm)−1 of α-U [26] for all

structures since no experimental data are available for σ
expt
xx in

hcp-U and γ -U.
In principle, each impurity will induce a different spin

diffusion length lsf and σxx, but given the strong SOC of
U, the results are dominated by the electronic structure of

TABLE III. The range of the spin diffusion length lsf and the
experimental concentration for different impurities in the γ -, hcp-,
and α-U. These two quantities are estimated using the calculated
results of the relaxation time with the experimental conductivity of
3.5 × 10−2 (μ � cm)−1 [26].

Phase lsf (nm) cexpt (%) kF (nm−1) τ (fs) τsf (10−3 fs)

γ ∼3 5–8 11.06 21.6–42.1 4.87–9.24
hcp ∼5 1.8–3.5 8.03 22.7–49.2 5.74–13.9
α ∼6.5 2.5–5.0 7.79 20.6–42.0 4.41–9.09

the host. All values are summarized in Table III, showing
a clear distinction between the crystalline phases. While for
the γ phase we find the 3 nm assumed for the experimental
analysis [26], we predict the spin diffusion lengths lsf for
hcp-U and α-U to be 5 and 6.5 nm, respectively, almost
two times larger. Reevaluating the experiment considering the
larger spin diffusion length of lsf = 6.5 nm we obtain a SHA
of θ = 0.38% within the range of the originally presented
value of 0.4%. This very weak change could not explain the
discrepancy between theory and experiment.

Estimating the necessary impurity concentration to reach
the experimental longitudinal conductivities, assuming just
one class of impurities present, we find, for γ -U, cexpt =
5%–8%, about 1.5 times larger than that of hcp-U and α-U.
The concentrations of hcp-U vary between 1.8% and 3.5%,
comparable to that of cexpt = 2.5%–5.0% of α-U, even though
these two structures have significantly different trends and
magnitudes for the SHA. The high concentration for γ -U
indicates that it is unlikely that the experimental system is
based on ideal γ -U since a rather unrealistically large impu-
rity concentration or other large disorder potential would be
needed. However, in the films the predominantly polycrys-
talline structures are difficult to describe from a theoretical
perspective. For α- and hcp-U the impurity concentrations are
in a reasonable range easily present in bilayered structures
used in spin-pumping experiments.

In order to understand whether extrinsic or intrinsic effects
dominate the different crystalline phases we summarize the
calculated extrinsic longitudinal conductivities σ ext

xx and the
absolute values of the SHC |σ s(ext)

yx | both at an impurity
concentration of c0 = 1 at. % in Table IV. For the γ -U we
find σ ext

xx to be up to two times larger than that of hcp-U
and α-U, which is directly linked to the nominal impurity
concentration needed to reach the experimentally found lon-
gitudinal conductivity as highlighted in Table III. Given those
conductivities and concentrations one would assume that we

TABLE IV. The range of calculated electrical conductivities
σxx , spin Hall conductivities σ s

yx , and the total spin Hall angle θ tot

combining the intrinsic σ s
yx from Table II with the extrinsic results to

estimate the total spin Hall angle θ tot.

Phase σxx (μ� cm)−1 |σ s(ext)
yx | (μ� cm)−1 θ tot (%)

γ 17.3–30.0 × 10−2 0.8–48.1 × 10−4 0.01–2.3
hcp 6.2–12.4 × 10−2 1.1–10.6 × 10−4 27.5–30.1
α 8.8–17.7 × 10−2 0.2–17.9 × 10−4 5.6–7.1
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are in the moderately dirty regime where in most cases the
intrinsic mechanism will dominate [43,61,62]. To validate this
point we calculate the absolute values of the total SHA, θ tot =
|(cexpt × σ s(int)

yx + σ s(ext)
yx )/σ ext

xx | in Table IV for all three phases.
Here, we assume, as discussed above, impurity concentrations
such that the resulting theoretical conductivities match the
experimentally found conductivity of 3.5 × 10−2 (μ� cm)−1

[26]. The expression indicates clearly how in the moderately
dirty regime the intrinsic mechanism becomes more and more
dominant as the impurity concentration increases. Neverthe-
less, depending on the size of the individual contributions they
might be comparable.

This is precisely what happens for γ -U, where the ex-
trinsic SHC ranges from 0.8 × 10−4 (μ� cm)−1 to 4.8 ×
10−3 (μ� cm)−1 sometimes significantly larger than the in-
trinsic SHC of |σ s(int)

yx | = 4.02 × 10−4 (μ� cm)−1. Therefore
its total SHA, θ tot = 0.01%–2.25%, is in many situations
dominated by the extrinsic mechanism. In contrast, for the
hcp-U, the extrinsic SHCs are two orders of magnitude
smaller than |σ s(int)

yx | and the total SHA, θ tot = 27.5%–30.1%,
is induced by the intrinsic mechanism creating a giant SHE.

For the α-U, we find |σ s(ext)
yx | to vary in a broad range

over three orders of magnitude from 2.0 × 10−5 (μ� cm)−1

to 1.8 × 10−3 (μ� cm)−1. However, the highest value is still
smaller than the intrinsic SHC and the total θ tot = 5.6%–7.1%
is considerably larger than the extrinsic SHA of around 1%.
Combining all our quantitative results, our prediction is that
in the experimental thin films γ -U is the predominant phase.
On the other hand, a giant SHA can be induced exploiting
hcp-U.

V. SUMMARY

In summary, we have applied a DFT-based first-principles
Green’s function method to analyze the charge-to-spin current
conversion efficiency of various U phases. Predicting the

relevant parameters, intrinsic SHC, extrinsic SHC, longitudi-
nal conductivity, and spin diffusion length, we found dramatic
differences between the distinct crystalline phases despite all
effects being derived from nominally the same large atomic
spin-orbit coupling. With these results we were able to give a
possible explanation for the surprisingly low spin Hall effect
found experimentally. Our calculations suggest the experi-
mental system is based on γ -U rather than the experimentally
expected α-U. Furthermore, we have demonstrated that hcp-U
shows the largest SHA of up to 30% driven by the gigantic
intrinsic contribution.

On the other hand, the results of the extrinsic SHC indicate
that the resonant scattering from d-orbital electrons is pre-
dominant for the 3d transition element impurities. Magnetism,
induced by the impurities, led in all cases to a reduction of the
SHA correlated with the magnitude of the induced magnetic
moment.

In addition, the predicted spin diffusion lengths and lon-
gitudinal conductivities compare quantitatively well to the ex-
perimental assumptions. We estimate the spin diffusion length
to range from 3 nm for γ -U to 6.5 nm for α-U. Combining the
intrinsic as well as the extrinsic results we were able to predict
the dominance of the extrinsic mechanism for the γ phase,
whereas for the α and hcp phase the intrinsic mechanism is
dominant.

Combining all our results we encourage experimentalists to
focus on the growth of hcp-U in thin-film geometry to harness
the high efficiency of the charge-to-spin current conversion of
up to 30% with a spin diffusion length of 5 nm, which is a
typical value for charge-to-spin conversion materials.
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