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Entanglement studies of resonating valence bonds on the frustrated square lattice
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We study a short-range resonating valence bond (RVB) wave function with diagonal links on the square lattice
that permits sign-problem free wave function Monte Carlo studies. Special attention is given to entanglement
properties, in particular, the study of minimum entropy states (MES) according to the method of Zhang et al.
[Phys. Rev. B 85, 235151 (2012)]. We provide evidence that the MES associated with the RVB wave functions
can be lifted from an associated quantum dimer picture of these wave functions, where MES states are certain
linear combinations of eigenstates of a ’t Hooft “magnetic loop”-type operator. From this identification, we
calculate a value consistent with ln(2) for the topological entanglement entropy directly for the RVB states
via wave function Monte Carlo. This corroborates the Z2 nature of the RVB states. We furthermore define
and elaborate on the concept of a “pre-Kasteleyn” orientation that may be useful for the study of lattices with
nonplanar topology in general.
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I. INTRODUCTION

Frustrated quantum antiferromagnets are believed to har-
bor exotic states of matter known as quantum spin liquids.
In their original guise, they were envisioned by Anderson [1]
to retain the full space group symmetry of some underlying
lattice as well as global SU(2) spin-rotational symmetry in
their ground state. This gave rise to a picture where ground
states are thought of in terms of fluctuating valence bond con-
figurations, or resonating valence bonds (RVBs) (see [2] for
a review). While originally it proved challenging to stabilize
this scenario in models of local microscopic interactions, the
assumption alone that this is possible has lead to deep insights
regarding the role of topology in certain situations. Specifi-
cally, in the short-range RVB scenario, where all singlet bonds
are limited in length (and which we will always refer to simply
as “RVB” in the following), a fourfold ground state degener-
acy has been predicted for toroidal topology, in addition to the
presence of fractionalized excitations with nontrivial mutual
statistics [3,4]. These are the hallmarks characterizing what
was coined “topological order” by Wen [5], and necessitate
the presence of “long-range entanglement” (see Refs. [6,7] for
reviews of these concepts in the present context).

To construct exactly solvable models whose ground states
have the same essential topological features as the RVB-
wave functions, Rokhsar and Kivelson introduced so called
quantum dimer models (QDMs) [4]. Their construction prin-
ciple is based on two assumptions that simplify the setting
greatly. (1) The essential physics of quantum antiferromagnets
in the targeted phase is well-captured by states containing
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only near (usually nearest) neighbor bonds (“dimers”). (2)
It is still captured when the inner product of the original
spin-1/2 problem is changed so as to render certain loop
dynamics Hermitian, and at the same time, render differ-
ent dimer configurations orthogonal. Especially the latter
assumption must be regarded as highly nontrivial, as any
two of the original valence-bond configurations will have
nonzero overlap (though they have been shown to be linearly
independent on many lattices [8–10]). Over time, however,
these two assumptions have passed much scrutiny, as we
will review in the following. The main purpose of this paper
is to test thus far uncharted territory of this dimer-RVB
correspondence.

Irrespective of their relations with spin-1/2 RVB states, the
study of ground states of QDMs at exactly solvable points
has brought to light rich and interesting phase diagrams. At
such “Rokhsar-Kivelson” (RK) points, the ground states of
quantum dimer models tend to be equal amplitude superpo-
sitions of all dimer configurations (with possible restrictions
to topological sectors). Counter to intuition, the original con-
struction on the square lattice failed to stabilize a gapped
liquid, but led to a critical point between many symmetry
broken phases [11,12]. Similar findings were made for a QDM
on the honeycomb lattice [13]. Moessner and Sondhi correctly
attributed this failure to produce a gapped topological phase
to the bipartiteness of these lattices, and demonstrated that
such a phase exists in a QDM on the triangular lattice [14].
The dichotomy between the phase diagrams of QDMs on bi-
partite and nonbipartite lattices can be understood in terms of
powerful mappings between QDMs and lattice gauge theories
[15,16] (see also Ref. [17] for a recent review), which are
exact in some cases [18].

A nontrivial question now arises when considering the
RVB-counterparts of RK-type wave functions, that is, equal
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FIG. 1. (a) A dimer covering on the frustrated square lattice. Note that one plaquette is internally dimerized with a pair of crossed valence
bonds. This covering appears in (1) with a negative amplitude. (b) The “pre-Kastelyn” orientation of the lattice discussed in the main text. This
orientation is used to in the Pfaffian reformulation of the wave function (1). Note that this artificially doubles the unit cell, but this is without
physical consequence [see (c)]. (c) The link orientation used to define the sign of valence bonds in Eq. (1). Note that this orientation manifestly
preserves the full translational symmetry of the square lattice, thus ensuring that the wave function (1) has this symmetry.

amplitude superpositions of all nearest neighbor valence bond
coverings in some lattice topology. One may ask what prop-
erties of RVB RK states are faithfully captured by the well-
understood quantum dimer RK states. For the latter, correla-
tion functions are often analytically known in terms of Pfaffi-
ans [19]. On the other hand, for RVB RK states on some bi-
partite lattices, pertinent studies have a long tradition [20–22],
following a loop-gas Monte Carlo method due to Sutherland
[23]. These studies have confirmed the critical behavior of
RVB RK states respecting a bipartite structure [21,22] first
inferred from QDM RK states, albeit with somewhat different
critical exponents. In the nonbipartite case, defining physical
properties of RVB RK states have only been calculated more
recently, owing to a sign-problem of the loop-gas method in
this case. In Ref. [24], we developed a Pfaffian presentation of
some RVB RK states on the triangular and kagome lattice,
which allows sign-problem free Monte Carlo studies. This
method was later used to calculate entanglement properties,
and also constrained the modular S and U matrices [25]. In
all, these studied have strongly corroborated to hypothesis that
these wave functions are in the same Z2 topological phase as
their QDM counterparts [14,18].

Historically, the square lattice has played an important
role in motivating the search for spin liquid physics, ow-
ing to its relative experimental abundance, notably in the
high-Tc parent compounds. Indeed, the frustrated geometries
of nonbipartite lattices, which have produced a number of
exciting experimental candidates for quantum spin liquids
[26–31], are not expected to be necessary to access these
physics, as interactions beyond nearest neighbors can intro-
duce frustration in any geometry. In this context, an interesting
prediction of QDMs is that a topological Z2 liquid phase
can be accessed at the critical RK point of the square lattice
QDM as soon as nonzero amplitudes are introduced [32]
for next-nearest neighbor dimers, residing on the diagonals
of the lattice [Fig. 1(a)]. The primary purpose of this paper
is to consider RVB-wave functions with diagonal bonds on
the square lattice, which admit a Pfaffian presentation and
are thus amenable to Monte Carlo studies of its correla-
tions and entanglement properties. We demonstrate that such

wave functions indeed lie in the expected Z2 topological
phase.

In closing this section, we briefly remark on the status of
parent Hamiltonians for the SU(2)-invariant RVB RK states.
Indeed, these states do not easily lend themselves to the
construction of local parent Hamiltonians, fueling contro-
versy for some time. The earliest successful stabilizations of
Z2 topological phases have indeed done away with SU (2)-
invariance, as evidenced by the nonbipartite QDMs, as well
as the celebrated Kitaev toric code [33], all of which lie
in the phase described by deconfined (weak coupling) Ising
gauge theory in three dimensions [34]. By now, however,
various costruction principles for RVB RK states have been
discussed. In the limit of highly decorated lattices, the con-
struction of RVB-stabilizing Hamiltonians has been argued
to be perturbatively under control [35]. In the following, we
will focus on simple lattices. For the bipartite case, (critical)
RVB RK states have first been stabilized by Fujimoto [36],
with some simplifications (and, in one case, corrections) later
given by Cano and Fendley [37]. The kagome (topological)
RVB RK-state referenced above is stabilized by the parent
Hamiltonian constructed by one of us [9]. Subsequent work
has, moreover, proven the uniqueness of the ground states
of this Hamiltonian, modulo four-fold topological degeneracy
on the torus [38,39]. The approach of Ref. [37] may also be
applied to certain nonbipartite lattices, where, however, for
the ground state uniqueness one relies (thus far) on the ability
of Klein models [40] to gap out (at least on finite lattices)
non-nearest-neighbor valence bond states. This property of
Klein models appears to be well established only for some
bipartite lattices [8], does not hold for the kagome or triangu-
lar lattice, but is at least expected to hold for sufficient lattice
decoration [35].

The remainder of this paper is organized as follows. In
Sec. II, we briefly introduce the RVB wave function that
will be investigated in this paper. In Sec. III, we review the
Pfaffian Monte Carlo method of Refs. [24,25] in some detail,
and set the stage for its application to a situation with a
nonplanar lattice graph. To this end, the notion of a “pre-
Kasteleyn” orientation is introduced, and various statements
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are proven. We then present the results of the application of
these methods to the calculation of correlation functions and
Renyi entropy, confirming the wave function’s low energy
effective theory to be the Z2 topological phase. In Sec. IV, we
define a quantum dimer model related to our RVB wave func-
tion. We summarize and conclude in Sec. V. An Appendix
elaborates on some defining properties of Kasteleyn-like
orientations.

II. THE WAVE FUNCTION FOR THE NONBIPARTITE
SQUARE LATTICE

In this work, we aim to analyze the correlation functions
and the Renyi entanglement entropy of an RVB state de-
fined on a square lattice topology including diagonal links,
as shown in Fig. 1(a). We will refer to this topology as a
nonbipartite and/or frustrated square lattice. The RVB wave
function to be considered is defined via

|RVB〉 =
∑

D

(−1)nc (D)|D〉 . (1)

Here, D goes over all possible “dimerizations” or dimer cover-
ings of the lattice, i.e., pairings of the lattice into neighboring
pairs along the links of the nonbipartite square topology. A
typical dimer covering is shown in Fig. 1(a). Each lattice
site is equipped with a spin-1/2 degree of freedom. For each
dimer covering D, |D〉 denotes a state where each dimer of
the covering D is realized by a singlet between the associated
spins, and a sign convention is used that corresponds to an
orientation of links as shown in Fig. 1(c). We point out that our
lattice topology does not correspond to a planar graph. This
precludes using methods of Kasteleyn [41] in their original
form, which were quite essential in our Pfaffian presentation
of RVB wave functions on the kagome and triangular lattices
[24]. However, we find that a generalization of these methods
is possible if we furnish the definition of the RVB state
with certain additional phases as shown in Eq. (1). Here,
the parameter nc(D) in (1) counts the number of crossings
between two dimers that a particular dimer covering contains.
Thus, the dimer coverings with an even number of crossed
pair of dimers, nc = 0, 2, . . . are equipped with a positive
amplitude, whereas an odd number of crossing, nc = 1, 3, . . .,
in a dimer covering leads to a negative amplitude. We em-
phasize that despite the need to introduce additional phases
owing to the departure from planar graph topology, the rule
that determines these phases is still local, and can, as we will
show, in particular, be obtained from a quantum dimer model
with local interactions. We may therefore regard Eq. (1) as a
natural variation of the RVB RK-state. We will now proceed
to show in detail how the Pfaffian Monte Carlo scheme
of Refs. [24,25] can successfully be applied to this wave
function (1).

III. PFAFFIAN MONTE CARLO AND CORRELATIONS
AND ENTANGLEMENT ENTROPY

In order to make this work self-contained, we will now
briefly review the Pfaffian Monte Carlo technique. The stan-
dard method for calculating expectation values, e.g., for the
product of two local operators O1O2, for bipartite lattices

is due to Sutherland [23]. It is based on the observation
matrix elements of the form 〈RVB|O1O2|RVB〉 will, quite
generally, only depend on the configuration of close-packed
nonintersecting loops associated to the overlap graph between
D and D′ (that is, basically, the union of the sets of all dimers
in D and D′, which can always be regarded as the disjoint
union of close-packed nonintersecting loops). This maps the
correlator

〈RVB|O1O2|RVB〉
〈RVB|RVB〉 =

∑
D,D′ 〈D|O1O2|D′〉∑

D,D′ 〈D|D′〉 (2)

onto a classical loop gas problem, provided that all inner prod-
ucts 〈D|D′〉 are non-negative. In contrast, this is in general not
the case for nonbipartite lattices: typically, no sign convention
for the states |D〉 exists that has this property. (Note that it
is generally sufficient to identify three dimer covering on the
lattice of interest for which the no such convention exists.)
Any attempt to solve the problem by Monte Carlo evaluation
of Eq. (2) will then be plagued by the sign problem.

The only way to circumvent such a sign problem is to aban-
don the description in term of the |D〉 states and instead move
to a different expansion of the RVB-state in terms of states
with non-negative mutual overlaps, while, at the same time,
the coefficients in this expansion can be efficiently calculated.
In particular, moving to any orthogonal basis precludes the
appearance of negative overlaps, and moves all complexity to
the problem of calculating coefficients. This is the route ex-
plored in Refs. [24,25] for kagome and triangular lattice RVB
RK states, and will be established here for the “nonplanar”
square lattice RVB Eq. (1). To this end, we consider the Ising
basis of local Sz eigenstates |I〉 and write |RVB〉 = ∑

I aI |I〉,
the sum running over all Ising configurations. We may then
write

〈RVB|OiO j |RVB〉
〈RVB|RVB〉 =

∑
I

∑
I ′ aI aI ′

〈
I ′∣∣OiO j |I〉∑

I |aI |2

=
∑

I |aI |2
∑

I ′
aI′
aI

〈
I ′∣∣OiO j |I〉∑

I |aI |2 . (3)

This may now be interpreted as the classical expectation value
of a quantity f :

〈 f 〉 =
∑

I

fI e
−EI /

∑
I

e−EI , (4)

where e−EI = |aI |2 and the value fI of the quantity f in the
Ising configuration I is given by fI = ∑

I ′ 〈I ′|OiO j |I〉 aI′
aI

. It
turns out that for most local operators, the sum over I ′ only
contains a few nonzero terms. The problem is thus properly
set up for Monte Carlo evaluation, as long as the coefficients
aI can be calculated. It turns out that for the choice of phases
made in Eq. (1) this is the case.

For reference purposes, it is a good idea to to first consider
the “plain vanilla” RVB state, which, similar to the original
Rokhsar-Kivelson quantum dimer states, has all amplitudes
set equal to one:

|RK〉 =
∑

D

|D〉 =
∑

I

bI |I〉 . (5)
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Note that for any lattice topology without crossings, there
is no difference between Eqs. (5) and (1). For any oriented
lattice graph, the Ising-coefficients bI of |RK〉 can naturally
be written as a “Hafnian”:

bI = Haf[Mi j (I )] ≡ 1

2N/2( N
2 !)

×
∑
λ∈SN

Mλ1λ2 (I )Mλ3λ4 (I ) × · · · × MλN−1λN (I ). (6)

Here, M is a symmetric matrix whose indices run over the
N lattice sites and which depends on the Ising configuration
via Mi j (I ) = �i j (δσi,↑δσ j ,↓ − δσi,↓δσ j ,↑), where the σi describe
the Ising configuration I , �i j encodes the orientation of links
connecting nearest neighbors (NN) in the lattice topology via

�i j =
⎧⎨
⎩

1 i < j
−1 j < i
0 i, j not NN

(7)

and “i < j,” by abuse of notation, refers to a nearest neighbor
pair (i, j) ordered in accordance with the orientation. For
the frustrated square lattice, we will consider the orienta-
tion indicated by the arrows in Fig. 1(c). λ runs over all
permutations of the N sites. The correspondence between
Eqs. (5) and (6) is easy to see once one realizes that any λ

giving a nonzero contribution to Eq. (6) naturally defines a
dimerizarion D, as all (λ2n−1, λ2n) must be nearest neighbor
pairs, and the product of matrix elements in Eq. (6) is then
just the contribution of |D〉 to the Ising configuration I .
The overall combinatorial factor in the equation compensates
for a many-to-one correspondence between permutations and
dimerizations.

Note that the formal definition of the Hafnian is related to
that of the Pfaffian through the absence/presence of the sign
factor (−1)λ, in a manner similar to how the permanent is
related to the determinant. While the determinant or Pfaffian
can be computed efficiently in polynomial time, it is not
known how to do this for the permanent or Hafnian. Equation
(6) therefore does not lend itself to a Monte Carlo scheme as
discussed above. To make progress, let’s for the time being
define an RVB-state of the form

|RVB〉′ =
∑

I

a′
I |I〉 (8)

with

a′
I = Pfaff[Mi j (I )�̃i j] = 1

2N/2( N
2 !)

×
∑
λ∈SN

(−1)λ �̃λ1λ2 × . . . × �̃λN−1λN Mλ1λ2 (I )

× · · · × MλN−1λN (I ) . (9)

Here, �̃i j is an orientation matrix describing yet another
orientation of the lattice (usually different from �i j). Ordi-
narily, one requires �̃i j to be a so-called “Kasteleyn orien-
tation,” which always exists for a planar lattice graph [41].
Presently, however, we will also need to admit somewhat
more general orientations �̃i j , e.g., for the frustrated square
lattice as shown in Fig. 1(b). The state (8) is related to the
|RK〉 state in Eq. (5) via the additional phases q(λ) ≡ q(D) =

(−1)λ �̃λ1λ2 × . . . × �̃λN−1λN , which, as on may easily see,
only depend on the dimerization D associated to λ. To better
understand those phase, one may note that q(D) and q(D′)
are simply related whenever D and D′ are related to each
other by a single “resonance move” along a contractable
closed loop of even length. That is, there exists such a loop,
whose links alternatingly belong to D and D′, respectively,
while all dimers not along the loop are the same for D
and D′. Our definition of a loop also entails that each link
may be traversed only once. On any finite lattice, it makes
sense to define a “topological sector” of dimerizations as an
(equivalence) class of dimerizations related to each other by
sequences of resonance moves along arbitrary contractible
loops. We will then find that all phases q(D) are simply related
for dimerizations belonging to the same topological sector.
The key to these results is the following property, some-
what weaker but more general than that of a true Kasteleyn
orientation:

Definition. We refer to a two-dimensional lattice endowed
with an oriented link topology as “pre-Kasteleyn” if it has
the following property. For any closed, nonintersecting, con-
tractible loop along edges (links), the parity of the number
of clockwise oriented edges is opposite to the parity of the
number of sites enclosed by the loop.

Note that being pre-Kasteleyn is not an intrinsically “graph
theoretical” property, since notions such as the “enclosed
sites” will depend on the particular embedding of the graph
into the plane or the torus. Even for a planar graph, these
notions become meaningful only once a designated “outer
face,’ or boundary, is chosen. (So do the notions of “crossing”
links and “contractible.”) That is why it is preferable in this
context to think of the structure in question as a “lattice with
a topology” rather than an abstract graph, which is in any
case natural in the present physical situation: The term lattice
will always imply that there is meaning to the positions of
the lattice sites and links on some two-dimensional manifold
(plane or torus). In this spirit, we will speak of a “lattice with
a planar topology” if after the embedding of the lattice graph
into the two-dimensional manifold, there are no crossings
between different links. In particular, this does not preclude
toroidal topology.

If, now, the lattice is equipped with a planar topology, the
notion of pre-Kasteleyn defined above becomes equivalent to
Kasteleyn, which we define as usual via

Definition. A lattice with an oriented planar topology is
“Kasteleyn” if the number of clockwise edges around each
face is odd.

We establish the equivalence of these notions for planar
lattice graphs in Appendix. The notion of “pre-Kasteleyn”
as defined above is thus a very natural generalization of
Kasteleyn-oriented lattices in the planar case. For all our
purposes, the essential difference between pre-Kasteleyn and
“true” Kasteleyn lies only in the fact that, on any planar
lattice graph, any loop that can define a legitimate resonance
move for any dimerization of the lattice necessarily encloses
an even number of sites (all the enclosed sites form dimers
with one another). This is not so in the general pre-Kasteleyn
situation.

The key observation for the remainder of this section is that
the frustrated square lattice with the orientation �̃ of Fig. 1(b)
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is pre-Kasteleyn. This, too, is proven in Appendix, where we
also discuss a simple general criterion.

The following discussion will focus on the frustrated
square lattice with the orientation of Fig. 1(b). Results sim-
plify in obvious ways for the usual Kasteleyn-orientated pla-
nar lattice graphs, and are also expected to generalize readily
to other situations with pre-Kasteleyn orientations. Obvious
generalizations include the checkerboard lattice graph ob-
tained by omission of diagonal links on every second plaque-
tte. For the problem at hand, we now intend to show that for
D, D′ in the same topological sector,

q(D)

q(D′)
= (−1)nc (D)−nc (D′ ) . (10)

This is equivalent to saying that Eq. (8) equals Eq. (1) up
to a sign that may depend on the topological sector. We
will not care about relative phases between different topo-
logical sectors, as local operators would be oblivious to such
phases [18].

We demonstrate Eq. (10) via three small lemmas.
Lemma 1. Eq. (10) holds if D and D′ are related by a single

resonance move along a loop that is not self-intersecting.
Proof. For a single loop, we may choose λ and λ′ associated

to D, D′ such that λ′ = μ ◦ λ, where μ is a cyclic permutation
of lattice sites along the loop. Then it is easy to see that
q(D)
q(D′ ) = −(−1)N� , where N� is the number of clockwise

arrows encountered for the �̃ orientation along the loop (or
counterclockwise, note that resonance loops are necessarily
even in length). By the defining property of pre-Kasteleyn
lattice graphs (cf. Appendix), N� = 1 + Nin mod 2, where
Nin is the number of sites enclosed by the loop. Moreover,
Nin = Nx mod 2, where Nx is the number of dimers in both
D and D′ that are crossing the loop. (Any such dimer is not
part of the loop, which is free of self-intersections. Therefore,
since no link of the frustrated square lattice crosses more than
one other link, any such dimer has precisely one of its sites
enclosed by the loop.) Finally, Nx = Nx(D) + Nx(D′), where
Nx(D) and Nx(D′) are the crossed dimers belonging to the
loop associated with D and D′, respectively. Modulo 2, this is
the same as Nx(D) − Nx(D′) = nc(D) − nc(D′). This proves
lemma 1.

Lemma 2. Equation (10) holds if D and D′ are related by
a single “bowtie” resonance move, i.e., the shortest (length 4)
self-intersecting resonance move taking two parallel dimers
into a cross and vice versa (Fig. 2).

Proof. Following the logic of the proof of lemma 1, it
is now to be shown that if we traverse the bowtie in either
direction, we encounter an even number of arrows that are
oriented opposite to the direction of the traversal. One may
easily check directly that the �̃ orientation has this property,
as shown in Fig. 2).

Lemma 3. Any two dimer coverings D and D′ that are each
without crosses can be related by a sequence of resonance
moves along non-self-intersecting loops.

Proof: Note that the loops forming the overlap graph be-
tween D and D′ may still intersect, and each individual loop
may be self-intersecting. However, unlike in the situation of
lemma 2, at each cross exactly one dimer belongs to D while
the other belongs to D′. The situation is illustrated in Fig. 3.

FIG. 2. The possible configurations for bowtie loops on the
frustrated square lattice. Four configurations arise because of the
doubling of the unit cell by the pre-Kasteleyn orientation resulting in
two different plaquettes A and B with respect to the link orientation
shown in a) and b), respectively. One observes that traversal of any
of these loops in any direction always leads to an even number of
arrows parallel or antiparallel to the traversal.

If we follow the branch emerging from the South-West corner
of the crossing, the next corner of the crossing we arrive at
cannot be North-East. For otherwise, the crossing would be
between two separate loops. The figure assumes (without loss
of generality) that starting South-West, we first arrive again at
the South-East corner. Then, a horizontal cut and regluing as
shown in Fig. 3(a) will split the loop into two separate loops,
which are, of course, not corresponding to legitimate reso-
nance moves yet (a corner occurs at the center of a plaquette).
However, the two separate loops in Fig. 3(b) correspond to
two legitimate resonance moves, which, when carried out in
the right order, reproduce the effect of a resonance move along
the original single loop (see caption). The two new loops have
in total one less self-intersection than the original loop. One
may thus proceed inductively.

Together, these three lemmas prove Eq. (10), as one can of
course connect any two dimer patterns D and D′ first to ones
without crosses via bowtie moves, and can then connect the
resulting patterns via non-self-intersecting resonance moves
because of lemma 3. By lemmas 1 and 2, Eq. (10) applies to
each step of this procedure, and so applies to D and D′ as well.

Note that in the standard situation of planar graphs and
Kasteleyn orientations, lemma 1 is all one needs, and more-
over, absent any momomers, Nin is automatically even.

In the following, we will ignore the topological sector
dependent phases mentioned above, and drop the primes
in Eq. (8). We then have the possibility to compute the
coefficients aI in polynomial time, and feed them into a
sign-problem-free Monte Carlo scheme via Eq. (3). That the
frustrated square lattice RVB wave function Eq. (1) indeed
has this property was already pointed out in Ref. [42], where
a correlation length was stated. In the following, we will
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FIG. 3. Illustration of lemma 3. The orientation �̃ entering the
Pfaffian formulation is shown. Only those dimers are shown that be-
long to a certain self-intersecting loop in the overlap of coverings D
(pink) and D′ (blue). These dimers form a self-intersecting loop with
both D and D′ contributing to the cross. (a) A cut with subsequent
regluing is indicated (dashed circle) that splits the single loop into
two closed loops with the crossing eliminated. These two loops do
not yet correspond to legitimate resonance moves, as the diagonal
links of the cross are “broken” apart. (b) A deformation of the two
separate loops defined in (a) that leads to valid resonance moves,
which have the same effect as the single self-intersecting resonance
move defined by the original dimer loop. Loops are indicated by
royal blue and red lines, respectively. Note that these loops share
one link (dashed, west of the cross), which is unoccupied for both D
and D′. When transforming D into D′ (pink into blue), the smaller,
length 4 resonance move must be carried out first (red), followed by
the other move (royal blue).

first present Monte Carlo data on correlation functions for
completeness, and then turn to the study of entanglement
properties of the square-lattice RVB state Eq. (1).

A. Correlations

We begin by investigating the connected dimer-dimer (i.e.,
singlet-singlet) correlation functions, both for the original
RVB wave function (1) as well as for its projections onto in-
dividual topological sectors. Such projections can be achieved
by means of operations that flip the pre-Kasteleyn orientation
�̃ along nontrivial loops, which change the relative signs be-
tween topological sectors. Note that in the preceding section,
we have defined topological sectors through the dynamics
associated with (arbitrarily large) contractible resonance loop
moves. Alternatively, one may define them in terms of two
“winding numbers” [3] that each count the parity of the
number of dimers crossed by one of two fixed noncontractible
loops (which together generate the fundamental group of the
torus). This defines precisely four topological sectors, all of
which are invariant under the resonance-move dynamics of the
first definition. To the extent that these dynamics are ergodic in
each sector, the two definitions are identical. It is not difficult
to argue that this is the case, since the loops for the resonance
moves considered need only be contractible and are otherwise
arbitrary. We will now denote the winding numbers associated
along two noncontractible loop, on along the x direction and
on along the y direction, and going through the crosses of the
frustrated square lattice, by nx and ny, respectively. We denote
their possible values by e (even) and o (odd), and thus have the
notation (nx, ny) = (e, e), (o, e), (e, o), (o, o) for the sectors,
which we will also abbreviate through an index i running

from 1 through 4, writing |�i〉 for the projections of the RVB
state onto the topological sectors. The winding numbers nx,
ny correspond to ’t Hooft magnetic loop operators in Ising
gauge theories, which are readily associated to quantum dimer
models through well-studied mappings [15,16], though the
connection with RVB wave functions is, of course, somewhat
less immediate.

Figure 4 shows that the dimer-dimer correlations are indis-
tinguishable within error bars, both for the equal amplitude su-
perposition over all topological sectors Eq. (1), as well as for
the projections onto any one of the four topological sectors. A
linear fit shows that indeed correlations fall off exponentially,
as expected for a gapped Z2 spin liquid. We also computed the
correlations at a distance x〈
Si · 
Si+x〉 and 〈
Sz

i

Sz

i+x〉. Again, all
correlations decay exponentially, topological sectors remain
indistinguishable. Additionally, we checked that 〈
Si · 
Si+x〉 =
3 × 〈
Sα

i

Sα

i+x〉 with α = x, y, z. This is an obvious consequence
of SU(2) invariance, which, however, is not manifest in the
Pfaffian Ising-basis formulation, and thus serves as a consis-
tency check. To complete the investigation of the behavior
of local operators, we have measured the expectation value
〈
Si · 
Si+1〉 along the horizontal, vertical, and diagonal bonds.
For each type, measured values were indistinguishable within
error bars between different topological sectors for the larges
systems sizes studied (Fig. 5). Indistinguishable topological
sectors are of a piece with the unbroken symmetry of the
Hamiltonian in the ground states, and the topological nature
of the ground state degeneracy.

Figure 5 shows that the original wave function (1) and its
projection onto topological sectors is not rotationally symmet-
ric. This is expected, due to the lack of rotational symmetry
of our phase convention (Fig. 5, caption). One may easily
restore this symmetry by brute force symmetrization, i.e.,
by considering an equal amplitude superposition of Eq. (1)
and its π/2 rotated counterpart. The Pfaffian Monte Carlo
scheme applied to the original wave function straightfor-
wardly generalizes to this symmetrized problem, and we show
local expectation values in Fig. 5(b). We observe the same
exponential decay of correlations, as expected. An advantage
of the symmetrized version of the wave function is that on
a torus of aspect ratio 1, the modular S transformation is
now an exact symmetry. As demonstrated on the kagome
and triangular lattice [25], this may then be utilized to ob-
tain information about the underlying quasiparticle statistics
directly from the MES states, following again the ideas of
Ref. [49]. Unfortunately, for the symmetized wave function
the error bars in the pertinent calculation of entanglement
are currently prohibitive. We observe that recently Ref. [43]
proposed an alternative method to determine quasiparticle
properties from microscopic wave functions. We leave this
interesting problem for future work, and now turn to the
entanglement properties of the unsymmetrized wave function
|RVB〉 as given by Eq. (1).

B. Entanglement

After verifying the exponential decay of the correlations,
we now turn our attention to computing topological prop-
erties. It is now well established that much interesting in-
formation about the universal characteristics of any physical
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FIG. 4. Correlation functions of various local operators. (a) The connected singlet-singlet correlation 〈(
Si · 
Si+1)(
Si+x · 
Si+1+x )〉 − 〈
Si ·

Si+1〉〈
Si+x · 
Si+1+x〉 for a system of size (Lx, Ly ) = (20, 20) within a topological sector |�i〉, i = 1, . . . , 4. We observe that the correlations
are the same within error bars. Thus, as for the local expectation values of Fig. 5, the four topological sectors to these local correlators. The
insets demonstrates exponential decay on a logarithmic scale. (b) The correlation functions 〈
Si · 
Si+x〉 and 〈Sz

i Sz
i+x〉 for each topological sector.

Again, the correlations decay exponentially and they are indistingushible within errors. SU(2) invariance, while not manifest in the Pfaffian
formulation, is restored in the correlators, as we numerically confirm 〈
Si · 
Si+x〉 = 3 × 〈Sα

i Sα
i+x〉 with α = x, y, z.

phase are encoded in entanglement properties. This is true
for topological phases [45,46], holographic quantum matter
[47], and many others. In the case of bipartite entangle-
ment, where the lattice is divided into a region A and its
complement B, one may consider the Renyi entropy of order
n defined as Sn = ln Tr(ρn

A)/(1 − n), where ρA = TrB|�〉〈�|
is the reduced density matrix of region A. Ground states of
gapped local Hamiltonians are known to exhibit an area law

scaling in region size, which in two dimensions can gener-
ically be written as, Sn(ρA) = αnLA − γ + · · · [44]. Here,
the leading term is dependent on the “area” (or boundary)
of region A. The second term, the topological entangle-
ment entropy (TEE) −γ [45,46], is characterized by the
total quantum dimension D, which is defined through the
quantum dimensions of the individual quasiparticles di of

the underlying theory: D =
√∑

i d2
i [45,46,48]. Convention-

FIG. 5. Expectation values for various local singlet operators for different lattice sizes L × L. (a) shows values for each of the projections
of the wave function |RVB〉 (1) onto the four topological sectors. For the smallest, L = 4 lattice (circles), strong discrepancies between sectors
are visible for each of the local bond operators (horizontal, vertical, and the two types of diagonal bonds.) These discrepancies decrease rapidly
with system size (triangles and squares for L = 8 and 12, respectively). Dotted, dashed, and solid lines indicate the averages over the different
sectors for the different respective lattice sizes. Note that the link orientation of Fig. 1(c) does not preserve π/2 degree rotational symmetry.
This is clearly shown by the difference between vertical and horizontal bonds. Remaining mirror symmetries relate the different diagonal
links, however. This, too, is clearly seen at all system sizes. (b) Same as (a) but for the symmetrized wave function |RVB〉 + |RVBπ/2〉, where
|RVBπ/2〉 is obtained from |RVB〉 via a π/2 rotation. This clearly restores the equality of expectation values on all links related by lattice
symmetries.
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FIG. 6. Renyi entropies S2 for cylindrical cuts of the torus and various system sizes, topological sectors, and linear combinations thereof.
(a) S2 as a function of cylindrical length lx for all topological sectors and their equal amplitude superposition. All data agree well for system
size 96, in agreement with the MES Ansatz Eq. (12), though small discrepancies can still be resolved. These are interpreted as finite size
effects. Error bars are necessarily larger for larger system size, as the expectation value of the SWAP operator [50,51] becomes exponentially
small. (b) S2 for the four minimum entropy states (MES) |�i〉 according to the Ansatz Eq. (12). Stronger discrepancies between the different
MES states are noted at smaller system size, but agreement within error bars is again attained for 120 sites. The inset in (a) illustrates the
procedure from which value for the topological entanglement entropy (TEE) γ is extracted via the difference in S2 for MES states and the |ψi〉.
See text for details.

ally ordered phases have D = 1, while topologically ordered
phases have D > 1 with the TEE given by γ = ln(D). The
TEE is a fingerprint of the underlying topological phase,
but it does not in general uniquely identify the topological
phase.

For sufficiently large areas, γ is a universal value inde-
pendent of the shape of the regions involved as long as
the area A is contractible. However, in the case where the
area A has at least one noncontractible boundary the TEE γ

becomes state-dependent, i.e., is sensitive the specific linear
combination of degenerate ground states it is evaluated for.
As shown in Ref. [49], further developing ideas of Ref. [48],
if one expresses any ground state in the basis of the minimum
entropy states (MES states), |�α〉 = ∑

j c j |� j〉, then the sub-
leading constant to the area law from cut of the torus into two
cylinders is

γ ′({p j}) = 2γ + ln

⎛
⎝∑

j

p2
j

d2
j

⎞
⎠ . (11)

for S2, where p j = |c j |2. We further discuss MES states in the
results to follow.

In the following, we investigate entanglement properties of
the frustrated spin- 1

2 RVB wave functions using the variational
Pfaffian MC scheme for lattices of up to 120 sites. As men-
tioned above, the Pfaffian MC scheme allows one to project
onto each topological sector, and every linear combination
thereof. We will again use this feature in the following results.
To obtain the second Renyi entropy S2 for noncontractible
regions, we employ the standard QMC replica trick [50,51].

We have calculated the TEE for cylindrical regions A
that are wrapped around the torus like “ribbons,” and whose
boundaries thus correspond to generators of the fundamental

group of the torus. Within our method, this approach has
proven advantageous compared to schemes extracting the
TEE from contractible regions, such as the Levin-Wen [45]
and the Kitaev-Preskill [46] constructions. In the following,
we only consider regions with noncontractible boundaries.
We examine frustrated RVB states for square lattices of
dimensions 12 × 8 and 12 × 10, respectively, and calculate
the Renyi entropy S2 for cylindrical bipartitions. As the
cylinder length lx increases, S2 quickly saturates [Fig. 6(a)].
This type of behavior is consistent with the system having
a gap.

For the smaller lattice size of 96, Fig. 6(a) shows the
S2-values of different topological sectors to be in near agree-
ment, despite some small discrepancies that are nonetheless
resolved by the very small error bars. We interpret these
discrepancies as finite size effects. While Eq. (11) predicts
discrepancies in TEE for some linear combinations of the
MES states, the expected topological phase in question has
di = 1 for all i. Therefore, for the MES states themselves,
all TEE values are expected to be degenerate. The same will
be true for any other ground state basis with coefficients
in the MES basis whose absolute values differ from one
basis state to another only by permutation. The data for
120 lattice sites do not resolve any discrepancy in S2 for
different topological sectors within the (somewhat larger)
error bars. We will argue any such discrepancies to be due
to finite size effects and error bars, as we will explain in the
following.

Our discussion will be based on an informed guess for
the MES states. As mentioned above, at least for hard-core
dimer versions of our wave functions to be discussed in
the following Section, the topological sectors (nx, ny) can be
identified with ’t Hooft magnetic loop eigenspaces of Ising
gauge theory, or, for that matter, the toric code. For the latter,
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the linear relations between the ground states carrying well-
defined ’t Hooft magnetic loop quantum numbers and the
MES-ground states is exactly known [49]. At least for the
kagome quantum dimer model of Ref. [18], the same cal-
culation goes through [25], yielding the same relations. One
expects these relations to be universal for the Z2 topological
phase. Thus, as long as the ’t Hooft magnetic loop quantum
number carrying ground states can be unambiguously iden-
tified, the MES states are known. For the RVB states, this
is the case, as long as we can lift these quantum numbers
from the hard-core dimer picture associated to these wave
functions.

Based on the above assumptions, one arrives at the follow-
ing Ansatz for MES states associated with cuts along the y
direction:

|�1,2〉 = 1√
2

(|�ee〉 ± |�eo〉),

|�3,4〉 = 1√
2

(|�oe〉 ± |�oo〉) . (12)

Note that phase ambiguities regarding the |�nx,ny〉 are essen-
tially eliminated by time-reversal symmetry, i.e., the require-
ment of working with “real” wave functions. Note also that
the inverse relations

|ψee(eo)〉 = 1√
2

(|�1〉 ± |�2〉),

|ψoe(oo)〉 = 1√
2

(|�3〉 ± |�4〉) . (13)

indeed give the same TEE γ ′
magnetic = γ for di ≡ 1 in Eq. (11).

While the above relations are based on some assumptions, in
particular, that the RVB states do indeed belong to the Z2

topological phase, a strong consistency requirement is given
by the fact that when γ is now calculated based on the above
identifications of MES states, the value ln(2) ≈ 0.69 must be
obtained.

To this end, we compare Monte Carlo results for γ ′ for
both the “magnetic” eigenstates |�nx,ny〉 [Fig. 6(a)] and the
conjectured MES states |�i〉 [Fig. 6(b)]. We first observe a
pronounced reduction in the S2 discrepancies between differ-
ent |�i〉 when comparing data for 96 and 120 lattice sites. This
is again consistent with these discrepancies being due to finite
system size. Indeed, from Eq. (11), we expect γ ′

MES = 2γ for
all MES states. We now proceed by evaluating the difference
in S2 between the |�i〉 and the |�nx,ny〉 for the size 120 lattice,
which consistency requires to be equal to γ ′

MES − γmagnetic =
2γ − γ = γ . In the following, we extract this value by aver-
aging this difference over cylinder lengths x = 5, . . . , 7, and
moreover, we may average over different topological sectors
and MES states, respectively. For example, working with |�1〉
and |�2〉 their linear combinations |�ee〉 and |�eo〉, respec-
tively, one extracts six independent measurements of γ with
average 0.73 and standard deviation 0.06. The measurement
of the logarithm of an exponentially small value is highly
demanding. We can improve the accuracy by replacing S2

values from the |�eo〉 sector with the values for |�oe〉, which
are, at the time of this writing, better converged. The resulting
average over six values and their standard deviation are then
found to be 0.70 ± 0.04. There is thus encouraging agreement

with the expected value of ln(2), indicating the consistency
of our assumptions in identifying the MES states. Another
consistency check lies in the fact that the equal amplitude
superposition over all |�i〉 has essentially the same S2 value as
the individual |�i〉 for the 96 site lattice [Fig. 6(a)], as implied
by Eqs. (13) and (11). Overall, these data well support the
hypothesis that the wave function (1) describes a state in the
Z2 topological phase.

IV. A QUANTUM-DIMER MODEL

A. General Hamiltonian

In Sec. II, we emphasized that the definition of the RVB-
state (1) utilizes only local rules. Though we will not system-
atically elaborate here, it is likely that Eq. (1) can be written
as a tensor-network state, as have other short-range RVB wave
functions [38]. Related to that, Eq. (1) can be given a spin-1/2
parent Hamiltonian comprised of local operators acting on
sufficiently large cells, following the recipe of Ref. [9] or
equivalently [39]. However, in this work, we will not further
elaborate on the spin-parent-Hamiltonian problem. Instead,
a somewhat simpler but highly influential route to motivate
short-range valence-bond type wave functions through local
Hamiltonians has been the construction of quantum dimer
models [4,14,18]. We will present here the construction of a
local quantum dimer Hamiltonian whose exact ground state
wave function is given by the “quantum dimer analog” of
Eq. (1).

To this end, we will now simplify the Hilbert space of
the original spin-1/2 degrees of freedom of (1) according
to the traditional quantum dimer model philosophy [4]. The
quantum dimer model is defined on a Hilbert space with
distinct, orthonormal states corresponding to each allowed
dimer covering of the lattice, in our case, the frustrated square
lattice. While representing singlets in an abstract sense, these
dimers are more properly understood as hard-core bosons
living on the medial lattice. In particular, different hard-core
boson states have different inner products from the valence
bond states associated with the same dimerizations. In the
following, we will reinterpret the kets |D〉 from Eq. (1) as
the hard-core dimer configuration associated with the dimer-
ization D, and not the valence bond configuration associated
to |D〉 in preceding sections. To avoid any confusion we will
rename the spin-1/2 wave function Eq. (1) as follows:

|�dimer〉 =
∑

D

(−1)nc (D)|D〉 . (14)

now that we are focusing on dimer degrees of freedom. Again
D goes over all possible dimer coverings of the lattice, i.e.,
pairings of the lattice into neighboring pairs along the links
of the frustrated square lattice, equipped with an additional
amplitude ±1.

We define a quantum dimer model (QDM) Hamiltonian
via matrix elements between at most locally differing dimer
states. There are two different types of matrix elements: the
“potential” terms, in the following labeled V, V ′, V ′′, and
V ′′′, which are diagonal in the dimer basis and associate an
interaction energy with various local arrangements of dimers,
and “kinetic” terms, in the following referred to as t, t ′, t ′′,
and t ′′′, which involve a local rearrangement of a small number
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of dimers. On the nonbipartite square lattice, we represent
the Hamiltonian that has Eq. (14) as its unique ground state

(modulo topological degeneracy on a surface of genus g � 1)
graphically as

(15)

where black bonds represent dimers. In (15), the first sum
runs over all plaquettes, and the second sum runs over all
pairs of adjacent plaquettes (with both orientations) while the
third sum runs over all “3-by-3” plaquettes. For the “3-by-3”
plaquettes the braces symbolize that we take into account all
four possible orientations that the dimer emanating from the
center site can have while occupying a diagonal link. The
circumstance that, somewhat atypically, kinetic terms appear
with positive sign in some places accounts for the fact that the
ground state Eq. (14) to be stabilized has negative amplitudes
associated with crosses. The model (15) contains kinetic and
potential terms that involve dimers living on diagonal links
and pairs of crossed dimers. It is thus similar to the one
previously investigated by Yao and Kivelson [53], but expands
the latter by including configurations and matrix elements
involving crossed pairs of dimers.

We emphasize that despite similarities in notation and ter-
minology, quantum dimer models differ decisively from spin-
1/2 systems. Whether the exploration of the phase diagram
of QDMs yields actual insights into that of SU(2)-invariant
spin-1/2 systems on the same lattice has been of great interest
since the original QDM of Rokhsar and Kivelson [4]. An
advantage of the quantum dimer models when compared to
their corresponding spin-1/2 RVB models is that the QDMs
are more amenable to analytical and also numerical methods
which makes it easier to investigate the dimer model systems.
In particular, RVB wave functions of the form Eq. (8) have
been studied extensively both for bipartite [21,22] and non-
bipartite lattices [24,25,38,42], and have always been found
to have qualitatively similar features as their QDM counter-
parts. Thus, presenting an exactly solvable quantum dimer
model in (15) with Eq. (14) as its ground state advances
the field of frustatrated magnetic systems. Furthermore, the
present case of interest, Eq. (1), may be viewed as one step
further removed from the original RVB-state when regarded
as a quantum dimer wave function |�dimer〉. Indeed, while
in many lattice geometries with planar graphs, the valence
bond state for this graph are now well-known to be linearly
independent [10], this is not so for nonplanar case discussed
here. In particular, crossed pairs of valence bonds and the
two parallel configurations on the same square are linearly
dependent: . (It is currently an un-
known problem whether the valence bond configurations dis-
cussed here exhibit further linear dependences other than the

aforementioned for large lattices.) Linear independence has
often been employed to strengthen the case of correspondence
between QDMs and frustrated SU (2)-invariant quantum
antiferromagnets, e.g., by means of systematic derivation of
QDMs from antiferromagets via formal expansion in the
“overlap parameter” [52], which characterizes nonorthogo-
nality between different valence bond configurations. Such
expansions are well-defined only when linear independence
is given. In the context of the present study, it is natu-
ral to extend questions of general correspondence between
QDMs and antiferromagnets and/or their prototypical RVB-
type trial states to situations where the linear independence is
absent.

B. The RK point

The parameter space of the model (15) has a “generalized
Rokhsar-Kivelson” line where the exact ground states is know.
In the following, we specialize to this line defined by the
following choce of parameters:

t = V, t ′ = V ′,

t ′′ = V ′′, t ′′′ = V ′′′ . (16)

All coupling constants in (16) are positive. One can show
that at this generalized RK line, (15) can be expressed as a
sum over positive semidefinite operators with ground state(s)
formally analogous to (1), which we repeat here as

|�〉 =
∑

D

(−1)nc |D〉 (quantum dimers), (17)

emphasizing that this is not the same as the RVB wave
function (1), but rather its quantum dimer version. As in
the RVB case, for periodic boundary conditions four topo-
logical sectors may be introduced. As the dynamics of the
model do not mix these sectors, the sum over D may be
restricted to any one sector, giving four ground states on the
torus. It is indeed not difficult to see that each of the four
types of local terms in Eq. (15), proportional to one of the
fours independent couplings at the RK line, individually anni-
hilates Eq. (17). The quantum dimer RK state, and its projec-
tions onto topological sectors, thus simultaneously minimize
each of these local terms.

One expects Eq. (17) to describe a Z2 topological liquid
just as the original RVB state Eq. (1) does, based on the
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results of the preceding section. Consider the dimer-dimer
correlation function 〈�|nin j |�〉/〈�|�〉, where ni is the dimer
occupation operator on a link labeled i. It is easy to see
that this does map onto a classical dimer problem, and so
can be addressed by Monte Carlo evaluation. We will leave
this to future studies. The point we wish to make here,
however, is that this classical problem is oblivious to the
phases in Eq. (17). It is therefore not addressable through
the Pfaffian methods that have been so successful in solving
many classical dimer problems, and their quantum dimer
analogues. Specifically, the Pfaffian formulation based on
the pre-Kasteleyn orientation of the preceding section does
always reproduce the phases of Eq. (17), as we have seen,
and therefore cannot produce the infinite temperature classical
partition function that effectively describes the dimer-dimer
correlator. We leave the evaluation of correlation functions of
the QDM-state (17) as an interesting problem for the future.
We point out that that the pre-Kasteleyn orientation discussed
here has been previously utilized by Yao and Kivelson to gain
analytic insight into correlations of a crossing-free variant of
the QDM on the frustrated square lattice [53]. Again, exact
Pfaffian evaluation is not possible, but an exact reformulation
as an interacting fermionic theory allows controlled mapping
onto an effective massive Thierring model. We do not rule
out that variants of local lattice Hamiltonians exists whose
correlators reduce exactly to Pfaffians of pre-Kasteleyn ma-
trices. We leave this as another interesting problem for the
future.

V. CONCLUSION

In this work, we have formally defined the notion of a
pre-Kasteleyn orientation. A special instance on the frustrated
square lattice, which had already appeared in the study a
“crossing-free” quantum dimer models [53], has been utilized
for a Pfaffian re-formulation of a next-nearest neighbor spin-
1/2 RVB wave function with crossings and a negative sign
rule on the square lattice. This allowed us to evaluate the
S2-Renyi entropy on the torus using Pfaffian Monte Carlo
[24,25], confirming the wave functions “minimum entropy
state” [49] by consistent extraction of topological entangle-
ment entropy of ln(2). This corroborates the fact that this
wave function lies in the Z2 topological phase [42]. In ad-
dition, local expectation values, their dependence on topo-
logical sector, and correlation functions have been evaluated
in some detail. As a byproduct, various useful statements
surrounding pre-Kasteleyn orientations were proven, which
in particular address technicalities from the possibility of
(self-)intersecting loops in the overlap graph between two
different dimerizations. We also discussed a quantum dimer
model related to the RVB wave function. We conjecture that
pre-Kasteleyn orientations may prove to have broader applica-
tions facilitating combined analytic-numerical techniques for
lattice wave functions defined on nonplanar graphs, and are
hopeful that our work will stimulate future investigation.
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FIG. 7. A closed nonintersecting loop on the frustrated square
lattice. The orientation shown is the pre-Kasteleyn orientation of
Fig. 1(b). After removal of certain diagonal links as specified in the
text (light gray), the loop borders a planar Kasteleyn-oriented graph.

discussions with K. Yang and Z. Nussinov. Our Monte
Carlo codes are partially based upon the ALPS libraries
[54,55]. The simulations were run on the SHARCNET
clusters.

APPENDIX: KASTELEYN-LIKE PROPERTIES OF
VARIOUS LATTICE GRAPHS

In this short Appendix, we first show the equivalence of
pre-Kasteleyn and Kasteleyn for lattices with planar topology
stated in Sec. III. Subsequently, we will explain why the non-
planar frustrated square lattice equipped with the orientation
shown in Fig. 1(b) is pre-Kasteleyn.

For planar lattice topology, clearly, pre-Kasteleyn implies
Kasteleyn, simply by applying the defining property of the for-
mer to loops around faces. For the opposite implication, con-
sider any closed loop for a planar lattice topology equipped
with a Kasteleyn orientation �̃. The loop defines an oriented
planar sub-graph G that has the loop as its boundary. (A
boundary edge belongs to one face only, we never include the
“outer face” of a planar graph among its faces.) Being planar,
the Euler index of G is 1, thus

V − E + F = 1, (A1)

where V is the number of vertices, E the number of edges, and
F the number of faces of G. (For the following considerations
about G, although Fig. 7 shows a loop on the frustrated square
lattice, it may also serve to illustrate the present situation, if
light gray links are ignored.) If f denotes a face of G, let
Ec( f ) be the number of clockwise oriented edges of f . In∑

f Ec( f ), each internal edge of G, i.e., each edge that is not
at the boundary, is counted exactly once, since for the two
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faces it borders, it will count as clockwise for precisely once.
Therefore

∑
f

Ec( f ) = Ec,b + Ein , (A2)

where Ec,b is the number of clockwise edges on the boundary
and Ein is the number of internal edges. On the other hand, for
a Kasteleyn orientation, each Ec( f ) has to be odd, thus

∑
f

Ec( f ) = F mod 2 . (A3)

Together, the last three equations give

V + Ec,b + Ein − E = 1 mod 2 . (A4)

Noting that E − Ein = Eb, the number of boundary edge,
which is the length of the boundary loop, and thus also
equal to the number of boundary vertices Vb, Eq. (A4) gives
Vin + Ec,b = 1 mod 2, where Vin = V − Vb is the number of
vertices enclosed by the loop. As the sign of an integer is

irrelevant modulo 2, this can finally be expressed as

Vin = Ec,b + 1 mod 2 , (A5)

which proves the assertion.
Last, consider now a closed loop on the frustrated square

lattice topology equipped with the orientation �̃, as in
Fig. 7. It is easy to see that if we remove all diagonal
edges from the lattice that have at at least one vertex in
the interior of the loop (not including the loop itself!), the
resulting subgraph G consisting of the loop and its interior
is now a planar Kasteleyn graph. Therefore Eq. (A5) again
applies.

More generally, any lattice with an oriented link topol-
ogy is pre-Kasteleyn if we can establish that for any
closed, nonintersecting loop, we can obtain a Kasteleyn
graph (in the ordinary sense) by means of removal of
links that do not belong to the loop. While, based on
the results above, this criterion is quite trivially equiva-
lent to the pre-Kasteleyn property, it is quite useful if not
too many links, or only certain types of links, need to
be removed (at least inside the loop), as in the present
case.
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