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Probing interspatial magnetic flux distributions in ferromagnetic stripe arrays
by specular and off-specular polarized neutron scattering
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Edge roughness in magnetic stripe arrays is an important structural parameter with a sizable impact on
magnetic domains, domain correlation, pinning and propagation of domain walls in micro- and nanostripes
proposed for data storage and logic devices. We have investigated two different stripe arrays fabricated by
lithographic methods from permalloy Fe22Ni78, one with rough edges and another one with smooth edges.
Performing polarized neutron reflectivity and polarized neutron off-specular scattering both patterns yield
specular reflectivity curves with pronounced Kiessig fringes and well resolved Bragg bands in the off-specular
regime due to the lateral periodicity. When applying a saturating magnetic field perpendicular to the stripes,
a significant diffuse scattering can be detected close to the total reflection edge where it is enhanced by the
Yoneda effect. This diffuse magnetic scattering can be attributed to inhomogeneities of the magnetic induction
in the empty space between the stripes. In contrast, the sample with much less edge roughness does not exhibit
off-specular diffuse scattering. Thus polarized neutron scattering from stripe patterns is a suitable tool for
quantitative characterization of inhomogeneous magnetic flux distribution in the interspace between magnetic
stripes invoked by their edge roughness.
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I. INTRODUCTION

Magnetic stripes or wires having a width on the micro-
to nanometer length scale are important objects of research
and development in the field of magnonics, magnetoelectron-
ics, and spintronics. Nanowires with different aspect ratios
confine magnetism to one dimension, providing a laboratory
for investigations of magnetization reversal processes [1–5]
for controlling domain walls and determining domain wall
velocities [6–9], for trapping skyrmions [10–17] and for real-
ization of various domain ground states [18–21]. Furthermore,
nanowires have been considered as building elements for
three-dimensional magnetic storage devices [14,22,23] and
for logic elements [24,25].

As the size of the nanowires decreases, the fabrication of
these wires with smooth edges becomes increasingly chal-
lenging. Edge roughness affects all characteristic magnetic
properties of wires, including hysteresis and domain wall
kinetics because of the trapping potential caused by edge
roughness [26–32]. Moreover, in arrays of nanowires edge
roughness opens up a channel for interaction between the
wires via stray magnetic flux emanating from rough edges.

From a structural point of view, edge roughness can be
characterized by a number of imaging techniques. However,
determining quantitatively the magnetic flux between wires
is more challenging. Hall probes are not sufficiently small
and magnetic tips of magnetic force microscopes may not be
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sensitive enough to low density flux. In this work, we show
that polarized neutron scattering (PNS) techniques, com-
bining specular polarized neutron reflectivity (PNR), Bragg
diffraction as well as diffuse off-specular scattering (OSS),
is a suitable method for characterizing the flux density in
magnetic nanostripe arrays and in the interspace between
the stripes. This sensitivity is due to the fact that polarized
neutrons, in contrast to x rays, probe the magnetic flux den-
sity (magnetic induction) rather than local magnetic moment
distributions. Arrays of magnetic nanowires have been studied
in the past extensively by PNR and OSS [33–41], reviews are
provided in Refs. [42–44]. However, so far the focus has not
been on the interstripe flux density.

This contribution is organized as follows. In Sec. II, we
provide some theoretical background on flux distributions in
magnetic stripe arrays. In Sec. III, we describe the sample
preparation and provide results of structural and magnetic
characterizations of two periodic stripe arrays, investigated in
more detail via neutron scattering. Before presenting the neu-
tron results in Sec. V, we first discuss the scattering geometry
and orientation of the neutron coherence volume with respect
to the stripe array in Sec. IV. The results are discussed and
summarized in Sec. VI. Some of the more detailed theoretical
discussions can be found in Appendices A and B.

II. GENERAL REMARKS ON FLUX LINE DISTRIBUTION
IN MAGNETIC STRIPE ARRAYS

We start with the simplest case of an array of nar-
row soft-magnetic stripes with smooth edges subjected to a

2469-9950/2020/101(22)/224404(16) 224404-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5983-2771
https://orcid.org/0000-0001-5166-7997
https://orcid.org/0000-0001-5543-391X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.224404&domain=pdf&date_stamp=2020-06-02
https://doi.org/10.1103/PhysRevB.101.224404


D. GORKOV, B. P. TOPERVERG, AND H. ZABEL PHYSICAL REVIEW B 101, 224404 (2020)

FIG. 1. Scheme of flux line distortions between two stripes with
notches at their edges. Saturating field applied (a) parallel and
(b) perpendicular to stripes.

homogeneous magnetic field applied parallel to the long
axis of the stripes. Due to shape-induced uniaxial anisotropy
the stripes with ideally smooth and straight edges are ho-
mogeneously magnetized parallel to their long side up
to saturation already in relatively weak external field H .
As a result, the magnetic induction within the stripes
is B = H + 4πMsat ≈ 4πMsat, but in the interstripe space
B = H � 4πMsat. Magnetic moments in neighboring stripes
do not interact with each other, except of those effectively
interacting via dipolar fields at their free tips at the sample
boundary.

This scenario may not hold for real stripes with rough
edges, as schematically illustrated in Fig. 1(a). Here the edge
roughness is modeled by a set of notches with flat edge
surfaces, but tilted with respect to the stripe axes. Then the
magnetic flux may not propagate only within stripes of high
magnetic permeability, but also partially percolate into the
interstripe space (ISS) affecting the magnetization distribution
of neighboring stripes wherever the internal field homogeneity
is sufficiently perturbed by the roughness. As a result, edge
roughness may generate interaction between adjacent struc-
tural elements via stray fields. These fields are rather strong
close to the stripe surface and randomly distributed within the
range scaled to the edge roughness, but rapidly decays with
increasing distance from the stripe edges. If the interstripe

separation is much larger than the edge root-mean-square
(rms) roughness, then the stray field flux lines are closed.
Exiting flux lines from an edge of a stripe preferably return
back to the same stripe. However, as the interstripe distance
decreases, some flux lines will reach a neighboring stripe,
providing a mechanism for interstripe interaction. This may
substantially modify the global magnetic properties of the
whole pattern, such as shape-induced anisotropy, coercive
field, and magnetic hyperdomain formation spanning across
several stripes [38,39,41].

A totally different situation takes place for thin stripe
arrays saturated in the direction perpendicular to the stripes,
as sketched in Fig. 1(b). Let us assume that the stripes are
oriented along the x axis, the saturating field is applied along
the y axis, while the z axis is perpendicular to the surface
of the stripe array. As the component of the magnetic in-
duction vector normal to the boundary between two media
is conserved, the magnetic flux lines of a perpendicularly
magnetized stripe in the array are not terminated at the stripe
edge but penetrate into the ISS, and propagate there until
entering into the neighboring stripe.

In case of ideally smooth stripe edges the flux lines
between long stripes with high aspect ratio run along the y
axis exactly perpendicular to the stripe over about the total
stripe thickness and the magnitude of the interstripe induction
is nearly equal to that within the stripes. Only in the space
close to stripe surfaces, the direction of the flux lines slightly
deviates from the y direction and a gradient of the field along
the z axis appears, which, in turn, is due to the conservation
of the density of the magnetic flux lines and results in a
gradient in the y direction. Hence, in case of ideal edges,
the configuration of the magnetic induction in the ISS has a
flattened barrel like shape and gradients in the x direction are
absent.

However, in presence of lateral edge roughness, this field
configuration may be severely distorted, giving rise to en-
hanced inhomogeneities and appreciable gradients due to the
stray fields in x, y, and z directions close to the stripe edges.
This is schematically illustrated in Fig. 1(b), where edge
roughness is imitated, as above, by a set of notches with
flat edge surfaces which are tilted with respect to the stripe
induction. Then only the normal to notch side component
B⊥ = H⊥ + 4πM⊥ of the induction vector B and the tangen-
tial component H‖ of magnetic field vector H are continues,
determining the angle and the magnitude of induction in the
vicinity of the notch edge surface. Moving away from the
edge, the gradients along the x and y axes decrease and on
distances much larger than the size of the notches the magnetic
flux lines become straighten out.

We will show later that the proper PNR geometry provides
quantitative information on the magnetic induction distribu-
tion over the stripe pattern with and without edge roughness.
In particular, it will be shown that from PNR data one can
deduce the mean value of interstripe induction and mean
squared deviations of its components tangential to the stripes
edges. The results are reported for two orientations of external
fields directed along with and perpendicular to stripes for two
samples: one with pronounced roughness and the other one
with low edge roughness.
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FIG. 2. (a) Scheme of the S1 sample stack with nominal thick-
nesses of layers. (b) SEM images of the S1 stripe array. Dark-grey
color corresponds to the Si substrate. (c) Zoomed SEM image re-
vealing pronounced lateral edge roughness and notches. The inset in
the upper right corner shows an enlargement of the edge roughness.

III. SAMPLE PREPARATION, STRUCTURAL
CHARACTERIZATION, AND MAGNETIC

CHARACTERIZATION

In the following, we discuss sample preparation, structural
and magnetic characterization of two samples with different
stripe patterns and edge roughnesses labeled S1 and S2.

A. Microstripe array S1

The sample S1 with the size of 20 × 20 mm2 consists
of an array of parallel permalloy (Py) Fe22Ni78 microstripes
deposited on a single-crystalline Si(100) substrate with the
period d ≈ 4 μm. Each individual stripe of the S1 sample has
a nominal width of w = 1.1 μm.

The sample was prepared by a bottom-up lithographic
procedure: a cleaned Si substrate was spin-coated with a
positive photoresist (Microposit SP2510). Then the resist
was baked for 20 min at 100 ◦C and sequentially exposed
to 405-nm laser light using a laser pattern generator. After
developing, the remaining pattern was coated with a triple
stack of metal films in a sputtering machine at a base pressure
of 0.85 × 10−5 mbar and with a sputtering rate of 0.5 Å/s for
all layers. First a 10-Å-thick titanium seed layer was sputtered
on the silicon wafer, followed by a 360-Å-thick permalloy
film, capped by a 25-Å-thick chromium layer for oxidation
protection. A final lift-off and cleaning step completed the
sample preparation. The layer sequence of the sample stack
S1 is sketched in Fig. 2(a). The quality of the final pattern was
inspected by scanning electron microscopy imaging (SEM) as
presented in Figs. 2(b) and 2(c), confirming the periodicity of
the microstripe pattern with pronounced edge roughness.

B. Microstripe array S2

The sample S2 with the size of 8 × 12 mm2 consists of
an array of parallel permalloy microstripes with a nominal

FIG. 3. (a) Scheme of the permalloy stripe array S2 with nominal
thicknesses of layers. (b) Overview SEM image of the S2 sam-
ple. Dark-gray color corresponds to the Si substrate. (c) Zoomed
SEM images showing waviness of the stripe edges with absence
of notches. The inset in the upper right corner shows a further en-
largement of the wavy edge. (d) Photographic image of the complete
sample. Red line shows the boundary of the pattern.

width of w = 7.8 μm and lateral period of d = 13.5 μm.
The stripes were fabricated on a single-crystalline Si(100)
substrate and oriented parallel to the longer edge of the
sample. In contrast to the sample S1, the sample S2 was
prepared by a top-down lithography procedure using a Cr
photomask containing the pattern design. The photomask was
fixed in a mask aligner and brought in contact with the sub-
strate covered by baked photoresist. Then the photoresist was
exposed to 365-nm UV radiation for 40 s through the mask.
After exposure and development of the photoresist, the sample
stack was sputtered using an Ar ion-beam sputtering machine
at a base pressure of better than 5 × 10−9 mbar. For ensuring
a homogeneous thickness of the sample, the substrate was
rotated during the sputtering process. The deposition rates of
the materials were fixed at 0.54 Å/s and 0.63 Å/s for Py and
Cr capping layer, respectively. The final sample stack consists
of a nominally 370-Å-thick ferromagnetic Py layer directly on
the Si substrate without seeding layer, capped by a 85-Å-thick
protecting Pt film. The sample design is sketched in Fig. 3(a).
SEM images of sample S2 are presented in Figs. 3(b) and
3(c), revealing some smooth waviness of the stripe edges but
absence of pronounced sharp notches on the submicrometer
scale.

It should be noted that due to the UV lithography procedure
using a photomask only the center part of the sample S2 is
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FIG. 4. Magnetic characterization of the sample S1 by L-
MOKE-measurements. Zero angle corresponds to stripes oriented
parallel to the scattering plane. (a) Hysteresis loops measured with
field oriented along and perpendicular to the stripes. (b) Polar plot of
coercivity Hc. (c) Polar plot of normalized remanent magnetization
Mrem/Msat .

patterned. The patterned area covers about 85% of the total
substrate area, which is confined within the red frame in
Fig. 3(d). The remaining 15% at the rim consists of the bare
uncovered Si substrate. Consequences of this design for PNR
measurements in grazing incident geometry are discussed
further below.

C. Magnetic characterization of samples

Preliminary magnetic characterization of both samples was
performed by means of longitudinal magneto-optic Kerr effect
(L-MOKE) hysteresis loop measurements. The sensitivity of
the MOKE-installation was adjusted to the magnetization
component parallel to the magnetic field applied within the
sample plane at different angles to the stripes. Results of
L-MOKE measurements for the S1 and S2 samples are shown
in Figs. 4 and 5, respectively. Hysteresis loops recorded
by applying magnetic fields along and perpendicular to the
stripes are combined in Figs. 4(a) and 5(a), while panels (b)
and (c) represent azimuthal dependencies of the coercivity
Hc and normalized remanent magnetization Mrem/Msat values
extracted from the hysteresis loops.

Both samples show a well pronounced shape-induced uni-
axial in-plane anisotropy with easy magnetization axis (EA)

FIG. 5. Same as Fig. 4, but for the sample S2.

oriented parallel to the stripes. Square-like open hysteresis
loops measured in the EA direction show coercivity values
HEA

c equal to 57 and 9 Oe for the S1 and S2 samples, respec-
tively. Corresponding saturation fields for the two patterns
are HEA

sat,S1 = 120 Oe and HEA
sat,S2 = 12 Oe, respectively. In

contrast, hysteresis loops recorded for magnetic fields applied
in the direction perpendicular to the stripes are S-shaped and
show negligible coerciveness of a few Oersted only for both
samples. In-plane magnetic field values required for turning
the magnetization vector orthogonal to the stripe array are
HHA

sat,S1 = 1000 Oe and HHA
sat,S2 = 60 Oe for the samples S1 and

S2, respectively.
It is well established [3,4,21] that the coercive field HEA

c
for a single isolated stripe scales with the aspect ratio t/w be-
tween stripe thickness t and widths w. Since in our case both
stripe patterns have approximately the same thickness t1 ≈ t2,
the coercive fields should scale according to their width. The
coercive field ratio HEA

c,S1/HEA
c,S2 ≈ 6.3 agrees reasonably well

with the expected ratio w2/w1 ≈ 7.1, considering that edge
roughness and interstripe interaction is not taken into account.

The structural and magnetic parameters of both stripe
arrays are listed in Table I for later reference.

IV. EXPERIMENTAL CONDITIONS FOR POLARIZED
NEUTRON SCATTERING FROM MAGNETIC STRIPE

ARRAYS

A. Instrumental details

For exploring edge roughness effects by off-specular scat-
tering a set of PNR and OSS experiments were performed
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TABLE I. Structural and magnetic parameters of samples S1 and
S2, t is the layer thickness, w is the stripe width, d is the period
of the stripe arrays, Hc is the coercive field along the stripes, HEA

sat

is the saturation field parallel to the stripe direction, and HHA
sat is the

saturation field perpendicular to the stripe direction.

t (Å) w (μm) d (μm) Hc (Oe) HEA
sat (Oe) HHA

sat (Oe)

S1 360 1.1 4 57 120 1000
S2 370 7.8 13.5 9 12 60

with the microstripe arrays S1 and S2 using the Super-
ADAM polarized neutron reflectometer [45] situated at the
Institut Laue-Langevin in Grenoble, France. The instrument
operates at a constant wavelength λ = 4.41 Å with a wave-
length spread �λ/λ = 0.7% and an angular divergence of
the incident beam �αi ≈ 0.2 mrad. At each glancing angle
of incidence 0 < αi < 50 mrad the scattered intensity was
recorded via a 2D position sensitive detector (PSD) covering
about the same range of glancing scattered angles α f with an
uncertainty �α f ≈ 0.3 mrad in the horizontal (x, z) scattering
plane. In the vertical plane perpendicular to the scattering
plane, the incident beam was focused at the sample position
providing a divergence �θy ∼ 50 mrad in angles θy. In ad-
dition, the measurements were performed by alternating the
sign of the incident polarization with a efficiency of about
98%. Measurements of the sample S1 were performed without
polarization analysis. For the sample S2, polarization analysis
of scattered neutrons was accomplished with a wide-angle
supermirror analyzer [46] covering all angles of acceptance
by the PSD with an efficiency of about 99%. As already men-
tioned, the scattering plane is horizontal and polarization axis
is parallel to the y direction, perpendicular to the scattering
vector Q in the (x, z) plane. All measurements were performed
at room temperature.

B. Remarks on the scattering conditions

The data were collected in two complementary geometries
with stripes oriented perpendicular and parallel to the scat-
tering plane as sketched in Figs. 6(a) and 6(b), respectively.
The main reason for using these two geometries is the fact
that at shallow angles the coherence ellipsoid mostly defined

FIG. 6. Mutual orientations of the coherent ellipsoid and the
array of microstripes. (a) The coherence area spans several stripes
and off-specular Bragg diffraction can be observed. (b) The coher-
ence area is collinear with the stripes, resulting in solely specular
reflection for the case of homogeneous induction between the stripes
with ideally flat edges.

by uncertainties �αi, �α f , �θy, and by the wavelength λ

is strongly anisotropic. The coherence ellipsoid defines the
volume in real space, for which constructive interference
is possible. Therefore the observed scattering cross section
results from different procedures of averaging over the sample
surface, providing different and mutual complementary types
of information on the system.

The long axis of the coherence ellipsoid lcoh
x ∼ 2π/�qx is

determined by the uncertainty �qx in the lateral projection qx

of the wave vector transfer q and can be estimated as

lcoh
x ∼ λ√

(αi�αi )2 + (α f �α f )2
. (1)

Under experimental conditions described above, the length
lcoh
x ranges from a fraction of a millimeter down to a few

micrometers.
The short axis of the coherence ellipsoid is determined by

the uncertainty �qy in the wave vector transfer component
qy and this is much higher than �qx. Thus the short axis is
estimated as lcoh

y ∼ λ/�θy � lcoh
x and does not exceed 10 nm.

The length lcoh
z ∼ λ/

√
(�αi)2 + (�α f )2 of the third axis is

determined by the uncertainty �qz in the wave vector transfer
qz normal to the surface. It is estimated to be in the order of a
fraction of micrometer, and hence lcoh

y � lcoh
z � lcoh

x .

1. Perpendicular orientation

For orientation of the stipes perpendicular to the scattering
plane, as depicted in Fig. 6(a), the large extension of the
coherence volume lcoh

x covers a number of patterned elements.
This is a prerequisite for coherent enhancement of scatter-
ing amplitudes whenever the Bragg equation qx = 2πn/d is
satisfied, where the integer n enumerates the order of Bragg
diffraction.

At a given shallow incident angle αi > 0 Bragg scattering
is excited when the shallow scattering angle α f = αB

− > 0,
where

αB
− ≈

√
α2

i − 2nλ/d > αi, (2)

with integer n < 0. Alternatively, Bragg conditions are satis-
fied when αi = αB

+, where

αB
+ ≈

√
α2

f + 2nλ/d > α f , (3)

with n > 0.
Note that at n = 0 these equations merge with the Snell’s

law α f = αi for specular reflection. Its amplitude is deter-
mined by the mean scattering length density (SLD) aver-
aged over the coherence ellipsoid. Such averaging is quite
straightforward if a saturating magnetic field is applied along
the stripes. Then, due to the Zeeman splitting of the neutron
spin state by the magnetic induction in the stripes, the SLD
Nb± = Nbn ± Nbm is split in accordance with the positive or
negative spin projection onto the field direction. Here, N is the
nuclear number density, bn is the coherent nuclear scattering
length, and bm is an effective magnetic scattering length.

As the external field within the stripes and in the ISS does
not cause scattering contrast, we conclude that in the case
of perpendicular orientation of stripes with ideal edges the
mean SLD value is given by Nb

± = ηNb±, where η = w/d

224404-5



D. GORKOV, B. P. TOPERVERG, AND H. ZABEL PHYSICAL REVIEW B 101, 224404 (2020)

is the surface fraction covered by the stripes. These reduced
mean SLDs are used to calculate the reflection amplitudes
r = r± for each of the spin states. Then non-spin-flip (NSF)
and spin-flip (SF) scattering cross sections and corresponding
reflection coefficients, R±± and R±∓, expressed [42–44] via
bi-linear combinations of reflection amplitude r± and its
complex conjugated value r±∗ are averaged over incident and
outgoing spin states filtered by the polarizer and analyzer. The
result is finally convoluted with the 3D resolution function and
incoherently averaged over all coherence ellipsoids covering
the whole sample surface. As soon as each of the coherence
ellipsoids crosses many stripes, then the mean values of SLDs
in saturation are almost independent of the lateral coordinate
and incoherent averaging of reflectivities over different ellip-
soids is trivial.

In short, in perpendicular orientation OSS at shallow an-
gles provides information on width and periodicity of stripe
arrays and on magnetic induction within the stripes. In this
orientation OSS is, however, less sensitive to edge roughness
and the resulting magnetic flux in the interspace between
the stripes. Therefore a complimentary orientation has to be
chosen to supplement with the remaining information. This is
done by the parallel orientation, discussed next.

2. Parallel orientation

In order to match the edge roughness correlation length
with the long axis of the coherence ellipsoid, the samples have
to be rotated by 90◦ about the surface normal. In this parallel
orientation sketched in Fig. 6(b), no Bragg diffraction can
be seen as neither of coherence ellipsoids crosses more than
a single stripe. Then neutron waves scattered from different
stripes do not interfere. Also there is almost no interference
between waves reflected from the stripes and ISS’s filled with
magnetic field: only very few coherence ellipsoids cover the
stripe edge area and hence the fraction of neutron beam hitting
stripe edges is negligible. Even in the case of rough edges it
remains small if σe � d , where σe is the rms edge roughness.
Therefore, the specular reflection coefficients R± can be rep-
resented as an incoherent sum of reflectivities from individual
stripes R±

s and reflectivities R±
i from the ISS weighted with

the corresponding surface factors η and (1 − η), respectively,

R± = ηR±
s + (1 − η)R±

i . (4)

As already mentioned, the small volume occupied by edge
roughness does not allow to directly detect off-specular scat-
tering from fluctuations of the nuclear scattering potential
associated with this roughness. However, due to the continuity
of magnetic flux lines in the ISS even relatively small edge
roughness may substantially perturb the magnetic field homo-
geneity over a large distance between neighboring stripes, as
sketched in Fig. 1(b). This is particularly true if a saturating
external field is applied perpendicular to stripe edges. In the
following, we assume that the magnetization within stripes
is homogeneous up to their boundaries with vacuum. In
case of statistical edge roughness these boundaries may be
approximated by a sequence of small flat segments randomly
tilted with respect to the mean edge surface averaged over
roughness. Consequently, each of those segments may be
characterized by the unit vector ni normal to its surface

and making a certain angle βi with the mean field direction
averaged over all angles β. Magnetic induction Bi induced
in the interstripe space by magnetization M and crossing the
segment surface is directed along the vector ni. In particular,
for the case presented in Fig. 1(b) the unit vector ni is
collinear with the corresponding vector component B⊥,i of the
magnetic induction in the interstripe space, while the direc-
tion of the mean induction coincides with the external field
direction Hext.

Summing up, both orientations are needed for a complete
analysis of the stripe patterns. The perpendicular orientation
holds for an overall assessment of the geometry of the stripe
array, including stripe width and periodicity, whereas the
parallel orientation adds information on the magnetic flux dis-
tribution in the interspace region affected by edge roughness.

V. EXPERIMENTAL PNR AND OSS RESULTS

A. Sample S1

1. Perpendicular orientation of sample S1

The PNR results on the sample S1 with stripes oriented
perpendicular to the scattering plane and collinear with the
incident polarization are combined in Fig. 7. An external field
of 5.2 kOe was applied along the y axis, collinear to the stripes
and to the neutron polarization vector, and then reduced to
the field of Hext = 100 Oe. In this orientation, the coherence
ellipsoid with the long axis lcoh

x intersects many stripes as
indicated in Fig. 6(a) providing conditions for observing
Bragg diffraction.

In Fig. 7(a), the specular reflectivities R+ and R− with
polarization directed along with, or opposite to the applied
field are plotted together with the least-square fit of the data
to the model. Input model parameters are chosen in accor-
dance with the sample preparation procedure and structure
characterization described in the previous section. Refined
values are determined by applying least square routine to fit
simultaneously both reflectivity curves R+ and R− in one go.
Among the salient features of these reflectivities one may note
an appreciable splitting of the curves for different spin states
and for angles above the critical angle αSi

c ≈ 3.5 mrad of total
reflection from the silicon substrate. This feature confirms that
the sample contains a magnetic layer magnetized in the field
of 100 Oe. However, the magnetization is not strong enough
to be expressed in a splitting of the critical edges due to the Py
stripe array. This may also be due to the fact that the layer is
not sufficiently thick so that neutron waves tunnel through the
layer and then totally reflect from the substrate. We come back
to this point in the next subsection, where we compare the crit-
ical edges for parallel and perpendicular alignment. The mag-
netic layer thickness can be roughly estimated from the period
of interference fringes observed in both curves R+ and R−.

Taking into account the nominal sample structure and the
arguments mentioned above, the final refinement is accom-
plished for the model consisting of three effective layers on
the substrate, as illustrated with the SLD depth profile in
Fig. 7(b). Each layer is characterized by four parameters:
layer thickness t , interface rms roughness σ , the mean value
of nuclear SLD Nbn and mean induction B. The resulting fit
parameters are listed in the first three and in the fifth column
of the Table II.
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TABLE II. Fit parameters extracted from the fit of specular reflectivity curves shown in Fig. 7 for the sample S1 with stripes oriented
perpendicular to the scattering plane and field of Hext = 100 Oe applied parallel to the stripes. t is the layer thickness and σ is interface rms
roughness. The other parameters are explained in the text.

t (Å) σ (Å) Nbn 10−6 (Å−2) Nbn 10−6 (Å−2) B (kG)

Cr cap layer 24.5 6.1 0.82 2.98 0
Py layer 359.8(5) 10.4(7) 2.50(1) 9.09 2.98(1)
Ti seed layer 9.5(2) 4(2) −0.53 −1.93 0
Si substrate – 2.2 2.14(1) – 0

FIG. 7. (a) Specular reflectivities R+ and R− (open circles) to-
gether with best fit of the experimental data (solid lines) for stripes
S1 oriented perpendicular to the scattering plane in the field of
Hext = 100 Oe applied parallel the stripes. (b) Nuclear and magnetic
SLD profiles extracted from the fit. (c) Experimentally recorded
off-specular scattering maps for up and down polarized neutrons
(top) and corresponding model calculation (bottom).

From Table II follows that the permalloy layer thickness
is close to the nominal value in Table I, while rms interface
roughness is small. One can also compare the nuclear SLD
fit parameters with the expected values. This can be done by
taking into account the filling factor determined from SEM
images (shown in Fig. 2) as η = 0.275. Then, using the exper-
imentally determined mean value of nuclear SLD Nbn from
the fit, the nuclear SLD of the stripe material can be evaluated
according to Nbn = Nbn/η. Both values, Nbn and Nbn, are
listed in Table II in the third and forth column, respectively.
For example, the recalculated SLD of permalloy is found to
be equal to Nbn = 9.09 × 10−6 Å−2, which is very close to
its nominal value 9.12 × 10−6 Å−2 for permalloy Fe22Ni78.
The SLD of chromium determined from the fit is slightly
lower than the nominal value 2.99 × 10−6 Å−2. Similarly, the
negative SLD value of titanium is close to its nominal value
−1.95 × 10−6 Å−2.

The mean magnetic induction in the fifth column is recal-
culated from the experimentally determined magnetic SLD
Nbm of the effective permalloy layer according to the equation

B [G] = 2π h̄2

m∗
nμn

Nbm = Nbm[10−6 Å−2]

2.312
×104, (5)

where m∗
n is the neutron mass and μn is its magnetic moment.

From the fit it follows that in an external field of 100 Oe
the mean magnetic induction of the permalloy effective layer
is close to 3 kGauss. This value represents the mean induction
averaged over the coherence ellipsoid crossing a number of
stripes with its long axis. Correspondingly, the mean induction
is reduced from that of a Py continuous layer due to the same
filling factor η = 0.275 as applied for the nuclear SLD of all
layers. Then the magnetic induction of the continuous film at
this field is expected to be 10.85 kG. This is also very close to
what is expected for bulk Fe22Ni78 permalloy (9.95 kG) with
a slight excess of Fe.

It should be noted that pronounced Kiessig fringes can
be observed in the specular reflectivity scans although
the stripe array constitutes an effective roughness equiva-
lent to the thickness of the stripes. This becomes possible due
to the grazing incidence geometry of the experiment, when-
ever the coherence ellipsoid in the z direction is larger than
the thickness of the film. Then neutron waves, scattered from
stripes and from free space between the stripes, are added
coherently, resulting in a decrease of the mean scattering
potential, while maintaining the potential steps at the surface
and at the interface responsible for the interference effects.
At the same time, the true interface roughness of individual
stripes remains constant and small, on the order of several
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angstroms, and thus interference from well defined sharp
interfaces results in deep and distinct Kiessig oscillations.

One may notice that the quantitative analysis of specular
PNR already delivers almost the whole set of parameters
characterizing the structural and magnetic properties of the
stripe pattern. However, the analysis so far does not prove the
general concept of the surface averaging procedure applied
to treat PNR data and does not determine the lateral period
and the surface factor of stripes. This can be achieved via the
analysis of the OSS, including off-specular Bragg diffraction
measured simultaneously with specular PNR.

The upper row of the Fig. 7(c) shows two experimental
OSS maps for the polarization parallel and antiparallel to
the external field guiding neutron polarization to the sample.
The bottom row shows corresponding maps simulated in the
distorted wave born approximation (DWBA) [42–44], where
neutron wave functions are calculated for mean layer SLDs
averaged over coherence ellipsoids, while the periodic struc-
ture is considered as a perturbation. Hence the simulations
are based on parameters deduced from fits of correspond-
ing specular reflectivity curves shown in the Fig. 7(a) and
were performed adjusting only two additional parameters:
the stripe width w and the period d of the stripe array.
Diagonal ridges seen in the intensity maps for angles αi = α f

represent the specular reflectivity from the mean scattering
length density Nb averaged over the lateral structure. Curved
bands displayed on both sides of the specular reflection ridge
correspond to off-specular Bragg diffraction from the stripe
pattern with a lateral period of d = 4 μm. These bands are
well visible up to the second order. Thus the assumption of
stripes with rectangular shape and width w = 1.1 μm together
with the set of parameters listed in Table II reproduces very
well the intensity distribution over different orders of lateral
Bragg reflections without any additional scaling to specular
ridges. This provides strong evidence in favor of the general
approach to data treatment and confidence to its results.

2. Parallel orientation of sample S1

Now we consider PNR results from the sample S1 with
stripes oriented parallel to the scattering plane as sketched in
Fig. 6(b). An external saturating field of 1 kOe was applied
parallel to the y axis and perpendicular to stripe array. Ac-
cording to the hysteresis loop plotted in Fig. 4(a) the field of
1 kOe is sufficient to almost fully saturate the magnetization
of the sample. Specular reflectivity scans and intensity maps
are combined in Fig. 8 together with fits, corresponding SLD
profiles and simulations.

The specular reflectivity curves presented in the Fig. 8(a)
show thickness oscillations with about the same period as in
Fig. 7(a), but in contrast to the latter, the oscillations in R+
are now appreciably phase shifted with respect to those in R−.
Moreover, at low angles PNR curves in Figs. 7(a) and 8(a)
exhibit different behavior although reflectivities R+ and R− in
both figures reveal sharp peaks at the positions close to the
critical angle of the silicon substrate αSi

c ≈ 3.5 mrad. Curves
R+ and R− shown in Fig. 7(a) steeply decay with different
rates at αi � αSi

c . This difference in slope is due to the fact
that, in accordance with the SLD profile in the Fig. 7(b), the
SLD for negative spin component is smaller than that of Si,

FIG. 8. (a) Specular reflectivities R+ and R− (open circles) to-
gether with best fit of the experimental data (solid lines) for stripes
S1 oriented parallel to the scattering plane in the field of Hext = 1
kOe applied perpendicular to the stripes. (b) SLD profile describing
the reflectivity from the stripe stack weighted in the fit with the
surface factor η = 0.39. (c) SLD profile describing the reflectivity
from the interstripe space, weighted in the fit with the surface factor
1 − η = 0.61. (d) Corresponding off-specular scattering maps with
simulations.

and hence the critical angle α−
c for spin-down neutrons is

slightly lower than the angle αSi
c . As a result, the correspond-

ing critical edge for this spin component is hidden. For the
positive spin component the SLD is higher than the SLD of the
substrate and the angle α+

c is a bit higher than αSi
c . However,

the extinction length is larger than the layer thickness and
reflection within the range αSi

c < αi < α+
c is not total.
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TABLE III. Parameters extracted from the fit of specular reflec-
tivity curves plotted in Fig. 8(a) for stripes parallel to the scattering
plane in a field of Hext = 1 kOe applied perpendicular to the stripes.
Some cells show two values. The upper values correspond to the
stripe materials, while the bottom ones refer to the interstripe space.
t and σ are film thickness and interface roughness, respectively. The
remaining parameters are explained in the text.

t (Å) σ (Å) Nbn 10−6 (Å−2 ) B (kG)

Cr cap layer 24.5(7) 6.1 2.7 0
0 0

Py layer 356.2(3) 9.1(5) 8.13(1) 11.25(3)
0 0 8.44(3)

Ti seed layer 9.7 6.1(3) −1.74 0
0 0

Si substrate – 2.2 2.14(1) 0

〈cos �γ 〉coh 1
0.75

〈cos γ 〉inc 0.98(1)
0.3

stripe surface factor η 0.39(1)

In contrast to Fig. 7(a), the reflectivity R+ in Fig. 8(a)
reveals an additional maximum αi ≈ α+

c corresponding to the
critical angle α+

c ≈ 7.8 mrad for the positive spin component
from the permalloy film. The angle of total reflection α−

c ≈ 6
mrad for the negative spin component is manifested by a step,
or “shoulder,” on the reflection curve R− and a subsequent
steep descend. In both cases, the critical edges are smeared
out due to the finite thickness of the permalloy layer.

The visibility of two critical angles α±
c of permalloy simul-

taneously with the critical angle of silicon αSi
c suggests that

the reflectivity curves displayed in Fig. 8(a) are described by
Eq. 4 in which one pair of reflectivities, R±

s , is due to reflection
from the trilayer consisting of the cap layer, permalloy stripes
and seed layers on the substrate, while the other, R±

i , origi-
nates from the bare substrate in between of the stripes. Such
model, however, does not describe correctly the amplitudes
of the R+ and R− reflectivity oscillations and the phase shift
between these oscillations as seen in Fig. 8. This discrepancy
is immediately removed by calculating reflectivities R±

i for the
same model as used for R±

s in which the Ti/Py/Cr trilayer is
substituted by an “effective layer” of magnetic induction on
top of the substrate with no material (Nbn = 0).

Results of the fit are shown by the solid lines in the
Fig. 8(a), while the SLD profiles for stripes, Nb = Nbs, and
for ISS, Nbi, are illustrated in the Figs. 8(b) and 8(c). Note
that the SLD of the stripe stack in Fig. 8(b) is positive
everywhere except of a narrow range of titanium layer next
to the substrate.

In contrast, the SLD value of the ISS is negative for
negative spin projection onto the interstripe field direction
providing a phase shift between oscillations in R−

i and R+
i . For

comparison, the calculated partial reflectivities R±
s,i are shown

in Ref. [47].
The extracted fit parameters are listed in the Table III.

Layer thicknesses and interface roughnesses collected in the
first and second columns of this table agree well with the
values determined above for the perpendicular stripe orien-

tation. Upper and lower lines in the table cells refer to the
stripe material and the empty interstripe space, respectively.
The nuclear SLDs of the stripes Nbn = Nbs

n are quoted in
the third column, upper lines of cells, while the interstripe
SLDs Nbn = Nbi

n are fixed to zero, as no material is expected
between stripes. The magnetic induction in the stripes and
in the interstripe space is listed in the 4-th column. Further
parameters discussed below are listed in an additional panel
at the bottom.

Inspecting the set of parameters in Table III, one may
notice that the absolute values of nuclear SLDs are sys-
tematically lower than their nominal values by about 10%.
At the same time, the surface fraction η = 0.39 determined
from the fit is appreciably higher than the value η = 0.275
extracted from SEM images and confirmed by PNR results in
the previous subsection. Both effects can be explained by the
edge roughness. In case of no roughness, the major part of the
coherence ellipsoids with their longest axis parallel to stripes
lie either completely within the stripes or fall into the ISS,
as depicted in Fig. 6(b). At the same time, only a small per-
centage of ellipsoids determined by the ratio lcoh

y /d ∼ 0.25%
covers the stripe boundaries. The mean value of nuclear SLD
averaged over such ellipsoids is reduced and the stripe width is
effectively increased. However, the overall effect is too small
to be detected in the present experiment.

The effect of the edge smearing substantially increases if
stripe edge roughness is as high as 0.1 μm, as estimated from
SEM images in Fig. 2. Then the effective stripe width in-
creases by about 10%–20% along with simultaneous decrease
of the mean SLD. Unfortunately, it is not possible to estimate
these effects more accurately within the simple model used in
the PNR fit, because introducing extra parameters characteriz-
ing edge roughness does not improve the fit quality. Moreover,
such parameters are highly sensitive to misalignments such as
an in-plane tilt angle χ between stripes and longest axes of
coherence ellipsoids, also resulting in a SLD reduction.

The precision of the χ angle required for probing the edge
roughness and the effect of the SLD reduction, connected
with a misalignment of the χ angle, are briefly discussed in
Appendix A. However, it should be reminded that the primary
goal of this work is not to study the edge roughness with
PNR, but instead, our attention is mostly concentrated on the
magnetic effects caused by edge roughness.

One of the main effects of edge roughness consists in
an appreciable reduction of the mean interstripe magnetic
induction B = Bi (fourth column in Table III, bottom line)
relative to the stripe induction B = Bs (upper line) found
close to its saturation value Bsat. The reduction of the mean
induction Bs,i is due to the tilt angles �γ = �γs,i between
flux lines within coherence ellipsoids and the field direction
averaged over coherence volume. Corresponding reduction
factors denoted as 〈cos �γ 〉coh = Bs,i/Bsat � 1 are given in
two first rows of the subtable in Table III. The directions of
mean induction averaged over different coherence ellipsoids
are, however, not necessary parallel to the external field, but
may be tilted for angles γ = γ s,i varying over large distances,
see, i.e., Fig. 11. The result of additional incoherent averaging
over all ellipsoids is characterized by another two parameters
〈cos γ 〉inc = 〈cos γ s,i〉inc � 1 indicated in last rows of the sub-
table. The physical significance of these parameters, as well as
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the need for two types of fit parameters [42–44] describing
the specular reflectivity data is dictated by the specifics of
the two-step surface averaging, discussed in more detail in
Appendix B.

Both types of parameters were freely varied during the
fitting procedure, while the saturation induction Bsat was fixed
to the value indicated in the upper row of the fourth column of
the main Table III. The stripes are close to the saturation state
so that 〈cos �γs〉coh = 1 and 〈cos γ s〉inc = 0.98, whereas the
induction in between the stripes is reduced by both factors:
〈cos �γi〉coh = 0.75 and 〈cos γ i〉inc = 0.3. As a result, the
net value of interstripe induction, reduced by the product of
the two latter factors, amounts to only 22.5% of the stripe
induction.

One possible explanation for the observed reduction of the
interstripe induction and hence of the magnetic SLD may be
due to magnetic flux straying from stripe edges into the outer
space in the z direction. However, our best fit does not detect
any magnetic induction above and below the layer containing
permalloy. This confirms the assumption that the vector B is
mostly confined between the top and bottom boundaries of the
permalloy stripes having only two components Bx = B sin γ

and By = B cos γ , where γ is the in-plane homogeneous tilt
angle of the vector B with respect to applied field. These tilts
may occur, for instance, if the external field is applied not
precisely normal to stripes. Then in the case of a moderate
applied field amplitude even a small misalignment between
the field direction and the stripe edges may cause appreciable
tilt angles γs,i due to the stripe demagnetization factor. As
a result, the magnetization vector may flip almost along the
stripes. However in our case such a scenario was not observed
and the magnetic induction in stripes was well parallel to
the externally applied field which is sufficiently strong to
overcome a global demagnetizing field of the stripes.

An alternative and more plausible explanation of the ap-
preciable reduction of the projections Bs,i

y suggests that the
angle γs,i is randomly distributed over the magnetic layer
cross sections. Such reduction is described in our model by
two types of parameters introduced above: 〈cos �γs,i〉coh and
〈cos γ s,i〉inc. From the Table III, it follows that the parameter
〈cos γ s〉inc ≈ 0.98 indicating that the tilt angle γ s between
the stripe magnetization and the external field direction is
less than 11.5◦. At the same time, the value 〈cos γ i〉inc ≈ 0.3
means that the interstripe magnetic induction is either tilted
against the applied field direction by the angle of 72.5◦,
or experiences random tilt to the left and to the right with
respect to this direction. In fact, from PNR data, one cannot
determine the sign of the tilt angles γ i and γ s. Moreover,
using PNR with no polarization analysis of the reflected beam
it is not possible to distinguish between an inhomogeneous
field between stripes and a homogeneous tilt of induction
with respect to the external field.1 However, since the angle
γ s is small, there is no reason to expect that the direction of
interstripe induction is homogeneously tilted. It is more likely
that it experiences random inhomogeneous tilts due to edge
roughness as sketched in Fig. 1(b).

1This question can be clarified using the polarization analysis
which provides access to the mean square 〈sin2 γ s,i〉.

Assuming a self-affine edge roughness, one may suppose
that notches possess an internal fractal-type self-similar struc-
ture, a fragment of which depicted in Fig. 1(b) mimics the
result of averaging over the coherence volume. The same
refers to the flux lines along which the tilt angle γ i = γ i(x, y)
smoothly varies between zero in the middle of the ISS and the
maximum value γmax(x, y) determined by the magnetic flux
continuity boundary conditions. So in Fig. 1(b) γmax(x, y) ≈
±90◦ directly at notches, while γmax(x, y) ≈ 0◦ between them.
The low experimental value 〈cos γ i〉inc ≈ 0.3 means that there
are no flat segments between notches and the interface x
profile is rather sawtooth like shaped.

Recall that the PNR measurements in our case are not
sensitive enough to the structural part of edge roughness
observed by electron microscopy because of lack of scat-
tering volume and resolution in the y direction. However,
edge roughness can be made noticeable to neutron scattering
indirectly. In high external magnetic fields, edge roughness
invokes extensive inhomogeneous stray fields in the interspace
region between the stripes, as discussed in Sec. IV B 2. Such
inhomogeneous fields generate spin-dependent OSS as can
be clearly seen in the maps displayed in the Fig. 8(d) for
stripes oriented parallel to the scattering plane. The latter
statement is supported by simulations of OSS maps carried
out within the framework of DWBA [42–44] and displayed
below the experimental maps in Fig. 8(d). The simulations
reasonably well reproduce the basic features of OSS without
any special scaling to the specular reflected intensity. In both
sets of maps, one can see the specular ridges running along
the diagonal αi = α f similar to those in Fig. 7(c), but without
curved Bragg bands approaching this ridge at higher incident
and scattered angles. Instead, a pair of petal shaped diffuse
intensity lobes are visible on both sides of the ridge. The
diffuse intensity is enhanced in the vicinity of the critical
edges of specular reflection from the “effective layer” of mean
interstripe induction. This intensity enhancement is due to the
Yoneda effect [48].

Alternative maps are shown in Ref. [47]. These maps were
simulated by the same theoretical model as stated above, but
assuming zero induction Bi = 0 between the stripes. Obvi-
ously, in this case no off-specular diffuse scattering exists.

The theoretical model used for simulating the OSS maps
in the frame of DWBA is discussed in detail in Appendix
C. In brief, the general idea of DWBA is based on the
separation of the interaction potential, U into two parts [49]:
U = U0 + �U . The main part U0 is chosen to provide an
exact solution of the wave equation, while the remaining part,
�U = U − U0, is accounted for as a perturbation providing
corrections to the reference exact solution. In case of shallow
incidence of neutron wave onto a laterally modulated film, the
choice of reference potential is quite obvious. This is the mean
value U0 = 〈U 〉, laterally averaged over the coherence volume
if the latter contains a number of lateral heterogeneities. Such
a reference 1D potential is independent of the in-plane coor-
dinates providing specular reflection from and refraction into
the effective film. It is also responsible for optical distortions
of neutron waves propagating inside the mean potential. In
the second stage of DWBA, the scattering amplitude of dis-
torted waves from deviations, �U = U − 〈U 〉, is calculated
in the first (Born) order of the perturbation theory. It is very
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important that in this version of DWBA the approximate
perturbation potential �U contributes solely to OSS, but not
to specular reflection and/or refraction, as the mean value
〈U 〉 = 0.

Close similarity between measured diffuse maps and simu-
lations shown in Fig. 8(d) lends credibility to the assumptions
made, while the general concept of edge roughness generating
OSS is further confirmed by the counter-example of measure-
ments on the second sample S2 featuring stripes with smooth
edges, to be discussed in the next section.

B. Sample S2

We will now focus our discussion on PNR measurements
performed on the 370-Å-thick permalloy sample S2. In this
sample the roughness of the stripe edges is much less jagged
although its amplitude, and hence the rms roughness, is higher
than in sample S1. As seen from SEM images in Figs. 3(b)
and 3(c), the stripe edges, in contrast to those in Figs. 2(b)
and 2(c), do not reveal any pronounced sharp notches or
kinks on about the same submicrometer length scale. Instead,
a smoothly varying waviness prevails along stripe edges.
Therefore one may expect that the direction of magnetic
induction vector in the interstripe space ISS) may only slightly
deviate from that in the stripe body. This expectation is indeed
confirmed experimentally by PNR measurements carried out
on the sample S2.

In analogy to the previous measurements, two comple-
mentary orientations of coherence ellipsoids with respect to
stripes were probed. An external field of 5.2 kOe was applied
perpendicular to the scattering plane either along or across
the stripes during data acquisition. In this set of experiments,
polarization analysis was applied for specular reflectivity and
off-specular scattering via recording of two NSF (R++ and
R−−) and two SF (R+− and R−+) reflectivities. They were
extracted from four maps of OSS cross-sections measured
by the use of a PSD detector equipped with a wide-angle
multichannel spin analyzer [46].

Specular reflectivities collected from the sample S2 with
stripes oriented perpendicular and parallel to the scattering
plane are plotted together with the results of best least-square
fits in the Figs. 9(a) and 10(a), respectively. Each set of four
reflectivity curves were fit by the theoretical model assuming
two layers on a bare Si substrate. The reasons for the obvi-
ous mismatch between experimental data and fit for incident
angles above 12 mrad are discussed in Sec. V B 1.

All fit parameters are combined in Tables IV and V. The
NSF reflectivity curves R++ and R−− are appreciably split,
signifying a well saturated state of the sample in both con-
figurations characterized by 〈cos �γ 〉coh = 〈cos γ 〉inc = 1 as
follows from the fit. This is also confirmed by measurements
of SF reflectivities R+− and R−+, as well as of OSS. Observed
SF effects are seen to be rather small and totally described by
imperfect polarization analysis, the efficiency of which does
not exceed 97%–98%.

1. Perpendicular orientation of sample S2

In addition to the parameters already used for fitting the
PNR data of sample S1, one more parameter 〈sin2 γ 〉inc is
required here to describe the specular SF reflectivity. Its value

FIG. 9. (a) NSF and SF reflectivities for sample S2 with stripes
oriented perpendicular to the scattering plane and in a field of Hext =
5.2 kOe applied along the stripes. Open circles are experimental data
points, solid lines are best fit results. (b) Simultaneously acquired
off-specular scattering maps. (c) Model calculations.

is equal to zero, as expected for the saturation state. The
stripe filling factor for the perpendicular geometry is only
η = 0.86 because of the sample design, which includes a
narrow frame of a bare Si substrate surrounding the stripe
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FIG. 10. Same as Fig. 9, but for the stripes oriented parallel to
the scattering plane in a field of Hext = 5.2 kOe applied across the
stripes.

array pattern seen in Fig. 3(d). Because of the frame, only
14% of neutrons hitting the sample surface are reflected from
the bare Si substrate. The critical edge of total reflection from
silicon can be observed in both orientations of the sample
S2. All other fit parameters listed in Tables IV and V have
the same meaning as before for sample S1. Comparing these
tables with tables II and III, one may notice that the mean

TABLE IV. Parameters extracted from the fit of the specular re-
flectivities shown in Fig. 9(a) for the sample S2 with stripes oriented
perpendicular to the scattering plane in the field of Hext = 5.2 kOe
applied along the stripes. Data were fit with the theoretical model in
which the reflectivity curves are described as an incoherent weighted
sum of two reflectivity curves. Upper values in cells correspond to
the first reflectivity with relative weight given by the stripe surface
factor η = 0.86. Bottom values refer to the second reflectivity with
relative weight of 0.14 supplementing the total surface.

t (Å) σ (Å) Nb 10−6 (Å−2) B (kG)

Pt cap layer 83.2 25.3 3.02 0
0 0

Py layer 370 12.7 5.45(1) 4.45(2)
0 0 0

Si substrate – 5.2 2.14(1) 0

〈cos �γ 〉coh 1
0

〈cos γ 〉inc 1
1

〈sin2 γ 〉inc 0
0

values of nuclear and magnetic SLDs for stripes in the S2
sample are appreciably higher than in the case of the sample
S1. This is just due to the fact that the ratio of the stripe width
w to the period is about 50%, while in sample S1 this ratio is
only about 25%.

Panels (b) and (c) of Fig. 9 show the off-specular scattering
maps for the sample S2 together with results of respective the-
oretical simulations. In these maps, one can clearly distinguish
the off-specular Bragg bands up to third order embracing
the specular ridge from both sides. However, due to larger
lateral period of the S2 stripe array compared to S1 (13.5 μm
versus 4 μm), the Bragg bands run closer to each other and,
because of finite resolution of the instrument, merge with
the specular reflectivity ridge already at the incident angle of

TABLE V. Same as Table IV, but for the sample S2 with stripes
oriented parallel to the scattering plane in a field of Hext = 5.2 kOe
applied across the stripes. Upper and bottom values in the cells
correspond to first and second reflectivity curves weighted by an
incoherent sum with surface factors 0.58 and 0.42, respectively, for
describing the experimental data.

t (Å) σ (Å) Nb 10−6 (Å−2) B (kG)

Pt cap layer 83.2(8) 25(2) 4.72(11) 0
0 0

Py layer 370.3(6) 13(1) 8.50(1) 7.57(3)
0 0 7.57(3)

Si substrate – 5.2(6) 2.14(1) 0

〈cos �γ 〉coh 1
1

〈cos γ 〉inc 1
1

〈sin2 γ 〉inc 0
0

stripe surface factor η 0.58(1)
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about αi ≈ 12 mrad. This is seen as a phase shift of the Kiessig
fringes in reflectivity curves when the specular reflectivity
ridge overlaps with off-specular diffraction bands. Theoretical
models for the reflectivity fit cannot describe this effect and
reliable results can be obtained only when data in the region
αi � 12 mrad are used in the fit. The reduction of the fitting
range may, however, substantially affect the reliability of the
resulting fitting parameters. In particular, when cutting off
data in the tail of the reflectivity curve one looses information
on the low frequency modulation due to the cap layer and
on the Debye-Waller factor describing interface and surface
roughness. This information was partially recovered via the
experiment with the sample rotated by 90◦ about the normal
to its surface.

Small splitting effects across the specular line ridge can
be seen in the experimental maps of Fig. 9(b). They are most
likely experimental artifacts due to the binning procedure of
electronic channels in our PSD. To clarify these splitting ef-
fects, we have carried out additional measurements on another
stripe array S3, produced with a similar stripe pattern of the
same periodicity but with a nominal permalloy thickness of
800 Å. Off-specular scattering maps from the sample S3 with
stripes oriented parallel to the scattering plane were collected
in fields of 35 and 5200 Oe. The corresponding maps are
presented in Ref. [47]. One may notice that the maps from S2
and S3 are quantitatively identical. In particular, the splittings
are the same and they are field independent. However, there
are two remarkable differences between the maps of samples
S2 and S3: first, the Kiessig fringes exhibit an enhanced dip
due to the larger thickness of the S3 sample and second, the
SF signal is increased at 35 Oe, which is to be expected for a
field well below saturation.

2. Parallel orientation of sample S2

Figure 10 reproduces specular and off-specular scattering
maps and fits of corresponding specular reflectivities for sam-
ple S2 with stripes oriented parallel to the scattering plane as
sketched in Fig. 6(b). An external field of 5.2 kOe was applied
perpendicular to the stripes during these measurements. Fit-
ting parameters obtained for this case are collected in Table V.
In particular, one may notice from the fourth column of this
table that the magnetic induction in the ISS is not reduced
at all, in contrast to sample S1. Moreover, the stripe surface
factor η = 0.58 should be attributed to the fraction of the
surface covered by stripe material. Its complementary to unity
factor 1 − η = 0.42 describes, in turn, the fraction of the
surface free from material. The latter includes the rim around
the pattern and bare Si substrate in the ISS.

3. Discussion of results from sample S2

It is important to note that the off-specular maps for sample
S2 are qualitatively different from those obtained for the
sample S1. The maps for sample S2 solely display specular
reflectivity ridges surrounded, below the critical edge, by low
intensity ellipse-shaped halos without Yoneda enhancement
effects neither at the critical angles of total reflection from
the Si substrate nor at the Py critical angles, despite the latter
ones well recognizable in the specular reflectivity curves.
Such halos, which asymmetrically border the NSF specular

ridges in region below the critical edge and with intensity
proportional to the specularly reflected beam, are attributed
to parasitic instrumental effect of scattering of the 4.41-Å
neutron beam on polycrystalline grains of the bulk 7-mm-
thick front aluminium window of the 3He PSD detector. This
scattering becomes visible whenever an intense neutron beam,
either direct or specularly reflected, hits the detector, and is not
related to off-specular scattering from the sample.

For the sample S2 one can conclude that, in contrast to
sample S1, the intensity maps do not show any detectable
off-specular diffuse scattering caused by irregular magnetic
induction between the stripes. This assumes that the rather
strong interstripe induction B‖(z, y) is independent of the
x coordinate and quite homogeneously distributed with no
appreciable random gradients in the x direction along stripes
and the incident beam. Field gradients in two orthogonal
z and y directions cannot cause off-specular scattering in
this sample orientation. Hence the absence of off-specular
diffuse scattering means that the system is translation in-
variant with respect to its shift along the stripes (x axis)
for a distance smaller than, or comparable with the long
axis of the coherence ellipsoid. This is possible if the edge
roughness and, hence, the interstripe field inhomogeneities are
both absent, or, alternatively, the edge roughness correlation
length in x direction is larger than the coherence length lcoh

x .
In the latter case the edge roughness may rather be called
“edge waviness.” The waviness should lead to fluctuations of
interstripe distance and affect the lateral Bragg intensity and
width in the experimental configuration with stripes oriented
perpendicular to the scattering plane. However, such effects of
peak broadening or intensity reduction has not been detected
and Bragg bands in the maps in Fig. 9 were simulated for
the nominal lateral structure with smooth stripe edges and,
consequently, homogeneous interstripe magnetic induction.

VI. SUMMARY AND CONCLUSIONS

Edge roughness in ferromagnetic stripe patterns is an im-
portant parameter that has a large impact on magnetic do-
main distributions, domain pinning, and domain propagation.
Furthermore, edge roughness is responsible for interaction of
magnetic stripes in the direction normal to their long axis.
Because of this it is of considerable interest to characterize
edge roughness from a structural point of view and even
more so from a magnetic perspective. In this contribution, we
have shown that using polarized neutron scattering a detailed
analysis of the edge roughness is possible. This is not so much
due to the structural disturbances that edge roughness invokes,
but more due to an inhomogeneous flux distribution that
originates from the notches and bulges at the edge of magnetic
stripes. When magnetized in the direction perpendicular to
the stripe long axis, the magnetic field lines are demanded to
exit normal to the surface of these irregularities. This leads
to an inhomogeneous magnetic flux distribution in the empty
space between stripes. The inhomogeneous flux distribution,
in turn, gives rise to pronounced off-specular diffuse magnetic
scattering. Therefore quantitative analysis of the off-specular
scattering, carried out within the framework of distorted wave
Born approximation, in addition to the specular polarized
neutron reflectivity provides a bulk of detailed information
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on edge roughness in micro- to nanosized laterally patterned
arrays inaccessible otherwise.

In this contribution, we have compared the specular reflec-
tivity, the Bragg- and the diffuse off-specular magnetic scat-
tering from two stripe arrays, one with edge roughness and the
other one with smooth but wavy edges. Analysis of polarized
neutron reflectivity and off-specular diffuse scattering shows
that the magnetic induction in the interspatial region between
the stripes is reduced by 77.5% 2 in the sample with rough
edges, but not reduced at all in the sample with smooth edges.
The methods described and discussed here can also be applied
to any other lateral magnetic arrays, such as spin ice patterns
or skyrmion lattices.
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APPENDIX A

Let us consider the effect of a small misalignment of the
in-plane tilt angle χ between stripes and longest axes of coher-
ence ellipsoids for the sample S1 in perpendicular geometry
shown in Fig. 6(b). In this case, the coherence ellipsoids are
mostly displayed either within stripes, or in between of stripes
only if χ � χmin, where sin χmin ∼ w/lcoh

x ≈ 0.6◦, assuming
that lcoh

x ∼ 100 μm and w = 1.1 μm. At the same time a small
percentage of ellipsoids are partially cover the stripes and
the interstripe spacen (ISS). Mean SLD averaged over such
ellipsoids is reduced, while their effective width is increased
proportionally to the tilt angle. In the limiting case χmin �
χ � χmax, where sin χmax ∼ (d − w)/lcoh

x ≈ 1.8◦, some of
the ellipsoids are still displayed between stripes, while others
unavoidably cross at least one of stripe boundaries. This
should lead to a significant decrease of mean SLD, and can
not explain SLD reduction of only 10% observed for the
sample S1. Summarizing, the direct study of microstripe edge
roughness with PNR requires a control of the tilt angle χ with
accuracy better than 0.1◦.

APPENDIX B

Fit of specular reflectivities collected from the sample S1
with stripes oriented parallel to the scattering plane was per-
formed using two parameters 〈cos �γs,i〉coh and 〈cos γ s,i〉inc

describing the induction distribution within and between the
stripes. The need for these two fit parameters becomes clear
considering the two-step surface averaging procedure of the
induction fluctuations in detail.

In the first step, the averaging runs over the induction
fluctuations correlated over distances within one of the coher-
ence ellipsoids, while in the second step the averaging runs

2Total reduction factor of interstripe magnetic induction 1 −
〈cos �γ 〉coh 〈cos γ 〉inc = 1 − 0.75 × 0.3 = 77.5%.

FIG. 11. Surface averaging in PNR. Yellow ellipses represent
lateral projections of coherence ellipsoids. Thin black arrows denote
vectors of local magnetic induction within ellipsoids, while thick red
arrows denote mean magnetization induction vectors Bs,i averaged
over coherence area and tilted by the angle γ s,i to the external field
direction.

over different coherent ellipsoids covering the sample surface
exposed by the incident neutron beam. Therefore, as shown in
Fig. 11, the tilt angles γs,i between local induction and external
field are decomposed into the sum: γs,i = γ s,i + �γs,i, where
γ s,i are the mean values of the tilt angle averaged over each
of coherent ellipsoids and may vary over large distances. The
angles �γs,i, in turn, corresponds to short-distance fluctu-
ations �Bs,i = Bs,i − Bs,i of the magnetic induction inside
the individual coherence ellipsoids. These fluctuations are
counted with respect to mean magnetic induction Bs,i which
directions are constrained by the conditions 〈sin �γs,i〉coh =
0.

In accordance with these constrains the reduced mean
values of SLD are written as follows:

Nb±
s,i = Nbs,i

n ± 〈cos �γs,i〉cohNbs,i
m , (B1)

where the nuclear SLD in between the stripes is Nbi
n = 0,

while the magnetic SLDs Nbs,i
m are expressed via the respec-

tive inductions in accordance with Eq. (5).
The mean directions of the induction vectors Bs,i =

〈Bs,i〉coh averaged over the coherence ellipsoid may not be par-
allel to the external field, but tilted by the angle γ s,i different
for different ellipsoids and hence varying within the surface
plane over large distances. For example, for the bottom-left
ellipsoid shown in Fig. 11 the mean induction vector is tilted
at the angle γ i ≈ 70◦, whereas for the upper-right ellipsoid
far away from the notch γ i = 0. Correspondingly, the model
used in the fit includes both types of averaging: the one
accomplished over the coherence ellipsoids and described by
the parameter 〈cos �γi〉coh, and the other one running over
the whole surface and described by the parameter 〈cos γ i〉inc

given for sample S1 in the Table III as a result of the fit in
accordance with Eq. (4). In that equation, the reflectivities R±
are substituted by their mean values

R
± = ηR

±
s + (1 − η)R

±
i , (B2)
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incoherently averaged over tilt angles γ s and γ i within and
between stripes, respectively, for SLDs in Eq. (B1). After such
averaging,

R
±
s,i = 1

2 {[R+
s,i + R−

s,i] ± Pi〈cos γ s,i〉inc[R+
s,i − R−

s,i]}, (B3)

where Pi is the neutron incident beam polarization.

APPENDIX C

The theoretical model used for simulating the OSS maps is
based on a set of structural parameters characterizing the layer
stack including layer SLDs and thicknesses, interface rough-
nesses, mean interstripe induction, surface factor and mean
value 〈cos γ s〉inc, which were fixed in simulations at their
values deduced from the fit of specular reflectivities. These
parameters describe not only reflectivities in Fig. 8(a), but also
distortions of neutron wave field in the mean potential due to
optical effects: transmission into the range of potential, reflec-
tion from its borders and birefringence [50,51] effects caused
by the Zeeman splitting of neutron spin states e.g. in the ISS.
In there, distorted waves are scattered in off-specular direc-
tions if local induction deviations �Bi = �Bi(x, y) are corre-
lated over distances smaller than the coherence volume. The
vector �Bi can be decomposed over its orthogonal projections
�B⊥

i = Bi sin �γi and �B‖
i = Bi(cos �γi − 〈cos �γi〉coh ), so

that their mean values 〈�B‖
i 〉coh = 〈�B⊥

i 〉coh = 0. At the
same time, the correlation functions G⊥,‖

i (x − x′, y − y′) =
〈�B⊥,‖

i (x, y) · �B⊥,‖
i (x′, y′)〉coh 
= 0 and their Fourier trans-

forms averaged over different coherence ellipsoids covering
the whole sample surface determine the magnetic cross sec-
tion of OSS in DWBA. The incoherent averaging procedure
is substantially simplified due to the strong anisotropy of
coherence ellipsoids.

As discussed above and illustrated in Fig. 6(b), the co-
herence length lcoh

y in the direction normal to stripe edges is
much shorter than the coherence length lcoh

x parallel to the
stripes. On the other hand, as seen from Fig. 8(d), the OSS
petal-like diffuse magnetic intensity distributions are well sep-
arated from specular reflection indicating that the correlation
length of induction fluctuations ξx, which is scaled with the

correlation length of edge roughness, is sufficiently large, but
still smaller than lcoh

x . Therefore one can assume that lcoh
y �

ξx � lcoh
x and neglect the difference y − y′ ≈ 0 between argu-

ments y and y′ in the correlation function above. As a result,
the correlators of induction fluctuations are determined by 1D,
but not by 2D Fourier transforms:

G⊥,‖
i (qx ) =

∫
dxe−iqxxG

⊥,‖
i (x), (C1)

where G
⊥,‖
i (x) denote correlation functions integrated over

coordinate y′ = y over the ISS.
In order to bring the number of extra parameters

sufficient to describe our data on OSS to a mini-
mum, we further assume that G

⊥,‖
(x) = G

⊥,‖
(0)e−|x|/ξx ,

where G
⊥,‖

(0) are the mean square amplitudes of in-
duction fluctuations and G

⊥
(0) = B2〈sin2 �γi〉coh, whereas

G
‖
(0) = B2[〈cos2 �γi〉coh − 〈cos �γi〉2

coh] � 0. The latter two
parameters are not independent, because of the equa-
tion 〈cos2 �γi〉coh = 1 − 〈sin2 �γi〉coh, while the value of
〈cos �γi〉coh was already determined from the fit of specular
reflectivity. Hence, varying two remaining free parameters
ξx and 〈sin2 �γi〉coh the best agreement between simulated
intensities of OSS and experimentally measured off-specular
maps was achieved at the values of the correlation length
ξ ≈ 3.5 μm and the mean square 〈sin2 �γi〉coh ≈ 0.44. This
value corresponds to 〈cos2 �γi〉coh ≈ 0.56, which is close to
the square 〈cos �γi〉2

coh, so that the dispersion 〈cos2 �γi〉coh −
〈cos �γi〉2

coh ≈ 0 and the OSS is mainly due to correlations
of induction components perpendicular to its mean direction
determined by the angle γ i.

The other feature related to OSS not yet considered are
some flux gradients along the surface normal forming a
flattened barrel-like distribution over the z axes. A statistical
smearing of the interstripe induction layer was imitated by an
error function with a width Wi ≈ 60Å allowing for further im-
provement of agreement between experimental and simulated
maps in Fig. 8(d). In particular, such smearing of magnetic
potential in z direction limits the extension of OSS along
lines αi ≈ αc and α f ≈ αc suppressing long Lorentzian tails
in the maps that correspond to an exponential decay of the
correlation function.
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