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Pump-induced motion of an interface between competing orders
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We study the motion of an interface separating two regions with different electronic orders following a short-
duration pump that drives the system out of equilibrium. Using a generalized Ginzburg-Landau approach and
assuming that the main effect of the nonequilibrium drive is to transiently heat the system we address the question
of the direction of interface motion—in other words, which ordered region expands and which contracts after the
pump. Our analysis includes the effects of differences in free-energy landscape and in order parameter dynamics
and identifies circumstances in which the drive may act to increase the volume associated with the subdominant
order, for example when the subdominant order has a second-order free-energy landscape while the dominant
order has a first-order one.
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I. INTRODUCTION

The control of electronic order via nonequilibrium drive is
a problem of fundamental importance [1] and great current
interest [2–10]. One recently studied situation is the case of
competing orders, where a nonequilibrium drive may suppress
the order which is dominant in equilibrium, potentially allow-
ing a different order, not observed in equilibrium, to arise.
This process may be viewed as a kind of “order parameter
steering,” in which the state of a system may be moved
across a generalized free-energy landscape by application of
appropriate drive fields.

Recent experiments [2–6,8,9] and theoretical analy-
ses [7,11–13] have addressed the situation in which a nonequi-
librium drive pulse transiently drives the entire system into a
disordered phase. After the drive ceases, order will re-form
and depending on the dynamics an intermediate time regime
may occur in which the system evolves to the local free-
energy minimum corresponding to a subdominant metastable
phase [7], before the system finally fully equilibrates. How-
ever, many materials with competing electronic phases are
characterized by phase coexistence, in which different regions
of a given sample are in different electronic phases separated
by relatively sharply defined interfaces. This situation may
arise either from spatial inhomogeneity (quenched disorder)
in the underlying material such that different spatial regions
favor different orders, or as a dynamical effect arising from
random initial conditions and domain wall pinning.

Recent experiments [2,3] have sharpened the physics ques-
tions. The system studied is a thin film of La0.66Ca0.33MnO3;
this material is a member of a class of systems that have two
possible ground states: a ferromagnetic metal and a “charge-
ordered,” nonferromagnetic insulator. The free-energy dif-
ferences between the phases are often very small, because
modest (a few teslas) magnetic fields may switch the material
from one state to another even at very low temperature [14]. In
equilibrium, the La0.66Ca0.33MnO3 film studied in Refs. [2,3]
exhibits a broad transition at about 175 K from a high-
temperature bad-metal phase to a low-temperature strongly

insulating phase. The rapid change of resistance across the
transition region strongly suggests that the transition is first
order with inhomogeneous broadening, but a second-order
transition with a very rapid gap opening is not ruled out.
Cooling the system in a few-T magnetic field on the other
hand produces a ferromagnetic metal state. Nano-optical mea-
surements [2] indicate that the low-T zero-field-cooled state
is uniformly in the insulating phase. A single pump pulse
of moderate fluence at a frequency of ∼1.55 eV produces
small regions of ferromagnetic metal, which survive over
timescales of hours to days if the temperature is kept below
Tspinodal ≈ 120 K. Subsequent pulses of optical excitation with
similar fluence are found not to create new domains but rather
to expand the existing metallic domains, with the domains
remaining in the expanded size over long times provided the
temperature is kept low enough. After a sufficient number of
pulses the entire sample is fully transformed to an apparently
homogeneous metallic state.

Both the physics of manganite materials and specifics of
the experiment are complicated. In manganites generally and
very probably in the film studied in Refs. [2,3] the ener-
getics of strain fields produced by the charge ordering will
be important to the dynamics [14,15], while the response to
the initial pump pulse shows that the charge-ordered state is
weaker in some areas of the sample than in others. But the
experiments raise general and fundamental questions that are
independent of the specifics of the particular experimental
system studied here: why does the nonequilibrium drive act to
expand one phase at the expense of the other, and under what
circumstances may the expanded phase be the one disfavored
in equilibrium? These questions are the main focus of this
paper.

The issue of the expansion of one phase with respect to an-
other is appropriately addressed via an order parameter theory,
which we take to have relaxational dynamics and generalized
forces arising from functional differentiation of an energy-like
function of the order parameters. The length (� nm) and
time (� ps) scales relevant to interface motion mean that the
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details of the pump pulse and other aspects of microscopic
dynamics are not important: we can simply view the pump as
providing a time dependence for the coefficients of the order
parameter theory. In equilibrium, the energy-like function will
just be the equilibrium free-energy landscape, which will be
characterized by two locally stable extrema, corresponding
to the two competing states. The configuration of a spatially
uniform system will be concentrated at the extremum with the
lower free energy. A pump pulse will change the landscape,
thus producing generalized forces that will drive the system
away from the equilibrium extremum. For strong pump pulses
the order parameters will be driven to zero and one must then
consider the dynamical reformation of the ordered state from a
fully disordered configuration [7]. However, for weaker pump
pulses the order parameter for a homogeneous system (or an
inhomogeneous system far from an interface) will be only
moderately perturbed; the system will remain in the basin of
the attraction of the equilibrium free-energy minimum and
will simply relax back to the starting configuration when
the pump-induced changes in energy parameters decay away.
However, at or near an interface between two orders the
value of each order parameter will be far from the extrema
and the dynamics need not be a simple attraction to a fixed
point.

To analyze this dynamics we make a time-dependent mean-
field approximation, so the theory is a set of nonlinear de-
terministic partial differential equations for order parameter
fields, with an initial condition including the presence of the
interface and dynamics arising from transient pump-induced
modifications of the energy parameters. The pulse will tran-
siently reduce the amplitude of each order parameter and the
postpulse dynamics will involve evolution of the two order
parameters, which will both grow and compete with each
other. We expect that the long-time limit will be a new steady
state in which the interface has moved to a new position. Our
aim is to determine the direction of motion of the interface.

Interface motion arises from an asymmetry between order
parameters, which in turn may have several origins, including
a difference in relaxational time constants (this was the focus
of our previous work [7] on bulk phases), a difference in
generalized forces arising from different structures of the
free-energy landscapes of the different orders, and a difference
in coupling to the pump. We consider all three cases. A key
result is that the difference in structure of the free-energy
landscape arising in the case of competing phases with first-
and second-order free-energy landscapes, respectively, causes
the interface to move in order to expand the phase with the
second-order transition, even if this phase is not the global
free-energy minimum.

One important issue requires discussion. Unless a system
is tuned exactly to the degeneracy point between two uniform
orders, an interface can be stabilized only by pinning due to
quenched randomness in the underlying material. Interface
dynamics in the presence of pinning is subtle and complicated,
but not directly relevant to the experiments of interest, which
show that interfaces may be stabilized at essentially arbitrary
positions. We take the view that pinning acts on long length
scales and for large order parameter amplitudes, so we employ
a model without explicit pinning to determine the direction of
motion of the interface.

The rest of this paper is organized as follows. In Sec. II
we present our formalism for order parameter dynamics,
introduce the energy landscape we study, construct the static
interface that is the starting point of our calculations, and
give the specific pump profiles we use. Section III presents
the case of a weak, short-duration pump, where analytical
results can be obtained. Section IV presents numerical results
beyond linear response and provides qualitative understanding
of them, treating the different sources of asymmetry between
the phases. Section V is a summary and outlook.

II. STATICS: FREE ENERGY AND INTERFACE

A. General formulae

We consider a system in which the important degrees
of freedom are two spacetime-dependent order parameter
fields ψi=1,2(r, t ) obtained from a fundamental theory by
integrating out microscopic degrees of freedom. Applied to
manganites [2,3], ψ2/ψ1 could be associated with the anti-
ferromagnetic insulator/ferromagnetic metal phase. The order
parameter fields evolve according to dissipative (relaxational
or time-dependent Ginzburg-Landau “TDGL” or “model A”)
dynamics [7,16–19]:

1

γi
∂tψi(r, t ) = Fi ≡ − δF (t )

δψi(r, t )
. (1)

Here the γi are time constants and the generalized forces
Fi are obtained from an energy functional F defined as an
integral over an energy density of the general form

F [ψ1, ψ2; t] =
∫

dDr ( f1[ψ1; t] + f2[ψ2; t] + fc[ψ1, ψ2]),

(2)
where in equilibrium the two free energies f1,2 of the indi-
vidual orders have locally stable extrema at some nonzero
values of ψ1,2, respectively, and fc expresses the physics that
the presence of ψ1 suppresses ψ2 and conversely such that
the only stable extrema have at least one of ψ1, ψ2 = 0. The
free-energy density of order i = 1, 2 is assumed to be of the
general form

fi = αi(t )ψ2
i + λiψ

3
i + ψ4

i + (ξi0∇ψi )
2, (3)

and the competing term is

fc = cψ2
1 ψ2

2 . (4)

Note that to describe a first-order energy landscape we used
a free energy with a cubic term. Alternative implementations
of first-order energy landscapes that maintain a Z2 symmetry
may be written, but give the same qualitative behavior (in
particular the same mean-field dynamics) as does the free
energy we have written.

Without loss of generality we normalize the fields and
energies such that ψi, fi, αi, and λi are all dimensionless, the
coefficient of the quartic term is unity, and F is measured
in units of a characteristic condensation energy density. The
term proportional to c expresses the competition between the
phases, and in the cases of primary interest we expect c to
be large and positive. The difference between the two orders
is contained in the dimensionless parameters αi, λi. In the
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FIG. 1. Left/right panel is the three-dimensional
representation/contour plot of the free-energy landscape of
the competing-order systems, with lower energy appearing bluer.
Blue lines are the projections of the order parameter profiles across
the interfaces. (a) Even-order terms up to ψ4 lead to second-order
landscape. Sc is the saddle point in the diagonal direction. Inset is
the order parameter spatial profile across the interface between the
two regions for αi = −1 and c = 100. (b) The term λiψ

3
i leads to

first-order landscape and the point O (ψ1 = ψ2 = 0) is also a local
minimum for αi > 0. S1/S2 are saddle points on the ψ2 = 0/ψ1 = 0
axes. (c) ψ1 has second-order landscape while ψ2 has first-order
landscape. S and O are saddle points.

following, we suppress the label i whenever possible without
loss of clarity.

In equilibrium the individual free-energy functions may
either have a second-order (λ = 0) or a first-order (λ �= 0)
structure. In the second-order case, the equilibrium ground
state is ordered, with ψm = √−α/2 if α < 0. If both α < 0
we have two possible ordered states. If c > 2 and − c

2α1 >

−α2 > −α1 then there is a global minimum corresponding to
order II and a metastable minimum corresponding to order I,
as shown in Fig. 1(a). Also as shown in this panel there is

a least-energy path connecting the two minima along which
both ψ1 and ψ2 �= 0. The least-energy path bypasses the
origin, which is a local maximum.

If λi �= 0 the transition for ψi is first order. Taking for con-
creteness the case of λ < 0, a state with the order parameter

ψm = (−3λ +
√

9λ2 − 32α)/8 (5)

becomes locally stable if α < 9λ2/32, and becomes the global
ground state if α < λ2/4. If α > 0 (i.e., if the system is within
the lower spinodal), the origin is a local minimum and is
separated from the global minimum by an intermediate sad-
dle point at ψs = (−3λ − √

9λ2 − 32α)/8. The saddle point
along the ψi direction is labeled by Si in Fig. 1(b).

If both orders are below the transition and within the
spinodal regions, the two orders are separated by a least-
energy path, as shown by Fig. 1(b). Finally, Fig. 1(c) shows
the case where one of the transition is first order and one is
second order. In this case the least-energy path takes a highly
asymmetric trajectory in order parameter space.

B. Domain wall

We construct a domain wall between the two regions by
numerically minimizing f subject to the boundary condi-
tions ψ1(x → −∞) = ψ1m, ψ1(x → ∞) = 0 and ψ2(x →
−∞) = 0, ψ2(x → ∞) = ψ2m. In the second order–second
order and first order–first order cases a good approximation to
the domain wall profile is

ψi = ψim

(
± tanh

(
x ∓ δc

ξ

)
+ 1

)/
2, (6)

where +/− corresponds to i = 2/1 and the difference be-
tween the coherence lengths has been neglected. In the case
of large c, the two phases strongly repel each other such
that δc is very large, the order parameter trajectory passes
near the saddle point ψ1 ∼ ψ2 ∼ 1/

√
c, but the length scales

ξ ∼ ξ0/
√

α remain set by the coherence length, leading to the
domain wall structure shown by the inset of Fig. 1(a).

C. Time dependence of landscape parameters

Motivated by the idea that the main effect of the pump is
to transiently heat the system we have assumed that the main
time dependence is in the quadratic coefficients αi(t ) = αi +
ai(t ) (which would carry the main temperature dependence in
the equilibrium Ginzburg-Landau approach). Representative
time dependencies are shown in Fig. 2 where the quadratic
coefficients change from their static values αiL to higher
values αiH during the time pump is on.

If the two free-energy minima have different energies, then
in the absence of pinning the interface will move so as to
expand the size of the region with the lower-energy minimum.
In practice domain walls may become pinned by impurities on
experimental timescales [2,3]. To effectively include the effect
of impurity pining, we set the energies of the two minima the
same. We will return to this point in the conclusion.
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FIG. 2. The time dependence of αi across the pumping process.

III. INTERFACE MOTION: LINEAR RESPONSE TO PUMP

In this section, we assume the pump is of sufficiently small
amplitude and short duration that it is enough to consider
the linear response of the order parameter configuration ψi =
ψi(x) + φi(x, t ) to the pump ai(t ). The TDGL equation (1)
linearized around the interface solution ψi(x) reads

1

γi
∂tφi = −

∑
j

δ2F

δψiδψ j
φ j − 2aiψi, (7)

where the second-order functional derivative is the quadratic
kernel for the free-energy cost due to the small fluctuation
φ(x) around the interface configuration ψ (x). Define the “re-
scaled” field φ′

i = φi/
√

γi which transforms Eq. (7) to

∂tφ
′
i = −√

γi

∑
j

δ2F

δψiδψ j

√
γ jφ

′
j − 2

√
γiaiψi. (8)

The coefficient of the first term on the right-hand side can
be viewed as a Hermitian linear operator L̂ acting on the
two-component field (φ′

1(x), φ′
2(x)). Decomposing φ′ using

normalized eigenfunctions fn(x) of L̂ with eigenvalue λn,
φ′(x, t ) = ∑

n cn(t ) fn(x), inserting it into Eq. (8), and taking
the inner product with fn(x) results in an equation for the
time-dependent expansion coefficients,

∂t cn = −λncn − 2〈 fn|
√

γ̂ â(t )|ψ〉, (9)

with the solution

cn(t ) =
∫ t

−∞
dt ′e−λn (t−t ′ )2〈 fn|

√
γ̂ â(t ′)|ψ〉. (10)

Since L̂ is positive semidefinite, we have λn � 0. For the
components with λn > 0, the solution cn(t ) to Eq. (9) vanishes
at long times after â(t ) → 0, so within linear response these
components do not contribute to any change of the ψ config-
uration, thus leading to no interface motion. However, there
is one eigenfunction with exactly zero eigenvalue: f0(x) =
1
d0

√
γ̂ −1∂xψ , where d0 =

√
〈∂xψ |γ̂ −1|∂xψ〉 is the normaliza-

tion factor, corresponding to an infinitesimal translation of the
interface which does not change the free energy. For this zero
mode, Eq. (9) yields

c0 = −2
∫

dt〈 f0|
√

γ̂ â(t )|ψ〉

= − 1

d0

∫
dt

[ − a1(t )ψ2
m1 + a2(t )ψ2

m2

]
, (11)

where ψim is the order parameter value far away from the
interface.

Using the relation between the zero eigenfunction f0 and
the interface translation 
x we obtain


x = 1

d2
0

∫
dt

[ − ψ2
m1a1(t ) + ψ2

m2a2(t )
]
, (12)

where

d2
0 =

∫
dx

(
(∂xψ1)2

γ1
+ (∂xψ2)2

γ2

)
≈

( |α1|
γ1ξ1

+ |α2|
γ2ξ2

)
. (13)

We now interpret Eq. (12). The integrand is in effect a
force pushing the interface to move. The amount of motion
is linearly proportional to the pump fluence and the coherence
length. The direction of motion is determined by the effect
of the pump on each order and the properties of each order
(encoded in the values ψmi of the order parameters far from the
interface). Note that dynamics does not directly enter: if the
only asymmetry is between the relaxation rates, the interface
does not move to linear order in the pump fluence. We shall
see that at higher orders in pump fluence, the relaxation rate
is also important.

Because the asymptotic value ψm extremizes the free
energy, to linear order in the pump field aψ2

m is just the
pump-induced change in free energy, so we find that to this
order the pump acts to move the interface so as to expand
the order which is transiently favored by the pump. Beyond
linear response the physics may be different, particularly in
the case of the first-order energy landscape where the energy
also involves the parameter λ.

IV. INTERFACE MOTION: NUMERICAL RESULTS

A. Overview

In this section we present results obtained from numerical
solutions of the equations presented in Sec. II. We consider
representative examples of the three general cases—second
order–second order, second order–first order, and first order–
first order—investigating different combinations of relaxation
rates and drives. In each case we numerically construct the
domain wall solution and then consider its dynamical evolu-
tion, focusing on which order expands and which contracts.
For simplicity we take the αi to have the step function shape
shown in Fig. 2.

B. Second order–second order

In this subsection we consider the motion of an interface
separating two order parameters, each of which in isolation
has a second-order energy landscape [Fig. 1(a)]. Representa-
tive results are shown in Fig. 3. We find that (as seen in the
linear-response calculation of Sec. III) the interface moves so
as to expand the phase which is less strongly affected by the
pump and that this conclusion holds even for a substantial
difference in relaxation rates [cf. position of dashed line
in Fig. 3(b)]. This is in contrast to the case in which the
pump fully destroys both orders, where the long-time state
is strongly affected by differences in dynamics [7]. In fact
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FIG. 3. False-color representation of interface motion as a func-
tion of drive difference ai = αiH − αiL when both orders have
second-order landscapes. Red means that the interface moves to
expand region I and blue means that the interface moves to expand
region II . The dashed line is the line of zero motion as predicted by
linear-response theory Eq. (12). The parameters used are αiL = −1,
c = 4, ξ0 = 1, tpump = 1. Panel (a) has γ1 = γ2 = 1 and panel (b) has
γ1 = 0.5, γ2 = 1.

the linear-response result accurately captures the amplitude of
interface motion even for rather large fluences; see Fig. 4 for
a comparison.

The physics behind the role played by the differential
effect of the pump may be seen from consideration of the
limit in which ψ2 is strongly suppressed by the pump while
ψ1 is barely affected. Order II will need some time tr ∼
|α2H/αL|tpump to recover after the pump. Before ψ2 fully
recovers, the ψ1 front tends to translate with the “soliton”
solution,

ψ1(x, t ) =
√

|αi|
2

1

2
{− tanh[(x − vt )/ξ ] + 1}, (14)

where ξ = ξ0
√

8/|αL| and the velocity is v = 3
2 |αL|γ1ξ . Thus

the phase I domain expands to the right as long as ψ2 has not
recovered enough to stop it. This translation continues for tr

FIG. 4. The interface motion as a function of the pump strength
(a1, a2) = a(cos θ, sin θ ) in the case of second-order vs second-
order landscapes. The dots are from numerically exact results in
Fig. 3(b) while the solid lines are the linear-response predictions
from Eq. (12) with the same parameters. Different angles θ corre-
spond to different radial directions in Fig. 3(b); e.g., θ = π/4 means
looking along the dashed line.

and thus the amount of domain expansion is


x ≈ vtr = 3
2 |α2H |γ1ξ tpump. (15)

Further insight into the weak effects of a difference of
relaxation rates may be obtained from consideration of the
limit of very strong pump fluence |αHtp|  1. In this limit
the dynamics during the pump is linear and is to a good
approximation

ψi(x, t ) = 1

2

√
|αL|

2
e−2γit [±Erf(x/

√
8γit ) + 1] (16)

for γit  (ξ/ξ0)2, where Erf is the error function. Thus
independently of the relaxation times the interface stays fixed
during the pump, although the two orders are suppressed to
different levels. After the pump is turned off both orders re-
cover; the difference in recovery rates essentially compensates
for the difference in suppression, leading again to a very
weak dependence of interface position on order parameter
relaxation timescales.

C. First order–first order

In this subsection we consider the motion of an interface
separating two order parameters, each of which has in isola-
tion a first-order energy landscape [Fig. 1(b)]. The interface
profile is as shown in Fig. 5. Results of our calculations are
shown in Fig. 6. In broad terms the physics of the second
order–second order situation applies also to the first order–first
order case: if the pump couples more strongly to phase II, the
phase I domain expands.

However, two important differences arise, related to differ-
ences in the structure of the relevant energy landscape. First,
we observe that along the line ψ1 = 0, the free-energy curve
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FIG. 5. The (a) suppression and (b) recovery of the order param-
eters during and after the pump (tpump = 0.7) in the first order–first
order case. Red curves are values of ψ1 and blue ones are ψ2.
The parameters are αiL = 0.5, αiH = 2.23, λi = −2, c = 1.5, ξ0 = 1,
γ1 = 0.7, γ2 = 1.

passes over a local maximum (saddle), when variations in the
ψ1 direction are included. In the vicinity of the saddle, order
parameter dynamics become slow. Thus if for example order
II relaxes faster than order I (γ2 > γ1) then it may be that
under the action of the pump ψ2(x → ∞) is driven close to its
saddle point S2 while ψ1(x → −∞) is not suppressed enough
to get close to its saddle point S1. In this case, when the pump
is turned off the slow near-saddle-point dynamics means that
order II will recover very slowly (similar to critical slowing
down) while ψ1 will recover faster to its equilibrium value,
after which the domain associated with ψ1 expands. This is
numerically illustrated in Fig. 5 and the amount of interface
motion is plotted in Fig. 6(b).

Further, in the first-order situation if the temperature is
within the spinodal region the origin may also be locally sta-
ble. If the pump is strong enough [2|α2H |γ2tp > ln(ψ2m/ψ2s)]
to push ψ2 beyond the saddle point S2 into the basin of
attraction of the origin, the entire phase II domain may be
trapped into the ψ = 0 local minimum after the pump so that
the phase I domain expands until the whole system is depleted,
as shown by the red regions in Fig. 6.

If the pump is even stronger such that both ψ2 and
ψ1 are suppressed beyond their saddle points [2|αiH |γitp >

ln(ψim/ψis)], the whole system is trapped into the metastable
disordered phase ψi = 0 as shown by the white regions in
Fig. 6.

D. Second order–first order

In this subsection we consider the motion of an interface
separating two order parameters, one of which has in isolation

FIG. 6. The amount of interface motion as a function of ai =
αiH − αiL when both orders have first-order landscapes. Red means
that the interface moves to expand region I and blue means that the
interface moves to expand region II . The dashed line is the line of
zero motion as predicted by linear-response theory Eq. (12). The
parameters used are αiL = 0.5, λi = −2, c = 1.5, ξ0 = 1, tpump = 1.
Panel (a) has γ1 = γ2 = 1 and panel (b) has γ1 = 0.7, γ2 = 1.

a first-order energy landscape and the other a second-order
landscape [Fig. 1(c)]. In linear response, the motion of the in-
terface depends only on which order is more strongly affected
by the pump, but beyond linear response the difference in
free-energy landscape provides a natural asymmetry between
the two side of the interface, tending to favor expansion of the
phase with the second-order landscape. Numerical results are
presented in Fig. 7.

One way to understand this phenomenon is via the saddle-
point argument of the previous section. Even if the relaxation
rates are the same and the pump simply raises the temperature
such that both orders are weakened, the phase with the first-
order landscape (here, II) will be driven toward its saddle
point, which makes its recovery very slow or beyond, into
the near-origin region, where it is attracted to zero (deep red
region of Fig. 7). By contrast the second-order landscape
of the other phase means that it recovers quickly and then
expands with a velocity on the order of v ∼ γ ξ (

√
fs − √

fm),
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FIG. 7. The amount of interface motion as a function of ai =
αiH − αiL when ψ1 has second-order landscape while ψ2 has first
order. Red means that the interface moves to expand region I and blue
means that the interface moves to expand region II . The dashed line
is the line for zero motion (
x = 0) as predicted by linear-response
theory Eq. (12). The difference of its slope relative to Fig. 6 arises
from the difference in asymptotic values of the ψim. The parameters
used are α2L = 0.5, α1L = −1.66, c = 1.5, λ = −2, ξ0 = 1, tpump =
1, and γ1 = γ2 = 1.

where fs = f2(ψs) is the free energy at the saddle point and
fm = f1(ψm) is that at the phase I minimum. The amount of
interface motion as a function of αiH is shown in Fig. 7.

For a stronger pump which suppresses ψ2 beyond point
S, ψ2 will not recover after the pump is gone since there
is a potential barrier in the direction of increasing ψ2 [see
Fig. 1(c)] while ψ1 does not have this problem. After the
pump is gone, the entire phase II region will be suppressed to
zero order and the phase I region expands with the velocity
v = 3

2 |α1L|γ1ξ until the whole sample is transformed into
phase I . This phenomenon happens robustly as long as the
pump is strong enough, whether it prefers to affect phase
II or not. Indeed, if one follows any straight line from the
origin to large values of ai, the interface motion is always
to the right (represented by red color) in Fig. 7. Note that
this phenomenon happens also for uniform samples without
preformed phase I domains. In this case, any strong enough
pump could destroy phase II to a disordered state, and random
I domains would appear afterward.

V. CONCLUSION

We have studied the possible mechanisms of pump-
induced motion of the interface between two different elec-
tronic phases, making the assumptions that on the relevant
timescales the pump in effect provides a transient change to
the Ginzburg-Landau parameters that is qualitatively similar
to a change in temperature, and that the relevant order parame-
ter dynamics can be described by a time-dependent Ginzburg-
Landau equation with relaxational dynamics [Eq. (1)]. Re-
laxational dynamics is clearly valid near and above the tran-
sition temperature [19]. However, deep inside the ordered
phase a term in the Ginzburg-Landau equation proportional
to the second-order derivative (∂2

t ) of the order parameter

is present and will lead to propagating modes describing
order parameter fluctuations [20]. These fluctuations are not
directly relevant to the physics we consider, which relates
to large-amplitude changes in the order parameter magnitude
over wide areas, although as an interface moves it may dis-
sipate energy by emitting order parameter fluctuations. We
further note that in the presence of a constant force F the
solution of 1

ω2
0
∂2

t ψ + 1
γ
∂tψ = F is ψ = γ Ft , independently

of the coefficient of the second-order derivative. This solution
applies also to a time-dependent force provided ∂t F � ω2

0/γ .
Thus in this limit, the ∂2

t term will affect initial transients
and renormalize the dissipation but not change the qualitative
physics.

While the direction of interface motion can depend on
many factors, we found that in general the most important
issue was the differential effect of the pump on the different
phases: the phase that is more strongly affected by the pump
shrinks, while the phase that is less strongly affected grows.
One expects on general grounds that two different phases
will be affected differently by a pump, just because they are
different. For example, if a pump corresponds to an increase
in temperature, the phase more sensitive to temperature might
be more affected; if the pump simply puts energy into a
system, the phase with the lower specific heat might be more
strongly affected. A pump that directly couples to lattice
degrees of freedom would affect a charge density wave phase
more strongly than a uniform metallic phase. The second most
important factor is an asymmetry in the energy landscapes.
If one of the two competing phases has a first-order energy
landscape (with a metastable zero order parameter state and a
globally stable nonzero order parameter state) while the other
has a second-order energy landscape (zero order parameter
state unstable), then the phase with the second-order energy
landscape is more likely to expand, even if the pump equally
heats up the two regions. Differences in relaxation time con-
stants have a more minor effect.

The considerations of this paper are relevant to recent
experiments on strained manganite films [2,3] where the
two competing phases are a charge-ordered antiferromagnetic
insulator (stable in equilibrium at zero magnetic field) and
a ferromagnetic metal. Moderate-fluence optical pulses are
found to increase the volume fraction of metastable ferro-
magnetic metal by moving the interface between metal and
insulating phases. This behavior is consistent with the theory
presented here because the charge-ordering transition is first
order whereas in manganites the ferromagnetic transition
in the absence of charge ordering is second order. Further,
empirical evidence suggests that the optical excitation has a
more deleterious effect on the charge ordering, because by
removing electrons from particular orbitals and by exciting
phonons, electronic excitation reduces the tendency toward
the lattice distortions that are needed for charge ordering.

One important issue for further research is the explicit
inclusion of pinning, which in many situations is necessary to
stabilize static interfaces between phases. In this paper we do
not explicitly address the pinning issue, focusing instead on
the direction that the excited, depinned interface will move.
More detailed investigations of the motion of interfaces in the
presence of pinning would be desirable, as would extension
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of the experiments of Refs. [2,3] to other systems that also
exhibit multiphase coexistence. The approach presented here
may also be relevant to pump-induced phase steering in
cuprates [4,5,21,22], K3C60 [23], FeSe [24], SrTiO3 [10], and
other materials [6]. Another interesting direction is to consider
the effects of nondissipative dynamics such as those studied in
scalar field theory [25] and explicitly in spin models [26,27].

The linear-response result in Eq. (12) provides a convenient
context to qualitatively discuss the effects of pinning. If
we take the view that the pump will temporarily depin the
interface, the net force on the interface will be the sum of the
equilibrium force due to the free-energy difference between

the two minima and the transient force applied by the pump.
The interface will move in response to this force and then
become pinned again. The equilibrium force may be overcame
by the transient force if the pump-induced energy asymmetry
is larger than the equilibrium one. Of course, in the actual
experiments it is likely that fluence beyond the linear-response
level is required to depin the interface.
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