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We report a dynamical quantum phase transition portrait in the alternating field transverse XY spin chain with
Dzyaloshinskii-Moriya interaction by investigating singularities in the Loschmidt echo and the corresponding
rate function after a sudden quench of system parameters. Unlike the Ising model, the analysis of the Loschmidt
echo yields nonuniformly spaced transition times in this model. Comparative study between the equilibrium and
the dynamical quantum phase transitions in this case reveals that there are quenches where one occurs without
the other and reveals the regimes where they coexist. However, such transitions happen only when quenching
is performed across at least a single gapless or critical line. Contrary to equilibrium phase transitions, bipartite
entanglement measures do not turn out to be useful for the detection, while multipartite entanglement emerges
as a good identifier of this transition when the quench is done from a disordered phase of this model.
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I. INTRODUCTION

Quantum many-body systems can undergo phase transi-
tions due to a variation in the system parameters at tempera-
tures very close to absolute zero—entirely driven by quantum
fluctuations [1]. Typically, quantum critical points are identi-
fied by a vanishing energy gap and divergence in characteristic
correlation lengths, thereby leading to singularities in physical
quantities [2,3]. In recent years, bipartite as well as multipar-
tite entanglement [4] have been proposed to be detectors of
quantum phase transitions [5–7]. Traditional or classical phase
transitions (CPTs) are qualitatively different from quantum
ones since CPTs are induced by thermal fluctuations.

Quantum systems, in addition to equilibrium transitions,
can also display nonanalyticities during dynamics, a phe-
nomenon coined as dynamical quantum phase transition
(DQPT) [8–13] and that is traditionally detected by singular-
ities of a certain distance function between the initial and the
final time-evolved states, known as the Loschmidt echo [14].

Extensive DQPT studies have been performed in one-
dimensional quantum spin models like XY [8,9,15–21] and
XXZ [22] models under different types of quenches [23], and
several counterintuitive results have been reported regarding
the relation between the equilibrium quantum phase transition
(EQPT) and the DQPT [19,22]. More importantly, DQPTs
have been experimentally observed in trapped ions [24] and
in fermionic systems in a hexagonal lattice undergoing a topo-
logical DQPT [25] (see also Ref. [26]). It is as yet not clear
whether entanglement can be useful for detecting DQPTs.
Some initial results in this direction indicate that a vanishing
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Schmidt gap can be related to the zeros of the Loschmidt echo
[27] at critical times of the DQPT in the transverse Ising spin
chain. Apart from the fundamental importance of such studies,
with entanglement, it may have important implications in the
design of quantum technologies like one-way and topological
quantum computers and quantum simulators [28–33].

In this paper, we examine the DQPT for a uniform
and alternating transverse field XY spin chain (ATXY) in
the presence of an additional antisymmetric interaction, the
Dzyaloshinskii-Moriya (DM) interaction [34–67] via both
the traditional and the information theoretic approach. For
the DATXY model, we analytically compute the Loschmidt
echo and its corresponding critical times which turn out to be
nonuniformly spaced for most general quenches of the system
parameters, viz., the uniform field, the alternating field, and
the DM interaction strength. The quenches are performed
both within and across the equilibrium phase boundaries.
The DATXY model reduces to various well-known models
like Ising, UXY, XX, etc., in different limits of the system
parameters, and reproduces the critical times of the DQPT
for the same [8]. Such a general model is chosen because
the reduced models, in the case of DQPTs, have been shown
not to capture the relevant physics in its full generality. For
example, the Ising model predicts an equivalence between
the EQPT and the DQPT [8], although later this was shown
not to be the case even for the UXY model [19] (see also
Ref. [22]). The results for the DATXY model also confirms
this inequivalence. Moreover, our results provide a necessary
condition on the quenches that leads to a DQPT, namely, a
quench corresponding to a DQPT must cross at least one
equilibrium critical line.

On the other hand, systematic studies reveal that unlike
in the EQPT, bipartite entanglement fails as a detector for
the DQPT. However, we find that if the initial state belongs
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to a disordered phase, genuine multipartite entanglement can
identify a DQPT. Specifically, we observe that the time-
averaged standard deviation of a geometric measure of mul-
tipartite entanglement [68] (see also Refs. [69–72]) has much
higher values when the final quench point falls in a region that
corresponds to a DQPT than when it falls in regions without it.
The regions show a large overlap with those detected through
singularities in the Loschmidt echo. Our observation also
indicates that a low value of multipartite entanglement in the
initial state, which indeed is a feature of ground states in the
disordered phase, can be a plausible explanation for this asym-
metric identification of DQPT with multiparty entanglement.

The paper is organized as follows. The model Hamiltonian,
its diagonalization, and its ground-state phases are discussed
in Sec. II. In Sec. III, the DQPT exhibited by the model is
analyzed via the Loschmidt echo, while the same is reana-
lyzed by the tools of quantum information theory, namely by
employing bipartite and genuine multipartite entanglement in
Sec. IV. We finally conclude in Sec. V.

II. TRANSVERSE XY MODEL WITH ALTERNATING
FIELD AND ANTISYMMETRIC INTERACTION

We consider a paradigmatic family of interacting quan-
tum spin-1/2 systems on a one-dimensional (1D) lattice
with nearest-neighbor anisotropic XY interaction as well as
asymmetric DM interaction in the presence of uniform and
alternating external transverse magnetic fields described by
the following Hamiltonian [34]:

Ĥ = 1

2

N∑
j=1

[
J

(
1 + γ

2
σ̂ x

j σ̂
x
j+1 + 1 − γ

2
σ̂

y
j σ̂

y
j+1

)

+ D

2

(
σ̂ x

j σ̂
y
j+1 − σ̂

y
j σ̂

x
j+1

) + [h1 + (−1) jh2]σ̂ z
j

]
, (1)

with a periodic boundary condition, i.e., σ̂N+1 = σ̂1. Here, σ̂ α

(α = x, y, z) are the Pauli matrices; J and D represent the
strengths of the nearest-neighbor exchange interaction and
the DM interaction, respectively; γ ( �= 0) is the anisotropy
parameter for the xx and yy interactions; h1 and h2 are the
uniform and alternating transverse magnetic fields, respec-
tively; and N denotes the total number of lattice sites. The
Hamiltonian, referred to as the DATXY model, can be mapped
to a spinless 1D Fermi system with two sublattices (for even
and odd sites) via the Jordan-Wigner transformation [34,73].
Further, performing Fourier transformation, the Hamiltonian
can be block-diagonalized in the momentum space, as Ĥ =∑N/4

p=1 Ĥp, with

Ĥp = J[(cos φp + d sin φp)(a†
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− iγ sin φp(a†
pb−p + apb−p − a†

−pb†
p − a−pbp)

+ (λ1 + λ2)(b†
pbp + b†

−pb−p)
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FIG. 1. Phase diagrams of the DATXY model in different param-
eter spaces. Here, we choose γ = 0.8. Unless otherwise stated, we
use γ = 0.8 throughout the paper for demonstration purposes. All
quantities plotted are dimensionless.

where λi = hi/J , with i = 1 and 2; d = D/J are the di-
mensionless system parameters; φp = 2π p/N ; and âp (b̂p)
corresponds to the fermionic operators for odd (even) sub-
lattices. Therefore, diagonalization of Ĥ , required to study
its characteristics, reduces in diagonalizing Ĥp for different
momentum sectors, which can be done by proper choice of
the basis [34,73]. In equilibrium, this model can exhibit two
paramagnetic phases (PM-I and PM-II), an antiferromagnetic
phase (AFM), and a gapless chiral (CH) phase (see Ref. [34]).

It is noteworthy to mention that several well-known quan-
tum spin models in different parameter regimes can be ob-
tained from the DATXY model, such as

(i) the transverse field Ising (TFI) model for γ = 1 and
λ2 = d = 0,

(ii) the quantum XY model with a uniform magnetic field
(UXY) for λ2 = d = 0,

(iii) the quantum XY model with uniform and alternating
magnetic fields (ATXY) [3,73–76] for d = 0, and

(iv) the quantum XY model with a uniform magnetic field
in the presence of DM interaction (DUXY) for λ2 = 0.

We choose the DATXY model for demonstration, as this
model possesses a very rich phase diagram at zero temperature
(see Fig. 1). Moreover, we notice that by fixing different
parameters suitably, it can be reduced to any of the above four
models. The equilibrium quantum phase transitions between
these different phases occur across the following surfaces
[34]:

(i) for 0 � d < γ ,
(a) λ2

1 = 1 + λ2
2 (PM-I ↔ AFM),

(b) λ2
2 = λ2

1 + γ 2 − d2 (PM-II ↔ AFM),
(ii) for d > γ ,

(a) λ2
1 = 1 + λ2

2 + d2 − γ 2 (PM-I ↔ CH),
(a) λ1 = ±λ2 (PM-II ↔ CH).

Note that, in the thermodynamic limit, the AFM phase of
the spin Hamiltonian given in Eq. (1) has twofold degeneracy,
whereas in the fermionic version of the model, the ground
state in that phase is unique. The AFM phase appears for
d < γ , whereas for d > γ , we get the CH phase. The gapless
CH phase, in addition to having a continuous spectra, has a
threefold degenerate ground state.
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III. DYNAMICAL QUANTUM PHASE TRANSITIONS
IN DATXY MODEL

Let us now move to investigate DQPTs in the DATXY
model. At t = 0, we prepare the system in a ground state of
a Hamiltonian, Ĥ (0) = Ĥ (g0), with initial parameter values,
g0 ≡ {λ1(t = 0), λ2(t = 0), d (t = 0)}, and then at t > 0, we
suddenly quench the system parameters to new values, g1 ≡
{λ1(t > 0), λ2(t > 0), d (t > 0)}, such that the new Hamilto-
nian becomes Ĥ (1) = Ĥ (g1), according to which the system
evolves with time. Note that, unless otherwise stated, we
will not change the anisotropy parameter γ in the quenching
process.

Loschmidt amplitude and Loschmidt echo

Analogous to the role of canonical partition function in
temperature-driven phase transitions, the Loschmidt ampli-
tude is shown to play an important role in DQPTs [8,9] and
is defined as the overlap of the time-evolved state of a system
with its initial state. If the initial state, |�0〉, is prepared
as the ground state of the initial Hamiltonian, Ĥ (0), and the
Hamiltonian after the quench is Ĥ (1), then the Loschmidt
amplitude is defined as

G(t ) = 〈�0| e−iĤ (1)t/h̄ |�0〉 . (3)

For quenching in the parameter space of the DATXY model,
using Eq. (2), the above expression can be decomposed as

G(t ) =
N/4∏
p=1

〈
�0

p

∣∣ e−iĤ (1)
p t/h̄

∣∣�0
p

〉 =
N/4∏
p=1

Gp(t ), (4)

where |�0
p〉 is the eigenstate of Ĥ (0)

p corresponding to the
lowest eigenvalue, and in the last expression, we have defined
the Loschmidt amplitude per momentum mode as Gp(t ) =
〈�0

p| e−iĤ (1)
p t/h̄ |�0

p〉. The Loschmidt echo L(t ) is then de-
scribed by the probability associated with this amplitude, i.e.,
L(t ) = |G(t )|2. The rate function associated with L(t ), which
is analogous to the free energy (per lattice site) in thermal
phase transitions, can be defined as

F (t ) = − lim
N→∞

1

N
log L(t ) = − lim

N→∞
2

N

N/4∑
p=1

log |Gp(t )|.

(5)

Similar to the thermal phase transition, where transition is dic-
tated by the nonanalytic behavior of the associated free energy
with respect to the temperature, the DQPT can be detected by
the nonanalyticity of the rate function as a function of time at
some critical time t∗.

To deduce the analytical expressions of the Loschmidt am-
plitude and the rate function for a general quench from g0 ≡
{λ1(t = 0), λ2(t = 0), d (t = 0)} to g1 ≡ {λ1(t > 0), λ2(t >

0), d (t > 0)}, we introduce the fermionic vector operator

Âp = [
âp

b̂p
]. We then perform a Bogoliubov transformation of

the following form:[
Âp

Â†
−p

]
= Mp

[
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	̂
†
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]
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p
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]
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with 	̂p = [
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p
], such that Ĥp is diagonal in the Bogoluibov
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p

†, η̂b
p

†
, η̂a

−p, η̂
b
−p}. Up and Vp are Bogoliubov coeffi-

cients (matrices) and are functions of g ≡ {λ1, λ2, d}.
In order to calculate 〈�0| e−iH (1)t/h̄ |�0〉, we express the op-

erators {	̂p(g0)} that diagonalize the initial Hamiltonian Ĥ (0)

in terms of {	̂p(g1)} which diagonalize the final Hamiltonian
Ĥ (1) using Eq. (6) as[

	̂p(g0)

	̂
†
−p(g0)

]
=

[ Up(g0, g1) −iVp(g0, g1)
−iV∗

p (g0, g1) U∗
p (g0, g1)

][
	̂p(g1)

	̂
†
−p(g1)

]
,

(7)

with

Up(g0, g1) = U †
p (g0)Up(g1) + V T

p (g0)V ∗
p (g1),

Vp(g0, g1) = U †
p (g0)Vp(g1) − V T

p (g0)U ∗
p (g1). (8)

We can now write the initial state |�0〉 as a boundary state
composed of zero-momentum modes of Ĥ (1), given by

|�0〉 = N−1 exp

⎡
⎣i

N/4∑
p=1

	̂†T
p

(
U−1

p Vp
)
	̂

†
−p

⎤
⎦|0〉, (9)

where |0〉 is the ground state of Ĥ (1), N is the nor-
malization constant, and T denotes the transpose of the
corresponding operators. By using eigenvalues h̄ωk

p (k =
1, 2, 3, 4) of Ĥ (1)

p = Â†
pH̃ (1)

p Âp, where Âp is the column vector,

(âp, b̂p, â†
−p, b̂†

−p), and

H̃ (1)
p = J

⎡
⎢⎢⎣

(λ1 − λ2) (cos φp + d sin φp) 0 −iγ sin φp

(cos φp + d sin φp) (λ1 + λ2) −iγ sin φp 0
0 iγ sin φp −(λ1 − λ2) −(cos φp − d sin φp)
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⎤
⎥⎥⎦, (10)

with φp ∈ [−π/2, π/2], we obtain

Gp(t ) = ei Jt
h̄ (ω3
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p )

× 1 + e−i Jt
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with T p
i j = (U−1

p Vp)i j (see the Appendix for details). Finally,
we get the rate function associated with the quench from
parameters g0 to g1, in the thermodynamic limit, as

F (t ) = −
∫ π

2

0

dφp

π
log |Gp(t )|. (12)

Now, the solutions of |Gp(t )| = 0 correspond to the critical
times, denoted by t∗. In the case of the UXY model (i.e., λ2 =
d = 0), we get τ

p
12 = τ

p
12 = 0, making the τ p matrix diagonal.

Therefore, the expression for Gp(t ) simplifies to the form

Gp(t ) = e−i Jt
h̄ (ω1

p+ω2
p)

(
1+e−2i Jt

h̄ ω1
p
∣∣T p

11

∣∣2)(
1 + e−2i Jt

h̄ ω2
p
∣∣T p

22

∣∣2)(
1 + ∣∣T p

11

∣∣2)(
1 + ∣∣T p

22

∣∣2) .

(13)

The solutions of |Gp(t )| = 0 lead to critical times t∗ =
h̄π

Jω1
p∗

(n + 1
2 ), n = 1, 2, 3, . . . [10], which matches with the

known results for the TFI model [8]. The equation for ω2
p

does not give any critical point. In the case of λ2 �= 0, such
simplification does not happen, and therefore, for quenching
onto any phases of the ATXY model (i.e., for d (t > 0) = 0),
the solutions of |Gp(t )| = 0 are obtained numerically by a
standard root-finding algorithm, which is naturally the case
for the DATXY model. For details of the calculation of rate
function, see the Appendix.

Note that the above treatment has to be generalized if the
initial Hamiltonian Ĥ (0) has degenerate ground states (see
Refs. [8,9,15–17]). To keep things simple, we work with the
fermionic version of the model, which is free from degeneracy
in the AFM phase, and do not consider the CH phase as the
initial one, since the above analysis has to be modified in that
situation. However, the final parameters of the quench in the
(λ1, λ2, d ) space can belong to any phase.

1. Nonuniformly spaced critical times

For the DATXY model, in general, the τ p matrix has off-
diagonal terms, which possibly lead to nonuniformly spaced
critical times t∗ on the time axis as depicted in Fig. 2. Note
that this was not the case for the quantum XY model with a
uniform magnetic field (UXY) or the TFI model [8].

2. Connection between DQPT and EQPT

For the TFI model in 1D, it was found that DQPTs are
in one-to-one correspondence to the EQPTs [8,9], where the
nonanalytic nature of the rate function was only observed for
a quench across the EQPT line. However, later on, counterex-
amples in the UXY model were reported in Ref. [19], where
such connections were absent. In the case of the DATXY
model, the situation is much more involved and we summarize
our observations below.

(i) For d < γ and quenches from the AFM phase to one
of the PM phases, or vice versa, the DQPT has one-to-one
correspondence with the EQPT [see Fig. 3(d)]. However, if the
anisotropy parameter γ is also quenched, such a connection
no longer holds (see Ref. [19]).

(ii) As the PM phases of the DATXY model are connected
by local transformations [74], one expects that quenching
between these two phases does not result in a DQPT [see
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FIG. 2. Rate function F (t ) vs t/t∗
1 . The dynamics occurs due

to quenches from the point g0 = {1.5, 0, 0}, which lies in the
PM-I phase, to three different points, namely, (i) g1 = {0, 0.2, 0}
(AFM phase), (ii) g1 = {−0.5, 1.5, 0} (PM-II phase), and (iii) g1 =
{0.4, 0.2, 1} (CH phase), in the parameter space of the DATXY
model. All the quenches are across EQPT lines. Clearly, in all three
cases, F (t ) becomes nonanalytic for different critical times t∗. Here,
we have normalized the time axis by the first critical time t∗

1 in
all three cases to highlight the fact that, in the DATXY model, the
critical times are not uniformly spaced with each other. All quantities
plotted are dimensionless.

Fig. 3(e)]. On the contrary, our analysis shows the existence
of DQPTs for some specific cases of such quenches [see
Figs. 3(a)–3(c) and 3(f)].

(iii) For d > 0, a quench from a point in PM-II to another
point in PM-II with different signs in λ2 (involving a crossing
of one or more gapless critical lines/regions) may result in a
DQPT [Fig. 3(c)]. Note that this feature is special only to the
PM-II phase and cannot be observed in any other phases for
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FIG. 3. DQPT regions in the parameter space of the DATXY
model for the quenches from the points marked by ×. When a
quantum quench is performed from a point, marked by the symbol
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shows nonanalyticity in the rate function given in Eq. (12). All the
axes are dimensionless.
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a fixed value of the anisotropy parameter γ . Such observation
is akin to the quench of γ as seen in Ref. [19].

(iv) For λ2 = 0 and fixed λ1, quenching into the CH
phase from the AFM phase by increasing d in the quantum
quench does not result in a DQPT, as, in that case, the initial
Hamiltonian, Ĥ [λ1, 0, d (<γ )], and the final Hamiltonian,
Ĥ [λ1, 0, d (>γ )], commute with each other. However, with
λ2 �= 0, a DQPT from the AFM to the CH phase is possible,
provided the quenching is done sufficiently deep into the CH
phase [Fig. 3(d)]. Similar features are observed for PM-I(II)
→ CH quenches [see Figs. 3(b), 3(c), 3(e), and 3(f)].

From the above observations, it is clear that, typically, there
is no one-to-one connection between DQPT and EQPT phases
in the DATXY model. However, all the observations reported
here indicate that the nonanalyticity of the rate function
implies quench across at least a single critical line, thereby
providing us with a necessary condition for obtaining a DQPT.
Next, we analyze the DQPT from an information-theoretic
point of view and compare it with the Loschmidt-echo-based
approach.

IV. ENTANGLEMENT AS A POTENTIAL
DETECTOR OF DQPT

In the case of EQPTs, both bipartite entanglement and
multipartite entanglement emerge as efficient detectors [1,77].
It was even shown that in some models, where the tradi-
tional detection methods fail, EQPTs could be detected by
entanglement-based quantities [78,79]. Later, in other works
[80–82], it was found that there exist models for which
multipartite entanglement turns out to be better for identifying
EQPTs compared to bipartite measures. In general, it has been
realized that entanglement and other quantum correlation
measures have the potential to detect EQPTs. The question
then is: Can entanglement be a “good” quantity to identify
phase transitions that occur with the variation of time, after a
sudden quench of parameters?

We answer this question by analyzing the time evolution
of bipartite entanglement and multipartite entanglement for
the DATXY model after a sudden quench. Our analyses
reveal that bipartite entanglement, contrary to its efficient
EQPT detection capability for this model, turns out to be
an inefficient detector of DQPT. First of all, the failure of
bipartite entanglement as an identifier of DQPT for this model
already once more underlines the difference between EQPT
and DQPT from an information-theoretic perspective. More-
over, multipartite entanglement emerges as a good detector of
DQPT.

A. Bipartite entanglement fails to detect DQPT

In this paper, we quantify bipartite entanglement via log-
arithmic negativity (L). For an arbitrary two-party density
matrix, ρAB, negativity (N ) and L are defined as

N (ρAB) = 1
2

(∣∣∣∣ρTB
AB

∣∣∣∣ − 1
) = 1

2

(∣∣∣∣ρTA
AB

∣∣∣∣ − 1
)
,

L(ρAB) = log2[2N (ρAB) + 1], (14)

where ||A|| = tr
√

A†A and TA(B) in the superscript of ρAB

denotes partial transposition in the party A(B). Note that, for
2 ⊗ 2 and 2 ⊗ 3 systems, negative partial transposition and

hence nonzero L provides a necessary and sufficient condition
for guaranteeing entanglement [83]. Thus, in our case, since
all the two-site reduced density matrices have dimension
2 ⊗ 2, L is a faithful measure of entanglement.

Our analysis establishes that nearest-neighbor entangle-
ment shows some qualitative changes when a quench is per-
formed across a disorder to order transition, i.e., PM-I (II) →
AFM/CH phase. Specifically, in these cases, the dynamics of
L displays a distinctive collapse and revival feature. On the
other hand, if the final parameters of the quench correspond to
a disordered phase which is the same as the phase of the initial
state, L does not show any collapse or revival and simply
oscillates with decreasing amplitude, finally reaching a steady
value.

However, note that the above features are only general
trends and there exist several counterexamples to these pat-
terns. Further investigation reveals that the dynamics of L
shows a large overlap with the equilibrium phases and only
has a weak connection with DQPT. Hence, we infer that
bipartite entanglement is not an efficient detector of DQPT.

B. Effective definition of the generalized geometric
measure (GGM)

Before presenting the results, let us define the entangle-
ment measure that we use to study multipartite entanglement.
For a set of states which are nongenuinely multipartite entan-
gled, denoted by nG, the GGM of a state |ψ〉 is defined by

G(|ψ〉) = 1 − max |〈φ|ψ〉|2, |φ〉 ∈ nG, (15)

which, for an N-party pure state, reduces to

G(|ψ〉) = 1 − max
{
μmax

i1:rest, μ
max
i1i2:rest, . . . , μ

max
i1i2...iM :rest

∣∣
i1, i2, . . . , iM ∈ {1, 2, . . . Ñ}; ik �= il ; k, l ∈ {1, 2, . . . M}},

(16)

where Ñ = N/2 or (N − 1)/2 for even and odd lattice sizes,
respectively, and μmax denotes the maximal eigenvalue of the
reduced density matrices with rank equal to the number of
i’s present in the subscript of μ. Therefore, the evaluation of
GGM, G(|ψ〉), boils down to the evaluation of the maximum
of maximal eigenvalues for all reduced density matrices.

Although the evaluation of GGM has a clear prescription,
its computation requires finding the maximum eigenvalues
of (N

1 ) + (N
2 ) + · · · + (N

N/2) ∼ 2N number of matrices, which
is definitely cumbersome for large N . However, from finite
size analysis of the DATXY model with N = 6, 8, 10, and
12, we notice that for almost all times (except the initial
response time ∼ 2J

h̄ ) the maximal eigenvalue comes from
either the single-site or the nearest-neighbor two-site reduced
density matrices. Therefore, we can argue that even for sys-
tems with a large number of parties, the space consisting
of the eigenvalues of single-site and nearest-neighbor two-
site reduced density matrices remains the effective subspace
for computing the GGM. Furthermore, we can exploit the
translational invariance of the DATXY model to simplify
the scanning space even for single-site and two-site reduced
density matrices to just ρe, ρo, ρeo, and ρoe. Here ρe(o) denotes
the single-site (reduced) density matrix corresponding to even
and odd sites, respectively, and ρeo(oe) is the nearest-neighbor
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FIG. 4. Time variation of G after various quenches within and
across equilibrium phases. We observe distinctly high amounts of
fluctuations during the transient period of dynamics for specific re-
gions (corresponding to DQPT, see Fig. 3) of disorder to order (PM-I
to AFM and PM-I to CH) quenches and disorder to disorder (PM-I
to PM-II) quenches, irrespective of the size of quench. Apart from
these, other quenches show relatively lower amounts of fluctuations.
Both the axes are dimensionless.

two-site density matrix between even-odd (odd-even) sites.
Note that ρeo and ρoe have the same eigenvalues. Thus, in the
thermodynamic limit (N → ∞), the GGM can be effectively
computed as

G(|ψ〉) ≈ 1 − max
{
μmax

ρe
, μmax

ρo
, μmax

ρeo

}
. (17)

Note that even if in some situations the above argument does
not remain valid, G(|ψ〉) still remains a measure of entangle-
ment for multipartite states, providing an upper bound for the
GGM. Furthermore, it also remains an local operations and
classical communication (LOCC) monotone.

C. Advantages of multipartite entanglement
as a detector of DQPT

We find that multipartite entanglement, G, can capture
DQPT when the quench corresponds to an underlying EQPT
involving a disorder to order (PM-I/II → AFM/CH) transi-
tion or a disorder to disorder [PM-I(II) → PM-II(I)] transition.
In particular, for a quench starting from the disordered phase,
the dynamics of G displays a higher amount of oscillation for
a quench that leads to a DQPT compared to those which do
not start from such a phase (see Fig. 4).

For a quantitative treatment of the above observation, we
estimate the amount of fluctuations in the time dynamics of G
during the transient regime, by computing its time-averaged
standard deviation, 〈σG (t )〉, defined as

〈σG (t )〉 = h̄

Jτ

∫ Jτ
h̄

0
σG (t )dt, (18)

where σ 2
G (t ) = (G2(t ) − 〈G(t )〉)2, with G(t ) = G(|ψ (t )〉), and

|ψ (t )〉 = e−iĤ (1)t/h̄ |�0〉. Note that for a reasonable average,
τ should be taken to be large, but it should also be small

−3.0 −1.5 0.0 1.5 3.0
λ

−3.0

−1.5

0.0

1.5

3.0

λ

(a)

d = 0

0.00

0.05

0.10

0.15

−3.0 −1.5 0.0 1.5 3.0
λ

−3.0

−1.5

0.0

1.5

3.0

λ

(b)

d = 1.2

0.00

0.05

0.10

0.15

0.0 0.5 1.0 1.5
λ

0.0

0.5

1.0

1.5

d

(c)

λ = 0.5

0.00

0.05

0.10

0.15

FIG. 5. Variation of the time-averaged standard deviation
〈σG (t )〉, for quenches in the (λ1, λ2, d) space with initial choices
indicated by × as in Fig. 3. After the quench, we observe the
emergence of a specific region in the (λ1, λ2) space in panel (a) and
in the (λ1, d) space in panel (b), which are distinctly characterized by
high fluctuations, i.e., higher values of 〈σG (t )〉. This region possess
a high overlap with that depicted in Figs. 3(a), 3(b), and 3(f), which
correspond to DQPTs, obtained by analyzing nonanalyticities in the
rate function. This substantial overlap establishes multipartite entan-
glement as a good detector of DQPT. All the axes are dimensionless.

enough so that the system does not reach a steady state (i.e.,
τp < τ � τst, with τst being the time at which the system
enters a steady state and with τp being the approximate time
period, in units of J/h̄, of the oscillations), ensuring that
the average is computed in the transient regime even as the
effect of small variations in the oscillations are nullified. In
our case, we choose τ = 20 (with τst ∼ 50). We analyze the
variation of 〈σG (t )〉 scanning the parameter space (λ1, λ2, d)
of the DATXY model. It is evident from Figs. 5(a)–5(c)
[compare with Figs. 3(a), 3(b), and 3(f), respectively] that
the value of 〈σG (t )〉 is substantially larger for quenches that
correspond to a DQPT and is confirmed by a large overlap
of such regions with those detected by singularities in the rate
function, thereby establishing multipartite entanglement, G, as
a good detector of DQPT.

Despite the advantages offered by multipartite entangle-
ment, its DQPT detection capability is not ubiquitous. For
example, if one starts from an ordered phase, the dynamics
of G cannot detect DQPT. Therefore, the time variation of
multipartite entanglement considered here can indicate the
presence or absence of DQPTs only when the initial state
parameters correspond to a disordered phase. A plausible
explanation of this asymmetry can be provided by looking at
the equilibrium GGM phase portrait which reveals that the
ordered phases possess higher values of the GGM compared
to the disordered phases (see Fig. 6). We find the GGM to be a
“good” detector when the initial state possesses a low amount

d = 0.4 d = 1.2
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FIG. 6. The GGM phase portrait of the ground state of the
DATXY model for (a) d = 0.5 and (b) d = 1.2, with respect to the
uniform and alternate fields λ1 and λ2. The anisotropy parameter γ

is fixed to 0.8. All axes are dimensionless.
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of GGM, i.e., when the quench starts from a disordered phase.
Note that there is no restriction on the GGM content of the
ground state of the driving Hamiltonian. We want to stress
here that we do not intend to replace the usual markers of
many-body phases with the GGM, but rather to study the
relationship of entanglement with DQPT and highlight that,
for some quenches, the fluctuations in the GGM can actually
indicate DQPT.

V. CONCLUSION

Dynamics of many-body systems reveal qualitative differ-
ences depending on the initial and quenched values of system
parameters—known as dynamical quantum phase transition
(DQPT). In this work, the analysis of DQPT is carried
out for the DATXY (alternating field transverse XY model
with Dzyaloshinskii-Moriya interaction) model after a sudden
quench of system parameters. We analytically found that,
in contradistinction to Ising systems, these systems possess
nonuniformly spaced critical times (as indicated by the zeros
of the Loschmidt echo) for the quenches which correspond
to a DQPT. We also proposed a physical quantity based on
multipartite entanglement as a good detector of DQPT.

The theory of DQPT, in essence, presents a quantitative
formalism to understand the qualitative differences that occur
during the dynamics of many-body systems after quenching
of system parameters. Being intrinsically a feature of the
transient regime, the analysis of DQPT is also of practical im-
portance since one does not have to wait until equilibration to
observe the relevant physics. Recent experimental realization
of DQPT in various physical systems further reinforces the
significance of such pragmatic studies.
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APPENDIX: CALCULATION OF THE RATE FUNCTION

The Loschmidt echo L(t ) is then described by the proba-
bility associated with this amplitude, i.e., L(t ) = |G(t )|2. The
rate function associated with L(t ), which is analogous to the
free energy (per lattice-site) in thermal phase transitions, can
be defined as

F (t ) = − lim
N→∞

1

N
log L(t )

= − lim
N→∞

1

N

N/4∑
p=1

log |Gp(t )|2. (A1)

To deduce the analytical expressions of the Loschmidt
amplitude and the rate function for a general quench
from g0 ≡ {λ1(t = 0), λ2(t = 0), d (t = 0)} to g1 ≡ {λ1(t >

0), λ2(t > 0), d (t > 0)}, we introduce the fermionic vector
operator Âp = [âp

b̂p
], such that we can write Ĥp as Ĥp =

J[Â†T
p ÂT

−p]H̃p[ Âp

Â†
−p

], with

H̃p =
[

(cos φp + d sin φp)σ̂ x + � −iγ sin φpσ̂
x

iγ sin φpσ̂
x −(cos φp − d sin φp)σ̂ x − �

]
, (A2)

where � = Diag{λ1 − λ2, λ1 + λ2}. To diagonalize H̃p in
Eq. (A2), we can perform the Bogoliubov transformation,

[
Âp

Â†
−p

]
= Mp

[
	̂p

	̂
†
−p

]
=

[
Up −iVp

−iV ∗
p U ∗

p

][
	̂p

	̂
†
−p

]
, (A3)

with 	̂p = [
η̂a

p

η̂b
p
], such that Ĥp is diagonal in the Bogoluibov

basis {η̂a
p

†, η̂b
p

†
, η̂a

−p, η̂
b
−p}. Up and Vp are Bogoliubov coef-

ficients (matrices) that diagonalize Ĥp and are functions of
g ≡ {λ1, λ2, d}. The fermionic algebra of âp, b̂p, η̂a

p, and η̂b
p

operators guarantee that the Bogoluibov matrix Mp is unitary
in nature, i.e., M−1

p = M†
p.

In order to calculate 〈�0| e−iH (1)t/h̄ |�0〉, we need to ex-
press |�0〉 in terms of Bogoluibov operators, {	̂p(g1)}, that
diagonalize Ĥ (1), where Ĥ (i) = Ĥ (gi ), with g0 representing
the parameters of the Hamiltonian whose ground state is the
initial state, while g1 defines the parameters of the driving
Hamiltonian. If the operators {	̂p(g0)} diagonalize the initial
Hamiltonian Ĥ (0), using Eq. (6), we arrive at the following

relation:

[
	̂p(g0)

	̂
†
−p(g0)

]
= M−1

p (g0)Mp(g1)

[
	̂p(g1)

	̂
†
−p(g1)

]
,

=
[ Up(g0, g1) −iVp(g0, g1)
−iV∗

p (g0, g1) U∗
p (g0, g1)

][
	̂p(g1)
	̂

†
−p(g1)

]
,

(A4)

with

Up(g0, g1) = U †
p (g0)Up(g1) + V T

p (g0)V ∗
p (g1),

Vp(g0, g1) = U †
p (g0)Vp(g1) − V T

p (g0)U ∗
p (g1). (A5)

Calculation of Up and Vp matrices entirely depends on the
diagonalization of the 4 × 4 matrices H̃p(g0) and H̃p(g1) in
Eq. (A2). Once the matrices Up and Vp are obtained, we can
write the initial state |�0〉 as a boundary state composed of
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zero-momentum modes of Ĥ (1), which is given by

|�0〉 = N−1 exp

⎡
⎣i

N/4∑
p=1

	̂†T
p

(
U−1

p Vp
)
	̂

†
−p

⎤
⎦|0〉, (A6)

where |0〉 is the ground state of Ĥ (1), N is the normalization
constant, and T denotes the transpose of the corresponding
operators. If we now assume that the operators {	̂p(g1)} can
diagonalize the Hamiltonian Ĥ (1) in the way given by

Ĥ (1)
p = J

[
	̂†T

p (g1) 	̂T
−p(g1)

]
⎡
⎢⎢⎢⎣

h̄ω1
p 0 0 0

0 h̄ω2
p 0 0

0 0 h̄ω3
p 0

0 0 0 h̄ω4
p

⎤
⎥⎥⎥⎦

[
	̂p(g1)

	̂
†
−p(g1)

]
, (A7)

with h̄ωk
p (k = 1, 2, 3, 4) being the eigenvalues, then the Loschmidt amplitude, G(t ) = 〈�0| e−iĤ (1)t/h̄ |�0〉, reads as

G(t ) = ei Jt
h̄

∑N/4
p=1(ω3

p+ω4
p)

N 2
〈0| exp

⎡
⎣ N/4∑

p=1

	̂T
−p(g1)Mp	̂p(g1)

⎤
⎦ exp

⎡
⎣ N/4∑

p=1

	̂†T
p (g1)Np	̂

†
−p(g1)

⎤
⎦|0〉, (A8)

where

Mp =
[−iT p∗

11 −iT p∗
21

−iT p∗
12 −iT p∗

22

]
,

Np =
[

ie−i Jt
h̄ (ω1

p−ω3
p)T p

11 ie−i Jt
h̄ (ω1

p−ω4
p)T p

12

ie−i Jt
h̄ (ω2

p−ω3
p)T p

21 ie−i Jt
h̄ (ω2

p−ω4
pT p

22

]
, (A9)

with T p
i j = (U−1

p Vp)i j . Note that the ωk
p’s are eigenvalues of the matrix H̃ (1)

p , which is written as Ĥ (1)
p = Â†

pH̃ (1)
p Âp, where Âp is

the column vector (âp, b̂p, â†
−p, b̂†

−p), and the 4 × 4 matrix H̃ (1)
p is given as

H̃ (1)
p = J

⎡
⎢⎢⎣

(λ1 − λ2) (cos φp + d sin φp) 0 −iγ sin φp

(cos φp + d sin φp) (λ1 + λ2) −iγ sin φp 0
0 iγ sin φp −(λ1 − λ2) −(cos φp − d sin φp)

iγ sin φp 0 −(cos φp − d sin φp) −(λ1 + λ2)

⎤
⎥⎥⎦, (A10)

with φp ∈ [−π/2, π/2]. Using Eqs. (A8) and (A9), and the prescription developed in Ref. [85], we get the Loschmidt amplitude
per momentum mode for the DATXY model as

Gp(t ) = ei Jt
h̄ (ω3

p+ω4
p )

× 1 + e−i Jt
h̄ (ω1

p−ω3
p )∣∣T p

11

∣∣2 + e−i Jt
h̄ (ω2

p−ω4
p )∣∣T p

22

∣∣2 + e−i Jt
h̄ (ω1

p−ω4
p )∣∣T p

12

∣∣2 + e−i Jt
h̄ (ω2

p−ω3
p )∣∣T p

21

∣∣2 + e−i Jt
h̄ (ω1

k +ω2
k −ω3

k −ω4
k )

∣∣T p
11T

p
22 − T p

12T
p

21

∣∣2

1 + ∣∣T p
11

∣∣2 + ∣∣T p
22

∣∣2 + ∣∣T p
12

∣∣2 + ∣∣T p
21

∣∣2 + ∣∣T p
11T

p
22 − T p

12T
p

21

∣∣2 , (A11)

such that G(t ) = ∏N/4
p=1 Gp(t ). Finally, we get the rate function

associated with the quench from parameters g0 to g1, in the
thermodynamic limit, as

F (t ) = −
∫ π

2

0

dφp

π
log |Gp(t )|. (A12)

Now, the solutions of |Gp(t )| = 0 correspond to the critical
times, denoted by t∗. Clearly, nonanalyticity arises in F (t ),

if we can find real solutions (φ∗
p, t∗) of the transcendental

equation

|Gp(t )| = 0, (A13)

which describes a DQPT with the critical time t∗. As men-
tioned before, the matrix T and the eigenvalues {ωk

p; k =
1, 2, 3, 4} can be computed easily by diagonalizing 4 × 4
matrices, H̃p(g0) and H̃p(g1), which, in turn, allows us to
obtain Gp(t ) and thus the rate function F (t ).
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