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Atomistic simulation of phonon and magnon thermal transport
across the ferromagnetic-paramagnetic transition
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A temperature-dependent approach involving Green-Kubo equilibrium atomic and spin dynamics (GKEASD)
is reported to assess phonon and magnon thermal transport processes accounting for phonon-magnon interac-
tions. Using body-centered cubic (BCC) iron as a case study, GKEASD successfully reproduces its characteristic
temperature-dependent spin and lattice thermal conductivities. The nonelectronic thermal conductivity, i.e., the
sum of phonon and magnon thermal conductivities, calculated using GKEASD for BCC Fe, agrees well with
experimental measurements. Spectral energy analysis reveals that high-frequency phonon-magnon scattering
rates are one order of magnitude larger than those at low frequencies due to energy scattering conservation rules
and high densities of states. Higher temperatures further accentuate this phenomenon. This new framework fills
existing gaps in simulating thermal transport across the ferro- to paramagnetic transition. Future application of
this methodology to phonon- and magnon-dominant insulators and semiconductors will enhance understanding
of emerging thermoelectric, spin caloritronic, and superconducting materials.
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I. INTRODUCTION

A deeper understanding of heat transfer considering in-
teractions among different temperature-induced excitations in
crystals, e.g., phonons, electrons, and spins, is of great im-
portance in many disciplines, including thermoelectric [1-3],
spin caloritronic [4], and superconducting [5] materials. Un-
like phonons and electrons, whose thermal transport proper-
ties have been well studied, the heat transport behavior of
magnons—collective excitations of magnetic spins—is poorly
understood at the fundamental level, and little is known about
the influence of phonon-magnon and magnon-magnon scat-
tering on heat transfer. For example, the experimental lattice
thermal conductivities of magnetic materials such as body-
centered cubic (BCC) iron [6,7], face-centered cubic (FCC)
nickel [8], YMnOj3, LuMnOs, and ScMnO [9], as well as CrN
[10,11], show significantly different temperature dependences
near the Curie temperature (7;.), compared to the typical 1/T
relation at high temperatures when only phonons are con-
sidered [12-14]. The magnetic configuration changes from
a ferromagnetic state at low temperature, in which spins are
aligned to a paramagnetic state above the Curie temperature,
in which the spin configuration is disordered [15].

Heat transport in crystals is often predicted using either
molecular dynamics (MD) or the Boltzmann transport equa-
tion(BTE) [16]. Molecular dynamics approaches typically
employ either equilibrium MD (EMD) with the Green-Kubo
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formula [17] or nonequilibrium MD (NEMD) together with
Fourier’s law [18]. In EMD, the heat current fluctuation is
first calculated using atomistic information, i.e., atomic ve-
locity, displacement, and force. In NEMD, the heat current
is computed from these quantities instead. Thermal conduc-
tivity is then obtained based on statistical principles and the
fluctuation-dissipation theorem in EMD [17] or Fourier’s law
of heat conduction in NEMD. In the Boltzmann transport
equation approach, thermal conductivity is computed via
phonon information, i.e., phonon volumetric heat capacity,
phonon group velocity, and phonon relaxation time, which
are calculated using force constants as the input quantities.
The force constants are calculated using finite displacement
methods [19,20]. To model the thermal transport properties of
magnetic materials, temperature-dependent lattice and mag-
netic excitations must be taken into consideration, for exam-
ple when computing heat current or force constants to find
thermal conductivity. To date, theoretical studies have sought
to develop explanations for the mutual interaction of phonons
and magnons [15,21-24]. However, most such studies provide
only partial treatments based on thermodynamic properties
[15,25], average phonon-magnon relaxation times [21], and
phonon-magnon temperature gradients [23]. A robust frame-
work to compute thermal transport properties such as thermal
conductivity and modal scattering rates in magnetic materials
is still lacking.

In this paper, a temperature-dependent method with lattice
and spin heat current as inputs—Green-Kubo equilibrium
atomic and spin dynamics (GKEASD)—based on linear re-
sponse theory [17] and spin-lattice dynamics [26,27] is re-
ported to calculate the thermal transport properties of phonons
and magnons in magnetic materials. GKEASD employs a
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combined lattice and spin heat current derived using the en-
ergy exchange rate between phonons and magnons as an input,
and phonon-phonon scattering, phonon-magnon scattering,
and magnon-magnon scattering are inherently included. As a
proof of concept, our study focuses on a model system con-
sisting of a simple transition-metal ferromagnet, BCC iron,
with a Curie temperature of 1043 K. Using this methodol-
ogy, we successfully reproduce the characteristic temperature-
dependent nonelectronic thermal conductivity observed in
experiments for magnetic materials [6—10,28]. Modal level
phonon-phonon, magnon-magnon, and phonon-magnon scat-
tering rates are then quantified using spectral energy density
analysis. The agreement between theoretical predictions and
experimental measurements establishes the reliability of the
methodology.

II. COMPUTATIONAL METHODS

A. Spin lattice dynamics

A recently developed [26,27] symplectic and scalable al-
gorithm for spin lattice dynamics embedded in the large-scale
atomic/molecular massively parallel simulator (LAMMPS)
[29] is applied to describe the atomic spins in magnetic
crystals from the ferromagnetic limit to the paramagnetic limit
(Fig. 1). Compared to classical molecular dynamics, this new
algorithm augments the phase space by adding a classical spin
vector § to each magnetic atom i, in addition to its position 7
and momentum p. The motion equations of atoms and spins
can be written as

dr;  pi
_— = — 1
dt m; M
dpi  ~~[  dV(FD) . dI(F)
e z — 5 -5 18 2
dt , |: d|7;jl * d|7| SoSjer @
i#j
ds; -
— = fi X5, 3
=X 3)

where €;; is the unit vector along 7;;, f, is the analog of a
spin force applied on the spin, and V is the potential energy.
J(I7;;]) is the magnetic coupling exchange constant, which
originates from two main contributions: (i) direct ferromag-

FM limit (Fully ordered) )
| Ferromagnetic

netic exchange between the orbitals localized on centers of
ions i and j and (ii) spin and charge polarizations effects
carried by nonmagnetic orbitals.

The interactions between spins is modeled with the Bethe-
Slater curve [30]

i\ i\t
J(|r,j|)=4a<T> (1_)/(_8 ))6 B ®(R_|rlj|)y
4

where the fitting parameters «, y, and § are 25.498 meV,
0.281, and 1.999 A, respectively, based on the J values for
BCC iron [31]. ©(R — r;;) is the Heaviside step function, and
R is the cutoff radius, which is 4 A in our study.

Once the spin vector § is computed in our simulations,
the order of the spin configuration in our system may be
calculated via

- [E ) ) o

a=x,y,2 i =X, 9.2 i

where Pyger = 1 in the ferromagnetic limit and Poger = 0 in
the paramagnetic limit. Small values of P, indicate that
spins in the system are predominantly disordered, which leads
to broken periodicity.

Spin dynamics simulations without lattice vibrations, i.e.,
with fixed atomic position, are implemented in a NV T ensem-
ble (constant number of particles, volume, and temperature)
for 200 ps to reach the target temperature, and then a NVE
ensemble (constant number of particles, volume, and energy)
is run for 200 ps to compute the heat flux associated with
the spins. In the NVT simulations, the thermal fluctuations
in the magnetic system are described following the Langevin
approach [27,32,33].

For a system with lattice vibrations, a NVT simulation
for 200 ps is first run to reach the target temperature. Then,
a NVE ensemble for 200 ps is used to obtain the heat flux
fluctuation of the magnons. A time step of 0.2 fs is used
in all simulations. The spin potential used in our study is
fitted using first-principles calculations (details can be found
in Ref. [27]). The magnon dispersion generated from this
potential fits experiments well (see details below). Mechanical
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FIG. 1. Magnetic state of the system with no external magnetic field as a function of temperature. The arrows indicate notional spin

directions in the system.
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interactions among atoms are computed using the embedded-
atom method potential (EAM) [34], which is validated via
first-principles calculations. In this paper, all first-principles
simulations are implemented via Vienna ab initio simulation
package (VASP) based on density functional theory. The
pseudopotential with a generalized gradient approximation
parameterized by Perdew-Burke-Ernzerhof theory [35] for the
exchange-correlation functional is used to depict the system.
Periodic boundary conditions are applied in the three direc-
tions. A plane wave basis with a cutoff energy of 520 eV
is used in all simulations. The Monkhorst-Pack scheme is
used to generate 8 x 8 x 8 and 2 x 2 x 2 k-point meshes
for the primitive cell and 6 x 6 x 6 for the supercell, re-
spectively. Before performing electrostatic potential or inter-
atomic force constant calculations, the atomic structure and
cell size are fully relaxed until the energy difference and
the Hellman-Feynman force converge to within 1 x 10~eV
and 1 x 1073 eV/A, respectively. The 6 x 6 x 6 supercell
with an energy criterion of 1 x 107 eV in the self consistent
calculation is used to extract second and third order force
constants.

B. Heat fluxes and thermal conductivity

In this section, we present the definition of the heat currents
due to lattice vibrations and spin dynamics and the corre-
sponding computation of thermal conductivity. The energy
E of magnetic crystals must account for terms coupling the
magnetic spins (Egin) to the lattice (Eyineic and Epotential)
through the following expression [27]:

E = Exinetic + Epotential + Espin
I R
Z n jzl V-

in which 7, p, and § are the position, momentum, and spin
vectors of the atoms, respectively; the negative sign on the
last term indicates that the ground state energy of the system
considering spin becomes lower. Phonons and magnons are
coupled in Eq. (6) via atomistic positions, i.e., 7;;.

The heat flux due to lattice vibrations takes the form [36]:

N
> JFDE 5 (6)

i i, j, i#j
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lattice v i o
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where ¢; and v; are the energy and the velocity of atom i,
respectively. F, ; represents the force between two atoms; V
and A are the volume and the cross-sectional area of the
system, respectively.

The heat flux associated with spin is expressed as

spin

o _1dET" in(s. &0y g . 95
swind) = 4 g AT P\ g Ty
LdJ(7D) .
+ZTjsi'sj7 ®)

0 1000

2000 3000
Index of atom j

4000 5000

FIG. 2. Relative displacement between atoms i and ;.

where |7;;] is the distance between atoms i and j:
Fij =T — 7
(7 + @] = [} + 2,0)]
7+ g (1) )

in which 7° and i are the equilibrium position and displace-
ment of atoms, respectively. Since |??j| > il;;| (Fig. 2), we
assume that 7;; is time independent. Therefore, Eq. (9) can be
rewritten in the form

1dEispin
Q”‘ R J
spin,ij A dt
J(|?lj|) dSJ N dE,
~ (s ). 10
A s dt+s dt (19)

At the same time, if we assume that atoms i and j are
separated by an imaginary interface, the heat flux across the
interface can be expressed as

1
Q;/pjn = ﬁ Z Z Q//spin.ij

iel ieR
1 N N dﬁj N dS,
O )
ieL ieR
1 Lo ds;p
=12 2 JUh—t S (1)
iel ieR

where L and R indicate left and right sides of the imaginary
interface, respectively. The factor 1/2 addresses the ergodicity
of the system. In addition, for spin lattice dynamics systems,

ds, 1 0Emag
= = 5 12
= fi x 5o, X S (12)

in which f; is the analog of a force applied on the spin. Finally,
the heat flux across the imaginary interface can be written as

Opin = ZZJ(M,D( ) 5 (13)

ielL ieR
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FIG. 3. (a) Convergence test for GKESAD in BCC iron; N is the number of unit cells along one direction. Computations are performed with
and without phonon-magnon scattering (PMS). (b) Thermal conductivity of phonons and magnons in BCC iron calculated using GKEASD at
300 K. (c) Lattice constant as a function of temperature with and without spin effects.

Based on linear response theory [17], Egs. (7) and (13),
the thermal conductivity of a magnetic system can be divided
into contributions from lattice vibrations, kphonon, Spin-related
fluctuations, kmagnon, and a term resulting from lattice-spin
interactions, Kcross:

K = Kphonon + Kmagnon + Keross

Vv
/ [ Qe ® - Oftiec(0)

k, T2
phonon

Q) - QL (0) + 2075 0) - O} O) }ln

magnon Cross

(14)

where k;, is the Boltzmann constant, and T is the tempera-
ture of the system. We note that the subscript xcoss 1S nOt
the result of phonon-magnon scattering but of the cross-
correlation between the phonon and magnon heat fluxes.
Physically, the cross term represents the interaction between
heat carried by phonons and heat carried by magnons that can
alter pure phonon and spin heat flow. The effect of magnon
scattering on phonon transport is elucidated by calculating the
phonon thermal conductivity separately using (E = Eyinetic +
Epolential + Espin) and (E = Exinetic + Epotemial) and Compaﬂng
the two values. Similarly, the influence of phonon scattering
on magnon thermal conductivity is assessed by computing the
magnon thermal conductivity using (E = Eyineic + Epotential +
Eqin) and (E = Eg,in) and comparing the two values.

The heat current defined above is used to compute the lat-
tice and magnon thermal conductivity using the computational
method described in Sec. II B. For each case, 30 independent
runs are performed to obtain a stable average thermal conduc-
tivity. The correlation time considered in our simulations is
16 ps, which is long enough to obtain a converged and steady
thermal conductivity [Fig. 3(a)]. An 8 x 8 x 8 unit cell box is
used in all equilibrium molecular dynamics simulations. We
have verified that there are no size effects in these simulations
[Fig. 3(b)]. Lattice expansion due to temperature and spin is
considered in our results [Fig. 3(c)].

For the magnon thermal conductivity computations, 30
independent runs were used to obtain a converged thermal
conductivity. A domain of 8 x 8 x 8 unit cells was used,
and the correlation time was 16 ps, which is long enough
to obtain a converged and size-independent magnon thermal
conductivity [Fig. 3(b)].

C. Spectrally resolved transport

In this section, we describe how spectral energy density
is computed in order to obtain spectrally-resolved details of
thermal transport. The atomistic velocity and spin change
frequency used for the spectral energy density calculations are
output every 4 fs over a total sampling time of 80 ps. All the
reduced results are averaged across three runs and using two
time intervals of 40 ps each. A Gauss window of 0.1 THz is
used to filter noise in the original data.

The eigenvectors and frequencies of the phonon mode
(7, v) and magnon mode (k) used in our simulations are
computed by solving the phonon dynamical matrix equation

(G, v)EG, v) = ©*(G, v)D(G) (15)
and the magnon dynamical matrix equation
w(k)ék) = D(k)e(k), (16)

where D(§) is a 3N, x 3N}, lattice dynamical matrix

1
D@ = — D K, DexpliglF() —FO))  (17)
1

and D(K)isa 1l x N, spin dynamical vector
D) = 1 D JO, -1 GK[F() —FO)D],  (18)
== , - [1 —ex ) —r s
h& Pl

respectively. Here, K is the force constant matrix and J is the
magnetic exchange constant matrix. N, are the basis atoms
in the unit cell. We note that Eq. (18) is derived assuming
that the material is ferromagnetic, in which all spins have the
same magnitude in one direction (only under this assumption
can the spin motion equation be reduced to Eq. (16) [37]). The
volumetric heat capacity Cy and group velocity v, of phonons
and magnons are shown in Fig. 4. Together with relaxation
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FIG. 4. (a) Spectral volumetric heat capacity of phonons and magnons and (b) group velocity of phonons and magnons. Phonons and
magnons are both bosons, therefore phonons and magnons with the same frequency have the same spectral volumetric heat capacity.

time 7, the phonon or magnon thermal conductivity kph or mag
can be obtained via

2
E vagr,

@G v) or ()

19)

Kph or mag =

where t = 1/2A. The linewidth A, which is half the scat-
tering rate I', can be calculated via spectral energy density
analysis as:

_ Il’
C@—w,)/AP+ 1

|® (20)

where 1, and w,, are the magnitude and frequency at the peak
center, respectively. @ is the spectral energy, which takes the

following form for phonons [38,39]:

1 /[0 Z
mjexplig - F(jl) — iwt]-
N2ty Jo il !

e*(j, 4, v)v(jl, t)dr.

(g, v) ~
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For magnons, the expression becomes [40]:

o
/ E explik - 7(jl) — iowt] -
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Jjl

ds(jl, t)
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dt

h
v 2mty

Ok, )~

-

e (j, k. ) (22)

where ¢ is the mode eigenvector of a phonon or magnon, and
1o is the integration limit.

[——First Principles ——MD ® Exp. [32] K 'mesh along one direction
14 15 16 17 18
10 16 1000 b
(a) [ | ' v 2
| I I E E
1 = =
8t - = S
N u ! ! > 81 g 950
|:E -: [ : g g
> 6} LI o S S S
%) . ! I 5 st
c | A\ c = 2 L i L] . LI
S I N 8 4 . § *°1
o 4r | | Wt ® B EMD (No PMS) 9 ® 1504
w - ! ! ! % O BTE-classical potential (No PMS § | |
: ' ' £ 2] BTE-First Principles (No PMS) g 100
2 | | | ® === 1/T Fitting ©
1 | [ 9 e 1/T Fitting ks
1 | I = £ 504
- - 3 4m 5 © §:>
0 M 115 ; ; o=t
G H P G N 300 600 900 1200 1 2 3 4 5

Temperature (K)

Number of neighbour atoms

FIG. 5. (a) Phonon dispersion from molecular dynamics and first-principles calculations. The black dots are experimental values [41].
(b)Temperature-dependent lattice thermal conductivity of BCC iron without the influence of spin [no phonon-magnon scattering (PMS)] at
temperatures ranging from 300 K to 1100 K with an interval of 100 K, and for 1170 K. Also shown are computations using the phonon BTE
using both first principles force constants and those using the classical (EAM) potential. (c) Convergence test for Boltzmann transport equation
calculations, N is the number of the neighbor and K is the mesh of the wave vector along one direction.
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FIG. 6. Heat flux of (a) phonons and (b) magnons.

III. VALIDATION AND RESULTS
A. Suitability of classical mechanical potential

To assess the accuracy of the potential, we compare the
phonon dispersion [Fig. 5(a)] as well as lattice thermal
conductivity [Fig. 5(b)] from equilibrium molecular dynam-
ics and ab initio calculations in the absence of spin and
phonon-magnon scattering (PMS). Both phonon dispersion
and lattice thermal conductivity computed using the clas-
sical EAM potential agree with those calculated using the
first-principles approach. The thermal conductivity calculated
using the Boltzmann transport equation (BTE) is solved by
expanding the scattering term in its first-order perturbation n'.
Without considering impurities and boundaries, the linearized
Boltzmann transport equation may be recast as [20]

@ )377(@, V)
—c(g, v)——=
q aT
_ @v) | L
= > [T, @ (g T Mgy = Migram)
G
1 o o
@GV, GV 1 1 1
+ 5T (nigy = Py = M) (23)

where (g, v) is the phonon mode with wave vector g and
branch v. ¢ and T are the specific heat capacity and system
temperature, respectively. n =7 + n' is the excited phonon
population distribution that can be solved using Eq. (23). 71
is the equilibrium phonon distribution corresponding to the
Bose-Einstein distribution function. I" is the scattering rate
at equilibrium of a three-phonon scattering process in which
two phonons combine to generate a third phonon or one
phonon splits into two phonons. The scattering rate matrix
can be obtained using Fermi’s golden rule. The lattice thermal
conductivity may be found by computing the heat flux from
the computed phonon distribution and using Fourier’s law.
The wave vector mesh density is varied from 14 x 14 x 14
to 17 x 17 x 17, and the neighbor cutoffs range from first
to fifth. The latter are used to compute the third order force
constant which are key parameters to obtain the lattice thermal

conductivity in Boltzmann transport equation. Based on these
variations, a wave vector mesh of 17 x 17 x 17 with a fifth
neighbor cutoff was chosen in our all Boltzmann transport
equation calculations to produce a converged lattice thermal
conductivity [Fig. 5(c)]. The force constants in our simula-
tions are calculated using both ab initio (first principles) and
the EAM (classical potential), the corresponding BTE results
are plotted in [Fig. 5(b)]. Our EMD results match both sets of
BTE results well.

B. Nonelectronic thermal conductivity

From Egs. (7) and (13), the net heat flux of lattice vibra-
tions (Q)7;..) and spin fluctuations (Q;/P"in) in EMD simula-
tions should be zero, which is validated by our numerical
results [Figs. 6(a) and 6(b)]. Furthermore, following linear
response theory, the thermal conductivity of the two heat
carriers should converge with increasing correlation time
[Eq. (14)], and this is also reflected in our simulations
[Fig. 3(b)].

By considering the contributions of both phonons and
magnons, the predicted total thermal conductivity is in broad
agreement with experimental measurements [6,7] over the
temperature range from 300 K to 1200 K [Fig. 7(a)] (the
electrical thermal conductivity was subtracted from the ex-
perimental measurements). We note that the two experimental
results [6,7] in Fig. 7(a) are themselves quite different from
each other, and the disagreement between them is larger than
that caused by phonon-magnon scattering in the simulations.
Thus, they cannot definitively establish the accuracy of our
phonon-magnon scattering models. A number of reasons may
account for these differences: (i) loss of heat from the speci-
men due to conduction through leads and (ii) impurities in the
sample, which in Ref. [6] may be as high as 1%.

An important feature in Fig. 7(a) is the sharp fall in
thermal conductivity reported in the experimental data of
Ref. [7] near the Curie temperature (around 1043 K) due
to the ferromagnetic-to-paramagnetic transition. Previously
published atomic spin dynamics or spin lattice dynamics
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FIG. 7. (a) Nonelectronic thermal conductivity for invariant magnetic exchange coefficient J and (b) adjusted total thermal conductivity
with a temperature-dependent magnetic exchange constant. The equilibrium molecular dynamics results are averaged over 30 independent
runs. The experimental results are the so-called “lattice thermal conductivities” in Refs. [6,7]. Here, the transition temperature for J is assumed
to be 1043 K rather than the Curie temperature of 1200 K in order to better match the experimental data from Ref. [7]. (¢) Thermal conductivity
of phonons and magnons with and without phonon-magnon scattering (PMS). In (b) and (c) J is assumed to vary as J = J, for T < T, and

J =0.1Jy for T >= T, with J, calculated using Eq. (4).

simulations have been known to smooth the ferromagnetic-
to-paramagnetic phase transition near the Curie tempera-
ture [42,43] [see Power With the original J in Fig. 7(a)].
One explanation is that the simulation of atomic spins is
performed within a classical framework and ignores quan-
tum effects [43,44]. However, as discussed below and well
established in Ref. [44], quantum effects can be ignored
for phonon and magnon thermal transport properties for
BCC iron in the temperature range considered here. An-
other explanation for the transition is that the value of
the magnetic exchange parameter J varies as a function of
temperature [42,45].

Our EMD simulations (black and blue symbols) in
Fig. 7(a) use a single, temperature-invariant value of J and
treat the spins as classical, and therefore the results do not
exhibit the experimentally observed sharp fall in thermal
conductivity. To explore this issue further, an additional set
of computations was performed [Fig. 7(b)] wherein the value
of J varies with temperature. Here, we adjust J to make
sure the spin in the system in the paramagnetic state is fully
disordered because J is the only parameter that determines
the spin configuration in the system. We assume that J is
constant when T < T,., while J is one tenth of the low
temperature value when T > T,. Thus, Pyqger becomes zero
when T > T, [Fig. 7(b)], indicating that the spin configura-
tion in the system is fully disordered (i.e., the paramagnetic
limit). Consequently, the nonelectronic thermal conductivity
drops sharply around the Curie temperature due to the de-
crease in magnon thermal conductivity [Fig. 7(c)], consistent
with the experimental observations [6,7]. We also calculate
thermal conductivity at a paramagnetic state for which J
is one fourth of the original J in the paramagnetic state,
and for which P4 is almost O, the corresponding values
are 3.44 W/mK at 1000 K, 3.35 W/mK at 1100 K, and
3.13 W/mK at 1170 K. At the same time, phonon-magnon
scattering does not exhibit a strong effect on thermal trans-
port in BCC iron [Fig. 7(a)] because the values of both the
phonon and the magnon thermal conductivities are relatively

small, i.e., phonon-phonon scattering and magnon-magnon
scattering are the dominant scattering mechanisms in such
materials.

C. Phonon-magnon scattering (PMS) process

To further understand the temperature behavior of thermal
conductivity, mode-level phonon and magnon scattering rates
have been calculated at three temperatures, 300 K, 700 K,
and 1100 K, by spectral energy density analysis. Using
Matthiessen’s rule, phonon-magnon (I .0 magnons 1 UNits Of
1/ps) and magnon-phonon (I" ) scattering rates can
be calculated via:

thonon—magnon = Z F[(Ej, v); (]_év w)l = F;ﬁ:;n
(D)

magnon-phonon

no magnon
thonon

(24)

__ mphonon __ 1 no phonon
- 1_‘magnon 1-‘magnon

l—‘magnon—phonon = Z I'l(g, v); (Ea w)]
(g.v)

(25)

where the superscripts magnon and no magnon indicate that
the lattice vibrates with and without spins in the system,
respectively, and vice versa for phonon and no phonon.

First, the phonon (magnon) scattering rate of the same
system with (without) considering the effects of magnons
(phonons) was calculated based on spectral energy density.
For phonons, our results indicate that [Fig. 8(a)] the scattering
rate in the low-frequency region changes little with the intro-
duction of spin. Low-frequency phonons are known to be the
main contributors to thermal conductivity at low temperatures
whereas high-frequency phonons (i.e., short mean free path
phonons) are important for lattice thermal conductivity at
high temperatures [46]. We explain why the lattice thermal
conductivity considering spin is similar to that without it at
low temperatures [see Fig. 9(a)]. For magnons [Fig. 8(b)],
the scattering rates for the systems with and without lattice
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FIG. 8. (a) Phonon and (b) magnon scattering rate with and without considering phonon-magnon scattering at 300 K. The corresponding
(c) phonon and (d) magnon mean free paths. PMS stands for the phonon-magnon scattering.

vibrations are similar in this regime (below 50 THz), which
indicates that the influence of phonon-magnon scattering
on magnon transport in the low-frequency region is not
important. On the other hand, in the high-frequency regime
(above 50 THz), magnons can be strongly scattered by
phonons.

From the phonon-magnon scattering results [Fig. 9(a)],
we observe a general tendency that high-frequency phonons
(w larger than 4.3 THz) are scattered by magnons more
strongly than low-frequency phonons because the magnon
energy is much larger than the phonon energy [Fig. 9(c)]. For
phonon-dominant magnetic materials in which the thermal
conductivity is mainly due to phonons, magnons may scat-

ter phonons [47,48] through phonon emission or absorption,
hiw(k', W) = ho(g, v)+ ho(k, w). Referring to Fig. 9(c),
and considering a magnon of energy fhw, scattered by a
magnon of energy fiwg, a high-frequency phonon would have
a greater probability of involvement in a phonon-magnon
scattering process than a low-frequency phonon. For instance,
only two channels exist for the magnon 7Zws to be scat-
tered to the magnon hwp when the phonon energy is v =
12.41 meV (w = 3 THz), whereas the number of channels
for the magnon /iw, to be scattered to the magnon hwc is
four when the phonon energy is 37.6 meV (w = 9.1 THz,
the highest phonon frequency). From the magnon disper-
sion curve, the frequency changes for the small (P1-P2) and

— Magnon m Exp. [41]
— Phonon = Exp. [49]
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FIG. 9. (a) Computed phonon-magnon and (d) magnon-phonon scattering rates based on Matthiessen’s rule.
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large peaks (P2-P3) are 4.3 and 3.6 THz, respectively; there-
fore, phonons (magnons) above 4.3 (68) THz have a much
greater chance to be involved in phonon-magnon scattering
processes.

Another reason that high-frequency phonons are preferen-
tially involved in phonon-magnon scattering processes is the
high density of states of phonons in the high-frequency region
[Fig. 9(c)]. First-principles calculations [15] and experimental
measurements [50] also confirm that high-frequency phonons
are more strongly scattered by magnons. For materials in
which the magnon thermal conductivity is dominant, magnons
are scattered by phonons [47,48] via phonon absorption or
emission processes fiw(k, w) + ho(g, v) = fiw(k, ). The
magnon-phonon scattering rate of high-frequency magnons
is somewhat higher than that of low-frequency magnons
[Fig. 9(b)] because high-frequency magnons have a larger
density of states [Fig. 9(c)]. The phenomena discussed above
become more apparent at increased temperatures, which
strengthen the scattering among the heat carriers.

D. Accumulated thermal conductivity

To facilitate the analysis of thermal conductivity contri-
butions, the thermal conductivity accumulation function has
been computed with respect to the mean free path A using

K(A)= ) A=Y e, (26)

A<Ay A<Ay

where ¢,, v, (Fig. 4) and 7 are the volumetric heat capacity,
group velocity, and relaxation times of phonons and magnons,
respectively. For phonons [Fig. 10(a)], at 7 = 300 K, the
accumulated thermal conductivities with and without spin
are similar, indicating that magnons do not have a strong
effect on phonon thermal conductivity near room temperature.
This is due to the fact that long mean free path phonons
are the main contributors to thermal conductivity, and these
phonons do not easily scatter with magnons, as discussed

above. However, at 700 K, the phonon mean free path falls
to 0.3—4 nm, which is much smaller than that at 300 K due to
strong phonon-phonon scattering [black triangle symbols in
Fig. 10(a)]. Furthermore, high-frequency phonons with short
mean free paths (0.4-0.8 nm) are more easily scattered by
magnons. Consequently, the total lattice thermal conductivity
of magnetic BCC iron becomes slightly smaller than that of
nonmagnetic BCC iron (Fig. 8). Finally, at 1100 K phonons
are scattered strongly by both phonons and magnons because
high temperatures increase the vibration magnitude of lattice
and spin excitations.

For magnons [Fig. 10(b)] at room temperature, only the
long-mean-free-path, or equivalently, low-frequency magnons
are scattered by phonons because only these magnons trans-
port significant energy, i.e., the heat capacity of high fre-
quency magnons is very small [Fig. 4(a)]. When the system
temperature increases to 700 K and then to 1100 K, the mean
free path of magnons becomes much shorter than that at
300 K, and the short mean free path (high frequency) magnons
are scattered strongly by phonons.

IV. DISCUSSION

We also note that the magnon group velocities are cal-
culated here from the magnon dispersion without consider-
ing temperature effects, i.e., assuming a ferromagnetic sys-
tem. Such an assumption may introduce inaccuracies in the
magnon mean free path and modal thermal conductivity com-
putations. At 300 K, the total magnon thermal conductivity
calculated from the BTE in the relaxation time approximation,
KR=Y Cy vét, with the values of relaxation time computed
using spectral energy density (SED) analysis, is 10.1 W/mK.
We therefore name this approach SED-BTE (see Sec. II C for
detailed calculation). This value is lower than the correspond-
ing results of Wu ef al. (15.2 W/mK) due to their overestima-
tion of the magnon dispersion [40], whereas it is 7.8 W/mK
computed by GKEASD. The closer correspondence between
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kg and GKEASD at room temperature indicates that the
system may be treated as ferromagnetic at 300 K. However,
the total magnon thermal conductivity calculated using SED-
BTE is 11.1 W/mk versus the GKEASD value of 1.9 W/mk
at 700 K; at 1100 K, the corresponding values are 56.9
and 1.2 W/mK, respectively. The large differences between
kg and GKEASD suggest that the magnon group velocity
is overestimated, and the calculation should consider spin
disorder at high temperatures.

Before concluding our study, we briefly highlight two
limitations that our methodology inherited from the spin
lattice dynamics formalism. In our calculations, the exchange
integral J is assumed to remain constant, and its dependence
on temperature is neglected. Recent studies have investigated
this dependence and proposed methodologies to account for
it [43,45]. Encapsulating them within our framework could
improve the accuracy of predictions. Furthermore, the simu-
lation of classical spins (instead of quantum spins) is known
to make the ferromagnetic to paramagnetic phase transition
smoother than in the experimental observations. It has been
shown in Refs. [42,43] that implementing quantum baths and
statistics can reproduce more accurately the sharp transition
at T.. However, as the GKEASD framework is based on
equilibrium molecular dynamics, the associated simulations
do not involve a connection to a random bath. Overall, an
empirical parametrization of the exchange integral J could
account for both its temperature dependence and the sharp
transition occurring at 7.

V. CONCLUSIONS

In conclusion, we have developed a temperature-dependent
method, the Green-Kubo equilibrium atomic and spin dynam-
ics method, to calculate coupled phonon and magnon trans-
port in magnetic materials. Reasonably good agreement is ob-
tained between our simulation results and experimental mea-
surements in computing dispersion curves and temperature-
dependent thermal conductivity, and these results suggest that

the approach captures the overall heat transfer behavior of
phonons and magnons in magnetic crystals. However, the
coupling between phonons and magnons is governed by the
magnetic exchange correlation constant, whose origins and
fidelity deserve further scrutiny, as do other magnetic phe-
nomena not considered here, such as anisotropy [51]. Anal-
ysis of scattering processes between phonons and magnons
indicates that high-frequency phonon scattering rates due to
phonon-magnon scattering are much larger than those at low
frequencies because of energy-conserving rules for scatter-
ing and the high density of states. The application of this
new methodology will yield deeper insights into the thermal
transport properties of other phonon- or magnon-dominant
materials.
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