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We study the one-dimensional nearest-neighbor tight-binding model of electrons with independently dis-
tributed random hopping and no on-site potential (i.e., off-diagonal disorder with particle-hole symmetry, leading
to sublattice symmetry, for each realization). For nonsingular distributions of the hopping, it is known that the
model exhibits a universal, singular behavior of the density of states ρ(E ) ∼ 1/|E ln3 |E || and of the localization
length ξ (E ) ∼ | ln |E ||, near the band center E = 0. (This singular behavior is also applicable to random XY
and Heisenberg spin chains; it was first obtained by Dyson for a specific random harmonic oscillator chain.)
Simultaneously, the state at E = 0 shows a universal, subexponential decay at large distances ∼ exp[−√

r/r0].
In this study, we consider singular, but normalizable, distributions of hopping, whose behavior at small t is of
the form ∼1/[t lnλ+1(1/t )], characterized by a single, continuously tunable parameter λ > 0. We find, using a
combination of analytic and numerical methods, that while the universal result applies for λ > 2, it no longer
holds in the interval 0 < λ < 2. In particular, we find that the form of the density of states singularity is enhanced
(relative to the Dyson result) in a continuous manner depending on the nonuniversal parameter λ; simultaneously,
the localization length shows a less divergent form at low energies and ceases to diverge below λ = 1. For
λ < 2, the fall-off of the E = 0 state at large distances also deviates from the universal result and is of the form
∼ exp[−(r/r0)1/λ], which decays faster than an exponential for λ < 1.
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I. INTRODUCTION

The study of transport in electronic systems in the non-
interacting regime is a vast and thoroughly researched area
of physics. The role of disorder in metal-insulator transitions
is well-established [1], and the tendency of electrons to lo-
calize is understood in terms of universality classes based on
dimensionality and symmetries [2–4]. In one dimension, the
situation is relatively straightforward as quenched disorder
generically causes Anderson localization [5] of the entire
spectrum. In this regime, transmission coefficients go to zero
and all eigenstates are localized with exponential tails. Over
the years, several tight-binding models in 1D lattices have
been shown to circumvent this standard picture, usually by
significant modification of the Hamiltonian, for example, by
introducing correlations in the disorder [6–9], adding long-
range hopping [10], or truncating the Hilbert space [11].

For purely off-diagonal nearest-neighbor hopping disorder
with no potential disorder, however, the model has been shown
to have anomalous behavior near the center of the band
(E → 0). This problem has a long history, dating back to the
work of Dyson on the one-dimensional random harmonic os-
cillator chain with Poisson distributed couplings [12]. Nearly
two decades later, Smith showed that the problem mapped
onto the nearest-neighbor spin-1/2 XY chain with random
couplings whose squares have a generalized Poisson distri-
bution, and resulted in singular thermodynamic behavior in
the T → 0 limit [13]. Applying the Jordan-Wigner transfor-
mation [14] converts this to a spinless fermionic chain with
nearest-neighbor coupling, with singular density of states at
the center of the band [15]. Eggarter and Riedinger showed

that a universal result followed for any well-behaved distribu-
tion of hoppings [16]. As a result of several investigations,
it is known that the density of states diverges as ρ(E ) ∼
1/|E ln3 |E || [17], and the localization length diverges as
ξ (E ) ∼ | ln |E ||. The state at zero energy is not conventionally
extended, however, and decays with an envelope ψ (r) ∼
exp (−√

r/r0) [18,19]. The nature of the band center anomaly
in this model is well documented in the literature [20–26].

For brevity, we refer to the class of one-dimensional disor-
dered nearest-neighbor hopping Hamiltonians with nonsingu-
lar hopping distributions1 and the resultant singularity in ρ(E )
and ξ (E ) as the “Dyson” class and singularity respectively, in
light of Freeman Dyson’s pioneering work on the topic.

The magnetic version of this problem has historically
attracted a lot of attention due to its experimental connection
with the magnetic behavior of impurity-doped semiconduc-
tors [27–30] as well as organic chain complexes [31,32]. The
development of the strong disorder renormalization group
(RG) technique [33–37] systematically revealed the nature
of the fixed point in this system, which controls the low-
temperature thermodynamic behavior.

Exact analytical [38] and numerical [39] calculations have
lent credence to the correctness of RG results. Further studies
have shed light on the nature of the Griffiths phases near the
critical point [40–42]. Variations on this model, e.g., in the
presence of multiple channels [43], and in higher dimensions
[44], have also been extensively researched. The behavior of

1Distributions of hopping t that are less singular than the universal
form p(t ) ∼ 1/(t ln2(1/t )) are also included.
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their densities of states [45,46] and localization properties
[47–49] have been analyzed within the framework of univer-
sality. It continues to be a topic of active research [50–53].

The singularity is due to the sublattice symmetry of the
Hamiltonian, which is technically a discrete unitary chiral
symmetry, arising from combining particle-hole symmetry
and time-reversal symmetry on a bipartite lattice [54]. It is
known that additional terms in the Hamiltonian (e.g., on-site
disorder, next-nearest-neighbor hopping or superconducting
pairing [55]) which lead to a breaking of the sublattice sym-
metry generically suppress the singular behavior. Work to
date on the disordered nearest-neighbor hopping Hamiltonian
has stayed within the class of hopping distributions that are
nonsingular, leading to the aforesaid universal behavior. In
this study, we remain within the nearest-neighbor hopping
model, but consider the case of singular hopping distributions.

Our work is motivated by the observation that although the
renormalized density of states is singular, it is not the most
singular form that is integrable. In fact, it differs from such
a singular function by a significant factor characterized by a
finite parameter.

As a consequence, in this work, we investigate the spec-
tral and spatial properties of the standard nearest-neighbor
hopping Hamiltonian when the disordered hopping terms are
drawn randomly from a probability distribution with a tunable
sharp divergence at the origin of the form 1/[t lnλ+1(1/t ))].
Such a distribution effectively converts the chain into is-
lands of variable length, with very weak connections be-
tween the islands. This regime was considered a corner case
[36] and has eluded close scrutiny so far. Nevertheless, as
we show in this paper, for λ < 2, the low-energy behavior
lies outside the standard universality class of Dyson-type
models. The Dyson singularity in the density of states is
overwhelmed by the sharper singularity of the Hamiltonian
itself. The system shows a greater tendency to localize with
the zero-energy wave function ψ (r) asymptotically varying
as exp [−(r/r0)

1
λ ], which is stronger than the usual behav-

ior. At the boundary of the Dyson universality class (λ =
2), we find ψ (r) ∼ exp [−√

(r/r0) ln(r/r0)]. Further, as λ

becomes smaller than 1, the distribution of wave function
probability amplitudes becomes extremely broad, implying a
rapid (superexponential) decay of the envelope of the wave
function.

We also throw light on a deep connection between this
model and a completely different area of physics—that of
Brownian motion and diffusion. The Schrödinger equation of
this model can be mapped to a random walk [16]. In this
mapping, the diffusion problem associated with the random
walk involves the logarithm of the amplitude of the wave
function |ψ | as a function of position r. The universality of
the Dyson class is akin to the universal nature of Fick’s law
of diffusion in which the mean squared displacement of a
particle is proportional to the elapsed time i.e., 〈x2〉 ∼ t , ir-
respective of the microscopic details of the diffusion process.
The nonuniversal results that we obtain here are parallel to the
anolamous superdiffusion and Lévy flights seen when random
walkers draw their step lengths from a heavy-tailed proba-
bility distribution. In those cases, the displacement 〈x2〉 ∼ tα ,
with α > 1 a continuously tunable parameter [56,57]. This is
related to the nonuniversal and continuously tunable nature of

singularity in the density of states and localization lengths in
our model.

The rest of the paper is organized as follows. In Sec. II,
we introduce the Hamiltonian and summarize our numerical
methods. Section III contains results on the nature of the
zero-energy eigenstate. The density of states of our model
and the localization length of the eigenstates away from the
band center are discussed in Secs. IV and V, respectively. In
these sections, we also elaborate on the connection to random
walks. In Sec. VI, we make some remarks on the connections
to magnetic susceptibility in spin chains. We conclude in
Sec. VII with a summary of our results.

II. HAMILTONIAN AND NUMERICAL METHODS

We consider spinless electrons hopping on a one-
dimensional chain with N sites

H =
N−1∑
i=0

ti(c
†
i ci+1 + c†

i+1ci ), (1)

where ci(c
†
i ) is the fermionic annihilation (creation) operator,

and ti is the hopping matrix element between the ith and
(i + 1)th sites.

As a consequence of sublattice symmetry, the spectrum
of the system consists of pairs of eigenstates with en-
ergy ±Em. The corresponding wave functions are |ψ±

m 〉 =
1√
2
(|ψe

m〉 ± |ψo
m〉), where |ψe

m〉 and |ψo
m〉 have weight only on

the odd and even sites respectively. For notational simplicity
and ease of computation, in the rest of the paper, we focus
on the properties of the system for E � 0. The situation at
negative energies is identical by virtue of this symmetry.

The hopping terms ti are independent identically dis-
tributed random variables drawn from a normalized probabil-
ity density

pλ(t ) =
{ cλ

t lnλ+1(dλ/t )
, 0 < t < e−(λ+1)dλ

0, otherwise
, (2)

where cλ ≡ λ(λ + 1)λ is a normalization constant and dλ ≡
exp (2

1
λ (λ + 1)) is a scaling factor to ensure that the

median t is unity. The parameter λ > 0 controls the strength
of the divergence at t = 0, with λ → ∞ reducing p(t ) to
a uniform distribution in [0, 2]. For λ > 2, the system falls
within the Dyson class. However, for 0 < λ < 2, we find
nonuniversal scaling of the density of states and localization
length. This is the central finding of this paper.

For comparison, we show a family of probability distribu-
tions with a weaker power-law divergence,

pα (t ) =
{

1−α
2tα , 0 < t < 2

1
1−α ,

0, otherwise.
(3)

where 0 � α < 1. Here too, we normalize the distribution so
that the median hopping is unity. For α = 0, we recover a
uniform distribution in [0, 2]. This distribution falls into the
Dyson class for all values of α, unlike the pλ distribution.

The contrast between the two families of probability densi-
ties can be gleaned from a plot of their cumulative distribution
functions, Fig. 1. The pλ distributions are unusual in that
they have a large weight at small t , so there is a significant
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FIG. 1. The integrated probability density of the hopping terms,
on a logarithmic scale for both the pλ [Eq.(2)] and pα [power
law, Eq. (3)] distributions. For α = 0 and λ = ∞, the distributions
coincide and are equivalent to a box distribution. It is evident that the
pλ distributions have significant weight at exponentially small values
of the hopping t , while the pα distributions do not.

probability of drawing exponentially small hopping terms t .
We do not consider the pα distribution in the rest of the paper.

The distributions of couplings considered in this paper
are continuous, albeit singular. Cases with a nonzero proba-
bility p0 of exactly zero hopping, i.e., p(t ) = p0δ(t ) + (1 −
p0) fns(t ) where fns is a continuous function, will lead to
the system fragmenting into randomly spaced segments of
mean size 1/p0. The density of states correspondingly has a
nonzero weight at zero energy arising from segments with an
odd number of sites. In the magnetic language, this implies
isolated spin degrees of freedom which will give rise to a
Curie-like 1/T susceptibility at low enough temperatures. We
do not consider such distributions in our study.

Since we are primarily interested in the spectral distri-
bution of energies and spatial behavior of wave functions,
especially in the middle of the band, we perform strong dis-
order RG to extract the eigenvalues and eigenvectors. We also
perform transfer matrix calculations to extract the Lyapunov
exponent as a measure of localization. These are described
below.

A. Strong disorder renormalization group

We perform a four-site RG on a system with periodic
boundary conditions, starting with the strongest hopping,
following the standard method [50,58]. At each iteration, the
system size reduces by two sites, in a manner that respects the
sublattice symmetry of the system.

The RG proceeds by identifying the neighboring sites with
the largest absolute value of hopping in the system. Let this
value be ti. The four sites considered are |i − 1〉 , |i〉 , |i + 1〉
and |i + 2〉, with hopping terms ti−1, ti, and ti+1. The RG
step assumes that ti 	 ti−1, ti+1 and computes a second-order
perturbation theory solution for this four-site subsystem. In
practice, the RG scheme works reasonably well even when
this condition is not met. Its accuracy increases dramatically
as the iterations proceed and the energy scale becomes lower
and is therefore reliable for the states at the center of the band
that are of interest to us.

The RG step updates the two outer states as follows:

|i − 1〉 → |i − 1〉 − ti−1

ti
|i + 1〉 ,

|i + 2〉 → |i + 2〉 − ti+1

ti
|i〉 .

It also generates a new hopping of strength − ti−1ti+1

ti
between

them.
The middle two states hybridize with each other as

|+〉 = |i〉 + |i + 1〉 + ti−1

ti
|i − 1〉 + ti+1

ti
|i + 2〉 ,

|−〉 = |i〉 − |i + 1〉 − ti−1

ti
|i − 1〉 + ti+1

ti
|i + 2〉 .

These states have energies E+ = ti + t2
i−1+t2

i+1

2ti
and E− = −ti −

t2
i−1+t2

i+1

2ti
, respectively, and are removed from the system.

The decimation proceeds in this manner by successively
identifying the bond with the largest hopping, until there are
only two sites left in the system. At that point, the 2 × 2 matrix
for these two sites is solved exactly to obtain the last two
eigenstates.

B. Transfer matrix method

The transfer matrix method is an efficient method of solv-
ing for the wave function |ψ〉 of a one-dimensional lattice
model at fixed energy E with open boundary conditions [59].
It follows directly from Schrödinger’s equation for the Hamil-
tonian (1) and relates the probability amplitudes ψi ≡ 〈i | ψ〉
between successive pairs of sites as(

ψi+1

ψi

)
= Ti(E )

(
ψi

ψi−1

)
,

where Ti(E ) =
(E

ti
− ti−1

ti
1 0

)
(4)

In the limit N → ∞, the behavior of the (unnormalized) wave
function obtained by iterating this equation is correct and
independent of the initial conditions ψ0 and ψ1.

The product of transfer matrices over N sites is QN (E ) ≡
TN (E ) × · · · × T1(E ). We mention here that the Lyapunov
exponent γ (E ) is found from the eigenvalues of this product
matrix as

γ (E ) ≡ ln max eig
(
QN (E )†QN (E )

) 1
2N . (5)

The Lyapunov exponent is commonly taken as a proxy for the
inverse localization length of the state. However, anticipating
the nonexponential decay of wave functions in our model, we
use a slightly different metric to quantify the localization, as
described in the next section.

III. THE BAND CENTER STATE

From the transfer matrix equation (4),

tiψi+1 + ti−1ψi−1 = Eψi. (6)

For a system with an odd number of sites N with open bound-
ary conditions, there exists a solution to Eq. (6), with E = 0,
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such that odd-numbered sites carry no weight (ψ2i+1 = 0) and
even-numbered sites are such that

ψ2i = (−1)i

i−1∏
j=0

t2 j

i−1∏
j=0

t2 j+1

ψ0. (7)

To determine the envelope of this wave function, similar to
the approach of Fleishman and Licciardello [18], we write

ln

∣∣∣∣ψ2n

ψ0

∣∣∣∣ =
n−1∑
i=0

u2i+1 −
n−1∑
i=0

u2i, (8)

where the distribution of ui ≡ − ln ti is found by transforming
Eq. (2). We obtain

pλ(u) = cλ

(u + ln dλ)λ+1
, λ + 1 − ln dλ � u < ∞. (9)

The coefficients cλ and dλ above are the same as in Eq. (2).
For λ > 2, the ui’s have a finite mean μu and variance σ 2

u ,
and applying the Central Limit Theorem (CLT) to Eq. (8)
leads to the established result that

1√
2n

ln

∣∣∣∣ψ2n

ψ0

∣∣∣∣ n→∞−−−→ N (0, σ 2
u ). (10)

Here, N (μ, σ 2) denotes a normal distribution with mean μ

and standard deviation σ .
If λ � 2, then the ui’s in Eq. (8) have infinite variance, and

the standard (Gaussian) CLT does not apply. We appeal to
the generalized CLT [60,61], which specifies limiting distri-
butions for sums of random variables with heavy power-law
tails. These are known as Lévy alpha-stable distributions,
denoted as S (λ, β, γ , δ) in the literature, with λ ∈ (0, 2], β ∈
[−1, 1], γ ∈ (0,∞) and δ ∈ (−∞,∞) representing stability,
skewness, scale, and shift parameters, respectively. As a re-
sult, Eq. (10) is modified to

1

(2n)1/λ
ln

∣∣∣∣ψ2n

ψ0

∣∣∣∣ n→∞−−−→ S (λ, 0, γ (λ), 0), (11)

where γ (λ) =
(

πcλ

2λ sin( πλ
2 )�(λ)

) 1
λ

. (12)

Here, S (λ, 0, γ , 0) is a symmetric Lévy alpha-stable distri-
bution. The probability density functions p(x) of these distri-
butions are not expressible in closed form, except for some
special cases. They have tails of the form p(x) ∼ 1/|x|λ+1 as
x → ±∞ and are usually specified in terms of their charac-
teristic function

p̃(k) = 〈eikx〉 = e−|γ k|λ . (13)

Two well-known cases are when the stability parameter λ = 1,
for which it reduces to a Lorentzian, and when λ = 2, which
corresponds to a Gaussian.

For the marginal case λ = 2, the scaling law of the gener-
alized CLT leads to

1√
2n ln n

ln

∣∣∣∣ψ2n

ψ0

∣∣∣∣ n→∞−−−→ N
(

0,
c2

2

)
. (14)

Combining all three cases, we find that a wave function
decay length scale r0 may be defined as

1

r0
≡ lim

n→∞
1

f (2n)

∣∣∣∣ln
∣∣∣∣ψ2n

ψ0

∣∣∣∣
∣∣∣∣, with (15)

f (n) =
⎧⎨
⎩

√
n, λ > 2√

n ln n, λ = 2
n

1
λ , 0 < λ < 2

, (16)

such that r0 has a well-normalized and nonsingular (but possi-
bly heavy-tailed) probability distribution, and hence the wave
function has fluctuations of the form ψ (r) ∼ e− f (r/r0 ).

Having thus established the functional form of the enve-
lope of the wave function in Eq. (16) for the full parameter
range 0 < λ < ∞, we turn our attention to calculating the
distribution of the inverse length 1/r0. From Eq. (10), the
distribution of 1/r0 for the Dyson class (λ � 2) is a one-sided
Gaussian. The Gaussian is one-sided (i.e., no support for
negative values) as we define 1/r0 > 0 to be the length scale
of a decaying, and not growing wave function. For λ < 2 then,
the distribution of 1/r0 is also one-sided, obtained by folding
the symmetric Lévy alpha-stable distribution S (λ, 0, γ (λ), 0)
at the origin. Since these distributions are extremely broad
(and for λ � 1 have infinite mean), we find it convenient to
characterize them by their median instead, which is finite for
all λ. The median, denoted r̄−1

0 , represents a typical value of
this quantity.

Analytic expressions for r̄−1
0 are obtained as follows. From

the CLT, Eq. (10), we predict that for λ > 2, r̄−1
0 (λ) =√

2 erfi( 1
2 )σu(λ), with the variance of the logarithm of the

hoppings

σ 2
u (λ) = λ(λ + 1)2

(λ − 2)(λ − 1)2
, (17)

and the inverse error function erfi(x) arising from integrating
the Gaussian distribution. At λ = 2, from Eq. (14), r̄−1

0 (λ) =
3
√

2 erfi( 1
2 ) ≈ 2.02. For strongly divergent hopping distribu-

tions with λ < 2, we find that r̄−1
0 (λ) = γ (λ)Qλ( 3

4 ), where
γ (λ) is the scale factor in Eq. (12). Qλ( f ) denotes the quantile
function, obtained by inverting the cumulative density func-

tion, such that
Qλ( f )∫
−∞

p(x)dx = f . Here, p(x) is the probability

density corresponding to a unit-scaled alpha-stable random
variable S (λ, 0, 1, 0).

We verify the theoretical predictions above using nu-
merical techniques, similar to the approach of Inui
et al. [26]. There, they define a correlation function
〈| ln |ψr+ j | − ln |ψ j ||〉, where the angular brackets denote the
mean over all sites j as well as realizations of disorder. We
generalize their correlation function by defining it in terms of
the median over all sites and realizations of disorder as

g(r) ≡ median

∣∣∣∣ln
∣∣∣∣ψr+ j

ψ j

∣∣∣∣
∣∣∣∣. (18)

Then we compute r̄−1
0 as

r̄−1
0 ≡ lim

r→∞
g(r)

f (r)
, (19)

with f (r) as in Eq. (16).

224203-4



BEYOND UNIVERSAL BEHAVIOR IN THE … PHYSICAL REVIEW B 101, 224203 (2020)

FIG. 2. (a) The scaled correlation function g(r)/ f (r) [see
Eqs. (16) and (18)] for systems of size N = 20 000 001. Ensemble
medians are calculated over the middle 107 sites of the system for
the E = 0 state for 100 realizations of disorder. Several some values
of the divergence parameter λ are shown. (b) The numerical and
predicted theoretical values of the median inverse decay length r̄−1

0 .
Numerical values (black markers) are obtained by fitting a function
of the form g(r)

f (r) = 1/r̄0 + b/(ln r)c to the curves in panel (a) for

103 � r � 106. See text for a description of theoretical results (solid
lines).

We compute the zero-energy state for large systems using
Eq. (7). In Fig. 2(a), we plot the scaled correlation function
g(r)/ f (r) thus obtained for various values of the hopping
probability divergence parameter λ. We find that as r →
∞, the scaled correlation function tends to a constant, as
expected. Hence, from the asymptote at large r, the typical
inverse decay length r̄−1

0 is extracted.
In Fig. 2(b), we find that numerically obtained decay length

agrees closely with our analytical results in all three regimes,
demonstrating the nonuniversal e− f (r/r0 ) decay of the wave
function. In the next section, we explore the behavior of the
system away from zero energy.

IV. DENSITY OF STATES

The asymptotic form of the low-energy density of states
of the Dyson model is controlled by the infinite randomness
fixed point, to which all “well-behaved” initial distributions of

disorder flow under the RG. This is

ρ(E ) � σ 2
u

E | ln E |3 , (20)

if the hopping distribution is well-behaved. In this case, the
integrated density of states N (E ) is

N (E ) ≡
E∫

−E

dE ′ρ(E ′) = σ 2
u

| ln E |2 . (21)

However, the singular distribution (2) lies outside the basin
of attraction of this fixed point, if λ � 2, because σ 2

u →
∞. One might then conjecture that for the non-Dyson case,
Eq. (21) for the density of states must be generalized to

N (E ) = bλ

| ln E |λ , (22)

where bλ is a λ-dependent parameter. One might further
expect that the density of states is given by the distribution
of bare hoppings pλ(t ) itself, because the singularity in pλ(t )
is so sharp that it is not affected by the decimation procedure.
This would imply that

bλ = cλ/λ = (λ + 1)λ. (23)

However, this guess is only partially correct. The right
result is obtained by mapping this system to a random walk,
which we describe below. Such a mapping was first described
by Eggarter and Riedinger [16] for the Dyson class, so we
recap their work first, and then extend their results to the
non-Dyson case.

Corresponding to the on-site wave-function amplitudes ψi,
one defines “self-energies”


i ≡ ti−1
ψi−1

ψi
. (24)

In terms of these self-energies, the Schrödinger equation,
Eq. (6), is rewritten as


i+1 = t2
i

E − 
i
, (25)


i+2 =
(

ti+1

ti

)2


i

[
1 − E


i

1 + E
i

t2
i

(1 − E

i

)

]
. (26)

The integrated density of states is related to the fraction f+ of
positive self-energies in the sequence {
i} as [62]

N (E ) = 2 f+ − 1. (27)

When E = 0, the term in the square brackets of Eq. (26)
may be ignored and the signs of the self-energies 
i alter-
nate. Since there are as many positive self-energies as there
are negative self-energies, the integrated density of states
N (0) = 0, as expected.

In this regime, Eq. (26) is equivalent to a discrete-time
random walk

ln 
i+2 = 2(ui+1 − ui ) + ln 
i, (28)

where ui ≡ ln ti is a random increment as before. With the
mapping (ln 
, i) �→ (x, t ), the connection to the continuum
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Langevin equation becomes transparent

dx

dt
= Wλζλ(t ), (29)

where a particle position as a function of time x(t ) is governed
by a unit-strength delta-correlated noise process ζλ(t ) with
scale factor Wλ.

When λ > 2, ζλ(t ) is Gaussian white noise, and the
stochastic process above is Brownian motion. However, when
λ < 2, ζλ(t ) is a symmetric white alpha-stable noise [63].
Such a stochastic process is known as a Lévy flight [64], and
exhibits remarkably different behavior from a regular diffu-
sive random walk. In a Lévy flight, transport is superdiffusive,
and the stochastic process Eq. (29) may be interpreted as
the limiting case of the discrete random walk when the time
increments 
t → 0


x = x(t + 
t ) − x(t ) = Wλ(
t )1/λζλ, (if λ < 2) (30)

where ζλ is a random variable drawn from the symmetric
alpha-stable distribution S (λ, 0, 1, 0).2 The scale factor Wλ is
found by applying the (wgeneralized) CLT as in the previous
section, it is

Wλ =
{

2σu(λ), λ > 2 (Brownian motion),
2γ (λ), λ < 2 (Levy flight), (31)

where σu(λ) and γ (λ) are the same as in Eqs. (17) and (12),
respectively.

When E is nonzero, but small and positive, this random-
walk picture still holds as long as the self-energies are in the
regime

E � 
i � t̃2/E , (32)

so that the term in the square brackets of Eq. (26) is small.
Here, t̃ is a typical value of t . The constraints enforced by
Eq. (32) manifest themselves in boundary conditions—when

i is comparable to or larger than t̃2/E , the denominator in
the square brackets ensures that 
i does not increase any
further, and when 
i is smaller than E , then by Eq. (25),
the alternating sequence of the sign of the 
i’s is broken by
two consecutive positive values. The random-walk then starts
afresh from this site, at a value 
i+1 � t̃2/E .

So when E �= 0, instead of a particle executing free Brow-
nian motion or a free Lévy flight, we have a particle confined
along a finite portion of the x axis. There is an infinite potential
barrier at x = ln(t̃2/E ) and an absorbing barrier at x = ln E .
The particle originates just below x = ln(t̃2/E ), and the time
it spends above x = ln E before being absorbed is the length
of the self-energy sequence with alternating sign. The fraction

2It has been claimed that in Dyson-type models with correlated
(dimerized) bond disorder [21], the charge propagation is subdiffu-
sive, and of the Sinai type 〈x2〉 ∼ ln4 t [72]. This is unrelated to our
study, and may lead to some confusion. Firstly, in our model, the
disorder is uncorrelated. Secondly, here, the superdiffusivity of the
Lévy flight is not of x(t ), but of the self-energy 
 as a function
of position r. This superdiffusivity for λ < 2 that accompanies the
breakdown of the Dyson singularity is also related to the wave
function of the particle becoming more strongly localized in space,
as described in Sec. V.

of excess positive self-energies (2 f+ − 1), and hence the
integrated density of states, is inversely proportional to the
mean length of this sequence.

This implies, in terms of the so-called mean first-passage
time TFP of the problem, the desired integrated density of
states is simply

N (E ) = 1

TFP(λ)
. (33)

The quantity TFP(λ) is the answer to the question—how
long, on average, does it take a particle to first reach the
position x f = ln E , after being released at initial position
x0 = ln(t̃2/E ), and under the influence of a stochastic process
Eq. (29) with an infinite potential barrier V (x) = ∞ for x >

ln t̃2/E? The scale invariance of this process implies that

TFP(λ) =
⎧⎨
⎩

τλ

(
L

Wλ

)2
, λ > 2 (Brownian motion),

τλ

(
L

Wλ

)λ

, λ < 2 (Levy flight),
(34)

where L = x f − x0 = 2 ln(t̃/E ) is the length of the random
walk, and τλ is the mean first passage time for the stochastic
process Eq. (29) with unit strength over a unit interval, and is
a number of order one. For the Gaussian process in the case
of Brownian motion, τλ = 1 by standard techniques, e.g., the
method of images [65]. First passage times in Lévy flights
have been the subject of intense exploration in recent years
[66–69]. However, to the best of our knowledge there are no
analytical results for τλ: the case of a Lévy flight on finite
1D domain with the particle being released adjacent to the
reflecting boundary. Nevertheless, it is fairly straightforward
to compute τλ by numerical simulations (see Appendix A),
and in terms of this quantity, the integrated density of states is
given by

N (E ) =
⎧⎨
⎩

σ 2
u

| ln E |2 , λ > 2,

[γ (λ)]λ

τλ| ln E |λ , λ < 2.
(35)

We are left with the boundary case λ = 2. In the limit
λ → 2, both expressions above have a prefactor that goes to
infinity, but the same functional dependence on ln E . Inspired
by the logarithmic behavior of the envelope of the zero-energy
state at the boundary of the Dyson class described in the
previous section, we conjecture that the density of states is

N (E ) = b2 ln | ln E |
| ln E |2 , λ = 2 . (36)

We validate the predictions in Eqs. (35) and (36) numeri-
cally. In Fig. 3(a), we plot the integrated density of states at
the low-energy end of the spectrum for different λ. At each
value of λ, data are collected by running the strong disorder
RG procedure on 200 realizations of disorder on systems of
size N = 106 sites, for a total of 108 unique eigenvalues.
This enables us to study the extreme low-energy tail of the
spectrum, upto E � 10−106

.
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FIG. 3. (a) The integrated density of states N (E ), obtained from
numerical strong disorder RG calculations, for different values of
λ. The straight line behavior with slope min(λ, 2) is clearly seen.
Note the scaling on the horizontal axis is a logarithm of a logarithm.
Not all values of λ are shown. (b) To extract the functional form of
N (E ) at low energies, we plot B(E ) (see Eq. (37)) by the appropriate
transformations on the curves in (a). (c) The density of states pre-
factor bλ (black markers) obtained by a fitting the curves in (b) to
a function of the form B(E ) = bλ + c/(ln N (E ))d . Green and purple
lines are the theoretical predictions in Eq. (35). The red line is the
naive prediction, Eq. (23).

In order to test the power laws and obtain the prefactors in
Eq. (35), we compute and plot the function B(E ) in Fig. 3(b).

B(E ) =
⎧⎨
⎩

ln N (E ) + 2 ln | ln E |, λ > 2,

ln N (E ) + 2 ln | ln E | − ln(ln | ln E |), λ = 2,

ln N (E ) + λ ln | ln E |, λ < 2.

(37)

It is apparent that B(E ) tends to a constant at small energies
for all λ, thus corroborating the dependence of N (E ) on ln E
predicted in Eqs. (35) and (36).

In Fig. 3(c), we plot the numerical value of the pre-factor
extracted from fitting the curves in Fig. 3(b). We find that
in the both the Dyson class (λ > 2) as well as beyond the
Dyson class (λ < 2), there is a clear agreement between the
analytical prediction from the mapping to random walks,
and our numerical fit. The unknown value b2 in Eq. (36) is
found to be 18 ± 2. The naive assumption [Eq. (23)] that the
decimation procedure does not affect the density of states for
λ < 2 is not correct.

It is worth pointing out that for λ < 1, we find that
[γ (λ)]λ/τλ < cλ/λ, so the density of states prefactor is

smaller than that of the probability density of hoppings. This
means the strong disorder RG procedure causes the density
of states singularity at E = 0 to retain the functional form
given by the distribution of bare hoppings, but its magnitude
is weakened. This is in contrast to the usual state of affairs,
where the renormalization always broadens the distribution of
couplings, and enhances the size of the singularity.

V. LOCALIZATION LENGTHS

For states with an exponentially decaying envelope, the
localization length ξ quantifies how fast the wave function
falls off: ψ (r) ∼ exp(−r/ξ ). This typically depends on the
energy E . The Thouless relation [70] connects the density of
states with the localization length

1

ξ (E )
=

∫ ∞

−∞
dE ′ ρ(E ′) ln |E ′ − E | + μu, (38)

where μu ≡ 〈− ln t〉 is the mean logarithm of the reciprocal of
the hopping terms. This relationship is applicable whenever
μu is finite, i.e., for the Dyson class (λ > 2) as well as the
nonuniversal case when 1 < λ � 2. In these cases, the state at
zero energy is subexponentially localized, so ξ (0) → ∞, and
we obtain the sum rule∫ ∞

0
dE ρ(E ) ln(E ) = −μu

2
. (39)

As shown by Theodorou and Cohen [15], one can combine
Eqs. (38) and (39), to obtain the leading behavior of the
localization length at nonzero energy.

1

ξ (E )
= 2

∫ E

0
dE ′ ρ(E ′) ln

(
E

E ′

)
=

∫ E

0
dE ′ N (E ′)

E ′ , (40)

so that using Eqs. (35) and (36),

ξ (E ) =

⎧⎪⎪⎨
⎪⎪⎩

1
σ 2

u
| ln E |, λ > 2,

1
b2

| ln E |
ln | ln E | , λ = 2,

(λ−1)τλ

[γ (λ)]λ | ln E |λ−1, 1 < λ < 2.

(41)

For λ � 1, the Thouless relation suggests that ξ (E ) = 0
since μu = ∞. We conclude that the wave functions all decay
faster than an exponential.

To verify these results using computational techniques, we
use transfer matrices [Eq. (4)] to obtain wave functions on
systems of size N = 2 × 107 sites, at different energies. We
use the correlation function g(r) as defined in Eq. (18) to
extract the ensemble-averaged properties of the fall-off of
the wave function. In Fig. 4, we plot the results for four
representative values of λ. At low energies and short length
scales, the correlation function behaves as in the critical case
at E = 0. This situation is seen both in the universal Dyson
class (λ > 2), as well as in the nonuniversal case (λ < 2), in
accordance with the exact nonuniversal scaling results derived
in Sec. III. At larger distances, g(r) eventually becomes linear
with r when λ > 1. When λ < 1, the entire spectrum is
influenced by the superexponential decay of the zero-energy
state, and so g(r) scales as r1/λ.

These results are all as expected. Further, from the scaling
of the correlation function at large r as a function of energy E ,
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FIG. 4. The correlation function g(r) [Eq. (18)] for a range of nonzero energies (E = e−10 to E = e−106
) for four representative values of λ.

Each point is obtained by considering the middle 107 sites of 100 eigenstates, each of size N = 2 × 107. Darker shades denote higher energies,
and shades become lighter as E → 0. Dashed red and black lines are drawn as guides to the eye. At low energies and short length scales, the
scaling of the correlation function is dominated by that of the critical point (E = 0), so that when λ < 2 [(a) and (b)], g(r) ∼ r1/λ. When λ = 2,
g(r) ∼ √

r ln r (c), and when λ > 2, g(r) ∼ √
r as in the Dyson class. At any fixed energy, the correlation function for λ > 1 shows a kink as

at a particular value of r, beyond which it shows the trademark linear scaling characteristic of exponential localization [(b)–(d)]. When λ < 1
(a), the entire spectrum is superexponentially localized, so that g(r) ∼ r1/λ irrespective of energy.

we can test the predictions in Eq. (41). In Fig. 5, we plot ξ (E )
versus | ln E |, where the numerical values for localization
length are obtained as

ξ (E ) = 1

limr→∞ g(r)/r
. (42)

We find that within a regime of intermediate energies, the
correct functional relationship as suggested by Eq. (41), in-
cluding the prefactors, is obtained. When E is relatively large,
then higher-order terms reduce the accuracy, and when E
is very small, the wave function obtained is limited by the
finite size of the system, and the thermodynamic limit is not
seen. This is a remarkable agreement between theory and
numerics, covering both the Dyson class and the nonuniversal
case λ < 2.

We conclude with a remark on another measure, the inverse
participation ratio, often used to quantify localization in nu-
merical studies of disordered systems. We find that it does not
yield any useful information here, due to the stretched expo-
nential nature of the wave function envelope. Nevertheless, for

FIG. 5. The localization length as a function of energy for dif-
ferent values of λ, both within and outside the Dyson class. Circles
are obtained numerically from the asymptotic value of the scaled
correlation functions g(r), e.g., those in Fig. 4. Solid lines are the
theoretical prediction (41).

completeness, we provide a brief summary of our calculations
of the inverse participation ratio in Appendix B.

VI. MAGNETIC SUSCEPTIBILITY OF RANDOM
SPIN CHAIN MODELS

The spinless fermionic nearest-neighbor hopping model
directly maps to a random nearest-neighbor antiferromagnetic
XY spin chain. In that case, the primary experimental quantity
of interest is the variation of magnetic susceptibility as a
function of temperature. The magnetic susceptibility χ (T ) is
related to the number of free spins with effective couplings
below T . The well-known universal behavior is [36]

χ (T ) ∼ 1

T ln2(�/T )
, (43)

where � is an energy scale intrinsic to the system.
As a direct consequence of our results for the integrated

density of states in Sec. IV [Eqs. (35) and (36)], the suscepti-
bility formula gets modified to

χ (T ) ∼

⎧⎪⎪⎨
⎪⎪⎩

1
T ln2(�/T )

, λ > 2,

ln ln(�/T )
T ln2(�/T )

, λ = 2,

1
T lnλ(�/T )

, λ < 2,

(44)

when the antiferromagnetic couplings are chosen from a
distribution of the form in Eq. (2), with a tunable divergence
at zero.

While the Heisenberg spin chain does not map to a nonin-
teracting fermionic model, following the arguments of Fisher
[36], we expect the same behavior to hold in the case of the
random Heisenberg spin chain as well.

VII. CONCLUSIONS

In this paper, we have studied a noninteracting spin-
less fermionic system with nearest-neighbor hopping (off-
diagonal) disorder, using a combination of analytic methods,
numerical strong disorder renormalization group and transfer
matrix techniques. This model owes its peculiar behavior
in large part to the exact sublattice symmetry. The salient
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TABLE I. Summary of key findings for the one-dimensional chain with random hopping studied in the paper. The hopping distribution
pλ(t ) [Eq. (2)] is parametrized by λ. For λ > 2, we recover the universal “Dyson” behavior, but for λ � 2, there is a variety of nontrivial
physics.

0 < λ < 1 λ = 1 1 < λ < 2 λ = 2 λ > 2 (Dyson class)

statistics of hoppings t and their distribution pλ(t )

normalization cλ λ(λ + 1)λ 2 λ(λ + 1)λ 18 λ(λ + 1)λ

median t 1 1 1 1 1

statistics of the logarithm of hoppings u ≡ − ln t

mean μu ∞ ∞ finite finite finite

variance σ 2
u ∞ ∞ ∞ ∞ λ(λ + 1)2

(λ − 2)(λ − 1)2

wave function of the band-center state (E = 0)

ψ (r) e−(r/ro)1/λ
e−r/r0 e−(r/r0 )1/λ

e−√
(r/r0 ) ln(r/r0 ) e−√

r/r0

decay envelope superexponential exponential subexponential subexponential subexponential

distribution of 1
r0

a S(λ, 0, γ (λ), 0)b S(1, 0, π, 0) S(λ, 0, γ (λ), 0) N (0,
cλ

2
) N (0, σ 2

u )

integrated density of states N (E ) as E → 0

N (E )
bλ

| ln E |λ
bλ

| ln E |
bλ

| ln E |λ
bλ ln | ln E |

| ln E |2
bλ

| ln E |2
prefactor bλ

[γ (λ)]λ

τλ

c 2
[γ (λ)]λ

τλ

18 ± 2 σ 2
u

spatial profile and localization length ξ (E ) at nonzero energy

decay envelope superexponential superexponential exponential exponential exponential

ξ (E ) 0 0
(λ − 1)τλ

[γ (λ)]λ
| ln E |λ−1 1

b2

| ln E |
ln | ln E | σ 2

u | ln E |
aIn this row, S refers to the folded symmetric alpha-stable distribution and N to the folded Gaussian distribution, each with support only for
positive values.
bThe scale factor γ (λ) is ( πcλ

2λ sin( πλ
2 )�(λ)

)
1
λ .

cSee Fig. 6 in Appendix A for details on the mean first passage time τλ.

feature of our work is that the disordered hopping matrix
elements t are drawn from a probability density with a tunable
sharp divergence as t → 0. The divergence is of the form
p(t ) ∼ 1/t lnλ+1(1/t ). While we have written our results in
the language of an electronic model, the conclusions are
directly applicable to the magnetic properties of spin chains,
as summarized in Sec. VI. While this work was being com-
pleted, we discovered that in his seminal work on random
antiferromagnetic spin chains [36], Daniel Fisher did point out
that if the couplings J are distributed as p(J ) ∼ 1/(J| ln J|x ),
then the properties of the system are dominated by weak links,
and the behavior is expected to be nonuniversal. However,
there does not appear to have been a thorough investigation
of the issue until now.

In this work, we find that when λ > 2, we recover the
well known universal behavior of the Dyson class. In all such
cases, the density of states diverges as ρ(E ) ∼ 1/(E | ln E |3)
and the localization length diverges as ξ (E ) ∼ | ln E | near the
critical point E = 0. The wave function at zero energy is not
exponentially localized, and falls off as exp (−√

r/r0).
As we show here, nonuniversality is only seen when the

exponent λ < 2. There is a whole line of fixed points 0 <

λ < 2 that lies outside the basin of attraction of the standard
Dyson model. In this case, the state at zero-energy decays
as exp (−(r/r0)1/λ), which is superexponential for λ < 1.

The density of states and localization length also demon-
strate nonuniversal and continuously tunable behavior. At
the boundary of the Dyson class, λ = 2, the wave-function
envelope, density of states and localization lengths show non-
trivial logarithmic divergence. By systematically exploring
the whole parameter regime, we have established the existence
of nonuniversal behavior and characterized its nature. Table I
summarizes the central results of our paper.

We emphasize that in this model there are extremely large
variations in the hopping terms, over several orders of magni-
tude. This is evidenced by several of the plots on this paper
being on an iterated logarithmic scale in order to capture
the full dynamic range, often approaching energy values of
the order of 10−108

. We took extra care in the numerics, in
order to avoid floating point overflow and underflow errors.
From an experimental point of view, it might seem that such
hoppings are challenging to realize in practice. Nevertheless,
as we show in Appendix C, it may be possible to construct
such nearest-neighbor couplings in synthetic lattices, using a
modified form of the Morse potential.

The nontrivial behavior of our model is entirely due to
our choice of a probability distribution with fat tails. This
is similar to the origin of nonuniversal anomalous diffu-
sion seen in Lévy flights and other kinds of non-Brownian
stochastic processes. While we have made a mapping between
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the low-energy properties of a quantum Hamiltonian and a
first passage problem in classical nonequilibrium statistical
mechanics, there are surely deeper connections waiting to be
explored. Anomalous diffusion and Lévy flights are currently
topics of active research, with ongoing efforts to push the
boundaries of both mathematical theory and applications to
other fields, including chemical kinetics, evolutionary biol-
ogy, economics and finance. In this context, it would be of
interest to examine other quantum condensed matter systems
where extreme value statistics and effects of large deviations
cause a breakdown of universal behavior. Implications of this
to systems in dimensions greater than one, or random graphs,
maintaining the bipartite nature of the problem, are also left
for future work.
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APPENDIX A: MEAN FIRST PASSAGE TIME FOR
THE LÉVY FLIGHT

In this Appendix, we closely follow Ref. [67]. The normal-
ized Lévy flight is given by the stochastic process

dx

dt
= ζλ(t ), (A1)

which is discretized to


x = (
t )1/λζλ, (A2)

where ζλ is a random variable drawn from the symmetric
alpha-stable distribution S (λ, 0, 1, 0). The particle moves in
a domain with an infinite hard wall V (x) = ∞ for x < 0. The
hard wall acts like a stopping boundary: if any increment were
to send the particle to x < 0, it stops at x = 0. Then the mean
first passage time is

τλ = 〈min{t > 0 : x(0) = 0 and x(t ) > 1}〉, (A3)

where the angular brackets denote an ensemble average. We
use the 
t = 10−4 and average over N = 105 trajectories for
each value of λ to obtain the points plotted in Fig. 6. These
numbers are then used in Eq. (35) for the integrated density of
states to obtain the curve in Fig. 3.

APPENDIX B: INVERSE PARTICIPATION RATIOS

The inverse participation ratio (IPR) is a commonly used
measure of localization, defined in terms of wave function
amplitudes as

IPR ≡
∑

i |ψi|4
(
∑

i |ψi|2)2
. (B1)

FIG. 6. The mean first passage time τλ calculated by numerical
simulations.

For exponentially localized (e.g., Anderson insulator)
states, the IPR is relatively large and constant with size, while
for extended (metallic states), the IPR scales as ∼1/Ld , where
L is the linear extent of the system and d is its dimension. For
critical states (e.g., at the Anderson metal-insulator transition
or center of a Landau level), the IPR and its moments scale
anomalously with size. They contain useful information about
the multifractal nature of the critical state and the tails of its
wave function envelope, which often have power-law tails.

However, in this model, both in the Dyson class (λ > 2)
and beyond (λ � 2), we find that the IPR is not a useful met-
ric, even though there is a critical point and the wave functions
are not conventionally localized. This seemingly counter-
intuitive situation is because the wave functions have stretched
exponential tails, whose signature cannot be captured by the
IPR. Hence, other diagnostics, such as the Lyapunov exponent
or the correlation function [Eq. (18)] must be used to quantify
localization. We illustrate this fact in Fig. 7(a), where we
provide mean IPRs as a function of energy for a variety
of λ.

The IPR is useful in extracting a length scale ξIPR ∼
IPR−1, which is the average number of sites on which the
state has most of its weight. Here, it seems apparent that
the wave functions are all localized on an average of five
sites or fewer, with the degree of localization increasing as λ

decreases. However, the IPR gives us no information about the
decay of the wave function envelope. We also examined the
distribution of IPRs [see Fig. 7(b) for a typical case]. As can
be seen, the probability distribution of IPR decays extremely
rapidly for IPR → 0 (i.e., ξIPR → ∞), so there do not appear
to be any signatures of the broad distributions of the decay
length r0 described in Sec. V.

APPENDIX C: TAILORING THE HOPPING
DISTRIBUTION IN EXPERIMENT

It may appear that the singular distributions p(t ) consid-
ered in this paper are not possible in practice, since wave func-
tions ψ (r) generically decay exponentially with r, without
fine tuning. This leads to hoppings t (r) that also decay expo-
nentially with r. It would then require setting up a chain with
nearest-neighbor spacings that are rather contrived to obtain
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FIG. 7. (a) The energy-resolved mean inverse participation ratio
as a function of the integrated density of states N (E ) is largely
featureless. These results are obtained by ensemble averaging ap-
proximately 1000 realizations of disorder on systems of size N =
104. (b) The integrated probability density function (pdf) of the IPR
for states with the lowest 1% of energies. There is zero weight
for small IPR, indicating the complete absence of conventionally
delocalized states over the full range 0 < λ < ∞.

a p(t ) that is of the desired form. However, in this age, with
atoms in an engineered optical lattice, it is more likely that one
can configure a random chain with nearest-neighbor spacings
from a more realistic distribution, but instead engineering the
wave function to decay differently with r. We describe one
such possibility in this section.

Consider a chain of atoms in which the positions are purely
randomly distributed (i.e., Poisson statistics). In such a chain,

the probability of not having any neighbor within a distance R
(on either side) goes as

N (R) = exp(−2ρR), (C1)

where ρ is the number density of sites. This leads to the
nearest-neighbor probability density function as

φ(R) = dN

dR
= 2ρ exp(−2ρR). (C2)

Now, if the nearest-neighbor hopping goes as t (R), which
we assume to be a monotonically decreasing function of R,
the probability distribution function of t will be given by

p(t ) = φ(R)
dR

dt
(C3)

and demanding p(t ) = cλ

|t lnλ+1(1/t )| immediately yields

t (R) ∼ exp(−Ce
ρR
λ ), (C4)

where C = ( cλ

2λ
)

1
λ .

The above requires, within a tight-binding approximation
where t (R) � ∫

dr ψ (r)ψ∗(R − r), an on-site wave function
ψ (r) whose decay also has a similar functional form (plus
subleading factors)

ψ (r) ∼ exp(−cebr ), (C5)

with c = C/2 and b = 2ρ

λ
. Putting that in the single site

Schrodinger equation and demanding that it be an eigenfunc-
tion for a particle of mass m with energy E implies that the
potential must have inversion symmetry V (r) = V (−r) and
be of the form

V (r) = E + h̄2

2m
b2c(ce2br − ebr ) for r > 0. (C6)

The above result is functionally similar to the Morse poten-
tial [71] used extensively in studying vibrations of diatomic
molecules, where it takes the form:

VM (r) = V0(e−2a(r−r0 ) − 2e−a(r−r0 ) ). (C7)

However, unlike the standard Morse potential, which ex-
hibits a minimum value −V0 at r = r0, the potential in
Eq. (C7) has no such minimum for parameter values of
interest here (positive b and r), so we refer to it as the gener-
alized Morse potential. Engineering an exponential potential
of the form (C6) is a challenge we leave to the ingenuity of
practitioners of AMO lattices.
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