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Phase diagram of ferroelectrics with tricritical and Lifshitz points at coupling
between polar and antipolar fluctuations
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Available experimental data about static and dynamic critical behaviors of Sn2P2S6-type ferroelectrics and
(PbySn1−y )2P2(SexS1−x )6 mixed crystals with a line of tricritical points and a line of Lifshitz points on the
T − x − y phase diagram, which meet at the tricritical Lifshitz point, are described in a combined Blume-Capel
anisotropic next-nearest-neighbor Ising model. Such spin-1 Ising models with anisotropic competing first-
and second-neighbor interactions is applied for the considered ferroelectrics with mixed displacive versus
order/disorder character of phase transitions within the framework of a microscopic model with three-well total
energy surface for ferroelectric distortion that was earlier built in an ab initio effective Hamiltonian approach.
It was found that below the temperature of the tricritical Lifshitz point, the “chaotic” state accompanied by
the coexistence of ferroelectric, metastable paraelectric, and modulated phases is expected. In addition to the
frustration of polar fluctuations near the Brillouin zone center, in Sn2P2S6 crystals the antipolar fluctuations also
strongly develop in the paraelectric phase on cooling to the continuous phase-transition temperature T0. Here, the
critical behavior can be described as a crossover between Ising and XY universality classes, which is expected
near bicritical points with coupled polar and antipolar order parameters and competing instabilities in q space.
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I. INTRODUCTION

Competing order parameters produce rich phase diagrams
of crystals with dipolar ordering in terms of temperature
versus external fields, pressure, and doping [1]. In addition,
the existence of competing ferroelectric, incommensurately
modulated, and antiferroelectric states with different symme-
tries in the ground state of the system can be observed. The
usual approach to describe the phase diagrams is the Landau-
Ginzburg expansion of the free-energy density in terms of
the order parameters [2]. At microscopic level, the phase
diagrams can be obtained by using mean-field approximations
of simplified model Hamiltonians [3]. In any case, the system
symmetry determines the main qualitative properties of the
phase diagram.

The active role of several types of mode-mode couplings
is also reflected in the complex shape of the local potential
for the crystal lattice ferroelectric distortion. It determines
the appearance of phase diagrams with different multicriti-
cal points that have been extensively studied experimentally
and within the framework of phenomenological models for
the case of oxide materials [4–7]. A variety of nonpolar
antiferrodistortive, ferroelectric, and antiferroelectric phase
transitions in perovskite compounds show their sensitivity to
chemical composition, structural defects, and pressure, which
arises from a delicate balance of interatomic couplings. To
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describe the structural transitions accurately, the total-energy
techniques, which incorporate the effects of charge distortion
and covalency, were developed [8]. The first-principles cal-
culations within the framework of density-functional theory
provide considerable insight into the nature of the total energy
surface in crystals. For ferroelectric compounds, the polariza-
tion generated by various lattice distortions can be studied
directly, using an effective Hamiltonian based on a Taylor
expansion of the energy surface around the paraelectric phase
structure, including soft optical modes and strain components
as the possible distortions [9,10]. This approach has been
applied to investigations of the zone-center phonons in fer-
roelectrics or antiferrodistorsive and antiferroelectric degrees
of freedom [11–13]. The study of the effective Hamiltonian
by Monte Carlo simulations allows us to investigate the phase
transitions at finite temperature [9–13].

Because of the simple crystal structure of the oxide per-
ovskites, the first-principles scheme based on the local-mode
approach has been successfully applied to study their phase
transitions. For chalcogenide ferroelectrics of the Sn2P2S6

family, the strongly pronounced nonlinear phenomena are
related to the much higher polarizability (compared to oxides)
of the anion sublattice. Together with a lower symmetry of
the crystal lattice, this determines a more complex nature of
the phase transitions and a rich set of scenarios for critical
behavior realization [14–17].

Ferroelectrics of the Sn2P2S6 family are promising can-
didates for applications in red and near-infrared spec-
tral diapason photorefraction [18] and photovoltaics [19]
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FIG. 1. (a) The crystal structure of P21/n paraelectric phase of Sn2P2S6 crystals [27]. The crystallographic b axis coincides with the 21

symmetry axis and the (010) plane with the glide plane n. The inversion center is placed in the middle of the P − P bonds of (P2S6)4− anions.
The positions of the tin cations (large spheres) in the paraelectric and ferroelectric phases are shown by different colors. Two sublattices
are presented by two formula units in a monoclinic elementary cell. (b) Schematic representation (for tin ions only) of eigenvectors of the
lowest energy polar Bu(39 cm−1) and the fully symmetrical Ag (41 cm−1) long wave modes [28]. (c) Frozen-phonon energy surface (in eV)
for a linear combination of Ag and Bu mode amplitudes for Sn2P2S6 within LDA calculations [28]. Black circles denote the positions of the
global ferroelectric minima. (d) Presentation of the BC-ANNNI model which describes an array of pseudospins related to Sn2P2S6 formula
units in two sublattices and flipped in the three-well potential with crystal field strength δ (energy difference between central and side wells).
J1—NN interaction within sublattices, J2—NNN interaction between sublattices.

for energy storage [20] and low-temperature thermome-
try [21,22], as well as for the development of multilevel-cell-
type memory technology [23]. The possibilities of ultrafast
spontaneous polarization switching [24] and peculiarities in
the ferroelectric ordering and domain structure morphology
at nanoscale [25,26] are also important for new technologies
based on ferroics with linear and nonlinear coupling between
unstable lattice polar modes and antipolar or antiferrodistor-
sive degrees of freedom.

In Sn2P2S6 crystals, the second order phase transition
at T0 ≈ 337 K with lattice symmetry lowering from P21/n
to Pn [see Fig. 1(a)] has mixed displacive-order/disorder
character [29,30], which is manifested by the high values of
both the transition entropy [31] �S = 8.6 JK−1mol−1 and
the dielectric anomaly of the Curie-Weiss constant [32] C ≈
105 K. In Sn2P2S6 crystals under compression, the second-
order transition line T0(p) monotonously decreases and, af-
ter reaching the tricritical point (TCP) at pTCP ≈ 0.6 GPa
and TTCP ≈ 220 K, it becomes first order [33,34]. At Sn by
Pb replacement in (PbySn1−y)2P2S6 solid solutions, the con-
tinuous phase transitions line T0(y) become first order at y �
yTCP ≈ 0.2 and T � TTCP ≈ 220 K, and the paraelectric phase
becomes stable when cooling down to 0 K for y � 0.6 [35,36].
At sulfur by selenium substitution in Sn2P2(SexS1−x )6 mixed
crystals, the incommensurate (IC) phase appears for x �

xLP ≈ 0.28 [where xLP is the concentration of the Lifshitz
point (LP)] on the temperature-concentration diagram [17].
The virtual paraelectric-ferroelectric transition (inside the
IC phase) becomes first order at x � xVTCP ≈ 0.6 and T �
TVTCP ≈ 220 K [16].

It is seen that under any influence that lowers the ferroelec-
tric phase transition temperature below 220 K, the character of
the transition evolves to first order, which has been explained
within a model with three-well total energy surface for ferro-
electric distortion. [28,35,37].

A completely ab initio effective Hamiltonian approach has
been used to theoretically study the continuous ferroelectric
phase transition in Sn2P2S6 crystals [28]. The paraelectric
structure distortions were decomposed in terms of ampli-
tudes of the Brillouin zone center Ag and Bu optic modes.
It was found that the lowest energy Ag and Bu modes make
the largest ferroelectric distortions, but the contributions of
the other higher energy modes can’t be neglected either. The
eigenvector of the low-energy optical Bu mode describes the
in-phase displacements of the four Sn2+ cations mainly along
the direction of the lattice spontaneous polarization and the
corresponding counterphase displacements of the two anion
complexes (P2S6)4−. In the low-energy nonpolar Ag vibration,
only the out-of-phase displacements in the cation sublattice
are observed [see Fig. 1(b)].
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The frozen-phonon calculations of the total energy for the
low-energy Bu mode do not point to any additional minima,
which might be related to the ferroelectric instability. But
studying the potential energy surface in the subspace of low-
energy Ag and Bu modes, a strong deviation from harmonic
behavior can be clearly seen, though the global ferroelectric
minima were not observed yet. The energy positions of the fer-
roelectric global minima can be reached only in the subspace
of all 15 Ag and 13 Bu normal coordinates and four monoclinic
components of strain [28].

The order parameter of the phase transition in the crystal is
determined as a valley line in the 32-dimensional phase space.
The obtained energy profile has a three-well shape [28], where
two ferroelectric valleys arise from the nonequivalent lattice
distortions Ag ± Bu because of the strong nonlinear AgBu

2

interaction [see Fig. 1(c)].
As a local polar distortion, the set of the linear atomic dis-

placements which account for all Ag and Bu modes was cho-
sen. A pseudospin form of the effective Hamiltonian [9,10,28]
has been built up with five parts: (i) a local-mode self-energy,
(ii) a long-range dipole-dipole interaction, (iii) a short-range
interaction between local soft modes, (iv) an elastic energy,
and (v) an interaction between the local modes and local
strain. The resulting Hamiltonian was studied using Monte
Carlo simulations [28]. The temperature evolution of the
pseudospin distribution in a three-well local potential was
found and it is comparable with experimental data of 31P
NMR spectroscopy [38].

The nonlinear mode interaction, which leads to the three-
well shape of the potential energy surface, is a result of a
significant electron-phonon interaction that, in the case of
Sn2P2S6 ferroelectrics, can be described on the basis of a
second-order Jahn-Teller effect related to the stereoactivity of
electrons lone pair of Sn2+ cations [28,39]. The charge dis-
proportionation of phosphorous cations P4+ + P4+ ↔ P3+ +
P5+ also originates an electronic contribution to the local fer-
roelectric distortions that are taken as pseudospins [28,37,39].

The phase transition in Sn2P2S6 crystals with mixed
displacive-order/disorder character was analyzed [37]
within the framework of the three-state Blume-Capel (BC)
model [40,41] that supposes 0, +1, and −1 values for local
pseudospins. It should be noted that the BC model follows
from the Blume-Emery-Griffiths (BEG) model [42,43] at
zero biquadratic spin interaction. This model has two order
parameters (dipolar and quadrupolar) that can be related to Bu

and Ag modes in the case of Sn2P2S6 ferroelectrics. The BEG
model predicts the TCP presence on a temperature-pressure or
temperature-composition phase diagram of (PbySn1−y)2P2S6

mixed crystals. The TCP presence and the lowering of
the phase-transition temperature to 0 K are determined by
pressure or composition evolution of the local three-well
potential shape (change of the energy difference δ between
central and side wells [see Fig. 1(d)]).

The appearance of the IC phase in the Sn2P2S6 family of
crystals has already been explained [32] by using the discrete
axial Ising model—anisotropic next-nearest-neighbor Ising
(ANNNI) model [44]—which takes into consideration two
sublattices of Sn2P2S6-type crystal structure with two for-
mula units in the elementary cell [see Fig. 1(d)]. This model
considers short-range interaction J1 > 0 between the nearest

neighbors (NNs) and interaction J2 < 0 between next-nearest
neighbors (NNNs). The ratio of these interactions λ = −J2/J1

changes at sulfur by selenium substitution in Sn2P2(SexS1−x )6

mixed crystals, the IC phase appears at the LP with coordinate
λ = 0.25. It was estimated that λ changes from 0.23 for
composition with x = 0 to 0.3 for x = 1 [32]. The wave vector
of the transverse modulation wave of the described IC phase
is oriented near the [001] direction in the (010) monoclinic
symmetry plane [45]. The spontaneous polarization vector �Ps

also lies in this symmetry plane and is oriented near the [100]
direction [see Fig. 1(a)].

The neutron scattering data [45,46] demonstrate both dis-
placive and order/disorder peculiarities of phase transitions
in Sn2P2S(Se)6 crystals. The flexoelectric coupling between
soft optical and acoustic phonon branches near the Brillouin
zone center as their repulsion due to the same symmetry along
qz direction of reciprocal space is related to the displacive
nature of paraelectric-ferroelectric and paraelectric-IC transi-
tions. This coupling has also been observed in temperature
anomalies of ultrasound and hypersound velocity [47]. In
the continuous approximation, the linear interaction between
optical and acoustic phonons is presented by the Lifshitz-like
invariant (dPx/dz)uxz in the thermodynamic potential [48,49].
Its growth at changing from Sn2P2S6 to Sn2P2Se6 is caused
by a higher covalence of chemical bonds in a selenide com-
pound [50].

The neutron scattering data [46] also show the presence
of a flat lowest-energy transverse optical branch along the qy

direction in the paraelectric phase of Sn2P2S6 crystals, which
is a demonstration of the order/disorder nature of the phase
transition. The presence of diffuse x-ray scattering along
the qy direction in the paraelectric phase near temperature
T0 [51] confirms the important role of the short-wave antipolar
fluctuations for the lattice instability.

In this paper, we use the spin-1 Ising model with competing
interactions [40,52] for the description of the phase diagram
topology for ferroelectrics with TCPs and LPs, for example,
of Sn2P2S6-based ferroelectric mixed crystals. To estimate
the model parameters, we have used previously obtained
experimental data and determined temperature-composition
phase diagrams of (PbySn1−y)2P2(SexS1−x )6 ferroelectrics. In
addition, the available experimental data about the important
role of the short-wave antipolar fluctuations in the complex
nature of ferroelectric phase transitions for Sn2P2S6-type
crystals are analyzed together with the consideration of their
critical behavior peculiarities.

II. PHASE DIAGRAM WITH TRICRITICAL
LIFSHITZ POINT

A spin-1 Ising model is introduced and solved in the mean-
field approximation by BEG [42]. The total Hamiltonian of
this BEG model,

H = −J
∑

〈i j〉
sis j − K

∑

〈i j〉
s2

i s2
j + δ

∑

i

s2
i , (1)

includes only the NN interactions J , a biquadratic exchange
of strength K , and a crystal field of strength δ. In Eq. (1), the
spin si j = 0,±1 is at each site i of a lattice and 〈i j〉 denotes
summation over all the NN pairs of sites. The BEG model is
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a basic model for systems in which the phase transitions can
be driven by symmetry-breaking (dipolar) fluctuations (si =
±1) and by density (quadrupolar) fluctuations (s2

i = 1, 0).
Changing the parameters of this BEG model produces many
different types of phase diagrams, including TCPs and higher
order multicritical points [42,43].

The simplest model used for investigations of modulated
magnetic structures is the spin-1/2 ANNNI model [44]. This
model contains the NN ferromagnetic interactions (J0 > 0)
in the xy plane, and the competing NN ferromagnetic (J1 =
J0 > 0) and the NNN antiferromagnetic (J2 < 0) interaction
terms in the z direction. The ANNNI model describes a rich
phase diagram with LP and transitions between uniform and
modulated phases. The extension of such a model to the study
of a spin-1 system with competing interactions including si j =
0,±1 states was done by defining a simple cubic lattice spin-1
ANNNI model with the addition of a crystal field of strength
δ and a biquadratic spin interaction term with strength K [52].
For the s = 1 lattice model, different phases are characterized
by different values of the dipolar order parameter Pi = 〈si〉 and
the quadrupolar order parameter Qi = 〈s2

i 〉. Here, in addition
to the competition between dipolar interactions J1 and J2 that
produces modulated phases, the competition between both
dipolar (J1, J2) and quadrupolar (K) couplings induces the
appearance of s = 0 states.

In the beginning [52], in the mean-field treatment, the
phase diagram with a LP and a transition between uniform and
modulated phases was obtained only for a particular value of
J1/K ratio. Further investigations have been performed [40]
with special attention on including the influence of a crystal
field strength δ to determine the position of the TCP on the
phase diagram, as well as the competing interaction ratio
λ = −J2/J1 to determine the presence of the LP. To do this,
the biquadratic spin interaction K was neglected, and the sim-
plified model becomes a BC model [40,41] with axial NNN
interactions. Such a BC-ANNNI model has the following
Hamiltonian:

H = − J0

∑

〈i j〉

(xy)sis j − J1

∑

〈i j〉

(z)sis j

− J2

∑

〈〈i j〉〉

(z)sis j + δ
∑

i

s2
i . (2)

Here again the NN interactions J1 = J0 > 0 and NNN
interaction J2 < 0. We applied this model to study the fer-
roelectric ordering in Sn2P2S6-type crystals. In our approxi-
mation, the local lattice distortions Ag ± Bu with a three-well
shape of the energy profile [28] [see Fig. 1(c)] are taken as
pseudospins that satisfy the BC model with the Hamiltonian
Eq. (1) at K = 0. The pseudospins are related to Sn2P2S6

formula units. The crystal lattice of Sn2P2S6, containing two
formula units in the elementary cell, can be presented as
two sublattices of pseudospins, so the the coupling between
the nearest pseudospins from the same sublattice is the NN
interaction J1, while the coupling of the nearest pseudospins
from different sublattices is the NNN interaction J2 [see
Fig. 1(d)]. For the description of the ferroelectric ordering in
the considered compound, we apply the spin-1 model with
short-range competing interactions, assuming that long-range
dipole-dipole and elastic interactions are incapsulated in the

local three-well potential for ferroelectric distortions that was
established by first-principles LDA calculations [28].

The BC-ANNNI model [40] displays a multicritical behav-
ior such as tricriticality as well as the possibility of the pres-
ence of a LP. The tricritical Lifshitz point (TCLP) is predicted
at the meeting point of TCP and LP lines [53–55]. In this
model (as for the original ANNNI model [44]), the relation
between two interactions is written in the form λ = −J2/J1,
where J1 is the effective first neighbors’ positive interaction
and J2 is the negative coupling of NNNs. The paraelectric-
ferroelectric second-order transition line was found as [40]

λ = 1 − t

1 + 0.5e�/t
, (3)

and from the paraelectric phase into a modulated one through
a continuous transitions line:

λ = t

1 + 0.5e�/t
. (4)

Here t = T/J1, and � = δ/J1. The parameter δ is related to
the single-ion term [37,42]. At λ = 0.25, the paraelectric bor-
ders obtained from Eqs. (3) and (4) meet at a LP. Considering
the above-mentioned conditions, the line of LPs was found by
means of the following equation:

� = tLP ln
1 − 2tLP

tLP
. (5)

After reaching a value � ≈ 0.231, the paraelectric borders
begin to split and there is no LP anymore. Near this � value,
the LP line coincides with the TCP line and the end point
line [40]. The calculated t − λ − � phase diagram is depicted
in Fig. 2.

To build the T − λ − � phase diagram for ferroelectrics
in the system Sn(Pb)2P2S(Se)6, we have compared the
above-described theoretical phase diagram with the exper-
imentally determined temperature-concentration phase dia-
gram for (PbySn1−y)2P2(SexS1−x )6 mixed crystals [32]. To
do it, we need to translate it into t − λ − � coordinates.
Here we suppose that the parameter � depends linearly
only on composition y in the cation sublattice, and pa-
rameter λ varies linearly only with composition x of the
anion sublattice. The experimentally observed [56] TCLP
for (Pb0.05Sn0.95)2P2(Se0.28S0.72)6 at TTCLP ≈ 259 K in t −
λ − � coordinates will correspond to the next position: t =
0.158249, λ = 0.5, � = 0.23105. The LP with the com-
position Sn2P2(Se0.28S0.72)6 at temperature TLP ≈ 284 K
(Ref. [17]) will lie on the line of LPs obtained from
Eq. (5) at t = 0.17345, λ = 0.5, � = 0.22997. For mixed
Sn2P2(SexS1−x )6 crystals in the framework of the ANNNI
model, a linear variation of the λ parameter with com-
position x was assumed with the values 0.23, 0.25, and
0.30 for Sn2P2S6, Sn2P2(Se0.28S0.72)6, and Sn2P2Se6, respec-
tively [32]. At the constant value � = 0.22997, the coordi-
nates for these concentrations on the t − λ − � diagram are
the following: t0 = 0.20582, λ = 0.23 for Sn2P2S6 with T0 =
337 K; tc = 0.13436, λc = 0.30, and ti = 0.11799, λi = 0.30
for Sn2P2Se6 with Tc = 220 K, and Ti = 193 K [32].

When substituting tin by lead, the shape of the local three-
well potential changes, and the coordinates of the TCP in the
(PbySn1−y)2P2S6 mixed crystals in the mean-field approxi-
mation on the BC model [57] can be determined of a linear
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FIG. 2. (a) Front and (b) side views on calculated t − λ − �

diagram. Solid lines show paraelectric-ferroelectric (orange) and
paraelectric-modulated (blue) borders, Lifshitz point (LP) lines (red
circles), tricritical point (TCP) lines (green squares), and end point
(EP) lines (brown triangles). Thin lines indicate the second-order
phase transitions while thick lines are the first-order ones. Letters
F, P, and M correspond to ferroelectric, paraelectric, and modulated
phases. The coexistence of ferroelectric and metastable paraelectric
(F + P’) and ferroelectric, metastable paraelectric, and commensu-
rate modulated phases (F + M’+P’) below the dashed lines are also
shown.

variation of � with respect to y, and unchanged intercell
interactions. According to the earlier performed analysis for
(PbySn1−y)2P2S6 mixed crystals,[37] the calculated t − �

diagram (at λ = 0.23) is shown in Fig. 3. It was found that the
TCP has coordinates λ = 0.23, t = 0.13436, � = 0.23577.

As the intersite interaction, J1 is an almost unchanged
quantity [37]; we assume that, on increasing the lead concen-
tration in (PbySn1−y)2P2Se6 mixed crystals (with λ = 0.3), the
value of � will change in the same way as in (PbySn1−y)2P2S6

solid solutions. Accordingly, the experimental phase diagram
in t − λ − � coordinates is presented in Fig. 4.

FIG. 3. Dependence of the phase transition temperature on the
single-ion term in dimensionless t − � coordinates calculated in the
mean-field approximation on the BC model [37,57]. Dashed and
solid lines indicate second- and first-order transitions, respectively,
that meet at the tricritical point.

From the calculated t − λ − � diagram, it follows that the
LP line terminates at TCLP, and this multicritical point can
be considered as a Lifshitz end point. The LP line in TCLP

FIG. 4. (a) Experimental phase diagram in t − λ − � coordi-
nates for (PbySn1−y )2P2(SexS1−x )6 ferroelectrics and (b) front view
of both experimental and calculated phase diagrams in temperature-
concentration T − x − y coordinates. Dashed and solid lines denote
second-order and first-order phase transitions, respectively. Green
and red spheres correspond to tricritical point lines and Lifshitz point
lines, blue spheres to the calorimetric data [36,56,58–62].
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FIG. 5. Temperature dependence of (a) heat capacity according
to experimental data [63] and (b) related to the phase transition
excess heat capacity for (PbySn1−y )2P2Se6 crystals.

splits into the TCP line and the end point line. When � is
big enough, the paraelectric-modulated critical line ends at the
end point [40].

As is well seen from Fig. 2, at a low enough value of the
parameter �, the paraelectric-ferroelectric second-order tran-
sition line and the paraelectric-modulated continuous phase
transitions line meet at the LP. For � > �TCLP ≈ 0.23, the
lines obtained from Eqs. (3) and (4) begin to be separated

by paraelectric region—the paraelectric phase can exist down
to T = 0.

For high lead concentrations (y > 0.2), at low temperatures
a chaotic state can be observed [40]. This state presents a
mixture of paraelectric, ferroelectric, and modulated phases.
Such peculiarity can be seen on the excess heat capacity
�Cp and anomalous temperature dependencies of dielectric
susceptibility ε′ in (PbySn1−y)2P2Se6 crystals, according to
recent investigations [21,22,63,64]. For small lead concen-
trations, there are clear anomalies of �Cp(T ) and ε′(T ) at
paraelectric-IC (Ti) and IC-ferroelectric (Tc) phase transitions
(see Figs. 5 and 6). However, for y � 0.2, the �Cp(T ) and
ε′(T ) anomalies in the vicinity of the lock-in transition (Tc) are
strongly smeared and become similar to the observed anoma-
lies in a case of relaxor ferroelectrics. Such chaotization can
be related to a synergy of frustration effects and nonlinearity
of the system with the three-well local potential.

The ANNNI model with two structural sublattices reflects
the main properties of ferroelectrics that are related to the
LP and IC phases on their phase diagram. Above, for the
description of the presence of a TCP on the phase diagram
of Sn2P2S6 family ferroelectrics, the quadrupole-quadrupole
coupling has been neglected and the BC model approxima-
tion was used [41]. A more accurate consideration of these
ferroelectrics with two structural sublattices can be performed
in the frame of BEG model [42,43]. This three-state model is
based on two order parameters—dipolar and quadrupolar (Bu

and Ag symmetry variables in the case of Sn2P2S6) [28,39].
Therefore, in addition to dipole-dipole intersite coupling,
the quadrupole-quadrupole interaction can also be impor-
tant. In the case of two sublattices, taking into account the
quadrupole-quadrupole interactions can complicate the topol-
ogy of the temperature-composition phase diagram. On such
a diagram, in addition to (or instead of) the presence of a
TCP, other multicritical points can appear, such as a triple
point, a critical end point, a bicritical point, and a tetracritical
point [43]. In the case of negative quadrupole-quadrupole
coupling while lowering the temperature, in addition to the
ferroelectric state, ferrielectric and antiquadrupolar phases
can also appear [43]. With the growth of positive quadrupole-
quadrupole coupling, the TCP transforms into a triple point.

FIG. 6. Comparison of the anomalies for low-frequency dielectric susceptibility (according to data [21,22,64]) and excess heat capacity
(according to data [63]) in the region of the phase transitions for (PbySn1−y )2P2Se6 crystals.
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FIG. 7. (a) Determined by neutron scattering at 440 K transverse
soft optical T O(X ), acoustic longitudinal LA(XX ) and transverse
TA(XY ) phonon branches along qy direction of Sn2P2S6 crystal
monoclinic Brillouin zone [46]; (b) temperature dependence of the
dielectric susceptibility and its reciprocal from submillimeter soft
optical mode contribution near the phase transition in Sn2P2S6

crystal [68]; (c) comparison of the inverse of the dielectric sus-
ceptibility temperature dependence in Sn2P2S6 crystal [69] for 20
MHz—1, 4 GHz—2, 27 GHz—3 and submillimeter soft optical
mode contribution—4; (d) diffuse x-ray scattering at T0 + 2 K in
the paraelectric phase of Sn2P2S6 crystal in the plane (0KL) of the
Brillouin zone [51].

In such a case, on cooling in the paraelectric phase the first-
order transition with change of quadrupolar order parameter
occurs, and with further temperature lowering the second-
order transition into a ferroelectric state is observed [43].

III. POLAR AND ANTIPOLAR FLUCTUATION COUPLING

The above-mentioned examples of possible complications
of experimentally observed phase diagrams for objects with
complex local potential for ferroelectric distortion demon-
strate the proximity of the phase transitions to higher order
multicritical points, like a tetracritical point, and give evidence
of the importance of higher order invariants in the thermody-
namic potential of the investigated ferroelectric crystals. Such
possibility was earlier demonstrated [65–67] when the IC
phase properties near lock-in transition into the ferroelectric
phase in Sn2P2Se6 crystals were theoretically explained.

For Sn2P2S6 ferroelectrics, the experimental data of neu-
tron scattering, dielectric susceptibility, and hysteresis loop
investigations present rich information about the complex
character of the phase transitions. The neutron scattering
data [46] show the presence of a flat lowest-energy transverse
optical branch along qy direction at T = 440 K in the para-
electric phase [see Fig. 7(a)]. This phonon branch is polarized
near [100] direction and softens at cooling. The polar soft

optical mode, according to the submillimeter spectroscopy
data near 1012 Hz [68], contributes only �ε′ = 1000 to
the dielectric susceptibility maximum near T0 ≈ 337 K [see
Fig. 7(b)]. When the frequency is lowered down to 107 Hz,
the dielectric susceptibility near T0 rises to 104 − 105 [see
Fig. 7(c)] [69] and at lower frequency obeys the Curie-Weiss
law ε′ = C(T − T0)−1 with C ≈ 0.6 × 105 K.

On cooling in the paraelectric phase of a Sn2P2S6 crystal,
not only long wave polarization fluctuations are developed
near the Brillouin zone center, which are proportional to the
reciprocal of the polar soft optical mode (with Bu symmetry
at q → 0) frequency square. Near the Brillouin zone edge, at
qy = π/b, critical growth also occurs for fluctuations that are
related to the eigenvector of short length phonons from the
soft optical branch B(qy). The development of the aforemen-
tioned fluctuations was observed directly [see Fig. 7(d)] [51]
by inelastic x-ray scattering at T0 + 2 K.

As discussed above, the local three-well potential follows
from a nonlinear interaction of polar Bu modes with fully
symmetrical Ag modes (like AgB2

u + A2
gB2

u) at the Brillouin
zone center [28,39]. But on the matter of the soft optical
mode flatness in the qy direction [46], the nonlinear phonon-
phonon interaction can be realized with the involvement
of phonons from different points of the Brillouin zone. In
the simplest way, such a possibility can be described by
a mean-field-solved model of quantum anharmonic oscilla-
tors [23,37,70,71] that is based on a three-well on-site poten-
tial involving first- and second-neighbor intersite interactions.
Here we consider nonlocal interactions in the qy direction
(instead of the above considered frustration of J1 and J2

intersite interactions that are related to the IC phase appear-
ance with modulation wave vector qz). The phase diagram
calculated with such a model contains a tetracritical point
at which two second-order transition lines (from paraelectric
into ferroelectric phase and between paraelectric and antipolar
phases) intersect. It was found [23] that for Sn2P2S6 crystals
below T0, the coexistence of antipolar and ferroelectric phases
can be presented.

The assumption that in Sn2P2S6 crystals the phase transi-
tion at T0 ≈ 337 K is placed near the tetracritical point agrees
with the previous discussion based on the BEG model, for
which the phase diagram with a TCP can be complicated by
the presence of bicritical or tetracritical points [43]. Thus,
the critical behavior of Sn2P2S6 crystals near temperature T0

requires special attention.
According to previous investigations of thermal diffu-

sivity [58], which is proportional to the reciprocal of heat
capacity, the critical behavior of Sn2P2S6 crystal can’t be
self-consistently described in both paraelectric and ferroelec-
tric phases within the framework of appropriate universality
class. Such asymmetry is very strange, especially when it
has been possible to describe the critical behavior of mixed
crystals based on Sn2P2S6 using a single model for both
phases. For Sn2P2(SexS1−x )6 solutions with increasing se-
lenium concentration and approaching the LP (x ≈ 0.28),
the critical anomalies are nicely described by exponents and
ratios of critical amplitudes that belong to the Lifshitz uni-
versality class [see Fig. 8(a)] [59]. When substituting tin by
lead in (PbySn1−y)2P2S6 mixed crystals, the critical behav-
ior is also satisfactorily described above and below T0 as
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FIG. 8. (a) Dependence of the inverse of thermal diffusivity measured in the [100] crystallographic direction in the vicinity of continuous
phase transition in Sn2P2S6 and Sn2P2(Se0.2S0.8)6 crystals [58,59]. (b) Results of the fittings of the inverse of thermal diffusivity for Sn2P2S6

crystal, and (c) corresponding deviation curves for the fittings. The points correspond to experimental measurements, the continuous lines to
the fittings to Eq. (6). Blue color corresponds to the fitting below the critical temperature, red to the ones above it.

a crossover from a clear non-mean-field model at y = 0.1
to a mean-field one at y = 0.3 [36]. For Sn2P2Se6 crys-
tals, at the paraelectric to IC second-order phase transition
the critical anomaly above and below Ti agrees with the
predictions of the renormalization group theory for 3D-XY
universality class [61]. When simultaneously substituting dif-
ferent chemical elements in cation and anion sublattices in
(PbySn1−y)2P2(SexS1−x )6 mixed crystals, a TCLP has been
found [56] for x = 0.28 and y = 0.05 at Tc = 259.12 K. Here
the tricritical Lifshitz universality class has been assigned
because of the obtained critical exponent α = 0.64 which is
equal to the theoretical predicted one [15].

Why can’t a critical behavior of Sn2P2S6 crystals be de-
scribed satisfactorily in both temperature sides of T0? As was
mentioned above, for pure Sn2P2S6 crystals below T0, the
coexistence of antipolar (antiferroelectriclike) and ferroelec-
tric states is possible. This is manifested by the observation
of double hysteresis loops and usual ferroelectric loops [23].
Considering the possibility of the coexistence of antipolar
and ferroelectric phases below T0, we reexamine previous
experimental data [58]. We have used for the fittings the
well-known equation

1

D
= B + Cτ + A±|τ |−α (1 + E±|τ |0.5), (6)

where τ = (T − T0)/T0 is the reduced temperature and super-
scripts + and − stand for T > T0 and T < T0, respectively,
α, A±, B, C, and E± are adjustable parameters. Figure 8(b)
demonstrates the fittings together with the deviation plots [see
Fig. 8(c)] (difference between each experimental and fitted
value, divided by the experimental value, in percentage).

The results of the fittings [see Fig. 8(b) and 8(c)] in
Sn2P2S6 have shown an XY-like behavior with the critical
exponent α = −0.0092 ± 0.0008 below T0 and an Ising-like
one with α = 0.1049 ± 0.0066 above T0. Such value of the
critical exponents, smaller than αISING in the paraelectric
phase and a little bigger than αXY below T0, can be interpreted

as a possible crossover in the critical behavior which was
earlier predicted [72] for systems with two competing order
parameters near a bicritical point on the phase diagram. The
bicritical point can be originated instead of a tetracritical point
if there is a strong enough coupling of two order parame-
ters [73].

In any case, good fittings of thermal diffusivity in a
Sn2P2S6 crystal below T0 with negative value of critical index
demonstrate that its cups shape is a characteristic of the
antiferroelectriclike ordering and coincides with the observed
double hysteresis loops in a Sn2P2S6 crystal below T0 [23].

IV. CONCLUSIONS

Static and dynamic critical behavior of Sn2P2S6-type fer-
roelectrics and (PbySn1−y)2P2(SexS1−x )6 mixed crystals are
governed by the presence of multicritical points on their
phase diagram. Through hydrostatic compression on Sn2P2S6

crystal or tin by lead substitution in (PbySn1−y)2P2S6 mixed
crystals, the TCP can be reached, which is described by the
BC model for a system with three-well local potential for
ferroelectric distortion. When replacing sulfur by selenium
in Sn2P2(SexS1−x )6 solid solutions, the LP is induced, which
is explained by the first- and second-neighbo short-range
interaction ratio changing in the pseudospin ANNNI model.
When simultaneously varying the chemical composition in
cationic and anionic sublattices, the lines of TCPs and LPs
on the T − x − y phase diagram meet at the TCLP, and
this higher order multicritical point can be described in a
combined BC-ANNNI model—spin-1 Ising model with com-
peting first- and second-neighbor interactions [40,52]. Below
the temperature of TCLP, which can be considered the Lifshitz
line end point, the chaotic state with coexisting ferroelectric
and metastable paraelectric and modulated phases is possible.
This expectation agrees with the concentration evolution of
heat capacity [63] and dielectric susceptibility [64] tempera-
ture dependence in (PbySn1−y)2P2Se6 mixed crystals, which
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demonstrates a gradual lock-in transition smearing with the
growth of lead concentration.

In addition to the frustration of polar fluctuations near the
center of the Brillouin zone, in Sn2P2S6 crystals the antipolar
fluctuations also strongly develop in the paraelectric phase
on cooling to the continuous phase-transition temperature T0.
This is confirmed by the observation in neutron scattering
experiments [46] of a flat polar soft optical phonon branch
and by the development of diffuse x-ray scattering along qy

direction in the Brillouin zone of the paraelectric phase near
temperature T0 [51]. Such observation indicates the closeness
of this transition to a tetracritical point which appears due to
the interaction between two order parameters related to polar
fluctuation near the Brillouin zone center and to antipolar fluc-

tuations near its edge. With a strong enough coupling of the
mentioned order parameters, the tetracritical point can evolve
to a bicritical point. The frequency dependence of the dielec-
tric susceptibility temperature anomaly around T0 [68,69], to-
gether with observed aging effects [74] and transformation of
double hysteresis loops into usual ferroelectriclike loops [23]
confirm the possibility of simultaneous development of polar
and antipolar fluctuations in the paraelectric phase on cooling
to T0, and the coexistence of antipolar and polar clusters
in Sn2P2S6 crystals below T0. In this transition, the critical
behavior according to the thermal diffusivity data [58] can be
described as a crossover between Ising and XY universality
classes, which is expected near a bicritical point with coupled
polar and antipolar order parameters.
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