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The incommensurate stacking of multilayered two-dimensional materials is a challenging problem from a
theoretical perspective and an intriguing avenue for manipulating their physical properties. Here we present
a multiscale model to obtain the mechanical relaxation pattern of twisted trilayer van der Waals (vdW)
heterostructures with two independent twist angles, a generally incommensurate system without a supercell
description. We adopt the configuration space as a natural description of such incommensurate layered materials,
based on the local environment of atomic positions, bypassing the need for commensurate approximations.
To obtain the relaxation pattern, we perform energy minimization with respect to the relaxation displacement
vectors. We use a continuum model in combination with the generalized stacking fault energy to describe the
interlayer coupling, obtained from first-principles calculations based on density functional theory. We show
that the relaxation patterns of twisted trilayer graphene and WSe2 are “moiré of moiré,” as a result of the
incommensurate coupling two bilayer moiré patterns. We also show that, in contrast to the symmetry-preserving
in-plane relaxation in twisted bilayers, trilayer relaxation can break the two fold rotational symmetry about the
xy plane when the two twist angles are equal.
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I. INTRODUCTION

Assemblies of multilayers of two-dimensional (2D) ma-
terials, referred to as van der Waals (vdW) heterostructures,
have become a favorite platform for exploring strongly corre-
lated states, because they offer a large parameter space and
great tunability. Superconductivity and strongly-correlated
states have been discovered in these heterostructures with
one small twist angle (e.g., twisted bilayer graphene, twisted
double-bilayer graphene) [1–8] and systems with a small
misalignment (e.g., hBN + graphene) [9,10]. Due to the
twist angle or the small lattice misalignment, the system
forms moiré patterns and the periodicity becomes much larger
than the original unit cell size. To understand the electronic
and mechanical properties of the multilayered structures, we
view them as a series of conventional crystals with a weak
perturbative interaction between layers [11].

Crystal relaxation in vdW heterostructures has been stud-
ied in the continuum limit by energy minimization [12–18].
Relaxation in incommensurate stacked 2D materials has been
known to form domain walls separating large commensurate
areas [19]. For example, in twisted bilayer graphene, relax-
ation enlarges the AB/BA stacking regions (the equilibrium
stacking) and forms a thin domain line in between adjacent
AB/BA stacking regions, while the AA stacking regions (high
energy stacking order) shrink to localized spots. The domain
formation in twisted bilayer systems has been observed exper-
imentally [20–25]. The relaxation pattern has a dependence
on the twist angle: The magnitude of relaxation displacement

vectors decreases as the twist angle increases. At a twist angle
θ > θ∗ (θ∗ ∼ 1◦ in twisted bilayer graphene), the relaxation
effects are weak. As the twist angle becomes smaller, the
domain wall thickness stays roughly constant and only the
AB/BA stacking regions get enlarged.

A natural extension is to add another layer, which intro-
duces a new degree of freedom—a second twist angle—to
tune the system. We emphasize that the system we discuss
here is different than multilayered systems such as double-
bilayer graphene, in which there is only one independent
parameter or one twist angle despite the presence of four
layers. The experimental technique to realize twisted trilayer
graphene is readily available and unconventional correlated
states have been observed [26]. There have been preliminary
studies of electronic states of twisted trilayer graphene using
k · p perturbation theory [26–28]. In these models, mechanical
relaxation has not been taken into consideration. However,
atomic relaxation will modify the band structure by opening
up a single-particle gap in twisted bilayer graphene [14,29,30]
and thus is an important effect in obtaining realistic descrip-
tion of electronic behaviors.

The extension from twisted bilayers to twisted trilayers is
challenging for the following reasons. (1) The system size
becomes much larger. In twisted bilayer systems the relevant
length scale is on the order of 1/θ . In twisted trilayers,
assuming the two twist angles are identical, the length scale
becomes 1/θ2, where θ is the relevant twist angle, typically
a small quantity for systems of interest. (2) Because of the
independent second twist angle, a supercell description is no
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FIG. 1. (a) An example of a twisted trilayer honeycomb lattice in
real space with θ12 = 5.3◦ and θ23 = 7.7◦. (b) Magnified view at the
black box marked in (a). The twist angle between L1 and L2, θ12, and
the twist angle between L2 and L3, θ23, are marked by black arrows.

longer valid, except for specific cases. The trilayer system
is truly incommensurate, while there always exists a moiré
supercell in the continuum limit or the small angle limit of
twisted bilayers.

To address the challenge of the large system size and
the lack of periodicity, we introduce a multiscale method
based on the concept of configuration space to minimize
the energy directly in the large system limit without having
to use a supercell approximation. Specifically, we perform
energy minimization in the continuum approximation over a
collection of local atomic environments with respect to the
other layers, which we call the configuration space [31–34].
This approach has recently been applied to describing the
crystal relaxation in stacked bilayer materials [17,34].

The rest of the paper is organized as follows: In Sec. II, we
introduce the configuration space to describe the trilayer sys-
tem and formulate the energy minimization problem in con-
figuration space using a continuum approximation. In Sec. III,
we present the results for twisted trilayer graphene and WSe2,
as representative heterostructures of a 2D semimetal and a 2D
semiconductor. Finally, we summarize the results and discuss
potential applications in Sec. IV.

II. CONTINUUM APPROXIMATION AND ENERGY
MINIMIZATION IN CONFIGURATION SPACE

A. Setup and notation

We first define the Bravais lattice basis vectors of a mono-
layer, a1 and a2, respectively, in a 2 × 2 matrix form as the
columns of the following matrix:

A = a0

(√
3/2

√
3/2

−1/2 1/2

)
= (a1 a2), (1)

where a0 is the lattice constant. We denote the unit cell of
layer i by �(i). We consider the twisted trilayer systems with
two independent twist angles; an example of such a system
is given in Fig. 1(a). Suppose the second layer L2 is fixed at
the origin. The first layer (L1) is twisted counterclockwise by
θ12 with respect to L2, and L3 is twisted clockwise by θ23 with
respect to L2 [see Fig. 1(b)]. The primitive Bravais lattice basis
vectors in the matrix form of Li is defined as Ai. With A2 = A,

FIG. 2. The definition of the local shift or the disregistry b( j).
Here, we take j = 2 as an example, defining b(2) between L1 and L2.

A1 and A3 are given as follows,

A1 =
(

cos θ12 − sin θ12

sin θ12 cos θ12

)
A = (

a(1)
1 a(1)

2

)
,

A3 =
(

cos θ23 sin θ23

− sin θ23 cos θ23

)
A = (

a(3)
1 a(3)

2

)
. (2)

The primitive reciprocal lattice vectors are given by the
columns of 2πA−T

i .

B. Relaxation in configuration space

The issue with applying the real space continuum model
to obtain the relaxation pattern in trilayer systems is the lack
of periodicity. While bilayer systems always have a moiré
supercell [17,34], trilayer systems are generally incommen-
surate and thus lack a periodic supercell even in the con-
tinuum limit. Therefore, a more general description beyond
the supercell approximation is required. Here, we introduce
the configuration space to describe the local environment of
every position in the continuum and parametrize the trilayer
system in configuration space [31–33] based on the formalism
introduced by Cazeaux et al. [34]. We also reformulate the
energy minimization problem in configuration space.

The local configuration or the environment for an arbitrary
position r in layer Li, which may be a lattice position on layer
Li, can be uniquely determined by three relative shift vectors
or disregistries b( j) describing the relative position from this
position in Li with respect to the lattice of layer Lj (see Fig. 2
for an example), which is defined as the lattice position with
respect to r modulo the unit cell �( j). More explicitly,

b( j)(r) = R( j) − r ∈ �( j), (3)

where R( j) is any lattice site in layer Lj . The shift vectors b( j)

take values in the periodic unit cell �( j) of layer Lj by the
translational invariance of the lattice. Figure 3 illustrates this
mapping between real space and the configuration space of
the three relative shift vectors for r sampled at lattice points
of the middle layer L2 of a triangular lattice trilayer for a
representative atomic structure. The collection of these shift
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FIG. 3. Mapping between real and configuration space. Left: Real space atomic positions of a trilayer triangular lattice. The first layer
(blue) is twisted by 2◦ with respect to the second layer (red), and the third layer (green) is twisted by 3◦ with respect to the second. Middle:
magnified view of the three boxed area on the left. Red parallelograms are the unit cell of the layer 2. Arrows are pointing from the atom of
interest (the red atom on the left corner) to the neighboring atoms on the other two layers. Right: the corresponding configuration space to the
atom of interest. Blue, red, and green parallelograms are the unit cells of Li for i = 1, 2, 3 respectively.

vectors forms a six-dimensional configuration space:

� = {ω | ω = (b(1), b(2), b(3) )}. (4)

The shifts b( j)(r) vary quickly on the scale of the lattice
size and thus do not correspond to the intuitive notion of
disregistry which varies on the scale of the moiré pattern.
Instead, we construct functions bi→ j (ω) measuring smoothly
the disregistry between layer Li and Lj as a function of the
local configuration ω, by using bilinear interpolation between
lattice points [17,34]

bi→ j (ω) = b( j) − AjA
−1
i b(i) ∈ �( j). (5)

This expression is periodic as a function of b(i) and b( j),
respectively, in the unit cells of Li and Lj , and the disregistry
bi→ j (ω(r)) varies slowly on the atomic scale.

Figure 4 demonstrates this construction. We first choose
a reference point r; here, we use a lattice site of L1 as
an example. At the reference point, the configuration is
ω = (b(1), b(2), b(3) ). At each one of the four lattice sites in
layer Li (respectively, Lj) denoted by R(i)

mn (respectively, R( j)
mn)

neighboring the reference point r, the shift vector b( j)(R(i)
mn)

coincides with the local disregistry of layer Lj with respect to
layer Li:

bi→ j
mn = R( j)

mn − R(i)
mn ≡ b( j)(R(i)

mn

)
, (6)

where we use the definition in Eq. (3). Because the lattices
are almost aligned, these four disregistries only differ slightly
from each other. We can then define bi→ j (ω) by bilinear
interpolation of the four relative shifts b2→3

mn , yielding Eq. (5)
[34]. Note that the interpolated disregistry given in Eq. (5) is
consistent with Eq. (6) at any lattice site of Li.

In practice, we need to only consider reference points that
coincide with lattice points in layer Li, r = R(i), in order to

parametrize atomic displacements. This leads us to introduce
the reduced, four-dimensional atomic configuration spaces:

�i = {ω | ω = (b(1), b(2), b(3) ) | b(i) = 0}. (7)

The relaxation displacement u(i)(ω) at each lattice point is a
function of its local environment of shifts ω ∈ �i. The above
construction allows us to define an interpolated displacement
û( j)(ω) of another layer Lj from the viewpoint of a lattice site
in Li by

û( j)(ω) = u( j)(b j→1(ω), b j→2(ω), b j→3(ω)), (8)

FIG. 4. A demonstration of the bilinear interpolation of the local
shift vector b2→3. This corresponds to the same real space position in
the green (the second) box in Fig. 3 but with a different origin. Here,
the origin is chosen to be a lattice site of L1 with b(1) = 0, which is
marked by a blue cross in the figure, while in Fig. 3, the origin is the
red atom on the left corner. b2→3

mn are the relative shifts between L2

and L3 at the four nearest lattice sites to the origin.
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where we simply use the definition given in Eq. (5). For
example, the interpolated displacement û(2)(ω) for ω ∈ �1 is

û(2)(ω) = u(2)(b2→1(ω), b2→3(ω)) (9)

= u(2)
( − A1A−1

2 b(2), b(3) − A3A−1
2 b(2)),

where we omit b j→ j (ω) = 0 from the argument of u( j).

We can then describe the relaxation-modulated local shift
Bi→ j (ω) of Li with respect to Lj by

Bi→ j (ω) = bi→ j (ω) + û( j)(ω) − u(i)(ω) for ω ∈ �i, (10)

where û( j)(ω) is the interpolated displacement of Lj .

The relaxed site energy has two contributions, interlayer
and intralayer site energies, as a function of the relaxation
displacement vectors, u = (u(1), u(2), u(3) ). For a given layer
Li,

�i,ω(u) = �intra
i,ω (u) + �inter

i,ω (u). (11)

By the uniform sampling of the continuum of local configura-
tions due to the ergodicity of incommensurate lattices [31,33],
we can derive the total energy by integrating the site energies
over all configurations [34]

E tot (u) = E intra (u) + E inter (u) =
3∑

i=1

∫
�i

�i,ω(u) dω

=
3∑

i=1

∫
�i

�intra
i,ω (u) dω +

3∑
i=1

∫
�i

�inter
i,ω (u) dω. (12)

We then minimize E tot (u) to obtain the relaxation vector in
configuration space u. We will provide the form of E intra and
E inter in Secs. II C and II D, respectively.

C. Intralayer energy

We proceed to describe the intralayer energy contribution
in configuration space. From linear elasticity theory, the in-
tralayer energy due to lattice relaxation depends on the real
space gradient of displacement vectors,

E intra (u) =
3∑

i=1

∫
�i

�intra
i,ω (u)d ω, (13)

where ω = (b( j), b(k) ) ∈ �i, and

�intra
i,ω (u) = 1

2
∇r̂u(i)(ω) : C : ∇r̂u(i)(ω). (14)

In Eq. (14), C is the linear elasticity tensor. For in-plane
deformation, C is a rank 4 tensor with its components defined
as follows:

C11i j =
(

K + G 0
0 G

)
C12i j =

(
0 K − G
G 0

)
(15)

C21i j =
(

0 G
K − G 0

)
C22i j =

(
G 0
0 K + G

)
,

where G and K are the shear and bulk modulus of a monolayer
(anisotropic models can be used for anisotropic 2D materials
such as black phosphorous). These values can be obtained
from first-principles total-energy calculations based on den-
sity functional theory (DFT) by isotropically straining and

compressing the monolayer and performing a quadratic fit of
the total energy as a function of the applied strain or shear. In
order to incorporate out-of-plane relaxation, the elastic tensor
would be a 3 × 3 × 3 × 3 tensor [13], which is beyond the
scope of this work. We can compute the real space gradient of
the interpolated displacement û(i) at an arbitrary configuration
ω ∈ �i by the chain rule applied to Eqs. (3), (5), and (8):

∇r̂u(i)(ω) =
∑
i 
= j

∇b( j) u(i) · (
AjA

−1
i − I

)
. (16)

Defining the following matrix,

Mji = AjA
−1
i − I, (17)

we then have the Fourier representation of û(i) :

∇r̂u(i)(b( j), b(k) ) = i
∑
G( j)

∑
G(k)

eiG( j)·b( j)

eiG(k)·b(k)

× ũ(i)(G( j), G(k) ) ⊗ [
MT

jiG
( j) + MT

kiG
(k)

]
,

(18)

where G(i) are reciprocal lattice vectors for Li and the Fourier
coefficients ũ(i) are defined according to

u(i)(b( j), b(k) ) =
∑

G( j), G(k)

ũ(i)(G( j), G(k) )

× ei(G( j)·b( j)+G(k)·b(k) ), (19)

for j, k 
= i and j < k. The contribution of the mode
(G( j), G(k) ) to the variational elastic energy is

Ei(G( j), G(k) )

= 1

2

[
ũ(i)(G( j), G(k) ) ⊗ (

MT
jiG

( j) + MT
jkG(k)

)]
: C :

× [
ũ(i)(G( j), G(k) ) ⊗ (

MT
jiG

( j) + MT
jkG(k)

)]
. (20)

In terms of the Ei’s, the total intralayer energy of the trilayer
system is

E intra (u) =
3∑

i=1

∑
G( j),G(k)

Ei(G( j), G(k) ). (21)

Each layer in the trilayer system has a four-dimensional
configuration space �i, but the in-plane interactions only span
a two-dimensional submanifold. The Euler-Lagrange PDE for
the intralayer strain energy is thus not properly elliptic, but
it is nonetheless nonsingular since E1(G(2), G(3) ) = 0 if and
only if ũ1(G(2), G(3) ) = 0 or G(2) = G(3) = 0, and similarly
for E2(G(1), G(3) ) and E3(G(1), G(2) ). To see this, we take i =
1 in Eq. (21) and E1(G(2), G(3) ) ∝ |MT

21G(2) + MT
31G(3)|2. We

note that

MT
21G(2) + MT

31G(3) = G′(1) − G(2) − G(3), (22)

where G′(1) = A−T
1 AT

2 G(2) + A−T
1 AT

3 G(3) is in the reciprocal
lattice of L1, and G′(1) − G(2) − G(3) = 0 if and only if
G′(1) = G(2) = G(3) = 0 by the incommensurability of the
trilayer [34]. Observe that |G′(1) − G(2) − G(3)|2 and hence
E1(G(2), G(3) ) can be small even though G(2) and G(3) are
large, which is contrary to the ellipticity condition that
E1(G(2), G(3) ) is a uniformly positive definite quadratic form
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TABLE I. Equilibrium lattice constant of the primitive unit cell a0 (in Å), unit cell area A (in Å2), elastic constants K and G, and GSFE
Fourier components for graphene, parallel, and antiparallel WSe2. Units of elastic constants and GSFE components are in meV per unit cell.

System a0 (Å) A (Å2) K G c0 c1 c2 c3 c4 c5

Graphene 2.47 5.28 69518 47352 6.832 4.064 −0.374 −0.095 0.000 0.000
Parallel WSe2 3.28 9.32 47123 31153 27.85 14.08 −2.442 −0.773 0.000 0.000
Antiparallel WSe2 3.28 9.32 47123 31153 35.03 12.17 −1.899 −0.1501 3.865 0.542

in (G(2), G(3) ) for all Fourier coefficients of the relaxation
vectors ũ(1)(G(2), G(3) ). Physically, nonellipticity implies the
instability due to the resonance of long wavelength modes in
an infinite system. However, note that a finite physical system
does not support such an instability if the elastic energy
Eq. (20) is simply positive. In contrast, the PDEs for the
intralayer energy of bilayer vdW heterostructures are elliptic.
For bilayers, the variational elastic energy of Li takes the
following form:

Ei(G( j) ) = 1

2

(
ũ(i)(G( j) ) ⊗ MT

jiG
( j)

)
: C :

× (
ũ(i)(G( j) ) ⊗ MT

jiG
( j)

)
. (23)

Similarly, taking i = 1, we have E1(G(2) ) ∝ |MT
21G(2)|2 =

|G′(1) − G(2)|2, where G′(1) = A−T
1 AT

2 G(2). In this case,
|G′(1) − G(2)| is bounded from zero and takes its minimum
values when G′(1) − G(2) are one of the columns of 2π (A−T

1 −
A−T

2 ), which can be understood as the primitive vectors of the
bilayer moiré supercell reciprocal lattice.

D. Interlayer energy

We now describe the interlayer energy due to the misfit
from the twist of the relaxation displacement. The origin of
the interlayer energy is the slight misalignment between the
two layers. This interaction is represented by the generalized
stacking fault energy (GSFE). The GSFE is obtained with
DFT by calculating the difference in total energy between
configurations that involve relative rigid shifts between the
two layers of a bilayer, with the zero corresponding to the
reference ground-state-energy configuration. The GSFE can
be expressed as a Fourier sum of the first few terms [35], and
its functional form is given in Appendix A. The computational

details of the GSFE are provided in Appendix B and the
Fourier coefficients for graphene and WSe2 are provided in
Table I. The GSFE for these two materials are shown in
Fig. 5. We note that due to a lower symmetry, for WSe2,
there are two possible stackings of a bilayer, referred to as
parallel and antiparallel, which denote the relative orientation
of the two layers in the reference configuration. In graphene
and parallel WSe2, the origin (AA stacking) is when the two
layers are exactly aligned, and AB/BA stacking is when one
sublattice is aligned with the other. In antiparallel WSe2, we
refer to the origin (BB stacking) as the stacking configuration
when the chalcogen atoms (Se) are aligned, the AA stacking
order as when the metal atoms (W) are aligned, and the AB
stacking order is when the metal atom is aligned with the
chalcogen atom. The stacking configuration is consistent with
the notation in Phillips and Hellberg [36].

Unrelaxed localized misfit site energies �misfit
i± : �i±1 �→ R

are defined by

�misfit
i+ (bi→i+1(ω)) = �misfit

(i+1)−(bi+1→i(ω)). (24)

These site energies thus satisfy the following symmetry rela-
tion for s ∈ A−1

i �i = A−1
i+1�i+1 ≡ [0, 1)2 :

�misfit
(i+1)−(Ais) = �misfit

i+ (−Ai+1s), (25)

and we see that the misfit energies �misfit
(i+1)− and �misfit

i+ can be
computed from the same misfit energy between Li and Li+1.
As mentioned above, the simulations in this paper approxi-
mate the misfit energy �misfit

i± by the GSFE, V GSFE
i± , defined in

Eq. (A2) in Appendix A.
When the layers are relaxed, the argument of V GSFE is

modified to be the relaxation-modulated local shift Bi→ j

defined in Eq. (10). The interlayer contribution of each layer
can be given by

�inter
i,ω (u) =

⎧⎪⎨
⎪⎩

1
2V GSFE

1+ (B1→2(ω)), for ω ∈ �1,

1
2

[
V GSFE

2+ (B2→3(ω)) + V GSFE
2− (B2→1(ω))

]
, for ω ∈ �2,

1
2V GSFE

3− (B3→2(ω)), for ω ∈ �3.

(26)

The total interlayer energy can therefore be obtained by
integrating over all local configurations ω:

E inter = 1

2

∫
�1

V GSFE
1+ (B1→2(ω)) dω

+ 1

2

∫
�2

[
V GSFE

2− (B2→1(ω)) + V GSFE
2+ (B2→3(ω))

]
dω

+ 1

2

∫
�3

V GSFE
3− (B3→2(ω)) dω. (27)

Note that for heterotrilayer materials, V GSFE
2− and V GSFE

2+ have
different functional forms.

E. Relation between real space and configuration space

Finally, we describe the mapping between real space and
configuration space. Each adjacent pair of layers i and j forms
a moiré supercell, �i j, given by the columns of the matrix (I −
AiA

−1
j )−1Ai = (A−1

i − A−1
j )

−1
. At the real space position at a
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FIG. 5. Left: the GSFE for bilayer graphene, parallel WSe2, and
antiparallel WSe2. Right: side views of the AA stacking orientation
for each bilayer corresponding to the three cases on the left.

lattice site in Li, R(i)
mn, we can calculate the local configuration

relative to Lj by calculating the local shift vector [see Eq. (6)]:

b( j)(R(i)
mn

) = R( j)
mn − R(i)

mn = (Aj − Ai )

(
m
n

)
= (

AjA
−1
i − I

)
R(i)

mn ∈ �( j). (28)

Note that this construction agrees with evaluating the interpo-
lated disregistry b( j) given by Eq. (3) at a lattice site R(i)

mn as
the reference point. This result can be generalized to any real
space position r:

bi→ j (ω(r)) = (
AjA

−1
i − I

)
r ∈ �( j), (29)

where we notice that bi→ j (r) is periodic in the bilayer moiré
supercell �i j in the continuum approximation, meaning it
sends a position in the bilayer supercell to the unit cell of Lj .
This generalization is equivalent to evaluating the interpolated
disregistry given in Eq. (5) at a configuration ω.

The relation between the displacement defined in real
space, U (i)(r), and in configuration space, u(i)(r), can then
be given by evaluating û(i)(ω) at bi→ j (r) and bi→k (r) with
Eq. (29) above at a position r to obtain

U (i)(r) = u(i)(bi→ j (ω(r)), bi→k (ω(r))), (30)

where j, k 
= i and j < k. We see that U (i)(r) is not generally
periodic since b( j)(r) and b(k)(r) are each periodic on the
incommensurate moiré supercells �i j and �ik . In comparison,
for incommensurate bilayers U (i)(r) = û(i)(ω) is periodic on
�i j .

III. RESULTS

A. General twist angles, θ12 �= θ23

We perform energy minimization in configuration space
with the discretized grid N × N × N × N using the JULIA

OPTIM package [37]. We present our results in Fig. 6 for
θ12 = 0.5◦, θ23 = 0.2◦ by taking two-dimensional line cuts of
the configuration space, using N = 36. We show the results
for twisted trilayer graphene in Figs. 6(a)–6(d) and for trilayer
antiparallel WSe2 in Figs. 6(e)–6(h). For the L1, L2 bilayer
pair, we take the average over the configurations of L3 (left),
and similarly for the L2, L3 bilayer pair, we take the aver-
age over the configurations of L1 (right). For the relaxation
displacement vectors, we show the change in modulated lo-
cal shift vector compared to the local shift vector without
relaxation between the bilayer pair, i.e., (Bi→2 − bi→2) for
i = 1, 3, where bi→2 and Bi→2 are the local shift vector and
the modulated local shift vector, respectively, given in Eqs. (5)
and (10), respectively. For example, for the relative relaxation

FIG. 6. Two-dimensional line cuts of the relaxation pattern and
relaxed GSFE in configuration space for (a)–(d) trilayer graphene
and (e)–(h) trilayer antiparallel WSe2 at θ12 = 0.5◦, θ23 = 0.2◦.
(a) and (b) show the change in the local shift vectors, (Bi→2 − bi→2).
(a) shows (B1→2 − b1→2), averaged over the L3 configuration, and
(b) shows (B3→2 − b3→2), averaged over the L1 configuration. (c) and
(d) show the relaxed GSFE. (c) shows the sum of the GSFE between
the L1, L2 bilayer pair, averaged over the L3 configuration, and
(d) shows the sum of the GSFE between the L2, L3 bilayer pair,
averaged over the L1 configuration. (e)–(h) are the corresponding
plots for antiparallel WSe2.
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FIG. 7. Real space relaxation pattern for twisted trilayer graphene with θ12 = 1.73◦, θ23 = 2.24◦, using discretization N = 81. Insets on
the upper right corner zoom in on the black boxed areas near the origin. (a) The relaxation displacement U (i)(r). (b) Color plot shows the curl
of the displacement vectors −∇r × U (i)(r) indicating the rotation direction: blue is clockwise rotation and red is counterclockwise rotation, and
white means no rotation. Black parallelograms on L1 and L3 show the approximate supercell vectors that correspond to θ12 and θ23, respectively,
calculated using Eq. (32). The small insets on the upper right corner zoom in on the small purple boxed areas in the black insets. In the purple
insets, blue and red dots show A and B sublattices, respectively, and the green parallelogram shows the monolayer cell.

between the L1 and L2 pair, we plot the following quantity:

B1→2(b(2), b(3) ) − b1→2(b(2), b(3) )

= u(2)
(
A1A−1

2 b(2), b(3) − A3A−1
2 b(2)) − u(1)(b(2), b(3) ),

(31)

as a function of b(2), averaged over the b(3). Physically, this
means displaying the relative relaxation vectors from L2 to
L1, averaged over all the L3 shifts. Similarly, for L2 and
L3, we show (B3→2 − b3→2) as a function of b(2), averaged
over all the L1 configurations. The relaxation between L2

and L3 for both graphene and WSe2 is stronger because of
the smaller corresponding twist angle θ23. The relaxation
displacement vectors point towards the AB/BA stacking in
graphene and AB stacking in antiparallel WSe2, which are the
equilibrium stacking orders. For both graphene and WSe2, the
relaxed GSFE exhibits domain wall formation between the
adjacent bilayer pairs with different thicknesses. A smaller
corresponding twist angle gives rise to stronger relaxation
and thinner domain walls, similar to twisted bilayer graphene.

The shape of the domains are different depending on the
lattice symmetry: Graphene has triangular domains while
antiparallel WSe2 has hexagonal domains due to its broken
inversion symmetry.

Unlike in the case of twisted bilayer heterostructures, there
does not exist in trilayers a linear mapping at the continu-
ous level between configuration space and a periodic moiré
supercell in real space. From the energy minimization in
configuration space, we obtain a set of displacement vectors,
u(i)(b( j), b(k) ), for each layer. The real space displacement
U (i)(R(i) ) at lattice points R(i) in Li is then given by eval-
uating U (i)(R(i) ) = u(i)(b( j)(R(i) ), b(k)(R(i) )). In contrast, the
configuration space for the bilayer case is two-dimensional
and the displacement is more simply given by U (i)(R(i) ) =
u(i)(b( j)(R(i) )). Figure 7 shows the real space relaxation dis-
placement vectors U (i)(r) and the curl of −U (i)(r), −(∇r ×
U (i)(r)), which measures the rotation component of the mod-
ulation displacement vector field, for twisted trilayer graphene
[38]. Physically, this quantity corresponds to the change of the
local twist angle, which can be measured using the SQUID-
on-tip technique [39]. In Fig. 7(a), we approximate the
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FIG. 8. Same as Fig. 7, for trilayer WSe2, with parallel stack between L1 and L2 at θ12 = 1.0◦ and antiparallel stack between L2 and L3 at
θ23 = 1.1◦, using discretization N = 108.

supercell lattice constant that corresponds to the twist angle
θi,i+1 according to

asc(θi,i+1) = a0

2 sin(θi,i+1/2)
, (32)

where a0 is the lattice constant of the graphene/WSe2 unit cell
given in Table I. The length scale asc(θi,i+1) can be understood
as the periodicity of a twisted bilayer with the twist angle
θi,i+1 in the continuum limit. Figure 7(a) shows the relaxation
displacement vectors. Near the origin, the relaxation tends to
follow the local rotation to increase the local twist angle to
reduce the size of the AA spots, which agrees with the bilayer
results [38].

To better understand the relaxation pattern, Fig. 7(b) shows
−(∇r × U (i)(r)). On the bilayer moiré scales (see insets on
the upper right corners), the relaxation pattern has two length
scales: In L1, the length scale of the relaxation is dominated
by the continuum supercell lattice constant of θ12, asc(θ12);
in L3, the relaxation has a length scale asc(θ23) instead. In
the middle layer (L2), the relaxation pattern is a result of
the interference between the two bilayer moiré lengths, as
a result of the coupling to both L1 and L3. Zooming out,
we observe structures at a larger length scale than both of
the bilayer moiré lengths, which is the “moiré of moiré,”
due to the interference between the two bilayer moiré cells.

Note that these larger structures are not identical to each
other [most visible in Fig. 7(b), layer 2] due to the incom-
mensurability of the system. The emergence of the larger
length scales can also be explained by the nonellipticity of the
system (see Sec. II C). The reciprocal space variational elastic
energy components given in Eq. (20), Ei(G( j), G(k) ), have
multipliers |G′(i) − G( j) − G(k)|2 which can take an arbitrarily
small value, which means the real space relaxation pattern
can have arbitrarily large structures. The quasiperiodic large
structures we observe in Fig. 7 manifests the nonellipticity
of the Euler-Lagrangian PDE, and since these structures are
aperiodic, zooming out further will lead to the appearance of
even longer quasiperiodic structures. This shows our model’s
capability of capturing the incommensurability of the trilayer
relaxation pattern.

To show the generality of our model, we can examine
the results for other materials. For example, Fig. 8 shows
the relaxation displacement vectors and the corresponding
curl in trilayer WSe2 heterostructures, with parallel stacking
between L1 and L2 and antiparallel stacking between L2 and
L3. Similarly to the graphene case, we observe the coupling
between two length scales that corresponds to θ12 and θ23. On
the bilayer moiré length scales, the relaxation forms triangular
domains between L1 and L2 and hexagonal domains between
L2 and L3. On the moiré of moiré length scale, the overall
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FIG. 9. Comparison between unrelaxed and relaxed atomic positions in twisted trilayer WSe2 with (a),(b) parallel and (c),(d) antiparallel
stackings at θ12 = 2.6◦ and θ23 = 2.3◦. In all panels, top left: atomic positions of L1 and L2 only (removing L3); top right: atomic positions of
L2 and L3 only (removing L1); bottom: atomic positions of the three layers. Red and blue arrows are guides to eyes, showing the bilayer moiré
lengths that correspond to θ12 = 2.6◦ and θ23 = 2.3◦.

domains are also hexagonal, since the overall inversion sym-
metry of the system is broken by antiparallel WSe2. The shape
can also be understood as the interference pattern between the
triangular domains and hexagonal domains.

We note that when θ12 = −θ23, L1 and L3 are aligned with
a twisted middle layer. The system can also be modeled as a
bilayer system, the interlayer energy of L2 doubles and the
strength of relaxation in L2 doubles. We used our trilayer
model to calculate the relaxation pattern for such systems and
obtain a similar result as the relaxation pattern shown in Carr
et al. [40].

We examine the real space atomic positions after relax-
ation. Figure 9 compares the unrelaxed and relaxed atomic
positions for parallel and antiparallel WSe2 at θ12 = 3◦, θ23 =
2.3◦. Note that the unrelaxed atomic positions are different
in the parallel and antiparallel stackings [Fig. 9(a), 9(c)]. In

both cases, the relaxation forms domain between L1 and L2,
as well as between L2 and L3, but at different length scales, to
enlarge equilibrium stacking orders. Figure 9(b) shows that in
parallel WSe2, AB/BA stacking regions are enlarged and the
AA stacking regions shrink. Figure 9(d) shows the domain
formation in antiparallel WSe2, in which AB stacking regions
are enlarged.

B. Equal twist angles, θ12 = θ23

In the special case where θ12 = θ23, we found that there
exist two types of solutions: symmetric and asymmetric.
An example is shown in Fig. 10. The symmetric solution
[Figs. 10(a), 10(b)] preserves the twofold rotational sym-
metry along the z axis (out-of-plane direction) of the unre-
laxed trilayers, whereas the asymmetric solution [Figs. 10(c),
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FIG. 10. Relaxation pattern for parallel WSe2 at θ12 = θ23 = 3◦, same as Fig. 7, showing the symmetric solution in (a),(b) and the
asymmetric solution in (c),(d).
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FIG. 11. (a) Relaxed total energy as a function of the twist angle shows the bifurcation critical point is around θ = 4.58◦. (b)–(d) The curl
of relaxation displacement vectors in L2 at the global minimum, (b) below, (c) at, and (d) above the bifurcation point.

10(d)] exhibits a pinwheel-shaped relaxation pattern, which
remarkably breaks this symmetry. Near the origin (local AAA
stacking) of L2, the relaxation has zero magnitude for the
symmetric solution, whereas the relaxation is finite for the
asymmetric solution. The asymmetric solution is found to
have a lower energy in this case: for example, at θ12 = θ23 =
3◦ for parallel WSe2, the total energies per monolayer unit
cell after relaxation are 39.34 meV and 39.30 meV for the
symmetric and asymmetric solutions, respectively. Note that
there exists two asymmetric solutions with equal energy, in
which the pinwheel rotates in the opposite directions.

Physically, the asymmetric solution redistributes the local
AA stacking density between the neighboring bilayer pairs to
reduce the total AA areas and consequently the total interlayer
energy, at the cost of additional elastic energy due to the
pinwheel relaxation pattern. This can be seen from the insets
in Fig. 10. In the insets of Fig. 10(b) for L1 and L3, the black
parallelograms (bilayer moiré cells) agrees with the length
scale of the relaxation pattern. In L2, relaxation is canceled
out at the AAA spots (white color near the origin) to preserve
the twofold rotational symmetry. In Fig. 10(d), however, the
insets show that the relaxation near the origin in L1 and L3

now has different length scales than the bilayer moiré length
corresponding to 3◦. We also observe that the relaxation in L2

obtains a preferred net rotation, which breaks the symmetry
between the top and bottom layers. These results suggest
that relaxation can spontaneously break the symmetry of
the system, unlike in twisted bilayers in which the in-plane
relaxation always preserves the symmetry.

A bifurcation point occurs at a critical twist angle,
θc ≈ 4.55◦. Above θc, the only solution is the symmetric
one; below θc, the symmetric solution becomes an unsta-
ble saddle point and the two counter-rotating asymmetric
solutions become the global minima. The existence of a
critical twist angle can be understood from the compe-
tition between reducing the misfit energy and increasing
elastic energy. As the twist angle increases, the moiré of
moiré length scale becomes smaller, and therefore elastic
energy cost for the pinwheel pattern increases. Eventually,
the reduction in the misfit energy is not enough to com-
pensate for the elastic energy cost of the pinwheel pat-
tern and the system no longer supports the asymmetric
solution.

Figure 11(a) shows the total energy after relaxation as
a function of twist angle in twisted trilayer parallel WSe2

for the two types of solution, confirming the existence of
a critical bifurcation point at θc ≈ 4.58◦. Above this θc, the
symmetric solution is the only solution. Below θc, the asym-
metric solution is the global minimum and the symmetric
solution becomes an unstable saddle point and has slightly
higher energy. Figures 11(b)–11(d) shows the three types of
local minima below, at, and above the critical twist angle.
In particular, Fig. 11(c) shows that at θc, the asymmetric
solution has very weak pinwheellike rotation and it almost
becomes a symmetric one. While we use twisted parallel
WSe2 as an example, the bifurcation also occurs in graphene
or any trilayers with inversion symmetry between AB and BA
stacking orders.
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IV. CONCLUSION

We have presented a general formalism to obtain relaxation
patterns in twisted trilayer systems, which cannot be achieved
with the traditional continuum model in real space due to the
aperiodicity of the system. We give results for twisted trilayer
graphene and WSe2. We introduce configuration space as a
natural description of the twisted trilayer system. We show
that the relaxation pattern of trilayer systems is the “moiré of
moiré,” as a result of the incommensurate coupling between
two bilayer moiré lengths that correspond to the two twist
angles. The relaxation pattern manifests the nonellipticity of
the energy minimization problem in the sense that there are
infinitely many large length scales emerging in the system,
and our model is capable of capturing these large length
scale modes. Similar to the bilayer relaxation, in trilayers,
the relaxation forms domains at the bilayer moiré lengths
to maximize the equilibrium stacking orders and minimize
the high energy stacking order (AA stack). In contrast to
the in-plane relaxation pattern in twisted bilayer graphene
where the symmetry of the system is preserved, we found
that the twisted trilayers can have symmetry-breaking relax-
ation patterns. When θ12 = θ23, the trilayer relaxation has two
types of solutions: one symmetric solution that preserves the
twofold rotational symmetry along the z axis and the other
asymmetric solution that breaks this rotational symmetry.
This symmetry breaking might be experimentally observable
effect, for example, through second harmonic generation or
scanning transmission electron microscopy.

Although we have only presented results for homotrilayers
in this work, our approach can be also applied to heterotrilayer
materials. For materials with similar lattice constants (such as
graphene and hBN), we can simply apply a small strain to the
monolayer by assuming all three layers have the same lattice
constant. In this way, we can calculate the GSFE by perform-
ing rigid shifts in a unit cell using DFT total energies as the
interlayer coupling, which effectively takes care of the small
strain. For materials with very different lattice constants, for
example, graphene on top of transition metal dichalcogenides,
we need to modify the definition of Ai matrices and be
careful about mapping from configuration space to real space.
The configuration space approach can also be generalized
to four or more layers, and each additional layer adds two
dimensions to configuration space. However, the extension
would be very computationally expensive—the computational
cost scales as N2(d−1), where d is the dimension and N is the
discretization. Therefore, more sophisticated minimization
methods should be introduced for computational efficiency.
Moreover, we would expect a symmetry-breaking solution
to be present for heterostructures with an odd number of
layers.

The mechanical relaxation effect is an important correc-
tion to be taken into account for in modeling the elec-
tronic structure of twisted trilayers. The relaxation pattern
in twisted trilayer may be used as a new platform to engi-
neer strain in vdW heterostructures. The second twist angle
is an additional degree of freedom to manipulate the elec-
tronic states and explore unconventional strongly correlated
states [26].
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APPENDIX A: GENERALIZED STACKING
FAULT ENERGY

The GSFE is the total energy at different stacking config-
urations without rotation between a bilayer. Letting (bx, by )
be the relative displacement or the local stacking order be-
tween two adjacent layers, we define the following vector
v = (v,w) ∈ [0, 2π ]2:(

v

w

)
= 2π

α

[√
3/2 −1/2√
3/2 1/2

](
bx

by

)
. (A1)

In terms of v, the GSFE of a hexagonal lattice can be ex-
pressed as a Fourier sum as [17,35,41],

V GSFE
j± = c0 + c1(cos v + cos w + cos(v + w))

+ c2(cos(v + 2w) + cos(v − w) + cos(2v + w))

+ c3(cos(2v) + cos(2w) + cos(2v + 2w))

+ c4(sin v + sin w − sin(v + w))

+ c5(sin(2v + 2w) − sin(2v) − sin(2w)), (A2)

where we use the subscript j± to denote the GSFE between
the Lj and Lj±1. We note that we are only including the
first few terms in the Fourier series because of the lattice
symmetry and higher order terms are three or more orders
of magnitude smaller than the leading order terms. For other
lattice geometries, it may be necessary to include higher order
terms in the Fourier series.

APPENDIX B: DENSITY FUNCTIONAL THEORY
CALCULATIONS

The coefficients for the interlayer and intralayer energies
are obtained from DFT calculations with the Vienna Ab initio
Simulation Package (VASP) [42,43]. The van der Waals force
is impletemented through the vdW-DFT method using the
SCAN+rVV10 functional [44–47]. The values are presented
in Table I. The elasticity constants and interlayer coupling
coefficients of graphene and MoS2 are also given in S. Carr
et al. [17].

To obtain the GSFE, we performed a rigid shift between
a bilayer using a 9 × 9 grid in the unit cell. We extract the
ground state energy from DFT, by allowing relaxation in
the out-of-plane direction but fixing the in-plane direction.
Figure 5 shows the GSFE of graphene and WSe2. In graphene,
the AB/BA stacking (when the A sublattice of one layer
is aligned with the B sublattice of the second layer) is the
equilibrium stacking configuration and the AA stacking (the
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origin) has the highest energy. In TMDCs, MX2, with M being
a transition metal atom (e.g., Mo, W) and X being a chalcogen
atom (S, Se, Te), the bilayer can have two orientations when
performing the rigid shifts because the two sublattices have
different atomic species. In parallel WSe2, the two bilayers
are aligned. The GSFE energy landscape is similar to that of
graphene. In antiparallel WSe2, however, the inversion sym-

metry is broken. In this case, the equilibrium stacking order
is when the metal atoms and the chalcogen atoms are aligned
(AB stacking). The GSFE is a more accurate description of
interlayer coupling compared to empirical interlayer coupling
potentials when they exist, such as for graphene and hBN, and
it enables the description of interlayer coupling in TMDCs for
which empirical interlayer coupling potentials do not exist.
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