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Vortex nucleation barrier in superconductors beyond the Bean-Livingston approximation:
A numerical approach for the sphaleron problem in a gauge theory

Andrea Benfenati ,* Andrea Maiani ,† Filipp N. Rybakov , and Egor Babaev
Department of Theoretical Physics, The Royal Institute of Technology, Stockholm SE-10691, Sweden

(Received 21 December 2019; revised manuscript received 19 March 2020; accepted 7 May 2020;
published 9 June 2020)

The knowledge of vortex nucleation barriers is crucial for applications of superconductors, such as single-
photon detectors and superconductor-based qubits. Contrarily to the problem of finding energy minima and
critical fields, there are no controllable methods to explore the energy landscape, identify saddle points,
and compute associated barriers. Similar problems exist in high-energy physics where the saddle-point
configurations are called sphalerons. Here, we present a generalization of the string method to gauge field
theories, which allows the calculation of energy barriers in superconductors. We solve the problem of vortex
nucleation, assessing the effects of the nonlinearity of the model, complicated geometry, surface roughness, and
pinning.
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In type-II superconductors, the Meissner state, character-
ized by the total magnetic field expulsion in the bulk, is
stable up to the lower critical field Hc1. Above it, quantum
vortices appear. However, the Meissner state can survive as a
metastable state, causing the phenomenon known as magnetic
superheating [1]. The presence of fluctuations can trigger the
spontaneous decay of the metastable Meissner state through
vortex formation. This phenomenon is the effect of a surface
barrier, which hinders vortex nucleation from the sample
boundaries [1,2]. The barrier disappears when the applied
magnetic field exceeds a critical value, the nucleation field.
In contrast to the potential barrier, the nucleation field is
not only amenable to analytical treatment [3–11], but can be
calculated with a controlled numerical accuracy from iterative
simulations [12–14].

The full problem of the vortex entry barrier is not solved
even for the simplest case of a semi-infinite superconductor
with an ideal surface. The Bean-Livingston estimate [2] relies
on the London model, but the result depends on the choice of
cutoff, as emphasized by the authors themselves. The Bean-
Livingston approach has been extended to other geometries
[15,16]. The effect of surface roughness is considerably more
complicated. Only some approximate analytical approaches
within the London model were advocated in Ref. [17]. How-
ever, roughness alters the core structure and therefore a
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controllable method to solve the full nonlinear model is
needed.

Fundamentally, the problem of a vortex entry barrier con-
sists of finding the sphaleron, i.e., the saddle point which
separates two stable states in a gauge theory [18–22]. In the
case of vortex nucleation, it is an energy maximum of the
minimum energy path between two states with different phase
windings.

The knowledge of potential barriers for vortex nucleation
is crucial for superconductor applications. The applications
include current transmission, where the dissipationless state
is lost if free vortices form, and superconductive rf cavities
for particle accelerators where superconductive magnets often
operate in a superheated state [11]. Recently, the problems
of vortex entry barriers appeared in quantum technologies.
In superconducting single-photon detectors, it is believed that
the principle of operation consists in the creation of a current-
carrying state with a small potential barrier for vortex entry
so that a single photon creates a vortex, hence a detectable
signal [23,24]. However, small barriers yield spontaneous
vortex nucleation caused by fluctuations, resulting in dark
counts. The ability to calculate potential barriers would allow
designing devices with significantly improved performances.
Likewise, the knowledge of vortex entry barriers is crucial to
design superconducting topological qubits [25–29], where the
geometry of the device plays a central role. These devices
often operate at temperatures near absolute zero. However,
while a microscopically derived Ginzburg-Landau model ap-
plies only close to the critical temperature, many aspects of
low-temperature vortex physics may under certain conditions
be fittable by effective Ginzburg-Landau-type models [30]. In
this Rapid Communication, we generalize to gauge theories
the simplified string method [31]. This allows us to perform
surface barrier calculations in type-II superconductors for vor-
tex nucleation (�Fn) and escape (�Fe), by computing the min-
imum energy path of the transition in the Ginzburg-Landau
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theory. The results differ from the Bean-Livingston theory [2],
which neglects the vortex-core and nonlinear effects. More
importantly, the method allows taking into account the effect
of surface roughness and the presence of pinning in the com-
putation of the vortex nucleation barrier and the superheating
field. The Ginzburg-Landau free-energy functional describing
the superconductor in dimensionless units is

f [a, ψ] =
∫
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The complex field ψ = |ψ |eiθ describes the state of the su-
perconductor. The vector potential a is related to the magnetic
field by b = ∇ × a. The coefficient κ = λ

ξ
is the Ginzburg-

Landau parameter, i.e., the ratio of the magnetic field pen-
etration depth λ and the coherence length ξ (we use the
definition of coherence length with a factor

√
2 absorbed as

in Ref. [32]). The external magnetic field H is expressed in
units of the thermodynamic critical field Hc, i.e., h = H/Hc.
The free energy f = F/F0 is expressed in units of F0, which
in SI units is F0 = μ0H2

c λ2d , where d represents the thickness
of the sample and μ0 is the vacuum permeability. Quantities
in capital letters are intended in SI units, while variables in
lowercase are dimensionless.

In a finite system, the Meissner state can survive in a
metastable way for higher fields than Hc1, i.e., up to the
spontaneous nucleation field Hn. In the absence of fluctua-
tions, only when this field is exceeded, vortices nucleate from
the boundaries. To introduce a vortex in the system, when
H < Hn, we need to overcome an energy barrier due to the
surface. The calculation of this barrier is a nonlinear problem
that is not amenable to analytical treatment. In this work,
we generalize a numerical approach which was originally
developed within the molecular dynamics field to study transi-
tions between two metastable states through the identification
of a minimum energy path [33]. The path is considered in
the configuration space of the system, and it is parametrized
by the transition coordinate s ∈ [0, 1]. If one denotes by
q(s) = [a(s, r), ψ (s, r)], the state of the system, then q(0)
and q(1) are two equilibrium solutions corresponding to the
minima of the Hamiltonian in Eq. (1). By varying s from 0
to 1, we observe the transition of the system from the initial
state to the final state. One can assume that a potential force
g ≡ −∇ f = −( δ f

δa ,
δ f
δψ∗ ) acts on each point of the curve q(s).

The minimum energy path is a trajectory in which the force
g acting on each point is uniquely directed along the tangent
vector ∂q/∂s, i.e.,∣∣∣∣∇ f · ∂q

∂s

∣∣∣∣ = ‖∇ f ‖
∥∥∥∥∂q

∂s

∥∥∥∥, ∀s ∈ [0, 1]. (2)

We emphasize that the optimal path defined by Eq. (2) does
not correspond to the real time dynamics. It describes the
most energetically favorable transformation undertaken by the
system for the transition between the initial and the final state.

To identify the minimum energy path, we started from the
well-known simplified string method [31] and developed a
variant applicable to gauge field theories [34]. This algorithm

evolves an initial guessed path in the configuration space,
towards the minimal energy one. Consider a situation where
we start from a Meissner state and end in the one-vortex state.
To construct the initial guess, we used an ansatz for the single
winded vortex state. In the initial state, for s = 0, the vortex is
outside of the domain and in the final state, for s = 1, it lies in
the origin. To each value of the transition coordinate s, there
corresponds a particular configuration of the system. Hence,
s is not equivalent to the position of the center of the vortex
because static vortex-core deformations correspond in general
to different values of s. This method allows us to solve the
full nonlinear problem in contrast to previous approaches, and
obtain exact and quantitatively valid results. A previous study
of the vortex entry barrier, based on the London model, was
carried out by Bean-Livingston [2]. However, this introduced
the uncontrollable approximation of considering the vortex
core as a rigid cylinder of radius ξ , which neglects the physics
of the core and the nonlinear effects.

The energy dependence F (s) is a function with one or
more maxima. At the summit of the potential barrier, the
configuration of the system is a saddle point of the free-energy
functional of Eq. (1), which in the context of gauge theories is
called a sphaleron.

Once the minimum energy path is computed, we can define
the nucleation barriers �Fn = Fsphaleron − FMeissner for a given
magnitude of the external magnetic field H . Consequently,
the nucleation field Hn is the external field needed to nullify
the nucleation barrier, i.e., �Fn(Hn) = 0 [35]. Analogous
definitions can be used for the escape barrier, i.e., the en-
ergy needed to expel one vortex from the superconductor.
A quantitative description of nucleation and escape barriers
is given in the Supplemental Material [34]. The minimum
energy path contains more information than the height of the
energy barrier as those paths are most likely to be followed
in the nucleation process. This path helps us understand in
detail how transitions between metastable states occur. In our
framework, we can calculate the energy barrier free from any
approximations, except fully controlled numerical errors. We
begin by considering a vortex entry in a two-dimensional (2D)
superconductor with flat surfaces. We find that the vortex
always enters, following the minimum energy path, from
the sides of the superconductor and never from the corners.
Figure 1 shows the free-energy profile of the process. The
barrier presents a single maximum corresponding to the
sphaleron. The substantial core deformation confirms that this
kind of problem is not in general treatable with controlled
accuracy in the London limit.

For complex materials, the surface can have different
roughness, doping, and oxidation, which strongly affects the
vortex entry process. The knowledge of how impurities influ-
ence vortex physics is crucial for applications [36].

Let us consider randomly distributed inhomogeneities,
with a decreasing density as we enter the sample, as shown
in Fig. 2. To model inhomogeneities in a superconduc-
tor, we follow a procedure similar to the one outlined in
Refs. [37–39], where we modify the quadratic term in Eq. (1)
accordingly,

1
2 [1 − |ψ (r)|2]2 → 1

2 [1 + σ (r) − |ψ (r)|2]2, (3)
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FIG. 1. The energy dependence and the saddle-point (sphaleron)
configuration for the process of vortex entry from a straight edge
in a two-dimensional superconductor. At the peak of the energy
barrier, we have a substantial vortex-core deformation which cannot
be described in the London limit, where ψ is assumed to be constant.
This shows how this kind of process, in general, cannot be treated
in the London model, i.e., within the Bean-Livingston approach. The
variable s parametrizes the minimum energy path. In this example
H = 0.6Hc and κ = 2. The inset shows |ψ | in the region when the
nucleation takes place.

where σ (r) is the inhomogeneity distribution. We tested dif-
ferent models for the inhomogeneity distribution with similar
results. In the free-energy profile, depicted in Fig. 2, there
is a global minimum in between the saddle points. This has
the effect of increasing the nucleation barrier for a second
vortex. In fact, in a clean sample, the entry barriers for the first
and the second vortex are nearly the same. However, in the
presence of inhomogeneities, we can calculate how the first
vortex is pinned near the surface with the effect of increasing
the nucleation barrier for the second one, as shown in Fig. 3.

FIG. 2. Trapped vortex and corresponding energy profile for
the minimum energy path in the case of a superconductor with
inhomogeneities concentrated near the edge. The impurity layout σ

is normally distributed, and it is decreasing to zero as we proceed
towards the bulk. On top of it, we plot isolines of the order parameter
modulus |ψ |. For the color notation of isolines, see the color bar in
Fig. 1. Moreover, we have H = 0.4Hc and κ = 5.
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FIG. 3. Minimum free-energy paths for the first (blue) and sec-
ond (red) vortex entry in the presence of the impurity modulation of
Fig. 2. For the second entrance simulation, the initial condition was
built by placing a vortex in the trap as shown in Fig. 2 (initial winding
number N = 1). Impurities pin the first vortex near the boundary,
increasing the nucleation barrier of the second one.

Hence, with this method, it is possible to accurately predict
and design impurity density profiles able to protect the sample
from vortex entry by pinning vortices in an area near the
surface.

Real samples in general have rough surfaces. It is em-
pirically known that in the presence of rough surfaces, the
vortex entry barrier is altered [1]. A rough surface represents a
challenging problem for the calculation of both superheating
fields [14] and barriers [17].

For a quasi-two-dimensional superconductor, we can de-
scribe a rough edge as a sequence of geometrical defects,
forming dents in the sample, as sketched in Fig. 4. The method
is also straightforwardly applicable to the three-dimensional
case.

The vortex entry occurs from a single dent, where the
barrier is suppressed the most. Therefore, it is relevant to study
how the geometrical properties of one dent affect the nucle-
ation barrier �Fn. As shown in Fig. 4(b), we can characterize
the dent by its depth l which can be comparable to or bigger
than the characteristic length scales of the model (coherence
length ξ and penetration depth λ), and by an angle φ which
determines its sharpness. Figure 5 compares the nucleation
barriers �Fn/F0 for different dent depths l , as a function of
the sharpness angle φ. For φ = π we have the limit of a
perfectly straight edge. The green line shows the nucleation
barrier for l = ξ . We notice that the energy barrier is unaltered
by the presence of the dent with a comparable or smaller
roughness. Hence, roughness profiles with depths of the order

FIG. 4. (a) Examples of roughness profiles at the superconduc-
tor’s edge tested in the simulations. In these three cases the profile
is, going from left to right, comparable to the coherence length ξ ,
comparable to the penetration depth λ, and bigger than λ. (b) Model
of a single dent: The depth is parametrized by l , while its sharpness
by the angle φ. The black color indicates the superconductor (SC).
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FIG. 5. Nucleation barrier computed for a dent with depth l as a
function of the angle φ as shown in Fig. 4(b). The system parameters
are κ = 5 and H = 0.4Hc. The continuous lines are obtained by
a quadratic regression (OLS) and agree with the input data. In
particular, for the bigger dent, the nonlinear coefficient is negligible
and the behavior is substantially linear.

of a coherence length have no effect on the nucleation barrier,
independently of the sharpness of the dents. As l increases,
the barrier suppression becomes substantial, depending on the
sharpness φ. For l = λ the dependence on φ is nonlinear,
whereas for l > λ (in our case l = 4λ), the barrier decreases
linearly with φ.

In conclusion, we formulated a method to compute the
minimum energy path in a gauge theory. We applied this
method to the problem of vortex nucleation in the Ginzburg-
Landau model of superconductivity. We applied this method
to solve the full nonlinear problem of vortex nucleation in the
Ginzburg-Landau model of superconductivity. The method

allows calculating vortex entry barriers in the presence of
surface roughness and impurities. We showed that previously
developed models to estimate the vortex entry barrier, based
on the London approximation, are, in general, inadequate
to describe the nucleation process even for a perfectly flat
surface. We find that the surface roughness at the scale of
coherence length affects the barriers insignificantly, and thus
for superconductors with short-scale surface roughness, the
main mechanism for the surface barrier reduction is the
modulation of the superfluid density at larger length scales
near the surface. The method straightforwardly applies to
three-dimensional configurations and to the geometries where
demagnetization fields are important [27]. Such vortex entry
barriers are of key importance in the design of quantum
devices such as single-photon detectors and qubits, as well as
superconducting rf cavities, transmission lines, and magnets.
Finally, the method is straightforwardly applicable to other
gauge theories, different boundary conditions [46] which in-
cludes microscopic models of superconductivity, and models
used in high-energy physics.
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