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Tensor renormalization group (TRG) constitutes an important methodology for accurate simulations of
strongly correlated lattice models. Facilitated by the automatic differentiation technique widely used in deep
learning, we propose a uniform framework of differentiable TRG (∂TRG) that can be applied to improve
various TRG methods, in an automatic fashion. ∂TRG systematically extends the essential concept of second
renormalization [Phys. Rev. Lett. 103, 160601 (2009)] where the tensor environment is computed recursively in
the backward iteration. Given the forward TRG process, ∂TRG automatically finds the gradient of local tensors
through backpropagation, with which one can deeply “train” the tensor networks. We benchmark ∂TRG in
solving the square-lattice Ising model, and we demonstrate its power by simulating one- and two-dimensional
quantum systems at finite temperature. The global optimization as well as GPU acceleration renders ∂TRG a
highly efficient and accurate many-body computation approach.
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Introduction. In the investigation of strongly correlated
quantum states and materials, tensor renormalization group
(TRG) constitutes a thriving field that has been playing an in-
creasingly important role recently. The diverse family of TRG
approaches includes the coarse-graining TRG [1,2], higher-
order TRG (HOTRG) [3], and tensor network renormaliza-
tion [4–7]. They have been put forward to evaluate classical
statistical systems as well as expectation values out of two-
dimensional (2D) tensor network states [8]. There are also
TRG methods developed to simulate d-dimensional quantum
lattice models at finite temperature [9–17], whose Euclidean
path integral constitutes a (d + 1)-dimensional worldsheet.

In the course of TRG process, the environment of local ten-
sors should be taken into account to conduct a precise trunca-
tion through, e.g., isometric renormalization transformations
in the tensor bases. This can be traced back to the renowned
density matrix renormalization group [18], where the effects
of the environment are reflected in the reduced density matrix
of the “system” subblock. For generic tensor networks, a
second renormalization group (SRG) has been proposed to
improve the process of tensor renormalization [3,19–21]. In
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SRG, the environment of local tensors is computed recursively
between different scales of a hierarchical network, with which
a global optimization is feasible.

Recently, the profound interplay between deep learning
and tensor network algorithms has attracted a great deal of
interest [22–30]. Among other things, the differentiable pro-
gramming is of particular interest for tensor networks. Given
the computational graph generated in the forward process, the
gradient of corresponding variables can be calculated through
the chain rule of derivatives in the backpropagation, with
which the neural network can be deeply trained. The auto-
matic calculation of gradients can be obtained within machine
precision, and with the same computational complexity as in
the forward process. Very recently, this idea of differentiable
programming that exploits a gradient-based optimization has
been introduced to optimize tensor networks [31].

In this work, we regard the renormalization transformation
as input parameters of the TRG program, and we point out that
the SRG backward iteration corresponds with the backpropa-
gation algorithm in differentiable programming. Inspired by
this substantial connection, we turn the idea of SRG into
a generalized versatile framework, i.e., differentiable TRG
(∂TRG).

In ∂TRG, the forward TRG process is made fully differen-
tiable, and the renormalization transformations are optimized
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FIG. 1. Part (a) shows a TRG step where the scale transforma-
tions w are introduced along both directions, while only vertical
renormalization is involved in (b), which eventually compresses the
tensor network into a 1D structure that can then be contracted exactly.
Part (c) plots the computational graph of the forward TRG process as
well as the backpropagation.

globally and automatically through backpropagation. We ap-
ply ∂TRG to simulate thermal equilibrium states at finite tem-
perature, and we achieve significantly improved accuracy over
previous methods [9,16]. The efficiency is demonstrated by
implementing ∂TRG with PyTorch [32,33], which facilitates
the GPU computing and shows a high performance of about
40 times acceleration over a single CPU core.

Correspondence between SRG and backpropagation. Back-
propagation is a widely used method for training deep neural
networks [34–37], where the gradients of parameters can be
computed through a reverse-mode automatic differentiation
[38]. On the other hand, in tensor-network algorithms, SRG
plays a very similar role to backpropagation. To be specific,
as shown in Figs. 1(a) and 1(c), a hierarchical tensor network
can be constructed by piling up a series of isometric RG
transformations {w(i)}, with i = 1, 2, . . . , n for each layer. In
a well-designed TRG program, the input tensors {w(i)} are
successively applied to the tensors T , and the output can be a
tensor trace in general, e.g., a partition function of a statistical
system.

SRG further optimizes the renormalization transforma-
tions {w(i)} in a backward iteration by making use of the
environment. An adjoint tensor of w(i) at scale i is defined
as the gradient w(i) (≡ ∂Z

∂w(i) ), which can be related to the
environment through

E (i)
w = 1

Ni
w(i), (1)

where Ni denotes the times w(i) appearing in the network,
and Z is the tensor trace to be maximized. It directly follows
from Eq. (1) that the recursive relations used in the backward
iteration to determine {E (i)} in SRG can be recast into the
derivative chain rule form, as depicted in Fig. 1(c). Recall
that the multiplications there with Jacobians ∂T (i+1)/∂T (i) and
∂T (i+1)/∂w(i), etc., are conducted implicitly. They constitute
sequences of tensor contractions exactly equivalent to the
recursive tensor contractions in SRG [38].

Differentiable tensor renormalization group. Being aware
of the intimate relation between backpropagation and SRG,
we now extend the latter to a more general and flexible
framework, ∂TRG, with the help of well-developed automatic
differentiation packages [39], e.g., AUTOGRAD [40] and PY-
TORCH [32,33]. With these facilities, ∂TRG can record all
operations performed on the input variables (tensors), and
compute the derivatives [e.g. Eq. (1)] automatically in the
backward iterations with which the parameters {w(i)} can be
optimized. Not limited within the original proposals [3,19],
the idea of SRG can be applied to various TRG schemes
through the framework of differentiable programming. Be-
low we consider two different ∂TRG schemes following the
HOTRG [3] and exponential TRG (XTRG) [16], as shown in
Figs. 1(a) and 1(b), respectively.

Once the environment E (i)
w is obtained, one can optimize

w(i) with resorting to, e.g., the standard quasi-Newton opti-
mization method [38], or quasioptimal schemes through ten-
sor decompositions of E (i)

w [3,19]. Recall that a tensor decom-
position scheme that keeps w(i) isometric has been developed
in the context of the multiscale entanglement renormalization
ansatz (MERA) algorithm [41,42], which is mainly adopted
in the simulations below. MERA update involves a singular
value decomposition (SVD) Ew = USV † and a replacement
w = UV †, which maximizes the cost function Z = Tr (Eww),
with O(D4) time complexity. Here D is the geometric bond
dimension of a tensor.

Due to the intrinsic nonlinearity (in w) in the optimization
problem, ni inner iterations are introduced in a single step of
MERA update (ni = 5–10 in practice). Moreover, thanks to
the convenient access to E (i)

w , in ∂TRG we can deeply optimize
the tensor network via sweep optimizations. In practice, we
scan from inner to outer layers ns times until the results
converge, thus assuring a highly accurate global update of
{w(i)} tensors.

∂TRG of the 2D Ising model. As a first demonstration, we
apply ∂TRG, with two specific implementations in Figs. 1(a)
and 1(b) to solve the classical Ising model on the square
lattice. Following the standard procedure, we can write down
a square tensor-network representation consisting of rank-4
tensors T , whose TRG contraction results in the partition
function Z [38].

In Fig. 1(a), after n steps of renormalizations, we obtain a
single tensor representing the whole system of 2n × 2n sites
(in practice, n = 25 guarantees the thermodynamic limit),
whose self-contraction leads to the partition function Z . On
the other hand, after n steps of renormalization, one arrives
at an effective one-dimensional (1D) system, whose complete
contraction also leads to an accurate measure of the partition
function.

In Fig. 2, we show the accuracies of ∂TRG implemen-
tations, together with the HOTRG and HOSRG data for
comparisons. Due to the sweep update, ∂TRG leads to errors
clearly smaller than those of HOTRG, while achieving, as
expected, the same accuracies as HOSRG [43].

The two schemes of ∂TRG in Figs. 1(a) and 1(b) have
different computational costs. The latter is considerably less
resource-demanding, i.e., O(D4) in computational time, while
it is O(D7) in Fig. 1(a). The memory costs are also dramat-
ically different, i.e., O(D5) for Fig. 1(a) and O(D3) for 1(b).
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FIG. 2. The relative errors of free energy |δ f / f | in the vicinity
of critical temperature Tc, obtained from HOTRG, HOSRG, and
∂TRG calculations. We perform ni = 5–10 iterations within each
MERA update, and the total number of sweeps ns ranges from a few
iterations to a few hundred, depending on the specific temperature
and scheme, until the relative errors reach a convergence criterion
of ε = 10−4. The D = 24 ∂TRG calculations follow the scheme in
Fig. 1(a), while the D = 64 and 128 cases follow the scheme in
Fig. 1(b).

Therefore, we can push the ∂TRG simulations in Fig. 1(b)
with bond states up to D = 128, reaching much higher preci-
sion as shown in Fig. 2. From the comparison shown in Fig. 2,
as well as other considerations, we chose the ∂TRG scheme
in Fig. 1(b) to simulate quantum models as presented below.

Infinite quantum XY chain. Now we employ ∂TRG to
simulate the exactly solvable quantum XY chain

HXY =
∑

〈i, j〉
Sx

i Sx
j + Sy

i Sy
j . (2)

We start by preparing the density matrix ρ(τ ) through
(second-order) Trotter-Suzuki decomposition [38]. A very
small imaginary-time step τ is chosen to ensure that Trot-
ter errors are negligible. Given the matrix product operator
(MPO) representation of ρ(τ ), we proceed to cool down the
system exponentially fast, with the ∂TRG algorithm shown in
Fig. 1(b). The results are shown in Fig. 3(a), where the relative
error |δ f / f | curves rise up from very small values at high
temperature and increase monotonically as T decreases.

In Fig. 3(a), benchmarking with the analytical solution
[38,44,45], we compare the relative errors |δ f / f | between
∂TRG and LTRG, where the latter follows a cooling proce-
dure linear in β(≡1/T ) [9]. It is observed that ∂TRG with
depth nd = 1 (i.e., optimizing exclusively the current layer
in the course of cooling) already outperforms LTRG in both
efficiency and accuracy. By sweeping into nd (up to four)
layers, the accuracy is found to improve continuously in the
relatively high to intermediate temperature regime due to
better optimization. At low temperature, on the other hand,
the enhancement of accuracy is marginal due to the limited ex-
pressibility of the tensor network with a given bond dimension
D = 32. Therefore, we show also in Fig. 3(a) the results of
larger bond dimensions (up to 512), with a fixed depth nd = 4.
There we observe that |δ f / f | decreases monotonically and

FIG. 3. (a) Comparisons of relative errors of free energy between
linearized TRG (LTRG) and ∂TRG. In the initial ρ(τ ) of ∂TRG,
τ � 5 × 10−5, which is also used as the Trotter slice in the LTRG
calculations. The results are shown with optimization depth nd � 4,
ni = 10 in a single MERA update, and overall sweep iterations
ns = 3. (b) Comparisons of the computational wall time of ∂TRG
on GPU and CPU with up to 16 cores, benchmarked on the infinite
XY chain. The calculations are carried out on Nvidia Tesla V100
GPU and Intel Xeon 6230 CPU, with retained bond dimensions up
to D = 360. The dashed line depicts the scaling th ∼ D4.

attains very high accuracy, with relative error ∼10−7 at low
temperature (down to β � 400).

GPU acceleration. We implement ∂TRG with the PY-
TORCH library, and we take advantage of GPU computing to
significantly accelerate the simulations. In Fig. 3(b), we show
the elapsed hours th versus D in the simulations of an infinite
XY chain on GPU and CPU, respectively. To quantify the
speedup, th is monitored at β = 12.8, where the computation
time falls well into a logarithmic scaling regime versus β, i.e.,
th ∝ ln β [38].

From Fig. 3(b), we observe approximately 40 times GPU
acceleration (for D = 360 calculations), as compared to
single-core CPU calculations, and over seven times speedup
to the 16-core parallel job. Moreover, in Fig. 3(b), the th
curves show algebraic scaling versus D, i.e., th ∼ Dγ , for
sufficiently large D where γ values are found slightly less than
4. These appealing benchmarks, together with previous tests
in Ref. [46], suggest that GPU acceleration indeed constitutes
a very promising technique to be fully explored in quantum
many-body computations, particularly in tensor network sim-
ulations.

Thermodynamics of finite-size quantum lattice models.
Now we apply ∂TRG to finite-size chains and cylindrical
geometries of finite width W (and length L), and we try to
approach the thermodynamic limit by increasing the system
size, which has been proved to be very successful in ground-
state simulations of quantum frustrated magnets [47,48]. Note
that the sweep optimization needs to be adapted when applied
to the finite-size systems, i.e., we not only scan {w(i)} between
different scales but also among different lattice sites/bonds.

For a finite-size system on the 1D or 2D lattice, the
high-T density matrix ρ(τ ) can be initialized through a
discretization-error-free series expansion technique [38,49].
It has been shown to be preferable, over Trotter-Suzuki-type
initializations, in dealing with 2D systems defined on, e.g.,
long cylinders [16,17]. The benchmark results on the finite-
size XY chain can be found in the Supplemental Material
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FIG. 4. (a) Relative errors of the transverse-field Ising model
on a 4 × 4 open square lattice, at critical transverse field h = hc.
(b) ∂TRG results with various D are plotted vs optimization depths
nd = 1, 2, 3, and 4. The comparison is at a fixed low temperature
β � 105, and the standard XTRG results are shown with solid lines.

[38], where deep optimization into nd layers gains remarkable
improvement in accuracy.

As a demonstration for 2D simulations, below we focus on
the transverse-field Ising model on a square lattice, i.e.,

H =
∑

〈i, j〉
JSz

i Sz
j − hx

∑

i

Sx
i , (3)

where J = −1 (ferromagnetic) is set as the energy scale. The
model undergoes a magnetic order-disorder quantum phase
transition at a critical field hc � 1.522 19(1) [50]. Through
a snake-path mapping into a quasi-1D lattice [17], the inter-
action information of the Hamiltonian Eq. (3) on a width W
cylinder can be encoded in a compact MPO of bond dimen-
sion DH = W + 2 [16,51]. Given the MPO representation of
H , ∂TRG works automatically and produces accurate results
as benchmarked below.

First, we run ∂TRG simulations on a 4 × 4 square lattice
at the critical transverse field h = hc, and we compare the
results to exact diagonalization data. In Fig. 4(a), the rel-
ative errors |δ f / f | are plotted versus β. One can observe
a high accuracy with an optimization depth nd = 3, which
continuously improves upon increasing the bond dimension
D. Moreover, to reveal the effects of nd , in Fig. 4(b) we show
|δ f / f | versus nd at low temperature, as compared to XTRG
data. Indeed the accuracy improves considerably, by orders of
magnitude, as nd increases. For example, the D = 64, nd = 4
∂TRG accuracy even matches the D = 128 XTRG one.

Large-scale simulations and finite-temperature phase tran-
sition. Next, we conduct ∂TRG calculations of the quantum
Ising model on cylinders with various widths W (up to 12)
and lengths L. The transverse field is first fixed at hx = 1.0 ≈
2/3hc, giving rise to a spin order at low temperature. The
long-range order melts at a critical temperature Tc � 0.42
through a second-order phase transition [13]. In Fig. 5, we
retain only a moderate bond dimension up to D = 128 in the
calculations, and the optimization depth is up to nd = 4 layers.
The internal energy u(T ) and magnetic specific heat cm(T )
are computed from the first and second numerical derivatives
of f (T ), respectively. Following the line developed in XTRG
[16,17], we exploit a z-shift technique as well as numerical
interpolation to collect dense enough data points and ensure
a negligible differential error [38]. Moreover, to eliminate the

(a) (b)

(c) (d)

FIG. 5. The plot shows internal energy u(T ) and spin-specific
heat cm(T ) of the transverse field Ising model, with hx = 1 [(a),
(b)] and hx = 1.5 [(c), (d)]. ∂TRG calculations are run on cylinders
of various widths W (with length L extrapolated to infinity). The
energy data show excellent agreements with the quantum Monte
Carlo (QMC) result [52] on a 30 × 30 square lattice in both fields.
For the hx = 1 case, the peak position in cm(T ) provides an accurate
estimate, ∼1% relative error, of critical temperature.

finite-length effects, we perform an extrapolation to L = ∞
via linear fitting or energy subtraction [38].

Collecting the extrapolated data at each width W , we
compare the internal energy u(T ) with QMC data in Fig. 5(a).
Very good agreement between our cylindrical results and the
large-scale QMC data is obtained. The latter are computed
on a 30 × 30 square lattice with fully periodic boundary
condition (i.e., torus) that mimics the thermodynamic limit.
Furthermore, as shown in the inset, we zoom in at two selected
temperatures and find relative errors |δu/u| ∼ 10−3 (W = 12
result) with respect to QMC. In Fig. 5(b), by further taking the
derivatives of internal energy u(T ), we obtain the specific-heat
curves cm(T ). It is observed that the peak in cm(T ) gets
sharper as W increases, signaling the existence of a phase tran-
sition, and the peak locations for wide cylinders are in very
good agreement with Tc � 0.42 in the thermodynamic limit.

In Figs. 5(c) and 5(d), we provide u(T ) and cm(T ) at
transverse field hx = 1.5 � 0.99hc, in close proximity to the
quantum phase transition point. Again, u(T ) results are in
excellent agreement (|δu/u| ∼ 10−4) with the QMC data as
shown in Fig. 5(c). It is observed in Fig. 5(d) that the specific
heat shows a round peak at around T/J = 0.7, which has well
converged versus system sizes and does not correspond to any
phase transition, which should occur below T/J = 0.2.

Conclusion and outlook. Inspired by the essential corre-
spondence between the backpropagation and SRG of tensor
networks, we propose the framework of ∂TRG. With ∂TRG,
we make much better use of tensor parameters by increasing
the optimization depth instead of merely enlarging parameter
space dimension D. As a result, a moderate D can lead to
an unprecedented high accuracy in simulating the thermody-
namics of 2D quantum models. ∂TRG has the same advan-
tage as SRG in that it can optimize both the wave-function
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representation and the renormalization transformations, glob-
ally and automatically. Therefore, ∂TRG constitutes a promis-
ing tool to investigate very challenging many-body problems,
e.g., frustrated antiferromagnets, fermionic Hubbard models,
etc., which are currently of great research interest.
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