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Delocalization of phonons and energy spectrum in disordered nonlinear systems
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We study phonon delocalization in disordered media in the presence of nonlinearity. By considering the
Fermi-Pasta-Ulam β-model, we show that regardless of whether the initial state of the linear system is localized
or not, the final state will be an extended mode after turning on the nonlinear term. We report on the results
of an extensive dynamical simulation of a disordered nonlinear system, which show that, independent of the
initial mode frequency, in the final state the energy spectrum is excited according to the Kolmogorov spectrum
E (ω) ∼ ω−5/3. Finally, we show that disorder will not cause delocalization of intrinsic localized modes.
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Introduction. According to Bloch’s theorem, eigenstates or
modes of a pure periodic system are extended [1]. In general,
disorder induces wave localization, therefore degrading the
transport properties of a medium, an effect which is largely
pronounced in lower dimensions. The propagation of waves
in heterogeneous materials [2] has been studied for several
decades [3]. Many rigorous results have been derived. For
example, it has been shown rigorously that in one-dimensional
disordered media with diagonal disorder and short-range cor-
relations, even infinitesimally small disorder is sufficient to
localize the wave function, irrespective of the energy [4–6].
In that case, the envelope of the wave function ψ (r) decays
exponentially at large distances r from the domain’s center,
i.e., ψ (r) ∼ exp {− r

ξ (E ) }, with ξ (E ) being the localization
length at energy level E . The known exact results are limited
mostly to low-dimensional and linear media [7–16]. Under the
assumption of long-range correlated off-diagonal disorder, it
was shown that localized states in a linear one-dimensional
(1D) system can become delocalized [17]. In this Rapid Com-
munication, we study the dynamics of elastic waves (phonons)
in a disordered medium and in the presence of nonlinearity.
We investigate whether the nonlinearity enhances the local-
ization or extends the localized modes, and finally present the
energy spectrum in these systems.

Model and methods. To study the propagation of phonon
waves in a disordered medium in the presence of a nonlinear
effect, we consider the one-dimensional Fermi-Pasta-Ulam
(FPU) β-model [18]. The system consists of spring-coupled
masses, where the value of the masses at each site fluctuates
around a positive mean, and the springs have cubic nonlinear-
ity. The equation of motion for the amplitude xn of the nth
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mass is given by

mnẍn = −αn(2xn − xn+1 − xn−1)

−βn(xn − xn+1)3 − βn(xn − xn−1)3, (1)

where the linear coupling coefficients for the nth site are de-
noted by αn (we set them to be constant) and the magnitude of
cubic nonlinearity is represented by βn. We assume the mass
to be a random variable taken from a uniform distribution (see
below). At first, let us study the linear system by considering
the case βn = 0. In this case, using the transfer matrix (TM)
method, we estimate the localization length of the phonon
waves [11–16]. The localization length of each vibrational
mode is taken as the inverse of the Lyapunov exponent γ

defined by

γ = lim
N→∞

〈
1

N
log

|QN c(0)|
|c(0)|

〉
, (2)

where c(0) = ( x1
x0 ) is a generic initial amplitude of the first two

sites, and N is the length of the chain. We set x0 = x1 = 1/
√

2.
The sign 〈· · · 〉 denotes an ensemble average over different
realizations of masses. Here, QN = ∏N

n=1 Tn, and the transfer
matrix Tn is given by Tn = ( 2−mnω

2a2 −1
1 0

), where a is the lattice
constant (here, αn = 1/a2). In Fig. 1, the localization length
ξ (ω) is depicted as a function of frequency ω for a lattice with
size N = 105 sites, where we set a = 1. The masses are taken
from a uniform distribution [m̄ − W, m̄ + W ], in which m̄ and
W are 2 and 0.9, respectively. The plot is derived by ensemble
averaging over 100 realizations of the disorder. According
to Fig. 1, for this system one finds localized and extended
regions, separated by a “mobility edge” at ωc � 0.15 for this
lattice size [the criterion being ξ (ωc) � N].

Next, we study the effect of nonlinearity on localized
and extended modes using a dynamical method [11–16,19].
We consider the transmission of two modes, one from the
localized region (ω = 1) and the other from the extended
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FIG. 1. The localization length as a function of frequency ω for a
lattice with N = 105 sites. There are localized and extended regions,
separated by a “mobility edge” at ωc � 0.15. The masses are taken
from a uniform distribution [m̄ − W, m̄ + W ], in which m̄ and W are
2 and 0.9, respectively.

region (ω = 0.1). Using the dynamical method, we find that
both localized and extended modes become “extended” when
the nonlinear term is added. In this case, a system of spring-
coupled masses with a length of 500 is considered. We note
that the angular frequencies ω = 1 and ω = 0.1 are also
localized and extended modes, respectively, for length N =
500. Similar to the linear case in Fig. 1, masses are taken from
a uniform distribution [m̄ − W, m̄ + W ], in which m̄ = 2 and
W = 0.9. We solve the dynamical equation using a fourth-
order Runge-Kutta method with a time step dt = 0.01, and
consider the following boundary conditions at the two ends:
x1(t ) = A sin(ωt ) and xn+1 = xn. This means that the first site
is subjected to a sinusoidal function with frequency ω and
with amplitude A = 1 and the last site is free (open). This type
of boundary condition in the last site prevents reflections from
the boundary.

We have chosen the values of the nonlinearity coupling
βn to be constant and considered βn = 0.001, 1, and 10. In
Figs. 2–4, we plot the time variations of the wave amplitude
at different distances from the source for frequency ω = 1,
where the linear system was initially strongly localized. As
shown in these figures, for βn = 1 and 10, at long timescales,
the wave amplitudes at distances n = 1, 300, and 500 increase
and become delocalized due to the presence of large nonlin-
earity. However, as depicted in Fig. 2(a), the nonlinearity with
coupling β = 0.001 is not able to propagate and its amplitude
decreases as the distance from the origin gets larger. The posi-
tional dependence of amplitude for the sine wave subjected to
frequency 1 at the origin is plotted also in Fig. 2(b) and shows
localization for the coupling β = 0.001.

As shown in Figs. 3 and 4, for high values of nonlinear
coupling β, low-frequency modes are activated in the system
(see below, and Fig. 5). Here, nonlinearity has enhanced the
exchange of energy between modes since we keep injecting
energy into the system and increase the relative importance
of anharmonicity to harmonic frequencies. It should be noted
that the unexpected result originally obtained by FPU was
due to nonresonant frequencies in the 1D harmonic system
and insufficient nonlinearity or energy present in the sys-
tem, as well as a short simulation time and system length.
Later studies have shown that equipartition can be reached
if enough energy, or equivalently, enough anharmonicity, is
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FIG. 2. (a) Amplitude change of sine wave at distances n = 1,
300, and 500, vs time, and in the presence of both disorder and
nonlinearity (β = 0.001). The initial sine wave has frequency 1 (a
localized mode in the linear system) imposed directly at the first
site. Note that amplitudes decay from 1 as one gets further from the
site 1. (b) Positional dependence of the vibrational amplitudes for
the exciting sine wave of frequency 1. Nonlinearity with coupling
β = 0.001 is not able to delocalize this localized mode.

present in the system, and the simulation is run for long
enough times [20,21] and long enough systems [22]. If the
system is excited with a frequency in the delocalized re-
gion of the harmonic spectrum, for instance, ω = 0.1, we
find similar results, namely, large amplitudes far from the
source point, a signature of delocalized states, and excitation
of lower-frequency modes. These forms are reminiscent of
solitons proposed by Zabusky and Kruskal [23–26]. As we
will later point out, however, the addition of nonlinearity will
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FIG. 3. Same as Fig. 2(a), but for β = 1.
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FIG. 4. Same as Fig. 2(a), but for β = 10.

also create localized excitations known as intrinsic localized
modes or ILMs even in the absence of disorder.

To look at the energy distribution among modes, we study
the amplitude spectrum of long-time states of the disordered
nonlinear Fermi-Pasta-Ulam system. To this end, we calculate
the spectral density |ψn(ω)|2, where ψn(ω) is the Fourier
transform of xn(t ) at distance n measured from the source.
In Fig. 5, the spectrum of incident waves with ω = 1 and
ω = 0.1 as well as the spectrum of amplitudes at distances
n = 300 and 500 are displayed. The nonlinear coefficient is
fixed to βn = 10 for all simulations. It turns out that for
high values of nonlinear coupling β, small-frequency modes
below the excitation frequency are activated in the system, and
are robust with respect to ensemble averaging over different
realizations of disorder. A peak slightly above ω � 0.01 can
be observed corresponding to the quasiperiods in Fig. 4 which
we attribute to the excitation of soliton modes.
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FIG. 5. Log-log plot of the Fourier transforms of a sine wave
with initial frequencies 0.1 (purple) and 1 (blue) at different distances
from the source in the presence of disorder and nonlinearity (β =
10). The blue, red, and black curves are for ω = 1 at sites n = 1,
n = 300, and n = 500, respectively. The spectra in purple, green, and
orange colors are for ω = 0.1 at sites n = 1, n = 300, and n = 500,
respectively. Independent of initial frequency, the amplitude power
is distributed between different modes in a power law, extended over
about two decades in ω with exponent � − 5/3, i.e., the Kolmogorov
exponent. The masses are taken from a uniform distribution with
mean m̄ = 2 and fluctuation amplitude W = 0.9.

FIG. 6. Log-log plot of the Fourier transforms of energy En(t ) at
different distances from the source in the presence of disorder and
nonlinearity (β = 10), for frequency ω = 1. The blue, red, and black
are for sites n = 1, n = 300, and n = 500, respectively. Regardless
of the initial excitation frequency, the energy is distributed between
different modes in a power law, extended over about two decades in ω

with exponent � − 5/3, i.e., the Kolmogorov exponent. The energy
is injected with frequency ω = 1 and the system shows cascades of
energy to high- and low-frequency modes.

Next, we ask whether or not the final steady state is a
thermalized state. As we said, original studies of the FPU
problem did not show thermalization until the initial input
energy was large enough and simulations were run for long
enough times. We now study the energy spectrum of long-time
states of a disordered nonlinear Fermi-Pasta-Ulam system. To
address this question, we calculate the energy spectral density
En(ω), which is the Fourier transform of energy En(t ) at time
t on site n measured from the source. This energy is given by

En(t ) = 1

2
mnẋ2

n + α

4
[(xn − xn−1)2 + (xn+1 − xn)2]

+ β

8
[(xn − xn−1)4 + (xn+1 − xn)4].

In Fig. 6, the energy spectrum at distances n = 1, 300, and
500 are displayed as a function of ω. The nonlinear coefficient
is fixed to βn = 10 for all simulations. Instead of obtaining
thermalization, where En(ω) would become constant, we find
that irrespective of the initial frequency, the energy of the
modes is distributed in a power law extended over about two
decades with exponent � − 5/3, i.e., Kolmogorov exponent
obtained in the case of fully developed turbulence [27]. For
instance, for an initial localized mode with ω = 1, turning
on the nonlinearity causes energy exchange between different
modes and there is an energy transfer to small and large
frequency modes as shown in Fig. 6. It is interesting that the
aforementioned activated small-frequency modes are absent
in the energy spectrum, which means that they have almost the
same power as the neighbor frequencies. The numerical ob-
servation of power-law behavior of an energy spectrum with
a Kolmogorov exponent is the main result of this Rapid Com-
munication. We must emphasize that, in contrast to molecular
dynamics simulations of a FPU system with periodic bound-
ary conditions sampled from a microcanonical or canonical
ensemble, our results have been obtained for an open system
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FIG. 7. Dynamics of an intrinsic localized mode in the disor-
dered Fermi-Pasta-Ulam β-model. The masses are taken from a
uniform distribution with mean m̄ = 2 and fluctuation amplitude
W = 0.9. The mode remains localized around the center n = 25. The
nonlinearity coupling βn is set to unity.

which does not have a state of thermal equilibrium. Our result
shows the spectral spreading of the energy spectrum under
injection of energy at a single frequency ω and the presence
of an energy cascade to high- and low-frequency modes.

Finally, we are interested in the behavior of intrinsic local-
ized modes (ILMs) which are excitations of a nonlinear or-
dered lattice. This is in contrast to localized modes of a linear
but disordered lattice. We showed that the latter become delo-
calized as the springs become nonlinear. To find out the fate
of ILMs in the presence of disorder, we next consider a lattice
with N sites with periodic boundary conditions. We start the
dynamical simulation with the initial condition corresponding
to an ILM at site jc = N/2 where the amplitudes are given by
x j (0) = (−1) j sech[k( j − jc)] with k = 1. We consider ran-
domness in the mass according to the previously mentioned
distribution. The result of the dynamical simulations of the

ILM state in a disordered medium is shown in Fig. 7. As can
be seen in this figure, this mode remains stable and will not
propagate. It will instead oscillate around the center, implying
that mass disorder will not cause delocalization of ILMs.

Conclusions. We studied the interplay between nonlinear-
ity and disorder in the context of wave transmission through a
discrete periodic structure under nonequilibrium conditions.
We found that the nonlinearity led to the delocalization
phenomenon, by which enhanced wave transmission occurs
within the localized region of the spectrum of a linear system
when the value of coupling β exceeds a certain threshold
(here, β � 0.001). By investigating the energy spectral den-
sity in the presence of nonlinearity, it was found that energy
spreads to both low- and high-frequency modes regardless
of the initial spectral content. Most interestingly, similar to
the results in turbulence, the energy spectrum showed the
Kolmogorov ω−5/3 distribution. Finally, it was observed that
disorder had no effect on the stability of ILMs.

We believe that our results are relevant to a deeper under-
standing of thermal transport in quasi-one-dimensional sys-
tems. Examples are the localization-delocalization of phonons
in nanowires displaying a diffusive to ballistic transition as
their length is decreased [28–35]. Localization can reduce
the contribution of diffusive modes and disorder can con-
vert some of the ballistically propagating modes to diffusive
ones, thereby strongly reducing the thermal conductance of a
nanowire. Another example is the effect of roughness on the
thermal conductivity of nanowires. It would be interesting to
map the physics of nanowires with rough boundaries in a low
Knudsen number (high Reynolds number) to the problem of
nonlinear fluctuating hydrodynamics for anharmonic chains
with disorder [36]. In addition, our numerically obtained Kol-
mogorov exponent provides hints for a possible connection of
hydrodynamics for anharmonic chains to the recent phonon
hydrodynamics models such as those proposed to describe
materials such as graphene [37–39].
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