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L2 localization landscape for highly excited states
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The localization landscape [M. Filoche and S. Mayboroda, Proc. Natl. Acad. Sci. USA 109, 14761 (2012)]
gives direct access to the localization of bottom-of-band eigenstates in noninteracting disordered systems. We
generalize this approach to eigenstates at arbitrary energies in systems with or without internal degrees of
freedom by introducing a modified L2 landscape, and we demonstrate its accuracy in a variety of archetypal
models of Anderson localization in one and two dimensions. This L2-landscape function can be efficiently
computed using hierarchical methods that allow evaluating the diagonal of a well-chosen Green’s function. We
compare our approach to other landscape methods, bringing insights on their strengths and limitations. Our
approach is general and can in principle be applied to both studies of topological Anderson transitions and
many-body localization.
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Introduction. The theoretical discussion of Anderson lo-
calization, the strict confinement of matter waves to a finite
subspace due to destructive quantum interference, dates back
to 1958 [1]. Progress since then has come in bursts, often
separated by long intervals. Only after over 20 years did
mathematical proofs start to appear [2,3] and the scaling
theory of localization was introduced [4], suggesting that all
eigenstates in low dimensions are localized. Two major recent
modern developments involve the interplay of localization
with topology and interactions: Surfaces of topological insu-
lators [5] resist localization [6–8] and extended bulk states are
obtained at the transition between two topologically distinct
insulating phases [9–14]. Interactions give rise to many-body
localization, in which an eigenstate phase transition is ob-
tained at energies high above the ground state [15–19]. These
phenomena only started to be understood in the last couple of
decades.

One reason for this slow progress may be that localization
is due to nontrivial interference patterns that are not easily
guessed from the random potential the particles move in.
There is generally no obvious correlation between the local-
ization centers of wave functions and the potential extrema.
In a sense, this means that there is no obvious classical
starting point from which one can do simple perturbation
theory. Now, in a series of fascinating work, such a starting
point may have been identified in the so-called localization
landscape [20–28]. The localization landscape can be seen as
the inverse of an effective potential obtained from the initial
random potential, and it has the property that its peaks and
valleys predict the location of the few lowest-energy localized
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wave functions. It furthermore gives the correct integrated
density of states [29] at low energy from a simple Weyl
law, which otherwise badly fails when using the original
potential.

The original formulation [20] of the localization landscape
is for scalar field theories with a real and positive Green’s
function, and applies strictly only to low-energy states close
to the bottom of the energy spectrum. These constraints
prevent direct applications to many of the modern approaches
mentioned above, where the interesting physics often takes
place in states at or near the middle of the spectrum. Here, we
introduce an extension of the localization landscape, which we
coin the L2 landscape, that faithfully captures the localization
of eigenstates at all energies and in the presence of internal
degrees of freedom. The L2 landscape can be efficiently
numerically obtained in generic physical models, in the ab-
sence of long-range hopping. We exemplify its validity and
reliability through several archetypal models of localization
in one and two dimensions. This landscape is applicable to
both topological models and many-body Hamiltonians and
can therefore be used to analyze most localization problems.

An alternative extension of the localization landscape to
Dirac fermions was recently introduced by Lemut et al. in
Ref. [30]. This method, based on the comparison matrix
[31,32], has the advantage that is retains the simplicity of the
original landscape, and can be applied to Dirac Hamiltonians
with inner degrees of freedom. Neither the original landscape
nor the one based on the comparison matrix can, however,
describe a generic high-energy state as does our L2 landscape,
albeit at the cost of a slightly reduced efficiency. We conclude
our work by briefly comparing our method to these alterna-
tives, bringing insights into the strengths and weaknesses of
conventional localization landscape approaches.

L2 localization landscape. In their original paper [20],
Filoche and Mayboroda considered the localization of a scalar
field, or equivalently of spinless fermions. Let H be the
corresponding single-particle Hamiltonian and |φβ〉 an eigen-
state of H with eigenvalue Eβ . We denote by φ

β
j = 〈 j|φβ〉
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its amplitude at site j. By application of the inverse of the
Hamiltonian, one straightforwardly obtains

|φβ
j | =

∣∣∣∣∣Eβ
∑

m

(H−1) j,mφβ
m

∣∣∣∣∣ (1)

� |Eβ |‖φβ‖∞
∑

m

|(H−1) j,m| ≡ |Eβ |‖φβ‖∞u j . (2)

u is called the localization landscape. The key insight of
Ref. [20] was to realize that in a wide class of models, H−1

can have all components positive, implying that u is a solution
to the differential equation

Hu = 1. (3)

The requirement of elementwise positivity of H−1 enforces
strong restriction on H : It must be a monotone matrix [33],
a class of matrices that is generally hard to characterize. In
the case of a real symmetric matrix with all off-diagonal
(hopping) terms negative, such as in the standard Anderson
model, a necessary and sufficient condition is that H is
positive definite. The localization landscape proves to tightly
bound bottom-of-band eigenstates, almost saturating Eq. (2),
in a wide variety of models [20]. This saturation implies that
the lowest-energy eigenstates are localized at the peaks of the
landscape and different eigenstates are separated by landscape
minima. Indeed, we can rewrite the localization landscape as

u j =
∑

β

φ
β
j

Eβ

∑
m

φβ
m. (4)

By construction, due to the inverse energy factor, eigenstates
with the lowest energy will contribute more to the localiza-
tion landscape than ones at higher energies. On the other
hand, high-energy states are not accurately localized by the
landscape. This landscape can therefore not be used to study
center-of-band properties.

We propose to overcome this limitation by slightly modify-
ing the definition of the localization landscape. Starting from
Eq. (1), we apply the Cauchy-Schwartz inequality to obtain

|φβ
j | �

∣∣Eβ
∣∣∥∥φβ

∥∥
2

√∑
n

(H−1) j,n(H−1)∗j,n (5)

= |Eβ |
√

(M−1) j, j, (6)

where M = H†H is a Hermitian positive-definite matrix and
we assume normalized eigenfunctions with ||φβ ||2 = 1. The
L2-landscape u(2) is then defined by

u(2)
j =

√
(M−1) j, j . (7)

M is invertible as long as H is invertible, and the inequalities
are valid whether H is Hermitian or non-Hermitian. The
largest contributions to the landscape u(2) are from the eigen-
states with the smallest absolute energy. With this definition,
there is no requirement that H be positive definite, and we can
therefore explore localization at all energies by simply shifting
the Hamiltonian by a constant real factor ET . Note also that the
normalization by the largest element of φβ has vanished, re-
placed by its 2-norm (equal to 1 by convention). The change in
normalization can conveniently help to differentiate localized

and delocalized regimes. In the original formulation, several
tightly localized but close-in-energy eigenstates would have
exactly the same landscape signatures as a state delocalized
on a subpart of the system (with well-separated peaks) as the
difference in amplitude of the wave functions is not taken into
account. Equation (7) is valid in the continuum limit, and can
be straightforwardly applied to systems with internal degrees
of freedom.

To ensure that M can be inverted, it is convenient to
introduce a complex energy shift ε and work with the matrix
H̃ = H + iε Id. The energy in the bound is then renormalized
to Eβ

ε = |Eβ + iε| =
√

(Eβ )2 + ε2. ε should be smaller than
the level spacing at the probed energy in order to resolve
the different eigenstates. In the presence of modes exactly
at the target energy, for example, due to symmetries, it can
nonetheless be interesting not to choose an arbitrarily low
cutoff, so that the zero modes do not completely dominate
the landscape. The level spacing itself can be readily esti-
mated from any approximation W of the bandwidth and the
Hamiltonian dimension N as W/N and a typical safe choice
for ε would be W/(10N ). We can gain an intuition for this
by writing, for an Hermitian Hamiltonian, the square of the
landscape as

(
u(2)

j

)2 =
∑

β

∣∣φβ
j

∣∣2

(Eβ − ET )2 + ε2
, (8)

where we have now also explicitly included the real energy
shift ET . We therefore have that

ε
(
u(2)

j

)2 −−→
ε→0

ρ j (ET ), (9)

where ρ j (E ) = ∑
β |φβ

j |2δ(E − Eβ ) is the local density of
states at site j and energy E . This explains why the L2

landscape provides an efficient description of states close to
ET , while the presence of the factor of ε on the left-hand side
of relation (9) means that states further away from ET also
contribute to the landscape.

The L2 localization landscape can be computed efficiently,
even if it does not satisfy a simple (discrete) differential
equation. Indeed, for short-ranged Hamiltonians, numerous
methods have been developed to compute the diagonal of
the Green’s functions efficiently, such as hierarchical algo-
rithms [34–38] (that can also take advantage of the positive
definiteness of M). More refined algorithms in two dimen-
sions [39–41] can compute the diagonal of the inverse in
O(L3) operations, where L is the linear dimension of the
two-dimensional system. Moreover, several methods [42–44]
exist to numerically derive upper bounds on the components
of the inverse of Hermitian definite positive matrices, that can
readily be applied here.

Anderson model. We first illustrate our method in the pro-
totypical one-dimensional Anderson model for localization,
with Hamiltonian

H = −t
∑

j

(c†
j c j+1 + c†

j+1c j ) +
∑

j

Vjc
†
j c j . (10)

c j (c†
j ) is the fermionic annihilation (creation) operator on

site j, t is the hopping amplitude (set to 1 in the following),
and Vj is a random on-site potential uniformly distributed in
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FIG. 1. L2 landscape and the four eigenstates closest to zero en-
ergy (ET = 0) in the Anderson model for disorder strengths (a) W =
25 and (b) W = 2. The eigenstates are normalized by their energy
and ε = 10−3 is fixed to be smaller than the typical mean level
spacing. The different peaks in the localization landscape coincide
with the different eigenstates and their location. The low minima
form domain bounds that separate different eigenstates at low energy.
u(2) predicts accurately the localization and ordering of the states in
all cases, and tightly bounds the localization of these states.

[−W,W ]. An arbitrarily weak disorder is enough to localize
all eigenstates at all energies in the thermodynamic limit,
including in the middle of the spectrum. In Fig. 1 we show
the L2 localization landscape at zero energy in a chain of
L = 100 sites with open boundary conditions, and compare
it with the few eigenstates nearest in energy. Taking the cutoff
ε to be smaller than the typical level spacing, u(2) accurately
describes the localization of the states close to ET = 0 at both
strong and weak disorder. As with the conventional landscape,
many eigenstates are captured by a single computation of the
landscape, whether at strong or weak disorder. The ordering
of peak amplitudes matches the eigenstate ordering.

Chiral Anderson model. The ability to access arbitrary
energies allows us to access more refined properties of lo-
calization, such as due to the presence of symmetries. In one
dimension, the presence of chiral symmetry leads to an even-
odd effect in terms of the number of channels [7,45]; indeed,
due to the symmetry, states either come in pairs (E ,−E ) or

FIG. 2. The L2 localization landscape at ET = 0 for two values
of ε and the lowest lying eigenstate in the (a) one-channel and
(b) two-channel chiral Anderson model, for V0 = 4 and L = 101
sites. We only plot the spin-up component of the landscapes and
wave functions in the two-channel case for simplicity; the other
component can be obtained by symmetry. For one channel, there
exists an extended zero mode which gives a clear contribution to
the landscape, with an amplitude that scales as ε−1. Conversely,
the part of the landscape that does not scale with ε (shown by the
arrow) corresponds to higher-energy states. In the inset we show, for
reference, the wave functions of the four states in the bulk of the
band with ET = V0. For two channels, there is no zero mode, and
the lowest-energy states are localized. The rescaled landscape does
not match its initial counterpart. The landscape is a less tight bound
than usual due to the chiral symmetry which doubles the number of
states. To get a tighter bound one can split the pairs of states at ±E
by a weak breaking of the symmetry.

have zero energy. For an odd number of channels (and an odd
number of sites at finite sizes) there therefore must exist a
symmetry protected zero-energy eigenstate. This zero-energy
state is delocalized even in the presence of strong disorder.
In Fig. 2(a), we compare the L2 localization landscape and
eigenstates of the minimal single-channel chiral Hamiltonian

H = −
∑

j

t jc
†
j c j+1 + H.c., (11)

with t j taken uniformly in [−V0,V0].
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Though the landscape may appear similar to the one ob-
tained in Fig. 1, we can identify that most peaks are contri-
butions of a zero mode by varying the cutoff ε. Indeed, the
energy in Eq. (6) is given by |Eβ + iε|. When ε → 0, the
contributions to the landscape of states with nonzero energy
are suppressed compared to the divergent contribution of the
zero-energy eigenstates and we can identify the zero-mode
contributions by computing the landscape for two different
cutoffs: Bounds of the zero modes will scale as the inverse of
ε. Note that due to the zero mode, choosing a very low value of
ε leads to a better description of the delocalized mode, while a
value closer to the level spacing gives more information on the
localization of the neighboring states. In Fig. 2(a), we show an
example with such a delocalized state. Additionally, around
j = 60, one can see a few peaks where the landscape does not
scale linearly with ε; this is where the first excited states are
localized. In the absence of degeneracies, it is then immediate
to identify that the zero mode spans a large part of the system.
One can verify by shifting the energy reference ET that bulk
states are localized.

Conversely, in the case of an even number of channels, the
symmetry no longer guarantees the presence of a zero mode,
and the eigenstates close to zero energy are all localized. The
Hamiltonian

H = −t
∑

j

	c j
†σ z	c j+1 + H.c. −

∑
j

Vj 	c j
†σ y	c j+1 + H.c.,

(12)

with 	c = (c↑, c↓) two fermionic species, σα with α = x, y, z
the Pauli matrices and Vj ∈ [−V0,V0], is an example of two-
channel chiral Anderson model. The chiral symmetry is real-
ized by

σ xHσ x = −H. (13)

As shown in Fig. 2(b), there are no zero modes and the
eigenstate closest to zero energy is now localized. The lo-
calization landscape bounds the eigenstates less tightly than
in the previous examples due to the chiral symmetry: States
come in pairs of opposite energies which have exactly the
same renormalized energies and a similar local polarization.
These two contributions therefore sum up constructively and
strongly relax the usual tightness of the bound. This can be
remediated by a small breaking of the chiral symmetry with a
nonzero ET smaller than the mean level spacing.

Dirac fermions in two dimensions. Finally, we demonstrate
that the L2 landscape also captures the (absence of) localiza-
tion of Dirac fermions in two dimensions. Single Dirac cones
with time reversal are not localized at any energy [7,46–48],
and belong to different universality classes depending on the
form of the disorder. A convenient lattice model to simulate a
single Dirac cone is a critical two-dimensional Chern insulator
on a square lattice,

H = −t
∑
〈	r,	r′〉

(
	c	r

†σ z	c	r′ + H.c.
) − μ

∑
	r

	c	r
†σ z	c	r (14)

+	x

∑
	r

(i	c	r
†σ x 	c	r+	ex + H.c.) (15)

+	y

∑
	r

(i	c	r
†σ y	c	r+	ey + H.c.). (16)

FIG. 3. L2 localization landscape for the critical
two-dimensional Chern insulator in the presence of all types
of disorder for both spin components (left: spin up; right: spin
down). We fix V α

0 = 2t , ε = 10−5, and study states at ET = 0.
In both graphs, the vertical component depicts the low-level
eigenstates, while the color scale is the corresponding normalized
value of the landscape. Peaks and valleys in the landscape match the
lowest-energy eigenstates.

t , 	x, and 	y act as different flavors of spin-orbit coupling,
and μ is a chemical potential. The system falls into class D
with the particle-hole symmetry

σ xH∗σ x = −H. (17)

For μ = ±4t and 	x and 	y nonzero, the Hamiltonian is
at a critical point between a topological phase with Chern
number ±1 and a trivial phase. It presents a single Dirac
cone at momentum 	k = (0, 0) for μ = −4t and 	k = (π, π )
for μ = 4t . We place ourselves at this phase transition and
introduce all possible random local perturbations,

V a =
∑
	r,a

V a
	r 	c	r

†σ a	c	r, (18)

with a ∈ {0, x, y, z} and V a
	r taken uniformly in [−V a

0 ,V a
0 ].

V 0 is a random scalar potential, V z a random mass, and
V x/y random chiral hoppings. The random mass V z preserves
the particle-hole symmetry, while the other potential terms
break the symmetry such that the system falls directly into
class A. In class D, at weak disorder, the system would fall
into the thermal quantum Hall transition fixed point, before
transitioning at higher disorder to a metallic phase, as long
as the disorder averages to zero [7,49–52]. In class A on
the other hand, the model flows towards the integer quantum
Hall transition fixed point, though with strong finite-size
effects that will lead to apparent localization at strong disorder
and higher-energies [7,48,53–55]. In Fig. 3, we compare
the prediction of the localization landscape for the critical
Chern insulator and the actual low-energy eigenstates in the
presence of all types of disorder, for the two spin components.
Similar results are obtained in the D class. Peaks and valleys
in the landscape match the ones in the eigenstates, both
exactly at zero energy where the gap closes, but also deep
in the band. We do observe the absence of localization close
to zero energy, as is evident by looking at the spin-down
component.

Discussion. We have introduced the L2 landscape, an
extension of the localization landscape that can be used to
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characterize eigenstates of a Hamiltonian in the bulk spec-
trum of arbitrary models. This requires the computation of
the diagonal of the inverse of the positive-definite matrix
M = H†H . It provides an accurate and tight bound, in the
absence of degeneracies, on the localization or delocalization
of eigenstates at an arbitrary energy. We have demonstrated
the power of this landscape in a variety of models in one
and two dimensions, with and without internal degrees of
freedom, and presenting mobility edges and other nontrivial
localization properties. In all these examples, our method
successfully and accurately pinpointed the eigenstates closest
to any target energy.

It is pertinent to compare our results to other landscape-
based approaches. In particular, the comparison-matrix land-
scape introduced in Ref. [30] can in principle be used to
study states in the middle of the spectrum. In practice, the
comparison matrix needs to be positive definite, which, in the
models we considered, requires the introduction of the same
shift ε we introduced. Instead of being a small control param-
eter, however, this shift is much larger than the mean level
spacing and sometimes even of the order of the bandwidth.
The energy denominator in Eq. (4) (replacing the Hamiltonian
by the comparison matrix) is then strongly flattened, with all
eigenstates contributing with similar amplitudes. The obtained
landscape is then no longer a good predictor of the localization
of the eigenstates closest to the target energies (see the Sup-
plemental Material [56] for more details). These are generic
limitations in conventional landscape methods, as long as the
energy gap to the lowest eigenstate is much larger than the

level spacing. This problem can be alleviated by certain types
of disorder that make the Hamiltonian diagonal dominant,
and therefore allow for small ε, such as discrete disorder
distributions or disorder of the form V 	n · 	σ , with V a large
constant amplitude and 	n a random unit vector, representing
strongly disordered magnetic impurities.

The generality of our approach—including both interacting
systems (in configuration space, for example), non-Hermitian
models and continuous models—is straightforward as it only
requires the invertibility of the Hamiltonian, that can be
shifted by a small ε ∈ C. In particular, the possibility of
targeting accurately highly excited states may prove useful
for applications to many-body localization [57], though the
high coordination number of the equivalent Anderson lattice
may limit a purely numerical computation. For possible fu-
ture directions, we note that wave functions at the Anderson
transition point are known to exhibit multifractal behavior
[53,58–64]. The properties of the critical point can be identi-
fied by computing the fractal dimension of the wave function.
How to generalize these ideas to the localization landscape, as
the latter does not describe a single eigenstate, but a superpo-
sition of several with weight depending on their energies, is
an interesting open question.
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work was supported by the ERC Starting Grant No. 679722,
the Roland Gustafsson’s Foundation for Theoretical Physics,
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