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We investigate the mapping between magnetic susceptibility and entanglement in the metallic, insulating,
conventional, and exotic polarized superfluid phases of one-dimensional fermionic lattice systems as described
by the Hubbard model. Motivated by recent proposals for determining and quantifying entanglement via
magnetic susceptibility measurements, we numerically study the intrinsic relationship between the two quantities
at zero temperature. We find signatures of the metal-insulator transition and of the BCS-BEC crossover, but the
most relevant result is that for conventional and exotic superfluids the mapping between magnetic susceptibility
and entanglement is surprisingly simple: Directly proportional. This linear behavior is found to be universal for
conventional superfluids and therefore could be exploited to quantify entanglement in current cold-atom and
condensed-matter experiments.
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I. INTRODUCTION

Entanglement, which is a theoretical concept from
quantum information theory, has attracted attention from
nanoscience and nanotechnology since it is considered a
fundamental resource for quantum computation [1,2] and
quantum-enhanced metrology [3]. Entanglement has also
played a central role in bridging quantum information the-
ory to different areas, as condensed-matter, high-energy, and
cold-atom physics [4–17]. By investigating entanglement
properties one can probe quantum phase transitions [18–24]
and characterize quantum many-body states, including exotic
states of matter such as Fulde-Ferrell-Larkin-Ovchinnikov su-
perfluidity (FFLO) [25–31], many-body localization [32,33],
and topological spin liquids [34].

Experimentally, several protocols have been proposed to
perform entanglement measurements [35–42], but since most
of them scale with the system size exponentially, they have
been restricted to few-particle systems. A possible alternative
approach to determine and quantify entanglement in current
experiments has been to explore intrinsic relations between
entanglement and other physical quantities whose experimen-
tal measurement is well established.

Among these quantities, we highlight the magnetic suscep-
tibility, not only because it is promptly available in cold-atom
and condensed-matter experiments [11,17,40], but also be-
cause spin and orbital fluctuations are good candidates to ex-
plain unconventional superconductivity [43–47]. From a fun-
damental point of view, it seems reasonable to expect strong
connections between entanglement and magnetic susceptibil-
ity, because the latter is also closely connected to another con-
cept from quantum information theory—the fidelity. Fidelity
is a measure of the similarity between two quantum states with
respect to a driving parameter, and its most relevant term—the
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fidelity susceptibility [6,9,10,13,48]—is essentially the mag-
netic susceptibility for thermal states when the driving param-
eter is an external magnetic field or an internal magnetization.

Although there are several works connecting entanglement
to quantum phase transitions and magnetic susceptibility or
more general fidelity susceptibility to quantum phase tran-
sitions, just a few works directly relate entanglement to
magnetic susceptibility in multiband topological insulators
[10], Ising models [11], and spin chains [13,15,17]. For the
fermionic Hubbard model, in particular, reports associating
entanglement to magnetic susceptibility are restricted to half-
filled systems with strong repulsive interactions [49], regimes
that actually make the Hubbard model equivalent to weakly
interacting spin chains [50].

Here we investigate the intrinsic relationship between en-
tanglement and magnetic susceptibility in fermionic systems
in the metallic, insulating, conventional, and exotic (FFLO)
superfluid phases. Our analysis—within the single-band one-
dimensional Hubbard model at zero temperature—reveals that
the mapping between entanglement and magnetic suscepti-
bility in conventional and exotic superfluids is as simple as
it could be: directly proportional. To our knowledge this
linearity has not been reported in the literature. By analyzing
its features and peculiarities, we explain the linear mapping
between entanglement and magnetic susceptibility, demon-
strating that it is not an artefact or a coincidence. We thus
determine and comprise in Eq. (7) the universality of this
linear behavior for conventional superfluids, thus allowing the
quantification of entanglement in cold-atom and condensed-
matter experiments.

II. THEORETICAL MODEL AND
COMPUTATIONAL METHODS

We consider one-dimensional nanostructures at zero tem-
perature as described by the single-band fermionic Hubbard
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model,

H = −t
∑

<i j>σ

ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓, (1)

where U is the on-site interaction, t the hopping parameter
between neighbor sites 〈i j〉, n̂i,σ = ĉ†

i,σ ĉi,σ the density op-

erator, and ĉ†
i,σ (ĉi,σ ) the creation (annihilation) operator of

fermionic particles with z-spin component σ =↑,↓ at site
i. The filling factor or average density is given by n = N/L,
while the magnetization is given by m = n↑ − n↓, where N =
N↑ + N↓ is the total number of particles and L the chain size.
Throughout this paper we consider t = 1, fixed total number
N of particles, L = 80, and open boundary conditions.

We determine the single-site entanglement in such chains
at the ground state via the von Neumann entropy,

Si = −w↑,i log2 w↑,i − w↓,i log2 w↓,i

−w2,i log2 w2,i − w0,i log2 w0,i, (2)

a well-defined entanglement measure for bipartite pure sys-
tems [19], which quantifies the entanglement between site
i and the remaining L − 1 sites. Here w2,i is the double
occupancy probability at site i,

w2,i = ∂e0(n, m,U )

∂U
, (3)

w↑,i = n/2 + m/2 − w2,i and w↓,i = n/2 − m/2 − w2,i are
the single-particle or unpaired probabilities, and w0,i = 1 −
w↑,i − w↓,i − w2,i is the zero-occupation probability. Here
e0(n, m,U ) = E0(n, m,U )/L is the per-site ground-state en-
ergy. In order to avoid site-dependent quantities, our results
for entanglement and doubly occupied probability are aver-
aged over the chain sites: S ≡ ∑

i Si/L and w2 ≡ ∑
i w2,i/L.

The magnetic susceptibility χ is numerically obtained
through the second derivative of the total energy E0(n, m,U )
with respect to the magnetization at fixed density and interac-
tion,

χ =
[
∂2E0(n, m,U )

∂m2

]−1

n,U

. (4)

Ground-state energies and occupation probabilities are ob-
tained with density-matrix renormalization group (DMRG)
[51] techniques, and therefore our results are numerically
exact. Alternative approaches would be, for example, (i) to
obtain approximate results by performing density-functional
theory calculations [52,53] or (ii) numerically solve the Lieb-
Wu equations [54] for infinite chains. However, for the de-
velopment of experimental nanophysics and nanotechnology
it is crucial to obtain theoretical results of finite systems.
Additionally, as n, m are in the Lieb-Wu integrals indirect
parameters, a huge amount of data would be necessary to
generate the derivative in Eq. (4) at fixed n,U .

The polarization due to the imbalance between spin popu-
lations is given by P = (N↑ − N↓)/N , which is related to the
magnetization by m = nP. For attractive interactions, U < 0,
the system presents conventional BCS [55] superfluidity for
P = 0, exotic FFLO superfluidity for P < PC , and a normal
nonsuperfluid phase for P > PC , where PC is the critical
polarization delimitating the FFLO to the normal phase. One

TABLE I. Summary of the main phases of the Hubbard model
for a given interaction U , density n, and polarization P.

U > 0 U < 0

n �= 1 metal P = 0 conventional superfluid
n = 1 insulator P < PC exotic superfluid

P > PC normal nonsuperfluid

can obtain PC via the equality [28]

PC (n,U ) = 4w2(n, PC,U )

n
− 1. (5)

Notice that although PC depends on n and U , it has a universal
upper bound [28] given by Pmax

C = 1/3.
For repulsive interactions, U > 0, the system is either a

metal for n �= 1 or an insulator for n = 1: At U = 0 and
half filling the system undergoes the Mott transition from an
ideal conductor to an insulating phase. Table I summarizes the
different physical phases we will consider within the Hubbard
chains.

III. RESULTS

We start by monitoring both magnetic susceptibility and
entanglement for a vast regime of parameters: Attractive
and repulsive interactions, within several filling factors and
regimes of polarization, as shown in Fig. 1. The most surpris-
ing feature is the fact that for moderate and strong attractive
interactions (U � −2t) with low polarization (0 � P < PC)
the mapping between χ and S for any filling factor is the
simplest possible: directly proportional. This linear behavior
disappears for P > PC and simply does not occur in any of the
repulsive cases. This result suggests that entanglement could
be estimated via experimental measurements of the magnetic
susceptibility in both conventional (P = 0) and exotic (P <

PC) superfluids.
To understand this linear mapping between χ and S, we

first analyze the entanglement as a function of interaction in
the upper panels of Fig. 2. We observe that for any P and n
the maximum entanglement occurs at U = 0. Entanglement
thus decreases with |U | monotonically for both attractive and
repulsive regimes. This reflects the fact that at U = 0 the four
occupation probabilities are in their best balance for a given
filling factor and magnetization, while for |U | increasing there
are restrictions in the degrees of freedom via the suppression
of the unpaired probabilities in conventional and exotic su-
perfluids, and of the doubly occupied probability in metals.
Note that for P < PC , Figs. 2(a) and 2(b), entanglement is
also monotonic with density for the attractive regime and for
low repulsive interactions (up to U ∼ 3t for P = 0 and up to
U ∼ 2.5t for P = 0.1).

In particular, for U < 0 we find that the impact of the in-
teraction on the entanglement is very similar for all densities.
In contrast, for the repulsive regime U , increasing leads to a
greater decreasing of the entanglement at half filling (n = 1.0)
than at other filling factors, giving rise to the nonmonotonic
behavior of S with n. This is a direct consequence of the
Mott metal-insulator transition at n = 1 and U > 0: There is
an energy gap due to the repulsion of electronic charge [56],
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FIG. 1. Magnetic susceptibility as a function of entanglement for attractive (upper panels) and repulsive (bottom panels) interactions, for
P = 0, P < PC (P = 0.1), and P > PC (P = 0.5), for n = 0.5, n = 0.7 and n = 1.0. We indicate the initial and final corresponding interaction,
which ranges from U = −10t to U = 10t , and highlight the point U = −2t for 0 � P < PC , which delimitates the linear behavior found for
U � −2t .

with a consequent reduction of the degrees of freedom, with
maximum entanglement [49,57] at n ∼ 0.8. Interestingly, for
P > PC [Fig. 2(c)] entanglement is nonmonotonic with n for
any U > 0 and also in the attractive regime. The reason is

that such strong polarization (P = 0.5) induces an additional
reduction of the degrees of freedom, now related to the spin
character through the Pauli exclusion principle. So it can be
thought as a spin repulsion effect.

FIG. 2. Entanglement (upper panels) and magnetic susceptibility (lower panels) as a function of interaction: (a), (d) for P = 0, (b), (e) for
P < PC (P = 0.1), and (c), (f) for P > PC (P = 0.5). Inset is just zoom in.
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FIG. 3. Double-occupancy probability w2 (upper panels) and its derivative |∂w2/∂U | (lower panels) as a function of interaction: (a), (d)
for P = 0, (b), (e) for P < PC (P = 0.1), and (c), (f) for P > PC (P = 0.5).

Consistently, the lower panels of Fig. 2 reveal that the
nonmonotonicities of S with n, due to charge or spin
repulsion, have their counterpart in the magnetic susceptibil-
ity. For repulsive interactions, χ increases monotonically with
U increasing for both metallic (U > 0, n �= 1, any P) and
insulator (U > 0, n = 1, any P) regimes. This general feature,
predicted by Shiba [56] for U > 0 and P = 0, is here proved
to hold also in polarized repulsive systems.

On the other hand, for attractive interactions we find that χ

is nonmonotonic with U ; it has a minimum at U = UC ∼ −2t
and saturates for U → −∞ at finite values, for both conven-
tional [Fig. 2(d)] and exotic [Fig. 2(e)] superfluid regimes.
This finite saturation in the magnetic susceptibility is actually
one of the signatures of the Meissner effect in superconductors
[58] due to the coexistence of superconductivity and antiferro-
magnetic ordering. Accordingly, for the normal nonsuperfluid
regime, i.e., for P > PC [Fig. 2(f)], since there is no Meissner
effect we observe an almost vanishing χ for U → −∞.

Compiling all these properties of entanglement and mag-
netic susceptibility, we conclude that the linear mapping
between the two quantities for U < 0 and P < PC (Fig. 1)
is not a coincidence or an artefact. Instead, it reflects the
similarities between the way both χ and S respond to U and
n [compare Figs. 2(a) and 2(b) to Figs. 2(d) and 2(e)], while
they respond differently to U and n for U > 0 at any P and
for U < 0 with P > PC . The exception to this is the regime
of weakly attractive interactions, −2t � U < 0, at which the
minimum χ lies, while the maximum entanglement is at U =
0; consequently, the linear relation fails.

To investigate the peculiarities of this weakly attractive
regime, we first map Shiba’s interpretation [56] in terms of en-
ergy into the occupation probabilities. According to Shiba, for
U > 0, χ increases with U increasing and/or n decreasing be-
cause the ground-state energy becomes less negative and thus
the system can reach magnetization at lower energetic cost.

Now in terms of probabilities, increasing repulsive U and/or
decreasing n also corresponds to smaller w2, which then
implies enhancement of the unpaired probabilities w↑,w↓.
Thus w2 and χ have opposite behaviors with U and n.

The extension of this interpretation to attractive interac-
tions is not straightforward because w2 always benefits from
|U | increasing in this case. But the rate at which w2 increases
with |U | increasing should be larger for the weak attractive
regime (BCS pairs), where U plays a more effective role,
than for stronger interactions (strongly coupled pairs, BEC
limit), since the impact of U must saturate for U → −∞ by
reaching the maximum w2. This suggests then that the critical
UC ∼ −2t corresponding to the minimum χ is related to the
BCS-BEC crossover.

Our interpretation is confirmed in Fig. 3: For strong inter-
actions the doubly occupied probability saturates, w2 → 0 for
U → ∞, where χ → ∞, while w2 → wmax

2 for U → −∞,
where χ saturates (at zero for normal state and at finite
values for superfluids). For U < 0 and P < PC the maximum
|∂w2/∂U | occurs at U = UC ∼ −2t [Figs. 3(d) and 3(e)],
precisely the interaction for which χ is minimum. We see that
the maximum |∂w2/∂U | moves to weaker attractive interac-
tions with P, appearing at U ∼ 0 for P > PC [Fig. 3(f)]. For
U > 0 and n = 1, another peak is observed at U ∼ 2t , which
reflects the metal-insulator transition. This value of U where
the Mott transition occurs is consistent with Shiba’s prediction
[56] and also to that obtained via fidelity susceptibility in the
single-band Hubbard model [48].

Finally, we explore the universality of the linear relation-
ship between magnetic susceptibility and entanglement in
conventional superfluids (P = 0). By comparing the upper
panels of Fig. 1 one finds that while χ scales similarly for
distinct densities, the range of S varies with n. This reflects
the fact that both minimum (for U → −∞) and maximum
entanglement (at U = 0) depend on n (see Fig. 2). Hence
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FIG. 4. Universal linear relationship between magnetic suscepti-
bility and entanglement in conventional superfluids.

to make the entanglement of systems with different densities
comparable, we have rescaled it by S → S − Smin, where
Smin ≡ S(n, m = 0,U → −∞) is analytically obtained as fol-
lows.

We first calculate the double occupancy, Eq. (3), from
the per-site ground-state energy of attractive systems, which
within a particle-hole transformation is given by e0(n, m =
0,U ) = Un/2 − e0(n, |U |). As e0(n, |U |) becomes indepen-
dent of U for U → −∞ [59], we find w2 = n/2 and, con-
sequently, vanishing unpaired probabilities w↑ = w↓ = 0 and
w0 = (1 − n/2), thus obtaining

Smin(n)= −n

2
log2(n/2) −

(
1 − n

2

)
log2(1 − n/2). (6)

Figure 4 shows that all data of χ as a function of S − Smin

lie on top of a single line, thus revealing the universality
of the linear relation between entanglement and magnetic
susceptibility at P = 0. Therefore by measuring only the
magnetic susceptibility in current superfluid experiments one
can quantify entanglement via the universal formula

S(n, χ ) = Smin(n) + χ − a

b
, (7)

where a = 0.032 and b = −0.029 are the offset and the slope
of the linear fitting of Fig. 4. A similar universal relation for
the polarized regime remains to be investigated.

IV. CONCLUSIONS

In summary, we have investigated the mapping be-
tween magnetic susceptibility χ and entanglement S in one-
dimensional fermionic systems described by the Hubbard
model at zero temperature. We explored a vast regime of in-
teractions U , densities n, and polarizations P, thus comprising
the metallic, insulating, conventional superfluid and exotic
polarized (FFLO) superfluid phases. We found a surprising
linear mapping between χ and S in conventional (P = 0) and
exotic (P < PC) superfluids for U � −2t . We demonstrate
that this linearity is neither an artefact nor a coincidence; in-
stead it reflects the similar response of both entanglement and
magnetic susceptibility to the density and interaction changes.
We have also provided the universal relation between χ and
S in conventional superfluids, thus allowing one to quantify
entanglement by measuring only magnetic susceptibilities in
current superfluid experiments.

We found that entanglement is nonmonotonic with n for
U < 0 with P > PC and for U > 0 with any P. While for
U > 0 this behavior is related to the Mott metal-insulator
transition, for U < 0 we attribute this to spin repulsion effects
for moderate and strong polarizations. These like behaviors
resemble the similarities between the metallic and the normal
nonsuperfluid phases.

Finally, our results for the magnetic susceptibility in the
attractive interaction regime revealed that for P < PC χ is
nonmonotonic with U , with minimum at U ∼ −2t . By ana-
lyzing the doubly occupied probability we showed that this
minimum χ is related to the BCS-BEC crossover. We have
also found that χ saturates with U → −∞ at finite values,
which is a clear signature of the Meissner effect. In contrast,
for the normal nonsuperfluid phase (P > PC) we found χ → 0
for U → −∞, since the Meissner effect is absent. These
very distinct behaviors of χ for P < PC and P > PC could be
employed to distinguish between exotic superfluidity (FFLO
state) and normal nonsuperfluid states in spin-imbalanced
systems.
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