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We numerically study weak, random, spatial velocity modulation [quenched gravitational disorder (QGD)]
in two-dimensional massless Dirac materials. QGD couples to the spatial components of the stress tensor; the
gauge-invariant disorder strength is encoded in the quenched curvature. Although it is expected to produce
negligible effects, wave interference due to QGD transforms all but the lowest-energy states into a quantum-
critical “stack” with universal, energy-independent spatial fluctuations. We study five variants of velocity
disorder, incorporating three different local deformations of the Dirac cone: flattening or steepening of the cone,
pseudospin rotations, and nematic deformation (squishing) of the cone. QGD should arise for nodal excitations
in the d-wave cuprate superconductors (SCs) due to gap inhomogeneity. Our results may explain the division
between low-energy “coherent” (plane-wave-like) and finite-energy “incoherent” (spatially inhomogeneous)
excitations in the SC and pseudogap regimes. The model variant that best matches the cuprate phenomenology
possesses quenched random pseudospin rotations and nematic fluctuations. This model variant and another with
pure nematic randomness exhibit a robust energy swath of stacked critical states, the width of which increases
with increasing disorder strength. By contrast, quenched fluctuations that isotropically flatten or steepen the
Dirac cone tend to produce strong disorder effects, with more rarefied wave functions at low and high energies.
Our models also describe the surface states of class DIII topological SCs.
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I. INTRODUCTION

Understanding the interplay between strong correlations
and quenched disorder in low-dimensional superconduc-
tors remains one of the key challenges in condensed-
matter physics [1]. While pair-breaking due to elastic im-
purity scattering is detrimental to superconductivity, spatial
inhomogeneity can locally enhance pairing. Near a super-
conductor-insulator transition, the latter can occur via the
spatial accumulation of Cooper pairs, due to the multifractal
rarefication of single-particle eigenstates [2–6]. Multifractal-
ity arises in quantum-critical states due to wave interference
induced by multiple impurity scattering. Two-dimensional
(2D) multifractal superconductivity has very recently come to
the fore in studies of transition-metal dichalcogenides [7–9].

An enduring mystery is the role of spatial inhomogene-
ity in high-Tc cuprate superconductors. These materials are
characterized by two different energy scales in the under-
doped regime: the pseudogap energy �1 and the smaller
pairing energy �0; the former (latter) increases (decreases)
with increased underdoping [10]. Maps of �1(r) obtained
via scanning tunneling microscopy (STM) demonstrate strong
nanoscale spatial inhomogeneity that increases with under-
doping [11–16]. A key observation in STM scans of the
local density of states (LDOS) is that the lower energy scale

�0 appears to divide fermionic excitations into two distinct
classes. States with energies smaller than �0 behave like
dispersive, “coherent” Bogoliubov–de Gennes quasiparticles,
showing robust quasiparticle interference. States with ener-
gies above �0 are instead termed “incoherent,” as they exhibit
strong spatial fluctuations that vary little with energy [15,16].
Renewed urgency for understanding spatial inhomogeneity
comes from Ref. [17], which reported an increase in Tc with
increasing disorder.

Much recent work on the strange physics of cuprates
invokes gravitational descriptions of quantum criticality [18].
In this paper, we uncover a very different role possibly played
by quantum criticality in these materials, due to a different
type of “gravitational” physics. We show that the dichotomy
between plane-wave-like, low-energy quasiparticle states and
strongly inhomogeneous, finite-energy states can be recon-
ciled in a simple model of noninteracting nodal Dirac quasi-
particles, subject to random velocity disorder. Formally, this
can be cast as the effect of static spacetime curvature [19–21]
[quenched gravitational disorder (QGD)]. For massless Dirac
fermions, propagation is analogous to the lensing of starlight
through a fixed, randomly gravitating spacetime [22]. The
gravitational language precisely defines the gauge-invariant
content of the disorder, through the induced curvature.
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FIG. 1. (a) Illustration depicting random spatial modulation of
the velocity [quenched gravitational disorder (QGD)] for 2D mass-
less Dirac carriers. (b) Plot of the probability density |ψε (r)|2
for a critical state wave function, representative of the “stack”
of states found throughout the energy spectrum with QGD—see
Figs. 2, 3, 6, and 9. (c) The nodal excitations of the d-wave
cuprates in the superconducting and pseudogap phases should realize
Dirac carriers with QGD. Plotted is the inverse dispersion 1/E (k)
for different strengths of the order parameter amplitude �, where
E (k) ≡ √

ε̃2(k) + �2 cos2(2φk ) describes quasiparticle excitations
in a 2D d-wave superconductor [38]. Here ε̃(k) is the bare dispersion
measured relative to the Fermi energy, and φk is the polar momentum
angle. The nodal Dirac cones are indicated here in white. Spatial
inhomogeneity in the amplitude �(r) [13,14] modulates the Dirac
cones along the direction tangent to the Fermi surface.

QGD is realized whenever Dirac carriers arise from a
correlation gap that is spatially inhomogeneous. In a d-
wave superconductor, spatial gap fluctuations modulate the
nodal quasiparticle velocity; see Fig. 1. In the context of
conventional 2D Dirac materials such as graphene or the
surface states of 3D topological insulators, QGD has so far
received little attention [21,23–25]. This is because disorder
can usually couple in a more relevant fashion, through gauge
and mass potentials [21,26–28]. These perturbations typically
induce metallic or Anderson insulating behavior on the largest
scales [28–31].

In this paper, we use exact diagonalization to probe the
effect of QGD on 2D Dirac carriers. While the low-energy
states near the Dirac point may be only weakly affected, we
find that most of the energy spectrum converges into a “stack”
of critical wave states. These quantum-critical wave functions
apparently exhibit universal multifractal LDOS fluctuations.
A representative state is shown in Fig. 1(b), while LDOS
maps of states with different energies appear in Figs. 2
and 3.

The Dirac model that we study is defined by the Hamilto-
nian

H = −1

2

∑
a,b=1,2

∫
d2r vab(r)(ψ̄ iσ̂ a

↔
∂b ψ ), (1.1)

where r = {x1, x2}, ψ = ψσ is a two-component spinor
(σ ∈ {↑,↓}), {σ̂ 1,2} are Pauli matrices in the usual basis,

A
↔
∂B = A∂B − (∂A)B, and the QGD is encoded in the four
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FIG. 2. 2D Dirac fermions with QGD: a spectrum dominated
by critical states. The panels show position-space maps of |ψε (r)|2
for eigenstates {ψε} with energies ε as quoted. Energies (lengths)
are measured in units of the momentum cutoff � (inverse cutoff
2π/�), with the bare Dirac carrier velocity v0 = 1. Results here
are presented for model (b) described below Eq. (1.1); see Fig. 6
for the density of states. Although the lowest energy (ε < 0.2)
states are plane-wave-like, most of the spectrum (0.2 < ε < 1.5)
consists of critical states. These are scale-invariant and extended
(not Anderson-localized), yet highly rarefied [28,35]. Critical states
typically occur only with fine-tuning to a mobility edge, or to the
quantum Hall plateau transition (QHPT) [28,35]. Recent work has
demonstrated that “stacks” of critical QHPT states can nevertheless
form at the 2D surface of 3D topological superconductors [39–41].
Results are obtained from exact diagonalization in momentum space
over a (2N + 1) × (2N + 1) grid of momenta; here N = 96. Critical
states are identified by their multifractal spectrum; see Fig. 10. The
dimensionless disorder strength is λ = 0.2. The criterion for “strong
disorder” is λ � 0.393 (Sec. III B).

velocity components {v11(r) ≡ 1 + δv11(r), v22(r) ≡ 1 +
δv22(r), v12(r), v21(r)}. The four potentials couple to the
spatial components of the energy-momentum tensor T ab. We
consider five different variants of the model, with different
combinations of the random velocity perturbations. The vari-
ants are defined as follows:

(a) Independent {δv11, δv22}, v12 = v21 = 0. Local
isotropic flattening or steepening of the Dirac cone and
nematic (squishing) of the cone.
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FIG. 3. The same as Fig. 2, but for the generic model (e).
See Fig. 9 for the corresponding density of states and Fig. 12 for
multifractal spectra. States with energies in the range 0.5 < ε < 1.5
show critical stacking. Unlike model (b), however, low-energy states
are more strongly affected by the disorder, showing supercritical
(more rarified) fluctuations. In both Fig. 2 and this figure, Anderson-
localized states appear deep in the Lifshitz tail, at high energies above
the cutoff.

(b) Independent {v12, v21}, δv11 = δv22 = 0. Local pseu-
dospin rotations and nematic (squishing) of the Dirac cone.

(c) Independent {δv11 = δv22, v12 = −v21}. Local
isotropic flattening or steepening of the Dirac cone and
pseudospin rotations.

(d) Independent {δv11 = −δv22, v12 = v21}. Local ne-
matic (squishing) of the Dirac cone.

(e) Independent {δv11, δv22, v12, v21}. The generic model.
All nonzero random velocity components are taken to be

short-range correlated, characterized by a dimensionless dis-
order strength λ. The physical disorder variance is expressed
as λ times the square of the inverse momentum cutoff (the
disorder is formally irrelevant at the Dirac point—see below).

We find that critical-state stacking occurs for sufficiently
weak disorder in all models (a)–(e). Stacking improves in
models (b) and (d) with increasing disorder, i.e., more states
become quantum-critical with identical, universal spectra
throughout more of the spectrum. This is interesting because
model (d) includes only pure nematic deformations of the
Dirac cone. Nematicity has emerged as a key possible in-

gredient in the pseudogap phase of the cuprate superconduc-
tors [32,33], including quenched nematic fluctuations [34]. By
contrast, models (a) and (c) (which incorporate local flattening
and steepening of the cone) are most susceptible to strong
disorder effects, showing supercritical (more rarified) states at
low and high energies for increasing randomness. The generic
model (e) shows intermediate behavior, including a robust
energy swath with critical stacking, but also supercritical be-
havior at low energies for stronger disorder. Critical stacking
is exhibited for models (b) and (e) via the LDOS plots shown
in Figs. 2 and 3.

Our results are very surprising, in that QGD is a strongly
irrelevant perturbation at low energies. QGD was instead
expected to preserve the quasiballistic nature of the clean sys-
tem, even away from the Dirac point [23]. Moreover, critical
wave states typically arise only at isolated energies, such as a
mobility edge or at the plateau transition of a quantum Hall
effect [28,35–37]. The population of critical states induced by
QGD is compared to the total density of states in Figs. 5–9 for
models (a)–(e). Our calculations are performed in momentum
space; the largest size studied is a 193 × 193 grid. Since Dirac
cones typically span ∼10% of the 2D Brillouin zone, this
corresponds roughly to a (200 nm)2 map. For models (b)
and (d), more of the spectrum becomes more critical with
increasing disorder (Figs. 6 and 8), with very little dependence
on the system size (Figs. 14 and 15). The Dirac model with
QGD in Eq. (1.1) resides in class DIII; despite this, we find
no evidence for weak antilocalization at finite energy in any
of the variants (a)–(e), contrary to expectations based upon
standard symmetry arguments [28,39,40].

Model (b) exhibits a phenomenology most similar to the
LDOS maps observed in STM studies of BSCCO [15,16],
with low-energy plane-wave states and a robust quantum-
critical stack at intermediate and higher energies; see Fig. 2.
In addition to quenched nematic fluctuations, model (b) incor-
porates local rotations of the pseudospin {σ̂ 1, σ̂ 2} relative to
the coordinate axes {x1, x2}. As we review in Sec. II, other
types of disorder afflicting d-wave quasiparticles are pre-
dicted to induce different physics: (i) One class of (effectively
topological [5]) perturbations should also produce critical
scaling throughout the quasiparticle energy spectrum [39–42].
In this scenario, however, zero-energy states are also predicted
to be multifractal, and the low-energy DOS ν(ε) would be
enhanced via a sublinear power law, ν(ε → 0) ∼ |ε|δ , with
δ < 1 [26,43–47]. (ii) Disorder that induces generic internode
scattering is instead predicted to Anderson-localize the entire
quasiparticle spectrum [26,48]. Neither scenario (i,ii) is con-
sistent with STM data [16].

QGD should also arise at the surface of a topological su-
perconductor (TSC). Due to “topological protection,” velocity
modulation is the only allowed coupling of charged impurities
to the 2D massless Majorana fluid expected to form at the
surface of a class DIII TSC [49–52] with winding number
|ν| = 1 [23,53], as we show in Appendix B.

The stack of critical finite-energy states found here is quite
unusual, but not unprecedented. In Ref. [39], we observed
stacks of critical, class C spin quantum Hall plateau transition
(QHPT) states at finite energy in a surface model for a class
CI TSC. Numerical studies [40,41] have found that the finite-
energy surface states of class AIII TSCs sit at the class A
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integer QHPT [42,43]. We expect that the finite-energy critical
states identified here correspond to a version of the class D
thermal QHPT [54–60].

Outline

This paper is organized as follows. In Sec. II, we review
results on impurity scattering in d-wave superconductors. We
derive the low-energy four-node Dirac theory from a micro-
scopic model. We review how restrictions to two- and one-
node models are effectively topological, i.e., they correspond
to models for surface states of bulk TSCs. We summarize
results for the thermal conductivity, density of states, and
multifractal spectra of low- and finite-energy wave functions.
We discuss the quantum critical “stacking” of multifractal
finite-energy states and the connection to plateau transitions
in quantum Hall effects that has recently been found to occur
in these models [39,40].

In Sec. III we present the main numerical results of this
paper for the five different variants (a)–(e) of the model
defined by Eq. (1.1). Our results consist of the density of states
and multifractal exponents throughout the energy spectrum
for a range of disorder strengths and system sizes. We contrast
our results with conventional expectations, and we discuss
them in light of the multifractal stacking phenomenon.

The Appendices detail more technical considerations. In
Appendix A, we show how velocity randomness is em-
bedded in a generally covariant framework for (2 + 1)D
Dirac fermions propagating through curved spacetime. In Ap-
pendix B, we show how electric potentials couple gravitation-
ally to the single Majorana surface cone predicted to occur at
the boundary of a class DIII TSC. Finally, in Appendix C we
present a symmetry analysis of the Dirac fermion with QGD,
and the possible connection to the thermal QHPT in class D.

II. DISORDER IN 2D d-WAVE SUPERCONDUCTORS, AND
TOPOLOGICAL SUPERCONDUCTOR SURFACE FLUIDS

In this section, we review a microscopic model for elas-
tic impurity scattering in 2D d-wave superconductors. The
generic model with elastic scattering between all four low-
energy Dirac quasiparticle nodes Anderson-localizes at all
energies. We then show how restrictions on internode scatter-
ing produce independent, topologically protected sectors. The
latter are equivalent to the surface states of TSCs in classes CI,
AIII, and DIII. Finally, we review exact results for the thermal
conductivity, density of states, and multifractal spectrum of
local density of states fluctuations. With the exception of the
recent spectrum-wide criticality numerical results obtained in
Refs. [39,40] and in this paper, all of the following is well
known [5,26,61].

The discussion below is based on the linearized quasipar-
ticle band structure in the vicinity of the Dirac nodes. For a
recent numerical study of disorder effects in a lattice model
for the cuprates, see, e.g., Ref. [62].

Readers primarily interested in new results for the Dirac
model with QGD can skip this section and proceed directly to
Sec. III.

A. d-wave model

A 2D spin-singlet superconductor has the Bogoliubov–de
Gennes Hamiltonian

H =
∫

k

†(k) ĥ(k) 
(k), 
T(k) ≡ [c↑(k) c†

↓(−k)],

ĥ(k) =
[

ε̃(k) �(k)
�∗(k) −ε̃(−k)

]
. (2.1)

Here 
(k) is the Nambu spinor that annihilates spin-1/2
quasiparticles, T denotes the matrix transpose, ε̃(k) = ε(k) −
μ is the bare energy dispersion relative to the chemical
potential μ, �(k) is the mean-field BCS order parameter, and∫

k ≡ ∫
d2k/(2π )2.

The two key symmetries we want to enforce are T 2 =
−1 time-reversal and spin SU(2) symmetry, the combination
of which places the system in the Altland-Zirnbauer class
CI [26,28]. U(1) symmetry under Ŝz-axis spin rotations is
manifest in Eq. (2.1). A rotation around Ŝx or Ŝy generates
a continuous particle-hole transformation in the Nambu lan-
guage. To ensure SU(2) invariance, it is sufficient to impose
invariance under a π Ŝx-rotation, which takes the form of a
P2 = −1 effective particle-hole symmetry. These are encoded
via the transformations

T : 
(k) → iσ̂ 2 [
†(k)]T, i → −i, (2.2a)

P : 
(k) → −iσ̂ 2 [
†(−k)]T, (2.2b)

where the Pauli matrices {σ̂ 1,2,3} act on the particle-hole
space grading the Nambu spinor. The T (P) transformation
is antiunitary (unitary) in second quantization. These translate
into the following conditions on ĥ(k),

T : −σ̂ 2 ĥ(k) σ̂ 2 = ĥ(k), (2.3a)

P : −σ̂ 2 ĥT(−k) σ̂ 2 = ĥ(k). (2.3b)

Physical time-reversal invariance is thus represented by an ef-
fective unitary chiral symmetry in first quantization. Imposing
both T and spin SU(2) implies that ε̃(−k) = ε̃(k), and that
�(k) = �∗(k) = �(−k).

For a dx2−y2 superconductor, we take �(k) = �0 kxky/k2
F ,

where �0 is a real amplitude, kF is the Fermi wave vector,
and (kx, ky) measure momentum along the nodal directions;
see Fig. 4. Linearizing the Hamiltonian in the vicinity of each
node gives an effective low-energy, anisotropic Dirac theory,

H =
∫

k
ψ†(k) ĥ0(k) ψ (k). (2.4)

Here ψ (k) is an eight-component spinor with long-
wavelength momentum k. The field ψ is formed from the
direct sum of 
(ki + k) evaluated in the vicinity of the four
nodes i ∈ {1, 2, 3, 4} depicted in Fig. 4, located at {ki}. Let
the Pauli matrices {τ̂ 1,2,3} act on the partners of a pair of
nodes related by time-reversal, i.e., the matrix τ̂ 1 exchanges
states between nodes (1 ⇔ 2) and (3 ⇔ 4) in Fig. 4. Let the
Pauli matrices {κ̂1,2,3} act on pairs of nodes, i.e., the matrix κ̂1

exchanges (1 ⇔ 3) and (2 ⇔ 4). The symmetries in Eq. (2.3)
become

T : −σ̂ 2 ĥ σ̂ 2 = ĥ, (2.5a)

P : −σ̂ 2 τ̂ 1 ĥT σ̂ 2 τ̂ 1 = ĥ. (2.5b)
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FIG. 4. The Dirac nodes of a 2D d-wave superconductor occur in
two partnered pairs (1,2) and (3,4). The partners of a pair are related
by time-reversal and spin rotation symmetries. Generic impurity
scattering between all four nodes is believed to Anderson-localize
quasiparticle states at all energies [26,48]. On the contrary, if impu-
rity scattering is restricted to occur only (i) between partners of a
pair (1 ⇔ 2) or (3 ⇔ 4), or (ii) within each node separately, then
the model decouples (“fractionalizes”) into multiple topologically
protected sectors [5,61]. These topologically protected sectors are
equivalent to surface-state theories of bulk (3D) TSCs, in classes CI,
AIII, or DIII (see the text).

The Bogoliubov–de Gennes Hamiltonian takes the Dirac
form

ĥ0 = P̂+[v f α̂1(−i∂x ) + v� α̂2(−i∂y)]

+ P̂−[v f α̂1(−i∂y) + v� α̂2(−i∂x )], (2.6)

where P̂± ≡ (1/2)(1̂ ± κ̂3) projects onto nodal pair (1,2) (+)
or (3,4) (−), and where the Clifford algebra matrices are
(α̂1, α̂2) = (σ̂ 3τ̂ 3, σ̂ 1τ̂ 3). In Eq. (2.6), vF is the bare Fermi ve-
locity, while the perpendicular dispersion v� � �0/kF arises
from the pairing.

Nonmagnetic impurities can couple to the low-energy
theory via local, Hermitian fermion bilinear operators. The
most relevant of these in the RG sense have no derivatives,
and take the form O(αβγ )(r) ≡ ψ†(r) σ̂ α τ̂ β κ̂γ ψ (r), where
α, β, γ ∈ {0, 1, 2, 3} and σ̂ 0 = τ̂ 0 = κ̂0 = 1̂ (the identity ma-
trix). Imposing time-reversal and spin SU(2) symmetries from
Eq. (2.5) reduces the number of allowed Hermitian bilinears to
20. This is consistent with the random matrix classification for
class CI, where an 8 × 8 matrix is formed from the generators
of Sp(8)/U(4). We can parametrize the 20 allowed perturba-
tions via intrapair and interpair scattering Hamiltonians ĥ1,2.
Pure intrapair [(1 ⇔ 2), (3 ⇔ 4)] scattering is encoded in

ĥ1 = P̂+[α̂1 A(+)
x,i (r) + α̂2 A(+)

y,i (r)]t̂ i

+ P̂−[α̂1 A(−)
y,i (r) + α̂2 A(−)

x,i (r)]t̂ i, (2.7)

where the repeated index i is summed over {1, 2, 3}. The
intrapair scattering terms take the form of SU(2) gauge
potentials A(±)

i (r) t̂ i, where the SU(2) generators are t̂ i =
{σ̂ 2τ̂ 1, σ̂ 2τ̂ 2, τ̂ 3}. The remaining eight allowed perturbations
scatter between pairs of nodes, and they can be expressed

through the Hamiltonian

ĥ2 = [κ̂1 Bā,i(r) t̂ i + κ̂2 Cā(r)]α̂ā, (2.8)

where repeated indices i ∈ {1, 2, 3} and ā ∈ {1, 2} are
summed. In contrast to the intrapair scattering encoded in ĥ1,
the interpair scattering mediated by Bā,i(r) and Cā(r) takes
the form of scalar potentials and mass terms. The latter can be
used to open up a gap without breaking T ; this immediately
implies that the generic four-node Hamiltonian

ĥ ≡ ĥ0 + ĥ1 + ĥ2 (2.9)

cannot describe the isolated surface states of a strong TSC or
insulator.

It is possible to derive the strengths and correlations of
all 20 disorder potentials {A(±)

ā,i , Bā,i,Cā} in the effective low-
energy field theory from microscopic perturbations of the
original model in Eq. (2.1) [26], but we will not pursue this
here. In fact, our main interest will not be in these potential
perturbations, but in the weaker “quenched gravitational dis-
order” (QGD, nodal velocity randomness), which we argue
below should be present in the cuprate superconductors [16].
In Appendix B, we provide a derivation of QGD from the
coupling of the electric potential to Majorana surface states
in a microscopic model of a class DIII TSC.

B. Topological restrictions and TSC surface states:
Localization, quantum criticality, and physical properties

1. Four coupled nodes: Spectrum-wide Anderson localization

Quantum wave interference induced by generic elastic
scattering between all four nodes in the model described by
Eqs. (2.6)–(2.9) is expected to Anderson-localize all quasi-
particle states, at both zero and finite single-particle energies.

The localization near zero energy is understood as follows.
The Dirac model described by Eq. (2.9) can be averaged over
all 20 disorder potentials using the replica or supersymmetry
(SUSY) trick. For Gaussian white-noise distributions, the
model flows to strong coupling under the perturbative renor-
malization group [26]. One then expects that the system can be
described by a replicated or SUSY nonlinear sigma model in
class CI. Although this sigma model admits a Wess-Zumino-
Novikov-Witten (WZNW) term, it can be shown that no such
term arises in the full four-node theory (e.g., it is forbidden by
average parity invariance [26]; moreover, the WZNW model
turns out to be topological [61], as reviewed below). Without
the WZNW term, the 2D class CI sigma model also flows to
strong coupling, interpreted as the tendency toward Anderson
localization [48].

Anderson localization is anticipated at finite energy as
well in the four-node model. The standard argument (which,
however, needs to be revised for topological models as we
emphasize below) goes as follows. At zero energy, 7 of the
10 Altland-Zirnbauer classes are characterized by a special
particle-hole or chiral symmetry. This is true for all classes
that describe spin-1/2, time-reversal-invariant superconduc-
tors in classes CI, AIII, and DIII [5,61]. This symmetry also
relates states at positive and negative energies, but it does not
tell us anything about the character of the states at some par-
ticular fixed energy ε �= 0. On the other hand, for quasiparticle
states in a superconductor, one can always consider |ε| 
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�0, where �0 is the pairing energy. Then the quasiparticle
states should reside in the standard Wigner-Dyson class of the
normal metal that hosts the superconductivity. Since ε = 0 is
the only symmetry-distinguished energy, one concludes that
all states with ε �= 0 in the infinite-volume limit must reside in
the orthogonal, unitary or symplectic Wigner-Dyson class. For
the four-node class CI model, the appropriate Wigner-Dyson
class is the orthogonal metal class AI, which also preserves
T and spin SU(2) symmetry. This class is believed to always
localize in 2D [28].

Localization of all quasiparticle states is not borne out
by experiments in the high-Tc cuprate superconductors, at
or below optimal hole doping. First of all, localization is at
variance with superconductivity itself, since Tc is not pro-
tected by Anderson’s theorem for non-s-wave pairing [26].
Second, STM data taken at energies less than a characteristic
scale �0 (which is always below the pseudogap energy �1

on the underdoped side) show robust quasiparticle interfer-
ence, a sign that there is just enough internode scattering
to reveal the clean dispersion, but not enough to induce
localization [15,16].

Finally, the experimentally measured low-temperature lon-
gitudinal thermal conductivity [63,64] is nonzero, and close to
the universal (disorder-independent) theoretical result

κ

T
= k2

B

3h̄

(
vF

v�

+ v�

vF

)
. (2.10)

This result was originally obtained via an approximate,
self-consistent semiclassical calculation [48,65,66]. Equa-
tion (2.10) is better understood as the exact result for the
T → 0 limit of the Landauer thermal conductivity in the clean
four-node model, the analog (via Wiedemann-Franz) of the
“ballistic” conductivity σ xx = 4e2/πh for pristine graphene
doped exactly to charge neutrality. The absence of impu-
rity scattering combined with the vanishing density of states
produces a finite, universal result due to evanescent wave
propagation [67]. A very special feature of the topological
models reviewed below is that Eq. (2.10) remains exact in
the presence of disorder [43,61,68,69], and is even predicted
to be independent of virtual interaction (Altshuler-Aronov)
corrections in these special models [70]. By contrast, the
Anderson-localized model in Eq. (2.9) would have κ/T → 0
as T → 0.

2. Two coupled nodes: Class CI TSC surface states
and spectrum-wide spin quantum Hall criticality

If we restrict ourselves to intrapair scattering, such that the
node pair (1,2) decouples from (3,4) (Fig. 4), then ĥ = ĥ0 +
ĥ1 [Eqs. (2.6) and (2.7)]. Since the pairs are independent, we
focus on one pair (1,2). After a rescaling of (x, y) and a basis
change, the two-node Hamiltonian can be written as

ĥCI2 = σ̂ · [−i∇ + Ai(r) τ̂ i], (2.11)

where i ∈ {1, 2, 3} and σ̂ ≡ σ̂ 1 x̂ + σ̂ 2 ŷ. Here ĥCI2 is a 4 × 4
matrix differential operator acting in the composite (particle-
hole)⊗(valley) (σ ⊗ τ ) space. Since nodes (1,2) are related by

T , the model still resides in class CI. The symmetry operations
in Eq. (2.5) become

T : −σ̂ 3 ĥ σ̂ 3 = ĥ, (2.12a)

P : −σ̂ 1 τ̂ 2 ĥT σ̂ 1 τ̂ 2 = ĥ. (2.12b)

Given the (transformed) form of the Clifford algebra
in Eq. (2.11), the effective chiral/physical time-reversal
symmetry condition in Eq. (2.12a) is anomalous and can-
not be realized without fine-tuning in two spatial dimen-
sions [61,71]. It is naturally realized on the surface of a class
CI TSC [4,5,61,72], with minimal winding number |ν| = 2.
The sigma model takes the same form as the four-node model,
except that it is now augmented with a WZNW term at level
k = 1 [5,44–47,72].

The density of states ν(ε) exhibits critical scaling with
energy ε in the limit |ε| → 0. In particular,

lim
ε→0

ν(ε) ∼ |ε|x1/z, (2.13)

where x1/z = 1/7 [44]. The zero-energy wave function ψ0(r)
exhibits quantum critical fluctuations on all length scales;
these are characterized by the multifractal spectrum τ (q) (for
a review, see, e.g., Ref. [28]). If the system has size L × L,
one divides this up into N2 boxes of size b, with N ≡ L/b.
Then one introduces the box probability μi ≡ ∫

bi
d2r |ψ0(r)|2,

where the integral is performed over the ith box. The mul-
tifractal spectrum is defined via the scaling behavior of mo-
ments of the box probability,

N2∑
i=1

(μi )
q ∼

(
b

L

)τ (q)

. (2.14)

Box probabilities can also be obtained by normalizing a
spatial map of the local density of states in an STM exper-
iment. In the limit L → ∞, τ (q) is self-averaging. For the
topological class CI model in Eq. (2.11), the spectrum is
perfectly parabolic. The exact result is

τ (q) = 2(q − 1) + �(q), �(q) = θ q(1 − q),

0 � |q| � qc, qc ≡
√

2

θ
, (2.15)

with θ = 1/4 [45,46].
Very recently, the authors considered the question of the

finite-energy states of the model in Eq. (2.11). On the one
hand, the same argument presented in Sec. II B 1 leads to the
conclusion that all finite-energy states should be Anderson-
localized in the orthogonal class AI; this was the “conven-
tional wisdom” [28]. On the other hand, Eq. (2.11) also de-
scribes a surface quasiparticle fluid that forms at the boundary
of a bulk TSC [61,72], protected by the anomalous form of
time-reversal symmetry in Eq. (2.12a). From this perspec-
tive, the idea that only the zero-energy single-particle wave
function ψ0(r) escapes Anderson localization appears very
strange. Indeed, it would correspond to a very weak form
of “topological protection,” since in other topological phases
such as quantum Hall liquids and 2D and 3D topological
insulators, it is the entire band of edge or surface excitations
that is protected from Anderson localization [49,73].
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The only alternative to localization was argued in Ref. [39]
to be a “stacking” of identical, quantum critical wave func-
tions at all nonzero energies. It was argued that each such
wave function should sit at the class C, spin quantum Hall
plateau transition (SQHPT) [74–76]. The latter shares a few
critical exponents with classical 2D percolation [36,37,75,77],
a logarithmic conformal field theory [78,79].

The numerical results of Ref. [39] are consistent with the
“critical stacking” scenario. Near zero energy, the DOS and
multifractal spectrum confirm the predictions of the WZNW
theory [Eqs. (2.13) and (2.15), with x1/z = 1/7 and θ = 1/4].
At intermediate energies, however, a wide swath of states
is found to exhibit weaker universal multifractality, given
approximately by Eq. (2.15), but now with θ � 1/8. The latter
is consistent with the SQHPT [36,37]. More states exhibit
SQHPT phenomenology upon increasing the disorder strength
or system size [39].

Finally, we note that the results described above are clearly
incompatible with experiments in the cuprates. This is not
surprising, because in the 2D d-wave model (Fig. 4) it is
difficult to microscopically suppress scattering between node
pairs (1, 2) ⇔ (3, 4) while simultaneously retaining signifi-
cant internode scattering between partners (1 ⇔ 2) and (3 ⇔
4). The low-energy density of states vanishes as a strongly
sublinear power law ν(ε) ∼ |ε|1/7. The two-node model ex-
hibits the strongest multifractality at zero energy [Eq. (2.15)
with θ = 1/4] and weaker multifractality at finite energies
[Eq. (2.15) with θ � 1/8 [39]]. These features are opposite the
observations in STM on BSCCO, which show minimal spatial
inhomogeneity in low-energy LDOS maps, with stronger
inhomogeneity above the energy scale �0; in addition, the
low-energy DOS retains the linear character of the clean
system [16].

3. One node, vector potential disorder: Class AIII TSC surface
states and spectrum-wide quantum Hall criticality

We can further restrict to pure intranode scattering. The
effective Hamiltonian is “half” of Eq. (2.11), i.e., a single
two-component Dirac fermion subject to U(1) vector potential
randomness,

ĥAIII1 = σ̂ · [−i∇ + A(r)]. (2.16)

Formally this single-node Hamiltonian is the same as the
surface fluid of a class AIII TSC with minimal winding
number |ν| = 1. The anomalous (topological) time-reversal
symmetry is still encoded by Eq. (2.12a).

The density of states scales as in Eq. (2.13), with expo-
nent [43]

x1/z = (1 − λA)/(1 + λA). (2.17)

Here λA denotes the variance of the assumed white-noise
vector disorder potential,

Aā(r) Aā′ (r′) = π λA δā,ā′ δ(2)(r − r′).

At zero energy, the multifractal spectrum is given by
Eq. (2.15), with [43]

θ = λA. (2.18)

For a review of this model in the context of TSCs and its
higher-winding-number generalizations, see, e.g., Ref. [5].

At finite energy, the eigenstates of Eq. (2.16) form a
stack of quantum-critical wave functions as in the CI case.
These were expected to reside at the ordinary class A integer
quantum Hall plateau transition (IQHPT) [42,43], and this
result has been confirmed numerically in Refs. [40,41]. The
IQHPT has an approximately parabolic multifractal spectrum
as in Eq. (2.15), with θ � 1/4 [28,35].

The spectrum-wide “stacked” IQHPT multifractality is
quite strong. Unlike the |ν| = 2 class CI model, the low-
energy class AIII model predictions for the DOS and mul-
tifractal spectrum depend on the nonuniversal parameter λA.
When the latter is strong enough to render the finite-energy
states critical over a length scale that is not too large, one
would expect to see multifractality extending all the way
down to zero energy [Eq. (2.18)], as well as a nonlinear
enhancement of the DOS [Eqs. (2.13) and (2.17)]. Neither of
these features are seen in STM data on BSCCO [16].

4. One node, gravitational disorder due to spatial gap
inhomogeneity: Class DIII TSC surface states

and spectrum-wide criticality

The simplest possible model neglects all forms of poten-
tial scattering. However, even in this case it is possible for
disorder to produce a nonzero effect. In particular, a slow
spatial modulation of the d-wave gap amplitude �0 = �0(r)
should induce spatial modulation of v� ∼ �0/kF in Eq. (2.6),
referred to later in the paper as QGD. Because the disorder
couples to an operator with a spatial derivative, it is formally
irrelevant in an RG sense at zero energy, in contrast with the
potential perturbations in Eqs. (2.7) and (2.8). The latter are
marginal (at tree level); these conclusions assume short-range
correlated disorder. As a result, for sufficiently weak QGD in
Eq. (1.1), the low-energy DOS ν(ε) ∼ |ε| as in the clean limit,
and the states near zero energy are not multifractal. Although
velocity disorder modifies the definition of the (spin) current
operator, the low-temperature thermal conductivity should be
unchanged from the clean Landauer result in Eq. (2.10), due
to the irrelevance of disorder near ε = 0.

The effects of such velocity disorder at finite ε �= 0 are the
main focus of this paper; the setup and results are discussed
in the next section. Formally, a single node with QGD resides
in class DIII, and it could be realized as a dirty Majorana cone
on the surface a bulk TSC (such as the candidate material
CuxBi2Se3 [49]). This is discussed in detail in Appendix B.
A summary of the results discussed in this section appears in
Table I.

III. 2D DIRAC FERMIONS WITH QUENCHED
GRAVITATIONAL DISORDER: RESULTS

A. Model, formulations, and applications

The single 2D Dirac fermion with quenched velocity
disorder described by the Hamiltonian in Eq. (1.1) can be
associated to a (2 + 1)D action

S =
∫

dt d2r

⎡
⎣ψ̄ i∂t ψ +

∑
a,b=1,2

vab(r)

2
(ψ̄ iσ̂ a

↔
∂b ψ )

⎤
⎦. (3.1)
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TABLE I. Key properties of the effective 2D dirty Dirac Bogoliubov–de Gennes Hamiltonian for quasiparticles in a d-wave superconductor.
The number of nodes coupled refers to elastic impurity scattering between and/or within nodes. The generic model is expected to Anderson-
localize at all energies. The models restricted to disorder that couples only two or one node(s) are all effectively topological, i.e., they describe
the surface states of 3D bulk TSCs. All of the restricted models have the low-energy thermal conductivity given by Eq. (2.10), independent
of disorder [43,68,69] and interactions [70]. The exponent x1/z governs the low-energy scaling of the density of states [Eq. (2.13)]. The
restricted models all exhibit “multifractal stacking” of quantum critical wave functions throughout the energy spectrum. The parameter θ (ε)
characterizes the multifractal spectrum of wave functions according to Eq. (2.15), near energy ε. The stacked critical states for classes CI and
AIII apparently belong to the spin and integer quantum Hall plateau transitions (SQHPT and IQHPT, respectively). In the last entry, TQHPT
refers to the thermal quantum Hall plateau transition; see Appendix C for a discussion.

No. of Effective
nodes winding
coupled Class no. |ν| x1/z θ (ε = 0) θ (ε �= 0) Dirt type(s)

4 CI N/A 1 [80] N/A N/A Vector, potential,
(localized) [26,48] (localized) [28] mass [26]

2 CI 2 1/7 [44] 1/4 [45,46] � 1/8 (SQHPT) [39] SU(2) vector
1 AIII 1 1−λA

1+λA
[43] λA [43] � 1/4 (IQHPT) [40,41] U(1) vector

1 DIII 1 1 (clean) 0 (clean) � 1/13 (TQHPT?) Sec. III Velocity/QGD

The action can be interpreted in terms of fermions propagating
through curved spacetime, with a static metric gμν (r) defined
explicitly in terms of the velocity fields {vab} in Appendix A.
Equation (3.1) obtains from gμν (r) and from the covariant
action

S =
∫ √

|g| d3x ψ̄ Eμ
A γ̂ A

(
i∂μ − 1

2
ωμ

BCŜBC

)
ψ, (3.2)

where μ ∈ {t, x1, x2} and A, B,C ∈ {0, 1, 2}; repeated indices
are summed. Here

√|g| d3x is the volume measure, {γ̂ A}
are the gamma matrices, Eμ

A is the “dreibein,” ωμ
BC is the

spin connection, and ŜBC generates local Lorentz transforma-
tions [22]. Since the velocity modulation enters through the
effects of spacetime curvature in Eq. (3.2), we alternatively
refer to this as “quenched gravitational disorder” (QGD). The
gauge-invariant content of the disorder can be characterized
via the induced curvature, as shown in Appendix A.

The Dirac model in Eqs. (1.1) and (3.1) is noninteracting.
We can therefore alternatively cast the problem in terms of
a (2 + 0)D action designed to compute Green’s functions
at a given, fixed single-particle energy ε. Using the chiral
decomposition ψ ≡ [L R], ψ̄ ≡ [R̄ L̄], we get a perturbed
two-dimensional free-fermion conformal field theory

S =
∫

d2r{−[ηi j + δGi j (r)]Ti j + ε(R̄L + L̄R)}, (3.3)

where repeated indices are summed over i, j ∈ {+,−}, and
where the free-fermion stress tensor is

Ti j = − 1

2π

[
T (z) −2π T+−

−2π T−+ T̄ (z̄)

]

= i

2

[
L̄

↔
∂ L −R̄

↔
∂ R

−L̄
↔
∂̄ L R̄

↔
∂̄ R

]
, (3.4)

with z = x + iy and ∂ = (1/2)(∂x − i∂y). The Euclidean met-
ric in conformal coordinates is

ηi j → 2

[
0 1
1 0

]
.

Equation (3.3) shows that the effects of disorder couple grav-
itationally via the metric perturbation δGi j , while nonzero
energy ε couples to an (imaginary or tachyonic) mass operator
for the fermions. The mass must be imaginary in order to
ensure plane-wave correlations in the clean limit. The com-
ponents of the perturbing 2D metric are

δG+− = (δv11 + δv22 + iv12 − iv21),

δG−+ = (δv11 + δv22 − iv12 + iv21),

δG++ = (−δv11 + δv22 − iv12 − iv21),

δG−− = (−δv11 + δv22 + iv12 + iv21). (3.5)

The five variants of the model (a)–(e) were defined and de-
scribed below Eq. (1.1). In the conformal language [Eq. (3.3)],
models (c) and (d) are special. Model (c) has δG++ =
δG−− = 0; in this case, disorder couples only to the “diag-
onal” components of the stress tensor {T+−, T−+}. These are
operators with conformal spin s = 0; the disorder induces
isotropic flattening or steepening of the Dirac cone, as well
as local rotations of the Dirac pseudospin {σ̂ 1,2} relative to
the coordinate axes {x1,2}. By contrast, model (d) has δG+− =
δG−+ = 0. In this case, disorder couples only to the purely
chiral T (z) and T̄ (z̄) fields, which carry conformal spins s =
±2. These “d-wave” operators describe nematic deformations
of the Dirac cone. We will see that the nematic-only model (d)
shows very robust “critical stacking” behavior, while stacking
in model (c) is disrupted by increasing the disorder strength.

QGD can affect massless (2 + 1)D Dirac carriers whenever
the latter arise from a correlation gap. Strong spatial inhomo-
geneity has been observed in gap maps of the superconducting
and pseudogap regimes in the d-wave cuprate superconductor
BSCCO [11–16]. This should in turn imply the modulation of
the nodal quasiparticle velocities along the Fermi surface [see
Fig. 1(c)].

Additional sources of internode scattering in the cuprates
can arise due to short-ranged impurities such as interstitial
oxygen dopants [16,26,81,82]; these can dominate over the
effects of velocity modulation. Depending on whether one,
two, or four nodes are coupled in the d-wave problem, one can
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get critical states all the way down to zero energy [39,41,42]
(with a concomitant sublinear scaling of the low-energy global
density of states) [43–47]. The other possibility is Anderson
localization across the energy spectrum for the most generic
model of impurity scattering [26,48]; see Sec. II B and Table I
for a review of these models and scenarios. We only empha-
size two points here. First, the linear low-energy density of
states and the coherent, plane-wave-like nature of the lowest-
energy quasiparticles observed in STM studies [13–16] appear
inconsistent with strong internode scattering. Second, the
experimentally observed thermal conductivity [63,64] is not
consistent with localization; in fact, the “universal result” in
Eq. (2.10) is predicted to hold for any topologically restricted
model of scattering, including Eq. (3.1) (see Sec. II B).

Equation (3.1) could also be realized on the surface of
a class DIII topological superconductor (TSC) [49–52] with
winding number |ν| = 1 [23,53]. In this case, ψ is a real
Majorana field with ψ̄σ = iψσ ′ (σ̂ 1)σ ′σ , and one can show that
(see Appendix B)

v11(r) = v22(r) = v0{1 + ϑ[eA0(r)/Ebulk]},
v12 = v21 = 0, (3.6)

where v0 is the bare surface Majorana velocity, A0(r) is
the screened electric potential due to (e.g.) static charged
impurities, ϑ is a constant, and Ebulk is the bulk gap energy
of the TSC. The disorder can be characterized by a vari-
ance λ̃ ∝ nimp[e2/(kF kTF)]2

, where nimp is the surface areal
impurity density, and kF (kTF) is the bulk Fermi (Thomas-
Fermi screening) wave vector. In units such that v0 = 1, λ̃

is a squared-length; weak, short-range correlated QGD is
therefore strongly irrelevant [83] at zero energy on the sur-
face. Low-energy states are thus expected to be only weakly
affected by QGD [23]. The fate of the finite-energy states
is not obvious, however, since energy is itself strongly rele-
vant [39,43].

B. Density of critical states and disorder-strength scaling

To work directly in the continuum, we diagonalize
Eq. (1.1) exactly in momentum space,

ĥk,k′ =
[

0 (kx − iky)ν

(kx + iky)ν 0

]
δk,k′

+
(

kx + k′
x

2

)
[σ̂ 1 δv11 + σ̂ 2 v21](k − k′)

+
(

ky + k′
y

2

)
[σ̂ 1 v12 + σ̂ 2 δv22](k − k′). (3.7)

We set the parameter ν = 1 in Eq. (3.7), appropriate to the
relativistic clean system. A higher odd-integral value of ν ∈
{3, 5, . . .} can be used to represent a 2D class DIII Majorana
surface fluid that arises from a bulk topological supercon-
ductor with corresponding winding number ν [53]. We used
Eq. (3.7) to analyze the multifractal spectra of low-energy
surface states with ν ∈ {3, 5, 7} in Ref. [53], where we tested
predictions of the class DIII SO(2n)ν (n → 0) conformal field
theory expected to describe the zero-energy surface states in
these cases [5].

The impurity velocity potentials in Eq. (3.7) are each taken
to be a composition of random phases in momentum space,
e.g.,

δv11(k) = (
√

λ̃11/L) exp[iθ11(k) − k2ζ 2/4]. (3.8)

Here θ11(−k) = −θ11(k); these are otherwise independent,
uniformly distributed phase angles. We choose a short cor-
relation length so as to approximate white noise disorder, ap-
propriate (e.g.) to model the nanoscale gap inhomogeneity ob-
served in the cuprates [16], or efficient screening of Coulomb
impurities on the surface of a TSC: ζ ≡ (0.25)(2π/�), where
� is the momentum cutoff. Disorder becomes “strong” when
the local variance of the velocity components in position space
(≡ �vi j) becomes of order 1. Disorder beyond this threshold
regularly tips the velocity components through zero, which
can create curvature horizons [20,25] [see Eq. (A8)]. Since
�vi j =

√
λ̃i j/(2πζ 2), this corresponds to the condition λi j ≡

λ̃i j (�/2π )2 = π/8 � 0.393. Here λi j denotes the dimension-
less disorder strength.

We study the five model variants (a)–(e) defined below
Eq. (1.1). For simplicity, we assign the same dimensionless
disorder variance λ to all independent, nonzero velocity po-
tentials in each variant.

Representative plots of the LDOS for states at different
energies in models (b) and (e) appear in Figs. 2 and 3. Wave-
function quantum criticality is characterized by the spec-
trum of exponents τ (q), reviewed in Sec. II B 2 [Eqs. (2.14)
and (2.15)]. We calculate the multifractal spectrum τ (q) by
the usual box-counting method; the reader is referred to
Ref. [39] for technical details. To quantify the degree of
criticality throughout the energy spectrum, we employ the
following criterion. We compare the computed τ (q) spectrum
for every state in regularly spaced energy bins to a quadratic
Ansatz [39], τ (q) = 2(q − 1)(1 − q/q2

c ) for |q| � qc. We em-
ploy the “fitness” criteria, defined as follows [39]. For each
eigenstate ψ (r), we compute the error between the numerical
spectrum [≡ τN (q)] and the appropriate analytical prediction
[≡ τA(q)], error(q) ≡ |τN (q) − τA(q)|/τA(q). If the error is
less than or equal to 4% for 85% of the evaluated q-points in
the interval 0 � q � qc, we keep the state. We consider 200
total bins across the energy spectrum. In each bin we analyze
15 states with equally spaced eigenenergies; the DOCS is
computed from the fraction of these that satisfy the fitness
criterion.

We empirically choose qc = 5.1 for the parabolic Ansatz;
this corresponds to θ � 1/13 in Eq. (2.15). Representative
anomalous multifractal spectra �(q) ≡ τ (q) − 2(q − 1) are
shown in Figs. 10, 11, and 12 for the models (b), (d), and
(e) that exhibit robust critical stacking. When we scan through
states at different energies to evaluate their “fitness” relative to
the universal critical spectrum conjectured above, we exclude
negative moments q < 0, since evaluating these accurately
requires significant coarse-graining; for this reason, negative
moments are typically not reported. We are unable to deter-
mine if the deviation seen between the Ansatz and the data
for q < 0 in Figs. 10–12 is intrinsic, or simply a finite-size
limitation.

We define the density of critical states (DOCS) as the
number of states within an energy bin satisfying the above

214521-9



GHORASHI, KARCHER, DAVIS, AND FOSTER PHYSICAL REVIEW B 101, 214521 (2020)

FIG. 5. Total density of states (DOS) (blue) and the density of
critical states (DOCS) (red) for the Dirac model with QGD. Results
are shown for model (a), defined below Eq. (1.1); the clean DOS
(green) is also shown for comparison. Results obtain by diagonal-
izing the Hamiltonian in Eq. (3.7) over a (2N + 1) × (2N + 1) grid
in momentum space, with N = 96 here. Data are plotted for the six
different indicated values of the dimensionless disorder strength λ;
strong disorder corresponds to λ � 0.393. The DOCS counts the
number of states with critical statistics (multifractal spectra) that
match a universal Ansatz with a certain fitness criterion (see text).
Also plotted is the second IPR P2 (gray dots), defined by Eq. (3.9).
For model (a), a large swath of the spectrum appears critical for weak
disorder. However, as the disorder strength is increased, the swath
shrinks. The IPR P2 shows that states outside of the swath are more
rarefied or localized than the critical ones. The linear-in-energy DOS
of the clean limit is strongly distorted and filled-in at low energies
for λ � 0.2.

criterion. The ratio of the DOCS to the total density of states
(DOS) is the effective energy-resolved distribution function
for critical states [39]. For models (a)–(e), the DOS and
the DOCS are shown in Figs. 5–9, respectively. In each
case, we show results for the maximum system size (193 ×
193 momentum grid) and six different disorder strengths
λ ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}; λ � 0.393 corresponds to
strong disorder (see above). In these plots, we also exhibit the
bare second inverse participation ratio (IPR)

P2 ≡
∫

d2r |ψ (r)|4. (3.9)

This gives a raw measure of the spatial extent of each wave
function. For a plane wave P2 ∼ 1/L2, while for a localized
state with ζloc � L, P2 ∼ 1/ζ 2

loc, where L and ζloc denote
the system size and localization length, respectively. More
generally, (L2)P2 is enhanced for any rarefication of the wave
function (relative to the uniform plane-wave case).

All five models exhibit a swath of critical states at finite
energy for sufficiently weak disorder. As we discuss below,
we find very weak system-size dependence for these results.

FIG. 6. The same as Fig. 5, but now for model (b). In this
case, the swath of critical states increases with increasing disorder
strengths. For λ � 0.3, the states at low energies are more plane-
wave-like (less rarefied) than the critical ones, as indicated by the
IPR P2; some more rarefied (supercritical) states appear at low
energies for stronger disorder. “Strong disorder” corresponds to the
threshold λ � 0.393 (see the text). With plane-wave-like states at low
energy and a robust swath of strongly inhomogeneous but extended
critical states at finite energy, model (b) exhibits a phenomenology
most similar to STM data taken in the cuprate superconductor
BSCCO [15,16]. Note that the linear-in-energy low-energy total DOS
persists to the largest disorder strength. As described below Eq. (1.1),
model (b) incorporates random rotations of the pseudospin axes
relative to the spatial coordinates, as well as nematic fluctuations
of the Dirac cone. It excludes isotropic flattening or steepening of
the cone, as does model (d) (Fig. 8). Corresponding position-space
LDOS maps for model (b) are shown in Fig. 2. Representative
multifractal spectra from the critical swath are depicted in Fig. 10.

A crucial difference is how the critical swath varies as the
strength of the disorder is increased. Figures 5 and 7 show
that the swath shrinks for models (a) and (c) with increasing
disorder; this is especially pronounced for model (c). The
second IPR P2 in these plots indicates that states outside of
the critical swath are more rarefied (supercritical), except near
zero energy for the weakest disorder strength. As described
below Eq. (1.1), models (a) and (c) both feature disorder that
locally flattens or steepens the Dirac cone in an isotropic
fashion; model (a) also incorporates nematic fluctuations.

By contrast, Figs. 6 and 8 show that the width of the
critical swath for models (b) and (d) increases with increasing
disorder strength. In model (b), in particular, the main effect
of increasing the disorder is to lower the crossover energy
(≡ �0) between low-energy plane-wave-like states and finite-
energy critical states. The coexistence of low-energy plane
waves and finite-energy critical states (with fixed, universal
multifractal fluctuations in the latter) over a wide range of
disorder strengths means that model (b) is closest to the phe-
nomenology of the cuprates, i.e., to the energy dependence of

214521-10



CRITICALITY ACROSS THE ENERGY SPECTRUM FROM … PHYSICAL REVIEW B 101, 214521 (2020)

FIG. 7. The same as Fig. 5, but now for model (c). In this case,
the critical swath decreases rapidly with increasing disorder strength.
Both models (a) and (c) include isotropic flattening or steepening
of the cone, which appears to produce strong disorder effects. The
states outside the critical swath are more affected by the QGD (more
rarified) than the critical ones, as indicated by the enhanced second
IPR P2.

FIG. 8. The same as Fig. 5, but now for model (d). Model (d) is
similar to model (b), except that it excludes the random rotations
incorporated in the latter. Both models (b) and (d) feature nematic
randomness, i.e., random squishing of the Dirac cone. Similar to
the data for model (b) shown in Fig. 6, the swath of critical states
for model (d) increases with increasing disorder strengths. Different
from model (b), strong disorder effects occur at intermediate values
of λ near zero energy: the DOS fills in and flattens elsewhere, and P2

is enhanced for the lowest-energy states. Representative multifractal
spectra from the critical swath are depicted in Fig. 11.

FIG. 9. The same as Fig. 5, but now for the generic model (e).
This model incorporates isotropic flattening and steepening of the
Dirac cone, random rotations, and nematic disorder. The behavior is
intermediate between models (a),(c) and (b),(d). Like models (b) and
(d), a wide swath of critical states persists for all disorder strengths.
Like models (a) and (c), however, low-energy states become strongly
affected by increasing randomness, exhibiting supercritical (more
rarefied) behavior as indicated by the enhanced P2. Corresponding
position-space LDOS maps for model (e) are shown in Fig. 3. Rep-
resentative multifractal spectra from the critical swath are depicted
in Fig. 12.

the LDOS maps observed in STM studies of BSCCO [15,16].
Model (d) behaves in a similar fashion, except that the states
near zero energy begin to show more rarified behavior (larger
P2) at intermediate disorder strengths, even while the tran-
sition to “stacked” criticality decreases in energy. In model
(d), this is concomitant with a filling in of the total DOS
at zero energy. Models (b) and (d) feature nematic disorder;
model (d) corresponds to the pure “T T̄ ” deformation in the
CFT language of Eq. (3.3) (after averaging over disorder,
using, e.g., replicas). Model (b) additionally incorporates local
rotations.

The DOS and DOCS for the generic model (e) are depicted
in Fig. 9. In this case, the behavior is intermediate: a wide
critical swath appears for all disorder strengths, but is pushed
to higher and higher energies with increasing λ. Except for
the weakest disorder, states near zero energy become more
rarified than those in the critical swath, as indicated by the
enhancement of P2.

The anomalous multifractal spectra selected from an en-
ergy bin where the ratio of the DOCS to DOS is maximized for
models (b), (d), and (e) are plotted for the same six disorder
strengths in Figs. 10–12. Note that despite the variation of λ

by an order of magnitude, there is little change in the spectra.
This is completely different from the conventional symmetry-
based prediction reviewed in Appendix C, which argues that
finite-energy states of the class DIII model in Eq. (1.1) should
reside in the symplectic class [28]. In that case, although
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FIG. 10. Anomalous multifractal spectrum �(q) ≡
τ (q) − 2(q − 1) for an energy bin of states selected from the
DOS with the highest percentage of critical states. Here the spectrum
is shown for model (b), evaluated for the six different disorder
strengths associated with the DOCS and DOS plots in Fig. 6. The
solid red curve denotes an average over the 15 states in the bin;
the shaded red region indicates the standard deviation. The green
curve is the parabolic Ansatz for �(q), Eq. (2.15), with θ = 1/13.
States contributing to the critical count (DOCS) in Fig. 6 match the
parabolic Ansatz within a certain threshold (see text) over the range
0 < q � qc = 5.1.

FIG. 11. The same as Fig. 10, but for model (d).

FIG. 12. The same as Fig. 10, but for model (e).

multifractality would be expected for weakly antilocalizing
states in finite volume, the curvature of the spectrum is pre-
dicted to scale linearly in the disorder strength or inverse bare
(semiclassical) conductance [see Eqs. (3.12) and (3.13)].

C. Plane-wave to critical-state crossover energy
“�0” versus disorder strength

A key observation in STM studies of BSCCO in the
optimal to underdoped regime is the qualitative separa-
tion between local density of states (LDOS) spectra ob-
tained below and above a weakly doping-dependent scale
�0. At energies below (above) �0, the LDOS maps exhibit
robust energy-dispersing quasiparticle interference (strong
energy-independent, nanometer-scale spatial inhomogeneity),
interpreted as separating “coherent” low-energy quasipar-
ticle states from “incoherent” intermediate-energy excita-
tions [15,16].

For the QGD model (b) [defined below Eq. (1.1)] that best
fits the cuprate phenomenology (see Figs. 2 and 6), we can try
to compute the scale �0 in terms of the energy cutoff �, as a
function of the dimensionless disorder strength λ. We define
�0 as the threshold where the DOCS becomes larger than a
certain percentage of the total DOS. We choose the (arbitrary)
criterion

DOCS = (10 %) DOS (3.10)

in order to define �0, measured relative to the Dirac point.
Results are shown in Fig. 13. We find a weak decrease of �0

with increasing disorder strength. This is qualitatively similar
to cuprate data [15,16] with increased underdoping, if the
magnitude of the fluctuations in �1(r) is taken as a proxy for
the effective disorder strength (instead of the doping level).

For the class DIII model (b), we are unable to extract a
clear trend of �0 with respect to the available system sizes N
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FIG. 13. Plot of the effective energy scale �0 vs disorder strength
λ, wherein the low-energy wave functions transition from plane-
wave-like to critical behavior. That is, �0 is the energy scale mea-
sured from the Dirac point (in units of the cutoff �) at which
the DOCS first becomes appreciable [Eq. (3.10)]. Here results are
averaged over 10 disorder realizations for N = 36.

(see Fig. 14). In the other studied instances of quantum-critical
wave-function stacking, the disorder is of vector-potential
type [5] (see Table I in Sec. II). For short-range correlated
vector-potential randomness, the disorder strength is intrin-
sically dimensionless. This leads to the expectation that the
crossover energy scale analogous to �0 must go to zero as
the system size N → ∞, consistent with the numerical results
obtained for class CI and AIII surface states in Refs. [39,40].
For QGD studied here, however, the intrinsic disorder strength
λ̃ has units of length squared. Then we can write

�0 = (1/
√

λ̃)F (λ̃/L2), (3.11)

FIG. 14. Total DOS and DOCS for model (b) as in Fig. 6, but
for five different system sizes. The dimensionless disorder strength
is λ = 0.20; strong disorder corresponds to λ � 0.393.

where L is the dimensionful linear system size, and we have
assumed that the scaling function F does not depend explicitly
on the cutoff � (as usual [85]). Clearly we must have �0 →
∞ as λ̃ → 0. We cannot rule out that the limit F (x → 0) > 0,
which would imply a finite �0 ∼ λ̃−1/2 in the L → ∞ limit.
As evidenced by the roughness of the trend indicated in
Fig. 13, much more work is needed to establish the behavior
of �0 with respect to disorder and system size.

In the QGD stacking scenario, a finite �0 would seemingly
imply a finite-energy semimetal to quantum-critical stacked
transition. A crucial goal for future work is to establish
whether this transition exists at ε > 0, and if so, what indepen-
dent detectable signatures could be associated with it. In ex-
periments on BSCCO, �0 can also be extracted from a “kink”
in the energy dependence of the spatially averaged tunneling
spectrum [16]. The precise variation of the DOS at energies
away from ε = 0 is, however, likely nonuniversal and model-
dependent [28], in contrast to the universal spatial fluctuations
of the critical states in the stacking scenario [39,40]. Finally,
we note that a kink in the DOS observed in experiments
at the threshold of critical stacking might arise due to the
interplay with quasiparticle-quasiparticle interactions (i.e., an
Altshuler-Aronov-type correction) [86].

D. System-size scaling of the DOS and DOCS

As emphasized above, weak QGD is strongly irrelevant
near the Dirac point. For an electrically charged Dirac field
ψ , kinetic theory predicts a divergent dc conductivity for
all nonzero temperatures [87]. The finite-energy critical-state
stack found here instead suggests a finite dc conductivity.

On the other hand, conventional symmetry arguments im-
ply that the finite-energy states of a class DIII model should
reside in the symplectic class AII [28]; see Appendix C.
This class can exhibit weak antilocalization, leading to a
“supermetallic” phase in 2D [29,30]. In a finite-size system, it
is therefore not surprising to find multifractal wave functions
in 2D since the scaling is only logarithmic in the system
size. However, the curvature of the multifractal spectrum in
that case should be related to the bare disorder strength.
Moreover, more of the spectrum should become more weakly
multifractal with increasing system size.

The leading-order anomalous multifractal spectrum for a
2D symplectic metal is given by [88]

�(q) ≡ τ (q) − 2(q − 1) = 1

8π2G(L)
q(1 − q), (3.12)

where the dimensionless conductance G(L) scales according
to weak antilocalization [86],

G(L) = G0 + 1

2π2
log

(
L

lel

)
. (3.13)

Here L is the system size and lel denotes the elastic impu-
rity scattering length. The bare conductance G0 = ν(ε)D(ε),
where ν(ε) is the density of states and D(ε) is the diffusion
constant, at the single-particle energy ε. Fixing the disorder
strength fixes G0 at each energy. Increasing the system size
L should then reduce multifractality according to Eq. (3.12),
as the system flows slowly toward a “supermetallic” phase at
infinite L.
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FIG. 15. Total DOS and DOCS for model (d) as in Fig. 8, but for
five different system sizes.

We plot the evolution of the density of states (DOS) and
the density of critical states (DOCS) as a function of system
size for models (b), (d), and (e) in Figs. 14–16. These plots
exhibit no discernible systematic variation with system size.
This is not consistent with weak antilocalization behavior
expected from the symplectic metal class AII in Eqs. (3.12)
and (3.13).

FIG. 16. Total DOS and DOCS for model (e) as in Fig. 9, but for
five different system sizes.

FIG. 17. Finite-size (N) scaling of two particular anomalous
multifractal dimensions �(2) and �(3) for model (b). In each case,
the data (red dots) correspond to the average of an energy bin selected
with the highest percentage of states matching the quadratic Ansatz
for �(q), shown in Fig. 10. The red error bars indicate the standard
deviation of the states in the energy bin. The green shaded region
indicates a narrow range of parabolic Ansätze for �(q), with qc =
5.1 + δc (|δc| � 0.1).

Finally, in Figs. 17 and 18, for the robust stacking models
(b) and (d) we exhibit the finite-size scaling of two partic-
ular multifractal dimensions with system size. Results are
shown for the same six disorder strengths λ employed in
Figs. 6, 8, 10, and 11. At each system size N , the dimensions
are computed from an energy bin wherein the DOCS is maxi-
mized relative to the DOS. These figures indicate a possible
very weak dependence of the dimensions on the disorder
strength. This is very different from the symplectic metal
prediction in Eqs. (3.12) and (3.13), which would instead
imply a linear dependence of the dimensions on the disorder
strength (proportional to 1/G0).

E. Discussion and open questions

We have uncovered a third instance of quantum-critical
wave-function stacking [39], due here to QGD. In both
Ref. [39] (class CI) and the present paper (class DIII), the
stacking occurs in disordered Dirac models that can describe
the 2D surface states of 3D topological superconductors. An-
other instance (for topological superconductor surface states
in class AIII) was touched upon in Ref. [41], and extensively
explored in Ref. [40].

We argued that QGD is naturally obtained whenever 2D
Dirac quasiparticles arise from a spatially inhomogeneous
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FIG. 18. Finite-size (N) scaling of two particular anomalous
multifractal dimensions �(2) and �(3) as in Fig. 17, but here
computed for model (d). The data (red dots) correspond to the
average of an energy bin selected with the highest percentage of
states matching the quadratic Ansatz for �(q), shown in Fig. 11.

gap. The critical-state stack found in this paper might provide
a simple explanation for the division between plane-wave-
like and spatially inhomogeneous LDOS fluctuations mea-
sured at low and finite energies, respectively, in the high-Tc

cuprates.
We studied the five model variants (a)–(e), defined be-

low Eq. (1.1). We found the best qualitative agreement with
cuprate STM phenomenology [16] for model (b), which in-
cludes random pseudospin rotations and quenched nematic
fluctuations of the Dirac cone. Robust stacking that increases
with increasing disorder strength is observed in both model
(b) and model (d), the latter of which includes only pure
nematic disorder. By contrast, isotropic flattening or steep-
ening of the Dirac cone appears to suppress critical stacking
for intermediate and strong disorder [models (a) and (c)].
The generic model (e) shows intermediate behavior, with a
robust critical stack at all disorders, but low-energy states that
become more rarified (supercritical) with increasing disorder
strength.

Avenues and questions for future work include the fol-
lowing. (i) The anomalous multifractal spectrum for spatial
LDOS fluctuations computed for the critical stack, exhib-
ited in Figs. 10–12, could be directly compared to corre-
sponding spectra computed from experimental STM data on
BSCCO [16]. (ii) A crucial question is whether the crossover
scale �0 [Fig. 13 and Eq. (3.11)] remains finite or vanishes
in the infinite system-size L → ∞ limit. A nonzero �0(L →
∞) would indicate a finite-energy transition between ballistic

and quantum-critical stacked behavior. (iii) Another ques-
tion regards transport versus temperature in the Dirac model
with QGD. In particular, could the transition from “ballistic”
low-energy states to critical, finite-energy ones explain the
ubiquitous linear-in-T resistivity observed in the strange metal
phase above Tc [82]? (iv) What is the role of dephasing
on transport [89,90] due to inelastic quasiparticle scattering,
which is presumably important in the cuprates due to the
strong correlations (U 
 t). Finally, (v) does the multifractal-
stacking phenomenon enhance superconductivity in a self-
consistent calculation of the gap?
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APPENDIX A: RANDOM VELOCITY MODULATION
FROM DIRAC FERMIONS IN CURVED SPACETIME

The generally covariant action for (2 + 1)D Dirac fermions
propagating through curved spacetime is given by Eq. (3.2).
In the context of disordered Dirac superconductors with
QGD, however, there is a naturally preferred coordinate sys-
tem, where r = {x1, x2} measure physical Euclidean distances
across the sample. In this “physical” coordinate system,
the Berry phase term ψ̄γ̂ 0i∂tψ arises from Trotterization in
the path integral, and it should therefore have unit coefficient.
We call this the “temporal flatness condition.” Then, we can
take the dreibein Eμ

A in Eq. (3.2) to be off-diagonal only in the
spatial-spatial sector. Let i, j ∈ {1, 2}. We define

vi j (r) ≡ E j
i (r)

E0
0 (r)

. (A1)

Temporal flatness requires

√
|g| E0

0 = 1. (A2)

Shifting ψ̄ → ψ̄γ̂ 0 and enforcing Eqs. (A1) and (A2),
Eq. (3.2) reduces to Eq. (3.1). The spin connection is elim-
inated via integration-by-parts in the spatially modulated ki-
netic terms; this leads to the manifestly Hermitian form of the
Hamiltonian in Eqs. (1.1).
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The inverse metric can be expressed as

gμν = Eμ
A E ν

B ηAB

→ 1√
D

⎡
⎢⎣

−1 0 0

0 v2
11 + v2

21 v11 v12 + v21 v22

0 v11 v12 + v21 v22 v2
12 + v2

22

⎤
⎥⎦,

(A3)

where ηAB → diag(−1, 1, 1) is the Minkowski metric, and

D ≡ 1(
E0

0

)4 . (A4)

Imposing Eq. (A2), the metric is

gμν → 1√
D

⎡
⎢⎣

−D 0 0

0 v2
22 + v2

12 −v11 v12 − v21 v22

0 −v11 v12 − v21 v22 v2
11 + v2

21

⎤
⎥⎦,

D = (v11 v22 − v12 v21)2. (A5)

This can be specialized for the five model variants (a)–(e),
defined below Eq. (1.1). For example, model (a) has v12 =
v21 = 0, leading to

g(a)
μν → 1

v11 v22

⎡
⎢⎣

−v2
11 v2

22 0 0

0 v2
22 0

0 0 v2
11

⎤
⎥⎦, (A6)

while model (b) has v11 = v22 = 1, and

g(b)
μν → 1

1 − v12 v21

×
⎡
⎣−(1 − v12 v21)2 0 0

0 1 + v2
12 −v12 − v21

0 −v12 − v21 1 + v2
21

⎤
⎦.

(A7)

In the generic case, the scalar curvature can be written has

R = N

2(v11 v22 − v12 v21)3 , (A8)

where N is a homogeneous quadratic in spatial derivatives of
{vi j}. As an example, for model (a) with v11 = v22 ≡ v(r),

R(a) = −2v−1∇2v. (A9)

APPENDIX B: “GRAVITATIONAL” COUPLING OF
ELECTRIC POTENTIALS TO THE SURFACE MAJORANA

FLUID OF A CLASS DIII TOPOLOGICAL
SUPERCONDUCTOR

In this Appendix, we derive the form of the velocity
modulation in Eq. (3.6), corresponding to the effect of an
electric potential A0(r) on the 2D Majorana fluid expected to
form at the surface of a class DIII topological superconductor.

1. Bulk and surface states for solid-state 3He-B

As a simple model for a class DIII bulk topological su-
perconductor with winding number |ν| = 1, we consider a

solid-state analog of 3He-B [20,50]. The bulk Bogoliubov–de
Gennes Hamiltonian features isotropic σ̂ · k pairing, where
σ̂ = σ̂ ax̂a is the vector of Pauli matrices acting on the phys-
ical spin-1/2 components σ ∈ {↑,↓}, and a is summed over
{1, 2, 3}. The mean-field Hamiltonian is

H = 1

2

∫
k
χ†(k) ĥ(k) χ (k),

ĥ(k) =
(

k2

2m
− μ

)
τ̂ 3 + �(σ̂ · k)τ̂ 2, (B1)

where μ > 0 is the chemical potential and � is the p-
wave pairing amplitude. Here we have introduced the Balian-
Werthammer (“Majorana”) spinor

χ (k) ≡
[

c(k)
σ̂ 2[c†(−k)]T

]
, χ†(k) = i χT(−k)M̂P. (B2)

The Pauli matrices {τ̂ 1,2,3} act on particle-hole space. Particle-
hole P, time-reversal T , and chiral S (≡ T × P) symmetries
are defined via

P : −M̂−1
P ĥT(−k) M̂P = ĥ(k),

T : M̂−1
T ĥ∗(−k) M̂T = ĥ(k),

S : −M̂S ĥ(k) M̂S = ĥ(k), (B3a)

where

M̂P = σ̂ 2τ̂ 2 = M̂T
P (P2 = +1),

M̂T = iσ̂ 2τ̂ 3 = −M̂T
T (T 2 = −1),

M̂S = τ̂ 1, (B3b)

consistent with class DIII [5,61].
As in [91], we implement hard-wall boundary conditions

at z = 0 in order to get surface states. Equation (B1) separates
into a k = 0 piece and a nonzero k piece, where k ≡ {kx, ky}
now accounts only for conserved transverse momenta,

ĥ = ĥ0 + ĥ1,

ĥ0 =
(

− 1

2m
∂2

z − μ

)
τ̂ 3 + �(−i∂z )σ̂ 3τ̂ 2,

ĥ1 =
[

k2

2m
− eA0(r)

]
τ̂ 3 + �(σ̂ · k)τ̂ 2. (B4)

We have included a scalar electric potential A0(r) as a pertur-
bation in ĥ1.

The Hamiltonian ĥ0 has a pair of zero-energy Majorana
bound states,

|ψ0,ms〉 = |τ 1 = ms〉 ⊗ |ms〉 ⊗ |ϕ〉, (B5)

where |τ 1 = ms〉 is the particle-hole (τ ) space spinor, which
is “locked” to the σ̂ z-spin projection ms (in the plus and
minus τ̂ 1-direction for ms =↑ and ↓, respectively). The spatial
profile of the bound state is

〈z|ϕ〉 = 1√
N0

e−m�z sin[z
√

2mμ − m2�2], (B6)

where N0 is a normalization factor.
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2. k · p perturbation theory

An effective Hamiltonian for the surface theory at k �= 0 is
obtained by taking matrix elements of the following operator
between the ms = ±1 zero modes in Eq. (B5):

ĥS = ĥ1 − ĥ1 P̂1 ĥ−1
0 P̂1 ĥ1 + · · ·

= ĥ1−
∑

ms=±1

∫ ∞

0

dq

2πEq
ĥ1

[ |ψq,ms〉〈ψq,ms |
− τ̂ 1|ψq,ms〉〈ψq,ms |τ̂ 1

]
ĥ1

+ · · · , (B7)

where we have expanded the second term via the k = 0
resolution of the identity. The operator P̂1 on the first line is
the projection out of the degenerate eigenspace of the zero
modes, P̂1 = 1̂ − P̂0, where

P̂0 =
∑

ms=±1

|ψ0,ms〉〈ψ0,ms |.

The state |ψq,ms〉 is a positive-energy (gapped) bulk eigenstate
of ĥ0, parametrized by the standing wave momentum q, while
τ̂ 1|ψq,ms〉 is its negative-energy chiral conjugate [Eq. (B3)].

Eq =
√

(q2/2m − μ)2 + q2�2 denotes the positive eigenen-
ergy.

The first term in Eq. (B7) gives the relativistic dispersion
for the Majorana surface fluid,

ĥ(1)
S = � σ̂ ∧ k, (B8)

where A ∧ B = AxBy − AyBx. This is consistent with the sur-
face projection of the symmetry conditions in Eq. (B3),

P : −(
M̂ (S)

P

)−1
ĥT

S(−k) M̂ (S)
P = ĥS(k),

T :
(
M̂ (S)

T

)−1
ĥ∗

S(−k) M̂ (S)
T = ĥS(k),

S : −M̂ (S)
S ĥS(k) M̂ (S)

S = ĥS(k),

(B9a)

where

M̂ (S)
P = σ̂ 1 = (

M̂ (S)
P

)T
(P2 = +1),

M̂ (S)
T = iσ̂ 2 = −(

M̂ (S)
T

)T
(T 2 = −1),

M̂ (S)
S = σ̂ 3. (B9b)

Coupling to the vector potential A0 is obtained from the
second term in Eq. (B7). Working to linear order in the
potential, the relevant +− matrix elements take the form

−
∑

ms=±1

∫ ∞

0

dq

2πEq
〈τ 1 = +1|〈+1|〈ϕ|[−eA0τ̂ 3][|ψq,ms〉〈ψq,ms | − τ̂ 1|ψq,ms〉〈ψq,ms |τ̂ 1][� σ̂ · k τ̂ 2]|τ 1 = −1〉|−1〉|ϕ〉

= eA0 �ik
∫ ∞

0

dq

πEq
〈ϕ|〈τ 1 = −1|ψq,+1〉〈ψq,+1|τ 1 = +1〉|ϕ〉 (B10)

and

−
∑

ms=±1

∫ ∞

0

dq

2πEq
〈τ 1 = +1|〈+1|〈ϕ|[� σ̂ · k τ̂ 2][|ψq,ms〉〈ψq,ms | − τ̂ 1|ψq,ms〉〈ψq,ms |τ̂ 1][−eA0τ̂ 3]|τ 1 = −1〉|−1〉|ϕ〉

= �ik eA0
∫ ∞

0

dq

πEq
〈ϕ|〈τ 1 = −1|ψq,−1〉〈ψq,−1|τ 1 = +1〉|ϕ〉, (B11)

where k ≡ kx − iky. Evaluating these leads to perturbation of
the form

ĥ(2)
S = ϑ �

2

[
eA0(r)

Ebulk
σ̂ ∧ k + σ̂ ∧ k

eA0(r)

Ebulk

]
, (B12)

where Ebulk � kF � is the bulk excitation gap, and ϑ is a pure
order-1 number. Since the bare Majorana fluid velocity is �,
we recover Eq. (3.6).

APPENDIX C: SYMMETRY CLASS FOR FINITE-ENERGY
STATES; CONNECTION TO THE CLASS D THERMAL

QUANTUM HALL PLATEAU TRANSITION

The 2D velocity-randomized Dirac Hamiltonian given by
the sum ĥ(1)

S + ĥ(2)
S in Eqs. (B8) and (B12) resides in class

DIII, due to the T 2 = −1 and P2 = +1 time-reversal and
particle-hole symmetries encoded in Eq. (B9). These sym-
metries hold irrespective of whether the fermion field ψ in

Eq. (3.1) is a complex-valued Dirac or a real-valued Majorana
spinor.

Typically, we can associate an effective-field theory, the
nonlinear sigma model, to describe the wave functions of
any single-particle Hamiltonian at some particular fixed en-
ergy. The nonlinear sigma model employs local operators to
encode the probability statistics of the extended, critical, or
localized states. Using fermionic replicas to perform disorder-
averaging, class DIII is associated to a sigma model with the
target manifold O(2n), where n is proportional to the number
of replicas [28]. In two spatial dimensions, this can be seen
via the non-Abelian bosonization of the clean, zero-energy
Majorana fermion field theory [5].

For the DIII theory, nonzero energy is a relevant per-
turbation that couples to the principal chiral field [5,39] in
the nonlinear sigma model. In this case, the O(2n) × O(2n)
symmetry of the zero-energy theory is broken down to the
diagonal subgroup O(2n). The energy perturbation will induce
an RG flow to a new fixed point, which should be associated
with a different sigma model with target manifold O(2n)/H .
There are only two possibilities:
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(i) Class AII, the “symplectic” class associated with
disordered metals with time-reversal symmetry and strong
spin-orbit coupling. This class typically exhibits weak antilo-
calization in two dimensions. Class AII also describes the
2D surface states of 3D topological insulators. The target
manifold is [28]

G/H = O(2n)

O(n) × O(n)
. (C1)

(ii) Class D, typically associated with superconductors
with broken time-reversal symmetry and strong spin-orbit
coupling. Class D should be realized in dirty p + ip super-
conductors [54,55,58–60]. The target manifold is

G/H = O(2n)

U(n)
. (C2)

We argued in Sec. III that class AII appears incom-
patible with the numerical results obtained here for finite-
energy states of the velocity-modulated Dirac Hamiltonian in
Eq. (1.1). We therefore expect that our finding of critical states
throughout the energy spectrum with universal multifractal
spectra should instead be associated with class D.

There are three classes of time-reversal invariant topologi-
cal superconductors (TSCs) in 3D, differing by the amount of
spin rotational symmetry: CI [SU(2)], AIII [U(1)], and DIII
(no spin symmetry, strong spin-orbit coupling) [92]. There
are also three classes of time-reversal broken quantum Hall
topological insulators or TSCs in 2D: class C [spin quantum
Hall (SQH) effect], class A [ordinary integer quantum Hall
(IQH) effect], and class D [thermal quantum Hall (TQH)
effect] [28]. All of these classes are characterized by integer
(AIII, DIII, A, D) or twice-integer (CI, C) bulk topological
winding numbers [92].

In our previous work [39], we performed a similar popu-
lation analysis to that presented in this paper for the finite-
energy 2D surface states of a 3D class CI topological su-
perconductor. Based on the numerical results obtained there,
we concluded that the finite-energy states of the 2D class CI
model take the form of a “stack” of critical wave functions
with universal multifractal spectra. The spectra are energy-
independent, and consistent with the plateau transition of the
spin quantum Hall effect in class C [36,37,76]. A connection
between classes CI and C based on symmetry considerations
similar to Eq. (C2) was also presented in Ref. [39].

Finite-energy states in class AIII must reside in class
A [43]. For the 2D surface states of a 3D class AIII topological
superconductor, whether these are critically delocalized or
Anderson localized depends upon the presence or absence of
a topological theta term (at θ = π ) in the effective nonlinear
sigma model [93]. In Ref. [40], strong numerical evidence
was presented that 2D finite-energy surface states of 3D class
AIII TSCs form a “stack” of critical wave functions (see also
Ref. [41]). The spectra are energy-independent, and consistent
with the plateau transition of the ordinary class A integer
quantum Hall effect [35]. For classes CI and AIII, the only
alternative to the plateau-transition-stacking scenario is An-
derson localization, but this is not observed in the numerical
studies [39–41].

We therefore expect that the “stack” of critical states found
in the present paper can be associated with the thermal quan-
tum Hall plateau transition in class D. In comparison to classes
C and A, relatively little is known about the thermal quantum
Hall plateau transition. The global phase diagram for a 2D sys-
tem in class D is complicated by the advent of a thermal metal
phase [54,55,58–60], in addition to Anderson localized ther-
mal Hall plateaus [28]. Further studies of the possible multi-
critical point in the phase diagram of class D [54,58,59] could
shed light on the nature of the finite-energy states found here.
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