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We perform a numerical simulation of a three-band Hubbard model with two CuO2 planes and a single
CuO chain layer for YBCO cuprates. The spin-fluctuation mediated pairing interaction is computed within the
multiband random-phase approximation, and its pairing eigenvalues and eigenfunctions are solved as a function
of chain state filling factor nc. We find that for the intrinsic value of nc in YBCO samples, one obtains the
usual d-wave pairing symmetry. However, if we dope the chain layers with holes, while keeping the plane
states doping fixed, the leading pairing symmetry solution becomes an unconventional f -wave symmetry. The
mechanism behind the f -wave pairing is the competition between the plane states antiferromagnetic nesting and
chain states’ uniaxial nesting. We also find that the pairing strength is strongly augmented when the flat band
bottom of the chain state passes the Fermi level for a fixed plane states doping. The f -wave pairing symmetry
can be realized in YBCO cuprates in future experiments where the self-doping mechanism between the chain
and plane states can be minimized so that only chain state can be selectively hole doped.
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I. INTRODUCTION

In cuprate superconductors, d-wave pairing symmetry is
well established in all member materials at most of the doping
ranges [1–4]. Supporting evidence to the d-wave pairing sym-
metry comes from various complementary studies including
junction experiments [5], spectroscopic fingerprints of the
nodal pairing states [6–8], as well as power-law dependence in
various thermodynamical and transport measurements [2,3,9–
14]. There have been few but robust contradictory evidence to
the nodal superconducting (SC) gap in a limited doping region
in several cuprates. Notably, in electron-doped cuprates, in the
deep underdoped region, various measurements exhibited the
presence of nodeless SC gap, which was initially assumed
to be an s-wave pairing symmetry [15–24]. Later on, it was
shown that the underlying pairing state has the d-wave sym-
metry, however owing to the loss of Fermi surface (FS) at
the nodal region due to antiferromagnetic order, the effective
quasiparticle spectrum loses its gapless features [25,26]. Fur-
thermore, more recently, there has been convincing evidence
of nodeless SC gap in the deep underdoped region of La-based
[27,28], Bi-based [29–31], Cl-based [32], and Yb-based hole-
doped cuprates [33]. Theoretical explanation to this mecha-
nism is still divided into whether an underlying d-wave state
loses its nodal state due to correlation [34,35] or disorder [36],
or a new pairing state arises here [37–40]. However, so far
there has not been any experimental indication or theoretical
prediction for an f -wave pairing symmetry in cuprates.

Our present work focuses on YBa2Cu3O6+x (YBCO6+x)
systems. YBCO lattice structure is special compared to other
cuprates. Here the lattice comprises an alternate stacking of
two CuO2 square blocks within the ab plane and a CuO
chain layer oriented along the b direction. We, henceforth,
denote the corresponding states as plane and chain states,
respectively. Oxygen doping introduces holes on the CuO2

plane states, and YBCO6 and YBCO7 compounds represent
undoped and overdoped samples, respectively, while super-
conductivity arises in between these two compositions. Prior
density-function theory (DFT) calculations [41] showed that
the chain state is absent from the Fermi level in the undoped
(YBCO6) compound, while it crosses the Fermi level for the
finite doping region. Photoemission measurement also exhib-
ited the evidence of quasi-1D chain states on the Fermi level
[42–44]. Various transport measurements consistently pointed
out that the chain states are highly metallic [45,46]. Moreover,
at finite dopings, the chain state strongly hybridizes with the
plane states near the magnetic zone boundary, establishing
that the electron tunneling and/or charge transfer between the
chain and plane states are strong enough to play an important
role on the low-energy properties of YBCO cuprates [45–55].

In this work we study how the SC pairing symmetry and
pairing strength are modified when the contributions of the
chain states are included in the calculations. We consider
a three-band tight-binding model with two planes and one
chain state per unit cell [53–55]. We construct the pairing
potential arising from the spin-fluctuation mechanism; the
many-body interaction is captured with the multiband Hub-
bard model within the weak-coupling random-phase approxi-
mation (RPA) [4,56–61]. The leading eigenvalue and its corre-
sponding eigenfunction of the static pairing potential gives the
SC coupling constant and the pairing symmetry of the system,
respectively. The basic understanding of the spin-fluctuation
mediated pairing symmetry is that when the FS nesting is
strong at a preferential wave vector, say Q, it leads to a pairing
symmetry which changes sign across the momentum k and
k + Q on the FS [4,56–61]. In cuprates, the FS nesting is
dominated by the spin-fluctuation wave vector Q = (π, π )
which connects the Fermi momenta near the ‘magnetic hot
spot’ (MHS) (where the plane FS meets the magnetic zone
boundary), and one obtains a dx2−y2 -wave solution [4].
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FIG. 1. (a)–(c) Electronic structures of the three-band noninter-
acting model, Eq. (1) at three representative doping values on the
chain states, while the doping on the plane state is kept fixed. (d)–(f)
Corresponding FSs are shown for the same three cases presented
in the upper panel. Red to blue color map in a given band at a
k point gives the orbital contribution from the plane and chain
states, respectively. (a),(d) When the chain state is highly electron
doped, the HHS lies above the diagonal direction of the Brillouin
zone, where an f -wave pairing symmetry is obtained. (b),(e) At the
intermediate electron doping on the chain state, which is realized
in single crystal YBCO samples, the HHS moves below the BZ
diagonal direction, and here we obtain the d-wave pairing solution.
(c),(f) A characteristic doping where the bottom of the chain band
just lies at the Fermi level, giving high density of states at the Fermi
level, and hence SC strength reaches its optimum value as a function
of chain state doping for a fixed plane doping.

Recent experimental studies have achieved selectively dop-
ing only the chain state, while the plane state maintains nearly
a fixed doping level [48,52,62]. Motivated by this, we consider
the doping variation of the chain state for various fixed doping
concentrations on the plane state across its optimal doping
regime. We find that for the natural doping ranges of the
chain state, the pairing symmetry is dx2−y2 wave. But as the
chain doping is tuned above some critical value, which is not
naturally achieved in YBCO6+x single crystals, the pairing
symmetry on the plane states is changed to an f -wave pairing
symmetry. We find that this pairing symmetry transition is
linked to where the plane and chain states are hybridized
in the Brillouin zone (BZ). Let us call the momentum point
where the chain and plane states’ FSs meet as ‘hybridization
hot spot’ (HHS), see Fig. 1. We find that when the HHS lies
below the nodal line (diagonal direction of the BZ), the pairing
symmetry is d-wave like, see Figs. 1(b) and 1(c). The pairing
symmetry changes to an f -wave symmetry when the HHS
crosses above the BZ diagonal directions, i.e., when the chain
state is highly electron doped, see Fig. 1(a). This conclusion
is found to be robust for a wide range of interaction strength
as well as for various values of the hybridization strength
between the two layers. The f -wave pairing symmetry has
not yet been reported in YBCO6+x samples, but with the ad-
vent of layered dependent doping mechanism, such a pairing
symmetry can be achieved in future experiments with electron
doping on the chain states.

The rest of the paper is arranged as follows. In Sec. II, we
discuss our model. This section includes discussions on the

tight-binding model, susceptibility calculation details, and the
derivation of the density-fluctuation mediated pairing inter-
action. In Sec. III, we present our results of FS topologies,
corresponding FS nesting profiles, and pairing symmetries at
several representative chain state’s dopings. We also present
the results of pairing strength and pairing symmetry for a large
plane and chain doping ranges. Finally, we discuss the robust-
ness of the results with various plane-chain hybridization and
interaction strengths. We discuss and conclude our results in
Sec. IV.

II. MODEL

A. Tight-binding model

We consider a three band model in which two CuO2 layers
are interacting with a uniaxial CuO chain state [53–55]. We
work in the basis of �σ (k) = (cpσ (k), cp′σ (k), ccσ (k))T ,
where cασ (k) annihilates an electron on the αth layer with
momentum k, and spin σ =↑ / ↓, and the superscript α =
p, p′ refers to the two planes, and α = c stands for the chain
layer. In this spinor, the Hamiltonian reads as:

H =
⎛
⎝

ξp ξpp′ ξcp

ξ ∗
pp′ ξp′ ξcp′

ξ ∗
cp ξ ∗

cp′ ξc

⎞
⎠ (1)

(k dependence in all terms above are suppressed for simplic-
ity). Here ξp/p′ and ξc are the intralayer dispersions within
the plane and chain states, respectively. ξpp′ and ξcp are the
interlayer hoppings between the two planes and between plane
and chain states, respectively. The corresponding dispersion
terms are obtained within the tight-binding model including
nearest and various next-nearest neighbor hoppings as appro-
priate to describe the corresponding DFT band structure (see
Refs. [53,54]). Following the DFT result of a weak kz dis-
persion in this compound [41], we neglect three-dimensional
dispersion. The explicit form of the dispersions are

ξp = −2t (cx + cy) + 2t ′cxcy + 2t ′′(c2x + c2y) − μp,

(2a)

ξc = −2tcycy − 2tcxc2x − μc, (2b)

ξpp′ = −2tpp(cx − cy)2, (2c)

ξcp = tcp. (2d)

μp,c are the onsite potentials for the plane and chain states.
We use the brief notation of ciα = cos (iα), where i dictates
the interatomic distances in units of lattice vectors, and
α = kx,y. We obtain the tight-binding parameters by fitting
to the DFT band structure: (t, t ′, t ′′, tcy, tcx, tpp, tcp, μp, μc)
= (0.38, −0.18, 0.25, 0.66, 0.01, −0.01, 0.02, −0.37,

−1.15) eV. We consider the anisotropy along the a axis for
the chain band by setting tcx � tcy, giving the chain band to
be very much uniaxial along the b axis.

We diagonalize the Hamiltonian in Eq. (1) and obtain three
eigenvalues Eν (k) and corresponding eigenvectors φν

α (k),
where ν denotes band indices, and α stands for layer species.
We assume the operator for annihilating a quasiparticle in
the νth band with spin σ is γν,σ (k). Then the spinor in the
eigenbasis is 
σ (k) = (γ1σ (k), γ2σ (k), γ3σ (k))T .
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The density operators for the ith layer for the spin σ is
niσ (q) = 1

�BZ

∑
k c†

ikσ cik+q,σ . We fix the charge density for
plane and chain states separately by self-consistently evalu-
ating the density operators at q → 0. The electron concen-
tration on the plane state is taken as average over the two
planes np = 2 1

2 (〈np〉 + 〈np′ 〉), and that for the chain state is
nc = 2〈nc〉. Here the factor 2 originates from spin degener-
acy. The thermal average is taken over all eigenstates with
〈γνσ (k)〉 = f (Eν (k)) as the Fermi Dirac distribution function.
Both carrier densities are computed self-consistently. We self-
consistently fix the value of np and nc by treating μp and μp

as free parameters.

B. Multiband RPA susceptibility

Next, to study the modulation of FS nesting profile and
feed the corresponding information to the spin-fluctuation
mediated pairing potential, we consider a multiband Hubbard
model:

Hint =
∑

α∈p,p′,c

Uαnα↑nα↓ +
∑

α �= β ∈ (p, p′, c)
σσ ′ ∈ (↑, ↓)

Vαβnασ nβσ ′ . (3)

Up = Up′ is the onsite Hubbard interaction between the two
plane layers, while Uc is the same for the intrachain layer. Vp,
Vc are the onsite Hubbard interaction between the two planes
and plane-chain layers. Hund’s coupling between these layers
(all with dx2−y2 orbitals symmetry) is ignored. By expanding
the interaction term to multiple interaction channels, and
collecting the terms which give a pairing interaction (both
singlet and triplet channels are considered), we obtain the
effective pairing potential 

γδ

αβ (q) as [4,56–61]

Hint ≈ 1

�2
BZ

∑
αβγ δ

∑
kq,σσ ′


γδ

αβ (q)

× c†
ασ (k)c†

βσ ′ (−k)cγ σ ′ (−k − q)cδσ (k + q). (4)

σ ′ = ±σ give triplet and singlet pairing channels, respec-
tively. This pairing potential, obtained in Refs. [56], includes a
summation of bubble and ladder diagrams within the random
phase approximation (RPA). The pairing potential in general
involves four orbital indices and thus is a tensor in the orbital
basis. We denote all such tensors by the ‘tilde’ symbol.
The pairing potentials in the singlet (̃↑↓) and triplet (̃↑↑)
channels are

̃↑↓(q) = 1
2 [3Ũsχ̃s(q)Ũs − Ũcχ̃c(q)Ũc + Ũs + Ũc], (5a)

̃↑↑(q) = − 1
2 [Ũsχ̃s(q)Ũs + Ũcχ̃c(q)Ũc − Ũ s − Ũc]. (5b)

Here subscript ‘s’ and ‘c’ denote spin and charge fluc-
tuation channels, respectively. Ũs/c are the onsite interaction
tensors for spin and charge fluctuations, respectively, defined
in the same basis as ̃. Its nonvanishing components are
(Ũs,c)αα

αα = Up/c for intraplane (α = p, p′) and intrachain (α =
c) layers. According to the definition in Eq. (3), the interplane
Coulomb interaction enters into (Ũs,c)p′ p′

pp = Vp, and plane-
chain interaction is (Ũs,c)cc

pp = (Ũs,c)cc
p′ p′ = Vc.

χ̃s/c are the density-density correlators (tensors in the same
orbital basis) for the spin and charge density channels. We
define the noninteracting density-density correlation function

(Lindhard susceptibility) χ̃0 within the standard linear re-
sponse theory [60]:

[χ0(q)]γ δ

αβ = − 1

�BZ

∑
k,νν ′

φν
β (k)φν†

α (k)φν ′
δ (k + q)φν ′†

γ (k + q)

× f (Eν ′ (k + q)) − f (Eν (k))

Eν ′ (k + q) − Eν (k) + iε
. (6)

Many body effect of Coulomb interaction in the density-
density correlation is captured within S-matrix expansion of
Hubbard Hamiltonian in Eq. (3). By summing over different
bubble and ladder diagrams we obtain the RPA spin and
charge susceptibilities as:

χ̃s/c(q) = χ̃0(q)(Ĩ ∓ Ũs/cχ̃0(q))−1, (7)

where Ĩ is the unit matrix. We notice that the strong FS
nesting features captured within the Lindhard susceptibility
in Eq. (6) are automatically translated to strong peaks in the
RPA susceptibilities in Eq. (7). The RPA denominator of the
spin susceptibility, having value <1, enhances the FS nesting
strength in the bare susceptibility χ̃0(q). On the other hand,
the RPA denominator for the charge channel is >1 suppress-
ing the charge fluctuations. In addition, the zeros of the RPA
denominator in the spin channel gives gapless magnon modes.
The amplitude of the magnon modes is strongly suppressed in
the optimal hole doping region of YBCO, being away from the
AFM critical point [63–65]. Finally, all the strong FS nesting
features in the RPA susceptibilities directly enter into the SC
pairing channels through Eqs. (5a) and (5b) and determine the
pairing symmetry accordingly.

C. Superconducting pairing symmetry

Equation (4) gives the pairing interaction for pairing be-
tween orbitals. However, we solve the BCS gap equation in
the band basis. To make this transformation, we make use
of the unitary transformation cασ → ∑

ν Uα
ν γνσ for all k and

spin σ . With this substitution we obtain the pairing interaction
Hamiltonian in the band basis as

Hint ≈
∑
νν ′

∑
kq,σσ ′

′
νν ′ (k, q)

× 1

�2
BZ

γ †
νσ (k)γ †

νσ ′ (−k)γν ′σ ′ (−k − q)γν ′σ (k + q). (8)

The same equation holds for both singlet and triplet
pairing and thus henceforth we drop the corresponding
symbol for simplicity. The band pairing interaction ′

νν ′
is related to the corresponding orbital one as ′

νν ′ (k, q) =∑
αβγ δ 

γ δ

αβ (q)φν†
α (k)φν†

β (−k)φν ′
γ (−k − q)φν ′

δ (k + q). We
define the SC gap in the νth band as

�ν (k) = − 1

�BZ

∑
ν ′,q

′
νν ′ (k, q)〈γν ′σ ′ (−k − q)γν ′σ (k + q)〉,

(9)

where the expectation value is taken over the BCS ground
state. In the limit T → 0 we have 〈γνσ (−k)γνσ (k)〉 →
λ�ν (k), with λ as the SC coupling constant. Substituting this
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in Eq. (9), we get

�ν (k) = −λ
1

�BZ

∑
ν ′,q

′
νν ′ (k, q)�ν ′ (k + q). (10)

This is an eigenvalue equation of the pairing potential
′

νν ′ (q = k − k′) with eigenvalue λ and eigenfunction �ν (k).
The k dependence of �ν (k) dictates the pairing symmetry for
a given eigenvalue. There are many solutions (as many as the
k grid), however, we consider the highest eigenvalue since this
pairing symmetry can be shown to have the lowest free energy
value in the SC state [66].

The spin-fluctuation mediated pairing potential ′
νν ′ (q) >

0, i.e., repulsive. Since we consider the highest positive eigen-
value λ, such a solution demands that the SC gap function
changes sign as sgn[�ν (k)] = −sgn[�ν ′ (k + q)] for those q
values where ′

νν ′ (q) has strong contributions. As discussed in
the previous section, in the weak-coupling region, ′

νν ′ (q) has
strong peaks at the FS nesting wave vectors Q. In cuprates,
Q = (π, π ), giving the d-wave symmetry to have the leading
eigenvalue. In the next section, we study how the nesting
feature and corresponding leading pairing symmetry solution
is modified when the chain state hybridizes with the plane
states.

The limitations of the weak-coupling RPA method in pre-
dicting the pairing state should be mentioned. The weak-
coupling approach is more reliable at optimal doping region,
as is done here, where the interaction is presumably weakened
due to screening. In this limit, the other Feynman diagrams
as well as vertex corrections give higher order corrections
in O(U 2) and are less important. In addition, in the present
method the pairing terms are computed over the noninter-
acting ground state, and no retardation effect is included.
Typically, prior calculations, self-consistently including the
retardation effect, obtained the same d-wave pairing symme-
try as the weak-coupling theory predicts in cuprates [67–69].
This agreement justifies that the salient pairing symmetry and
doping dependence of the pairing eigenvalues are qualitatively
reproduced within the weak-coupling theory, and the results
only differ at the level of the pairing amplitudes when retarda-
tion effects are included.

III. RESULTS

A. Electronic structure

We start with the discussion of the electronic struc-
ture and FS topologies for various representative cases in
Fig. 1. For most discussions in this section, we focus on
near-optimal doping region of np = 0.82 (xp ≈ 0.18, μp =
−0.35 eV) for the plane state and vary chain state filling factor
nc = (0.95, 0.53, 0.15); corresponding chemical potential for
chain states are (μc = −0.1,−0.9,−1.29 eV), Figs. 1(a)–
1(c), respectively. The topology of the chain band allows it
to accommodate electronlike FS in all cases. For the deeply
electron-doped region, it forms open-orbit FS as shown in
Figs. 1(d) and 1(e). When the chain band becomes nearly
empty, see Figs. 1(c) and 1(f), the corresponding FS forms
nearly closed electronlike FS (due to finite second-nearest-
neighbor chain-chain hopping tcx �= 0 along the a direction).
In the intermediate filling factors (nc = 0.53), the FS matches

those of the DFT results [41] and ARPES data [42–44] in the
single crystal of YBCO6+x samples [e.g., Fig. 1(e)].

The previously unexplored region of large filling factor
nc in Fig. 1(d) is of our prime interest here, because here
we obtain an f -wave pairing solution, as discussed below. In
this region, we find that the HHS lies above the BZ diagonal
direction. In this case, we will show below that the FS nesting
wave vector between the two chain FSs becomes comparable
to that of the plane state and thus intervenes the overall
FS nesting driven pairing potential, and hence the pairing
symmetry is altered.

B. Evolution of FS nesting with chain doping

Next, we discuss the FS nesting profile as a function of
chain state filling nc while keeping the plane doping fixed
at np ≈ 0.82, in Figs. 2(f)–2(i). Here we mainly focus on
the RPA spin susceptibility plotted as a function of (qx, qy),
since it contributes most to the pairing interaction. Throughout
the calculation, we fix Coulomb interactions as intraband
Up,c = 0.7, 0.6 eV, and interband Vp,c = 0.5, 0.5 eV (we
also explore the U , V dependence of the results below in
which the conclusions remain intact). It is easy to identify
that the nearly horizontal part in the χs(q) plot stems from
the intrachain FS nesting, while the rest of the features are
dominated by plane FS nestings. Of course, both nestings are
affected by each other. Especially, it is worthwhile mentioning
that in the case of no chain FS in Fig. 2(b), the corresponding
plane state nesting profile continues to break the C4 rotational
symmetry. This occurs due to plane-chain hopping tcp as well
as their interaction Vc. A detailed layer decomposed spin
susceptibility profile is given in Appendix A.

Let us define the chain state FS nesting wave vector
as Qc ∼ (all qx, Qcy). For the plane state, the FS nesting
wave vector of present interest is the one near the (π, π )
point, but it is incommensurate at finite dopings in all hole-
doped cuprates. We denote it by Q(1)

p ∼ (π, Qpy) and Q(2)
p ∼

(Qpx, π ). For other C4 invariant cuprates, Qpx = Qpy, but it is
not the case in YBCO due to coupling with the chain state.
We find that in the regions of high chain state filling factor
(nc) − when the chain FS is large and the HHS lies above
the BZ diagonal − Qcy ∼ Qpy, see Fig. 2(i). This makes the
total spin susceptibility possess a dominant nesting strength
at Qpy compared to that at Qpx. As a result of the effective
C4 symmetry breaking in the spin susceptibility, and hence in
the pairing interaction, the pairing eigenfunction �(k) also
acquires a symmetry which lacks this symmetry. This gives
the f -wave symmetry.

With decrease of the chain state occupancy, the chain FS
nesting wave vector becomes smaller than the plane state
nesting, i.e., Qcy < Qpy, and thus their contributions become
decoupled. In such a case, we find that the pairing symmetry
will be essentially dictated by the plane FS nesting, which
gives a d-wave pairing. For a fixed plane layer filling factor
np, the transition from the f -wave to d-wave solution occurs
very much when the Qcy becomes smaller than Qpy. On the
other hand, for Qcy � Qpy, we find that the f -wave solution
always dominates the d-wave solution.

In the intermediate chain state occupancy when the chain
FS and plane FS’s van-Hove singularity merge, see Fig. 2(h),
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FIG. 2. (a) We plot the leading SC eigenvalue (coupling constant) as a function of chain state doping. Blue square and red circles denote
f - and d-wave symmetries, respectively, as the leading pairing instability. Light and dark shadings denote doping regions with d- and f - wave
pairing symmetries, respectively. (b)–(e) Computed pairing eigenfunction �(k) for the leading eigenvalue, plotted on the corresponding FSs,
for four representative values of nc. Here the red to blue color map denotes the negative to positive sign of �(k). (f)–(i) Corresponding RPA
spin susceptibilities (traced over all three intra- and interlayer components) [Tr(χ̃s )] for the same cases as shown in the corresponding upper
panels. All plots are shown in the same color scale for easy comparison. Here we used μp = −0.35 eV and the corresponding plane state
doping is xp ≈ 0.18.

the wave vector Qcy merges with the charge order wave
vector of the plane state. This can promote a stronger and
uniaxial charge ordering strength [70]. Here, we do not
investigate further the charge order state and return back
to the pairing solution at the spin-fluctuation wave vector
henceforth.

The chain band bottom is almost flat in the Cu-O bond
direction. So, when the chain band becomes nearly empty, and
the flat band reaches the Fermi level, its high density of states
has useful ramification, see Fig. 2(c). In this case, Qcy → 0,
giving an almost massless, unidirectional paramagnon mode
in the chain state, see Fig. 2(g). As a result, the overall carrier
concentration at the Fermi level is drastically enhanced. This
enhancement optimizes the SC pairing strength as a function
of chain state doping, as also obtained in the numerical result
(to be discussed below). However, such a massless param-
agnon mode dose not directly contribute to the unconventional
pairing mechanism outlined in Sec. I. For the pairing solu-
tion, the antiferromagnetic wave vector in the plane state is
important, and hence we obtain a d-wave solution, with only
a strong enhancement of the pairing strength added by large
density of states of the chain state.

Finally, as the chain state becomes completely empty, the
overall FS topology and the nesting profile is dictated by the
plane state. However, due to finite coupling to empty chain
bands, the susceptibility topology continues to exhibit a slight
loss of fourfold rotational invariance as shown in Fig. 2(f).
The pairing strength also decreases in this region.

C. Superconducting properties

We now turn to the main topic of superconductivity. For the
same doping value where susceptibility results are discussed
in the above section, we report the solutions of the largest
pairing eigenvalue and pairing eigenfunction in Fig. 2(a) and
Figs. 2(b)–2(e). The pairing eigenfunction is plotted on the
corresponding FS in a color map with blue to red colors
denoting positive to negative sign of the pairing eigenfunction

�(k). The two pairing symmetry solutions we obtain have the
k-dependence form as (visualized over the BZ in Fig. 7)

f wave : � f = sin kx(cos kx − 3 cos ky − 2), (11a)

d wave : �d = cos kx − cos ky. (11b)

Our nesting results reveal that when the chain nesting
Qcy � Qpy, the FS nesting at Q(1)

p = (π, Qpy) dominates over
Q(2)

p = (Qpx, π ). Hence the pairing potential and pairing
eigenfunction inherits this broken C4 symmetry. Moreover, the
weak qx dependence of the Qcy nesting wave vector implies
that more Fermi momenta kx are nested by this fixed wave
vector, due to weak kx dispersion of the chain state as seen
in Fig. 1. This in-plane anisotropic nesting promotes a pair-
ing symmetry which favors the condition: sgn[�(kx, ky)] =
−sgn[�(kx + π, ky + Qpy)] at all kx points. Owing to the FS
topology of the plane state, such a condition is satisfied by
kx → −kx. As we reach the BZ boundary near k ∼ (±π, 0),
the condition is reversed in such a way that the pairing sym-
metry further changes sign, see Fig. 1(f). This is the reason a
purely p-wave solution (which flips signs for all kx → −kx) is
overturned by a higher-angular momentum solution with odd
parity. For the f -wave case, the pairing symmetry reverses
sign for all kx → −kx, in addition to another sign reversal
between ky = 0 and ky = ±π points [see Fig. 7(a)]. As a
result, we have an f -wave pairing state in this doping region
of the chain state.

In Fig. 2(a) we plot the largest eigenvalue with blue square
and red circles for f -wave and d-wave solutions, respectively.
As anticipated, for large electron occupancy in the chain state
which gives Qcy � Qpy, we obtain an f -wave pairing solution.
Otherwise, the pairing symmetry is the typical d-wave type. In
addition, we also find that the value of the largest eigenvalue
(pairing strength) gradually increases with decreasing chain
state filling factor nc (keeping everything else fixed). This
increment is related to the competition between the spin fluc-
tuation magnitude (directly enhancing the pairing strength),
as well as the total density of states on the Fermi level. We
notice that with decreasing chain state occupancy, the flat
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FIG. 3. (a) We plot the leading pairing strength as a function
of nc for several fixed values of np. In all cases, we have fixed the
interaction strength and all tight-binding parameters. Blue squares
and red circles distinguish the leading pairing strength for f -wave
and d-wave cases, respectively, and the solid line is a guide to the eye.
There are prominent maxima of the pairing strength at an optimum
chain doping, where the chain band bottom crosses the Fermi level.
The optimum chain doping varies only weakly with the plane state
doping.

band of the chain state approaches the Fermi level and hence
enhances the carrier concentration. As the chain state moves
completely above the Fermi level, the pairing strength again
starts to decrease. This gives a new tunability to enhance su-
perconductivity in YBCO cuprates by selectively reducing the
chain states occupancy. In the existing experimental reports,
such a selective tunability of the chain state is not directly
explored, and hence the confirmation of our prediction awaits
a focused experiment along this direction [62].

Next we investigate the evolution of the pairing symmetry
and the corresponding pairing eigenvalue λ as a function of
np and nc in Fig. 3. Blue square and red circles distinguish
between the f -wave and d-wave pairing eigenvalues, respec-
tively, as the leading solution for a given case. We consistently
find that below a critical chain filling factor nc for a fixed np,
the pairing symmetry remains d-wave. The d-wave eigenvalue
λ reaches an optimum value when the chain state passes
through the Fermi level. For a higher value of nc, when the
chain nesting vector Qcy becomes comparable to that of Qpy

of the plane state, the pairing symmetry changes to an f -wave
symmetry. This condition varies for different np values since
the values of Qpy is also doping dependent.

Our results indicate a reentrant of the f -wave solution
for lower hole doping on the plane state at higher values
of nc. In fact, with even lower hole doping, the entire nc

range shows an f -wave solution to be dominant over the
d-wave solution (the difference between the two eigenvalues
is however very small). This occurs because the FS nesting in
the plane state becomes more commensurate, tending the FS
instability toward other density wave orders (such as charge-
density wave, spin-density wave, etc.). However, the chain
state nesting continues to grow and dominate over the plane
state nesting.

Caution to be taken for the results in the underdoped
region. Note that our ground state in the non-SC state is a
paramagnet with full FSs. The FS becomes gapped out due
to charge order, pseudogap etc. in the underdoped region. In

FIG. 4. We plot the pairing strength λ at two representative chain
dopings, where f -wave and d-wave channels are dominant, as a
function of Up and Vc, keeping all other parameters fixed. Here
we choose np = 0.82, nc = 0.38 (μp = −0.35, μc = −1.1 eV) for
d-wave symmetry and np = 0.82, nc = 0.84 (μp = −0.35, μc =
−0.3 eV) for f -wave symmetry for both (a) and (b). The solid line
is a guide to the eye. The results reveal that for the doping region,
where the f -wave eigenvalue is larger than that of the d-wave,
this conclusion remains unchanged as a function of Up and Vc.
For the other dopings, where d-wave is dominant over f -wave, the
conclusion is also invariant for the values of Up, Vc.

fact, in the underdoped region, experiments suggest a nodeless
SC gap in YBCO and other cuprates [33], which presumably
arises due to competition with the normal state competing
orders [38–40].

Finally, we address the robustness of the conclusions with
respect to the interaction strength Up, Vc in Fig. 4, as well as
as a function of plane-chain hopping strength (tcp) in Fig. 5.
We indeed find that both results are robust to the values of tcp,
Up, and Vc. This confirms that the pairing symmetry is nearly
indifferent to these parameters and is mainly determined
by the FS topology and nesting profile which are dictated
by filling factors. Of course, the magnitude of the pairing

FIG. 5. We plot λ as a function of the plane-chain tunneling
amplitude tcp on the pairing eigenvalues. Here we choose np =
0.82, nc = 0.38 (μp = −0.35, μc = −1.1 eV) for d-wave symmetry,
and np = 0.82, nc = 0.94 (μp = −0.35, μc = −0.1 eV) for f -wave
symmetry. Up/c = (0.7, 0.6), Vp/c = (0.5, 0.5) in eV. We conclude
that for the doping where d-wave is dominant over f -wave, it
remains so for all values of tcp, and vice versa.
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potential, and hence the value of the pairing eigenvalue λ, are
sensitive to the energy scales of the problem which depends
on tcp, U , V .

IV. DISCUSSIONS AND CONCLUSIONS

Much like increasing the SC transition temperature Tc,
obtaining varieties of unconventional pairing symmetry is an
important milestone in the field of superconductivity. Espe-
cially, the odd parity pairing symmetry holds a special interest
in the community in pursuit of governing triplet pairing,
chiral pairing, topological superconductivity, and Majorana
edge modes, etc. f -wave pairing symmetry is odd under
reflection along the x direction and is even under reflection
in the y direction [see Fig. 7(a)]. It is naturally arising in the
spin-triplet channel to conform the fermionic antisymmetric
wave-function criterion and breaks time-reversal symmetry.
So far, there have been some discussions of time-reversal sym-
metry breaking pairing channels with d + id or s + id pairing
channel in the spin singlet channels [37] or p-wave solutions
in the spin-triplet channels [38–40] in cuprates. However, the
exploration of novel pairing channel by exploiting the chain
state doping as a new tuning parameter has not been pursued
before in the literature.

Proposals of f -wave pairing have been put forward in
heavy-fermion UPt3 [71], twisted bilayer graphene [72],
monolayer MoS2 [73], cold atom optical lattice [74], p-doped
semiconductors [75], honeycomb lattices [76], and other su-
perconductors [77]. However, apart from indirect hints of such
pairing symmetry in UPt3 [71], this state has not been directly
realized in other families.

The f -wave pairing symmetry in YBCO samples results
from the competition between the chain and plane states’
nesting wave vectors and strength. The plane state nesting
along (π, π ) gives the d-wave symmetry. However, as the
uniaxial nesting of the chain state becomes comparable in
the nesting wave vector, and nesting strength to the plane
state one, it breaks the C4 rotational symmetry in the pairing
potential. Hence the f -wave pairing symmetry arises. In this
pairing state, the Fermi momenta change sign for all values of
kx → −kx, in addition to an additional sign reversal between
ky = 0 and ky = ±π .

Both pairing symmetries give nodal quasiparticles spec-
trum in the density of states, however, the gap nodes are
aligned along the BZ boundary directions for the f -wave case,
while it is aligned to the diagonal direction in the d-wave case.
The f -wave pairing symmetry can also be detected by the
field-angle dependence of the transport and thermodynamical
quantities [78]. Moreover, the anisotropy in the upper critical
field in the vortex phase has unique signatures for the f -wave
pairing as discussed in the context of UPt3 superconductors
[71].

As we mentioned before, the prediction of the f -wave
pairing solution is obtained in the doping range where the
carrier concentration of the chain state is substantially reduced
to its intrinsic values in YBCO samples. Therefore, it is crucial
to be able to dope the chain layer without altering doping con-
centration in the plane layers. Many organic superconductors
also host a quasi-one-dimensional chain state with anisotropic

FIG. 6. Computed RPA spin susceptibility [Eq. (7)] is split for
three channels: intraplane in (a), intrachain in (b), and plane-chain in
(c). Filling factors are np = 0.82 and nc = 0.65. Up/c = 0.7, 0.6 eV,
and Vp/c = 0.5, 0.5 eV. All plots are done in the same colorbar.

nesting and transport properties [79]. Therefore, the search for
an f -wave pairing can be easily extended to this family.
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APPENDIX: SPIN SUSCEPTIBILITY COMPONENTS

In Fig. 6, we separately show the contributions of the
intraplane, intrachain, and plane-chain susceptibilities for the
spin channels only. We notice that the FS nesting in the plane
channel is very similar to the ones obtained in other cuprates
without a chain state. The intrachain FS nesting is almost one
dimensional with very weak anisotropy in the intensity. This
is due to low kx dispersion at finite filling factor. The interlayer
plane-chain FS nesting is also quasi-1D with significantly low
intensity.

In Fig. 7, we plot the pairing functions, Eqs. (11a) and
(11b), in the 2D BZ. This plot is shown to ease the discussion
of the pairing symmetry in the main paper.

FIG. 7. We visualize the k dependence of the SC pairing symme-
tries in (a) for f -wave [Eqs. (11a)] and in (b) for d-wave [Eq. (11b)].
The color map of red to blue gives negative and positive signs. We
did not normalize the eigenfunctions in any of the results in the main
text, since normalization simply gives a constant multiplication to the
eigenfunctions.
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